
Concurrency (exam 2007-2008, second part)

You may consult the slides of the lectures. No other document or electronic device is allowed.
Answers should be formulated in French or English, and preferably in a rigorous and sharp
style. Write the solutions in a sheet different from the one used for the first part of the exam.

Exercise 1 (another definition of determinacy, 4 points) Reminder. In the context of
CCS, we have said that a process P is determinate if for any sequence s of observable actions,
if P

s⇒ Pi for i = 1, 2 then P1 ≈ P2. Also we denote with sort(P) the collection of observable
actions a derivative of P may perform.

We introduce an alternative notion of ‘R-determinacy’. We denote with R a process of
the shape `1.`2 · · · `n.0 where `i are observable actions for i = 1, . . . , n, and n ≥ 0. We
say that a process P is R-determinate if for any process R of the shape above such that
sort(P) ∩ sort(R) = ∅, if (P | R) τ⇒ Pi for i = 1, 2 then P1 ≈ P2. Prove or disprove the
following assertions.
(1) If P is R-determinate and P ≈ Q then Q is R-determinate.

Sol. Preliminary: sort(a) ∩ sort(a) = ∅.
First notice that P ≈ Q implies sort(P) = sort(Q).
Hence sort(Q) ∩ sort(R) = ∅ implies sort(Q) ∩ sort(R) = ∅.
Suppose (Q | R) τ⇒ Qi for i = 1, 2.
Because weak bisimulation is preserved by parallel composition we know that (P | R) ≈ (Q |
R).
By definition of bisimulation, ∃Pi (P | R) τ⇒ Pi and Pi ≈ Qi for i = 1, 2.
Because P is R-determinate, and by the previous remark, we know P1 ≈ P2.
By transitivity of ≈, we conclude Q1 ≈ Q2.
(2) If P is R-determinate and P

α→ P ′ then P ′ is R-determinate, where α is any action.
Sol. False. Consider P = a.(b.c + b.d) + a.

If sort(P) ∩ sort(R) = ∅ we have that P | R 6 τ→because P and R cannot synchronise and R
alone cannot do τ actions.
Hence P is R-determinate. On the other hand, P

a→ Q with Q = (b.c+ b.d) and taking R = b
we see that (Q | R) τ→ c, (Q | R) τ→ d, and obviously c 6≈ d.
(3) If P is determinate then it is R-determinate.

Sol. False. Consider P = a. Then P is determinate.
On the other hand, taking R = a we see that P | R

τ⇒ P | R and P | R
τ⇒ 0, and obviously

(P | R) 6≈ 0.
(4) If P is R-determinate then it is determinate.

Sol. False, taking the same example as in (2). P is R-determinate but not determinate.

Exercise 2 (affinity and TCCS, 5 points) In the course, we have defined an affine type
system for a monadic π-calculus.
(1) In the polyadic π-calculus channels carry vectors of names and channel types have the
shape Ch(τ1, . . . , τn). Propose a generalisation to the polyadic π-calculus of the affine typing
system. You will focus on the rules for input and output and notice that, as a special case,
when the vector of names has length 0, you get the typing rules for CCS.

1

Sol.
Γ ` a : Chu(σ1, . . . , σn)

π2(u) = 1 Γ, b1 : σ1, . . . , bn : σn ` P

Γ ` a(b1, . . . , bn).P

Γ0 ` a : Chu(σ1, . . . , σn)
π1(u) = 1 Γi ` bi : σi i = 1, . . . , n Γ0 ` P

(Γ0 ⊕ Γ1 ⊕ · · · ⊕ Γn) ` ab.P

(2) Propose a typing rule for the operator else next of timed CCS (TCCS). The resulting
system should type the process P1 while it should not type the process P2 defined as follows:

P1 = (a.0 . b.a.0) P2 = ((a.0) . (0 . a.0)) | (0 . a.0) .

Show the typing derivation of P1 and explain why the typing of P2 fails.
Sol.

Γ ` P Γ ` Q

Γ ` (P . Q)

Let Γ = a : Ch(0,1), b : Ch(0,1). One checks Γ ` a.0 and Γ ` b.a.0. Hence Γ ` P1.
On the other hand, the typing of P2 fails for any context Γ since to type the two parallel
components of P2 we need the input usage and then the addition of two input usages is illegal.

(3) Your typing system should have the property that if Γ ` P and P
tick→ Q then Γ ` Q.

Prove that.
Sol. One proceeds by induction on Γ ` P .

For instance, suppose Γ ` (P . Q) because Γ ` P and Γ ` Q. Further suppose (P . Q) tick→ Q.
Then Γ ` Q.
(4) Your typing system should still have the substitution property stated in the course. Prove
that, focusing just on the situations that do not arise in the system for the π-calculus.

Sol. One proceeds by induction on Γ, a : σ ` P .
For instance, suppose Γ, a : σ ` (P . Q), Γ′ ` b : σ and (Γ⊕ Γ′) ↓.
By the typing rule for else next we know that Γ, a : σ ` P and Γ, a : σ ` Q.
By inductive hypothesis, (Γ⊕ Γ′) ` [b/a]P and (Γ⊕ Γ′) ` [b/a]P .
Then by the typing rule for else next we conclude that (Γ ⊕ Γ′) ` ([b/a]P . [b/a]Q) and we
notice that [b/a](P . Q) = ([b/a]P . [b/a]Q).

2

