
Concurrence — Partiel

19 November 2006

Instructions: you have three hours to solve all the exercises. Only the slides of the lectures and your
personal notes are authorised. You can admit the result of one question and move on. Whenever you
must exhibit a bisimulation, you must specify the candidate relation and justify why it is closed under the
relevant conditions. An extra bonus applies if you solve correctly all the questions of one exercise. Leave
optional questions at the end.

Exercise 1. Consider CCS with non-deterministic guarded sums and definition of recursive equations.
For each proposition below, prove it or exhibit a counterexample.

1. Let P and Q be two processes such that it holds (νa)P ∼ (νa)Q for a name a. Then P ≈ Q.

Answer. The statement is false. Let P = a and Q = 0. The relation R = {((νa)a, (νa)0)} is
a bisimulation. However, for φ = 〈a〉T it holds P  φ while Q 6 φ. From the completness of
Hennessy-Milner logic, it follows that P 6∼ Q.

2. Let P and Q be two processes such that there exists a process R such that P + τ.R ≈ Q + τ.R.
Then P ≈ Q.

Answer. The statement is false. Let P = a + b and Q = b. Clearly P 6≈ Q. However, for R = a,
it holds P + τ.R = a + b + τ.a ≈ b + τ.a = Q + τ.R. To prove this, either check that the relation
R = {(a + b + τ.a, b + τ.a), (a, a), (0,0)} is a weak bisimulation, or simply apply the second τ -law
of the axiomatization of weak bisimulation.

3. Let P and Q be two processes such that !P ≈ !Q. Then P ≈ Q.

Answer. The statement is false. Let P = a
f

a and Q = a. Clearly P 6≈ Q. However !P ≈ !Q,
because it is easy to see that the relation

R = {(a
n

. . .
n

a︸ ︷︷ ︸
n times

n
!(a

n
a), !a) : n ≥ 0}

is a bisimulation.

4. Let a . b = !a.b and let a, b, c be distinct names. It holds that (νb)(a . b
f

b . c) ≈ a . c.

Answer. It is not difficult to verify that the relation

R = {((νb)(b
n

. . .
n

b︸ ︷︷ ︸
m1 times

n
c

n
. . .

n
c︸ ︷︷ ︸

m2 times

n
a.b

n
b.c), c

n
. . .

n
c︸ ︷︷ ︸

n times

n
a.c) : m1,m2, n ≥ 0 and m1+m2 = n}

is a bisimulation up to ≡.

Exercise 2. Let L be a set of names, ranged over by x, y, . . .. Consider the language source defined
by the grammar:

T ::= newloc x y.T
∣∣ read x (y).T

∣∣ write x y.T
∣∣ 0

Intuitively, newloc x y.T creates a new location called x containing y and resumes as T , read x (y).T
reads the content of the location x and binds it to y in the continuation T , write x y.T updates the
content of the location x with the value y and resumes as T .

Environments ρ are terms defined by the grammar ρ ::= ∅
∣∣ (x, y) · ρ. We call the pair 〈ρ;T 〉 a

configuration. The small step semantics of the source language is defined as

〈ρ ; newloc x y.T 〉 _ 〈(x, y) · ρ ; T 〉

update ρ (x, y) = ρ′

〈ρ ; write x y.T 〉 _ 〈ρ′ ; T 〉
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lookup ρ x = z

〈ρ ; read x (y).T 〉 _ 〈ρ ; T{z/y}〉

where the functions lookup and update are defined as:

lookup ((x, y) · ρ) x = y lookup ((x, y) · ρ) z = lookup ρ z if x 6= z

update ((x, y) · ρ) x v = (x, v) · ρ update ((x, y) · ρ) z v = (x, y) · (update ρ z v) if x 6= z

and undefined otherwise (eg. when updating a location x not defined in ρ).

1. Reduce the term 〈∅ ; newloc x y.newloc x z.write x v.0〉.

Answer. 〈∅ ; newloc x y.newloc x z.write x v.0〉 ___ 〈(x, v) · (x, y) · 0 ; 0〉

(Remark: Answers of 2. and 3. should validate the property stated in question 5.)

2. Define a function [[−]] that encodes the terms T of the source language into terms of the pi-calculus.
For that, encode a location x containing y as a process that sends y over the channel x.

Answer.
[[0]] = 0
[[newloc x y.T ]] = (νx)(x〈y〉

f
[[T ]])

[[read x (y).T ]] = x(y).(x〈y〉
f

[[T ]])
[[write x y.T ]] = x(v).(x〈y〉

f
[[T ]]) v fresh for write x y.T

3. Reusing the previous function, define an encoding of configurations 〈ρ ; T 〉 into pi-calculus. Be
careful because the environment ρ can contain several pairs for a location x, but only the last one
is actually accessible.

Answer. Let
[[〈0 ; T 〉]] = [[T ]]
[[〈(x, y) · ρ ; T 〉]] = (νx)(x〈y〉

f
[[〈ρ ; T 〉]])

The translation of a configuration 〈ρ ; T 〉 is defined as [[〈ρ′ ; T 〉]] where ρ′ = reverse(ρ,0). The
auxiliary function reverse reverses a list and is defined as reverse(0, ρ) = ρ and reverse((x, y) ·
ρ, ρ′) = reverse(ρ, (x, y) · ρ′).

4. Apply your translation to the configuration of question 1. and reduce the term so obtained. Does
it reduce to the translation of the term that answers question 1.?

Answer. The translated term is (νx)(x〈y〉
f

(νx)(x〈z〉
f

x(w).x〈v〉)). It reduces to (νx)(x〈y〉
f

(νx)x〈v〉),
which is the translation of the configuration 〈(x, v) · (x, y) · 0 ; 0〉.

5. We say that two environments ρ1 and ρ2 are equivalent, denoted ρ1 ' ρ2, if for all x it holds that
lookup ρ1 x = lookup ρ2 x. Sketch the proof of the correctness of your encoding: if 〈ρ ; T 〉 _
〈ρ′ ; T ′〉 then [[〈ρ ; T 〉]] _ [[〈ρ′′ ; T ′〉]], where ρ′′ ' ρ′. Proceed by case analysis on the transitions
of the source language.

Answer.

• Case 〈ρ ; newloc x y.P 〉 _ 〈(x, y)·ρ ; P 〉. The encoding of 〈ρ ; newloc x y.P 〉 is C[(νx)(x〈y〉.[[P ]]]
where the context C[−] is obtained by translating the configuration 〈ρ ; −〉. The term
C[(νx)(x〈y〉.[[P ]]] which is equal to the translation of 〈(x, y) · ρ ; P 〉.

• Case 〈ρ ; write x y.T 〉 _ 〈ρ′ ; P 〉 because update ρ (x, y) = ρ′. The encoding of 〈ρ ; write x y.P 〉
is C[x(v).(x〈v〉

f
[[P ]])] where C[−] contains x〈y〉. The translated term reduces to C ′[x〈v〉

f
[[P ]]]

where C ′[−] is obtained from C[−] by removing the output x〈y〉. This outcome corresponds
to the encoding of 〈ρ′ ; T 〉 except that the location (x, v) is defined on top of the candidate
environment, and not in the position where it was before. However, the two environments are
equivalent.

• The case for read is similar to the case write.
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Exercise 3. The private pi-calculus is a symmetric variant of the pi-calculus in which only fresh names
are exchanged: the output x(y) can be thought of as (νy)x〈y〉. It is defined by the grammar

P ::= 0
∣∣ π.P

∣∣ (νz)P
∣∣ Σiπi.Pi

∣∣ P
f

P

π ::= x(z)
∣∣ x(z)

In the terms x(z).P , x(z).P , and (νz)P , the z is bound in the continuation P (observe that, contrarily
to standard pi-calculus, the output prefix is a binder). Its LTS is defined as

x(v).P
x(v)−−−−→ P x(v).P

x(v)−−−−→ P

z 6∈ n(`)

(νz)P `−−→ (νz)P ′

Σiπi.Pi
πi−−→ Pi

P
x(v)−−−−→ P ′ Q

x(v)−−−−→ Q′

P
f

Q
τ−−→ (νv)(P ′ f

Q′)

P
`−−→ P ′ bn(`) ∩ fn(Q) = ∅

P
f

Q
`−−→ P ′ f

Q

where n(x(v)) = n(x(v)) = {x, v}, n(τ) = ∅, and fn(x(v)) = fn(x(v)) = {x}, fn(τ) = ∅. Symmetric rules
for parallel composition have been omitted. Observe that although substitutions are never explicitly
mentioned, they intervene by α-conversion before each communication. For instance,

x(z).P
n

x(y).Q =α x(z).P
n

x(z).Q{z/y}
τ−−→ (νz)(P

n
Q{z/y}) .

1. Define an appropriate structural congruence relation ≡ and reduction semantics _ for the private
pi-calculus such that P _ P ′ if and only if P

τ−−→≡ P ′. Optional: prove that.

Answer.
P

n
Q ≡ Q

n
P P

n
(Q

n
R) ≡ (P

n
Q)

n
R P

n
0 ≡ P

(νv)P
n

Q ≡ (νv)(P
n

Q) if v 6∈ fn(Q) (νx)(νy)P ≡ (νy)(νx)P

Σiπi.Pi ≡ Σiπf(i).Pf(i) for f permutation

P1 + x(v).P
f

Q1 + x(v).Q _ (νv)(P
f

Q)
P _ P ′

(νx)P _ (νx)P ′

P _ P ′

P
f

Q _ Q
f

P

P ′ ≡ P _ Q ≡ Q′

P ′ _ Q′

Let strong ground bisimilarity, denoted ∼g, be the largest symmetric relation over private pi-calculus

processes such that whenever P ∼g Q, there is z 6∈ fn(P,Q) such that if P
`−−→ P ′ where ` is x(z), or

x(z), or τ , then there exists Q′ such that Q
`−−→ Q′ and P ′ ∼g Q′.

2. Prove that
a(x).(x(v)

n
y(w)) ∼g a(x).(x(v).y(w) + y(w).x(v)) .

Does this equation hold in the pi-calculus equipped with strong bisimilarity?

Answer. The relation

R = { (a(x).(x(v)
f

y(w)), a(x).(x(v).y(w) + y(w).x(v))),
(x(v)

f
y(w), x(v).y(w) + y(w).x(v)),

(y(w), y(w)), (x(v), x(v)), (0,0)}

is a strong ground bisimulation. This equation does not hold in the pi-calculus equipped with

strong bisimilarity, because after
a(y)−−−−→ the left hand side can perform a τ transition that cannot

be matched by the right hand side.
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3. Prove that strong ground bisimilarity on private pi-calculus is a congruence with respect to input
prefix, that is, if P ∼g Q then for all x, z it holds x(z).P ∼g x(z).Q.

Answer. Let R = {(x(z).P, x(z).Q) : P ∼g Q}. We show that R is a bisimulation.

Suppose that x(z).P
x(z)−−−−→ P for z 6∈ fn(x(z).P, x(z).Q). By definition of ground bisimilarity there

exists Q′ such that x(z).Q
x(z)−−−−→ Q′ and P ∼g Q′. But the definition of the LTS guarantees that

Q′ = Q, and the result follows by the construction of R.

4. Optional. Prove that strong ground bisimilarity is a congruence with respect to parallel composi-
tion, that is, if P ∼g Q then for all R it holds P

f
R ∼g Q

f
R.

Answer. Let R = {((νṽ)(P
f

R), (νṽ)(Q
f

R)) : P ∼g Q}. We show that R is a bisimulation.

Suppose that (νṽ)(P
f

R) `−−→ P1 because P
`−−→ P ′ and ` is x(z), or x〈z〉, or τ for x 6∈ ṽ,

z 6∈ fn((νṽ)(P
f

R)) and z 6∈ fn((νṽ)(Q
f

R). Then P1 = (νṽ)(P ′ f
R). By definition of ground

bisimilarity there exists Q′ such that Q
`−−→ Q′ and P ′ ∼g Q′. The LTS allows the transition

Q
f

R
`−−→ (ν{)ṽ)(Q′ f

R) and (νṽ)(P ′ f
R) R (νṽ)(Q′ f

R) follows from the definition of R.

The case (νṽ)(P
f

R) `−−→ P1 because R
`−−→ R′ is similar (simpler).

Suppose that (νṽ)(P
f

R) `−−→ P1 because P
x(v)−−−−→ P ′, R

x(v)−−−−→ R′, and P1 = (νv)(νṽ)(P ′ f
R′).

The variable v 6∈ fn(P ), and we can choose it so that v 6∈ fn(P,Q). By definition of ground

bisimilarity there exists Q′ such that Q
x(v)−−−−→ Q′ and P ′ ∼g Q′. The LTS allows the transition

(νṽ)(Q
f

R) τ−−→ (νv)(νṽ)(Q′ f
R) and (νv)(νṽ)(P ′ f

R) R (νv)(νṽ)(Q′ f
R) follows from the

definition of R.

The case (νṽ)(P
f

R) `−−→ P1 because P
x(v)−−−−→ P ′, R

x(v)−−−−→ R′ is similar.

5. Can strong ground bisimilarity be defined over standard pi-calculus processes? If yes, describe the
advantages and inconvenients with respect to strong bisimilarity.

Answer. When applied on standard pi-calculus processes, strong ground bisimilarity is not
preserved by parallel composition. As such, it is not a sound proof technique for any contextual
equivalence.
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