CCS: bisimulation

1. Here are the specifications of unary and binary semaphores:

$$
K_{1}=p \cdot v \cdot K_{1} \quad \begin{aligned}
& K_{2}=p \cdot K_{2}^{\prime} \\
& K_{2}^{\prime}=p \cdot v \cdot K_{2}^{\prime}+v \cdot K_{2}
\end{aligned}
$$

Prove that $K_{1} \| K_{1} \sim K_{2}$.
2. Let $K=a . K$. Prove that $K \| K \sim K$.
3. Prove that $(\boldsymbol{\nu} c)\left(K_{1} \| K_{2}\right) \sim H$, where $K_{1}=a . \bar{c} . K_{1}, K_{2}=$ b.c. K_{2}, and $H=a . b . \tau . H+b . a . \tau . H$.
4. Prove these equivalences:

$$
\begin{aligned}
(\boldsymbol{\nu} a)(\tau \cdot \bar{b} \| c) & \approx \bar{b} \| c \\
(\boldsymbol{\nu} a)(b \cdot \bar{a} \| a \cdot c) & \approx b . c \\
\tau \cdot P \| Q & \approx \tau \cdot(P \| Q)
\end{aligned}
$$

5. Expain why $\tau .(\tau . a+b)+\tau . b \not \approx \tau . a+\tau . b$. Is it true that $K \approx a$, where $K=\tau . K+a$?

CCS: equational reasoning

1. Consider the following processes, where the channel names a, b, c, d, e, f are all distinct:

$$
\begin{aligned}
P & =(\boldsymbol{\nu} b)(a . b . c . \mathbf{0} \| \text { d.b.b.e.0 }) \\
Q & =(\boldsymbol{\nu} f)(\text { a.f.c. } \mathbf{0} \| \text { d. } \bar{f} . e . \mathbf{0}) \\
R & =\text { a.c. } \mathbf{0} \| \text { d.e. } \mathbf{0}
\end{aligned}
$$

Show that $P=Q$ while $P \neq R$, where $=$ denotes the axiomatization for weak bisimilarity.

pi-calculus: syntax

1. Compute the term

$$
((\boldsymbol{\nu} h) r(s) \cdot(h(r) \cdot \bar{r}\langle s\rangle . \mathbf{0} \| \bar{r}\langle s\rangle) \| h() \cdot r(h) \cdot \bar{h}\langle r\rangle . \mathbf{0})\{s / h\}\left\{{ }^{h} / r\right\}
$$

pi-calculus: bisimulation

1. Show that $(\boldsymbol{\nu} z)(\bar{z}\langle a\rangle \| z(w) . \bar{x}\langle w\rangle) \approx \bar{x}\langle a\rangle$.
2. Show that $(\boldsymbol{\nu} z) \bar{x}\langle y\rangle . P \approx \bar{x}\langle y\rangle(\boldsymbol{\nu} z) P$.
3. Using the up-to structural congruence and up-to context proof technique, show that

$$
!!\bar{x}\langle y\rangle \cdot y(z) \approx!\bar{x}\langle y\rangle \cdot y(z)
$$

pi-calculus: data structures

1. Recall the implementation of booleans as pi-calculus processes seen in the lectures. Define a process EQUIV that represents the operation of equivalence on truth-values. Show that

$$
(\boldsymbol{\nu} b, c)(E Q U I V\lfloor a, b, c\rfloor\|T R U E\lfloor b\rfloor\| F A L S E\lfloor c\rfloor) \approx F A L S E\lfloor a\rfloor
$$

pi-calculus: asynchronous communication

1. Show how to encode diadic asynchronous communication using monadic asynchronous communication, and check that $\left[\left[\bar{x}\left\langle y_{1}, y_{2}\right\rangle \| x\left(z_{1}, z_{2}\right) \cdot R\right]\right] \rightarrow^{*}\left[\left[R\left\{{ }^{y_{1}, y_{2}} / z_{1}, z_{2}\right\}\right]\right]$.

pi-calculus: types

1. Propose a type assignment for channels of the processes used to represent truth-values (first using simple types, then using i/o types).
