Concurrency (exam 2007-2008, second part)

You may consult the slides of the lectures. No other document or electronic device is allowed. Answers should be formulated in French or English, and preferably in a rigorous and sharp style. Write the solutions in a sheet different from the one used for the first part of the exam.

Exercise 1 (another definition of determinacy, 4 points) Reminder. In the context of CCS, we have said that a process P is determinate if for any sequence s of observable actions, if $P \stackrel{s}{\Rightarrow} P_{i}$ for $i=1,2$ then $P_{1} \approx P_{2}$. Also we denote with sort (P) the collection of observable actions a derivative of P may perform.

We introduce an alternative notion of ' R-determinacy'. We denote with R a process of the shape $\ell_{1} \cdot \ell_{2} \cdots \ell_{n} .0$ where ℓ_{i} are observable actions for $i=1, \ldots, n$, and $n \geq 0$. We say that a process P is R -determinate if for any process R of the shape above such that $\operatorname{sort}(P) \cap \operatorname{sort}(R)=\emptyset$, if $(P \mid R) \stackrel{\tau}{\Rightarrow} P_{i}$ for $i=1,2$ then $P_{1} \approx P_{2}$. Prove or disprove the following assertions.
(1) If P is R-determinate and $P \approx Q$ then Q is R-determinate.

Sol. Preliminary: $\operatorname{sort}(a) \cap \operatorname{sort}(\bar{a})=\emptyset$.
First notice that $P \approx Q$ implies $\operatorname{sort}(P)=\operatorname{sort}(Q)$.
Hence $\operatorname{sort}(Q) \cap \operatorname{sort}(R)=\emptyset$ implies $\operatorname{sort}(Q) \cap \operatorname{sort}(R)=\emptyset$.
Suppose $(Q \mid R) \stackrel{\tau}{\Rightarrow} Q_{i}$ for $i=1,2$.
Because weak bisimulation is preserved by parallel composition we know that $(P \mid R) \approx(Q \mid$ $R)$.
By definition of bisimulation, $\exists P_{i}(P \mid R) \stackrel{\tau}{\Rightarrow} P_{i}$ and $P_{i} \approx Q_{i}$ for $i=1,2$.
Because P is R-determinate, and by the previous remark, we know $P_{1} \approx P_{2}$.
By transitivity of \approx, we conclude $Q_{1} \approx Q_{2}$.
(2) If P is R-determinate and $P \xrightarrow{\alpha} P^{\prime}$ then P^{\prime} is R-determinate, where α is any action.

Sol. False. Consider $P=a .(b . c+b . d)+\bar{a}$.
If $\operatorname{sort}(P) \cap \operatorname{sort}(R)=\emptyset$ we have that $P \mid R \nRightarrow$ because P and R cannot synchronise and R alone cannot do τ actions.
Hence P is R-determinate. On the other hand, $P \xrightarrow{a} Q$ with $Q=(b . c+b . d)$ and taking $R=\bar{b}$ we see that $(Q \mid R) \xrightarrow{\tau} c,(Q \mid R) \xrightarrow{\tau} d$, and obviously $c \not \approx d$.
(3) If P is determinate then it is R-determinate.

Sol. False. Consider $P=a$. Then P is determinate.
On the other hand, taking $R=\bar{a}$ we see that $P|R \stackrel{\tau}{\Rightarrow} P| R$ and $P \mid R \stackrel{\tau}{\Rightarrow} 0$, and obviously $(P \mid R) \not \approx 0$.
(4) If P is R-determinate then it is determinate.

Sol. False, taking the same example as in (2). P is R-determinate but not determinate.
Exercise 2 (affinity and TCCS, 5 points) In the course, we have defined an affine type system for a monadic π-calculus.
(1) In the polyadic π-calculus channels carry vectors of names and channel types have the shape $\operatorname{Ch}\left(\tau_{1}, \ldots, \tau_{n}\right)$. Propose a generalisation to the polyadic π-calculus of the affine typing system. You will focus on the rules for input and output and notice that, as a special case, when the vector of names has length 0 , you get the typing rules for CCS.

Sol.

$$
\begin{gathered}
\Gamma \vdash a: C h_{u}\left(\sigma_{1}, \ldots, \sigma_{n}\right) \\
\frac{\pi_{2}(u)=1 \quad \Gamma, b_{1}: \sigma_{1}, \ldots, b_{n}: \sigma_{n} \vdash P}{\Gamma \vdash a\left(b_{1}, \ldots, b_{n}\right) \cdot P} \\
\frac{\Gamma_{0} \vdash a: C h_{u}\left(\sigma_{1}, \ldots, \sigma_{n}\right)}{\pi_{1}(u)=1 \quad \Gamma_{i} \vdash b_{i}: \sigma_{i} \quad i=1, \ldots, n \quad \Gamma_{0} \vdash P} \\
\left(\Gamma_{0} \oplus \Gamma_{1} \oplus \cdots \oplus \Gamma_{n}\right) \vdash \bar{a} b \cdot P
\end{gathered}
$$

(2) Propose a typing rule for the operator else_next of timed CCS (TCCS). The resulting system should type the process P_{1} while it should not type the process P_{2} defined as follows:

$$
P_{1}=(a .0 \triangleright b . a .0) \quad P_{2}=((a .0) \triangleright(0 \triangleright a .0)) \mid(0 \triangleright a .0) .
$$

Show the typing derivation of P_{1} and explain why the typing of P_{2} fails.
Sol.

$$
\frac{\Gamma \vdash P \quad \Gamma \vdash Q}{\Gamma \vdash(P \triangleright Q)}
$$

Let $\Gamma=a: C h_{(0,1)}, b: C h_{(0,1)}$. One checks $\Gamma \vdash a .0$ and $\Gamma \vdash b . a .0$. Hence $\Gamma \vdash P_{1}$.
On the other hand, the typing of P_{2} fails for any context Γ since to type the two parallel components of P_{2} we need the input usage and then the addition of two input usages is illegal.
(3) Your typing system should have the property that if $\Gamma \vdash P$ and $P \xrightarrow{\text { tick }} Q$ then $\Gamma \vdash Q$. Prove that.

SoL. One proceeds by induction on $\Gamma \vdash P$.
For instance, suppose $\Gamma \vdash(P \triangleright Q)$ because $\Gamma \vdash P$ and $\Gamma \vdash Q$. Further suppose $(P \triangleright Q) \xrightarrow{\text { tick }} Q$. Then $\Gamma \vdash Q$.
(4) Your typing system should still have the substitution property stated in the course. Prove that, focusing just on the situations that do not arise in the system for the π-calculus.

Sol. One proceeds by induction on $\Gamma, a: \sigma \vdash P$.
For instance, suppose $\Gamma, a: \sigma \vdash(P \triangleright Q), \Gamma^{\prime} \vdash b: \sigma$ and $\left(\Gamma \oplus \Gamma^{\prime}\right) \downarrow$.
By the typing rule for else_next we know that $\Gamma, a: \sigma \vdash P$ and $\Gamma, a: \sigma \vdash Q$.
By inductive hypothesis, $\left(\Gamma \oplus \Gamma^{\prime}\right) \vdash[b / a] P$ and $\left(\Gamma \oplus \Gamma^{\prime}\right) \vdash[b / a] P$.
Then by the typing rule for else_next we conclude that $\left(\Gamma \oplus \Gamma^{\prime}\right) \vdash([b / a] P \triangleright[b / a] Q)$ and we notice that $[b / a](P \triangleright Q)=([b / a] P \triangleright[b / a] Q)$.

