## Démonstration Automatique

Sylvain Conchon

Équipe Démons & Projet Proval Université Paris-Sud

23 Janvier 2006

# Construction d'un démonstrateur automatique dédié à la preuve de programmes

#### Plan

- Motivations et démonstrations
- 2 Les briques de base
  - Logique propositionnelle : SAT-solvers
  - Traitement de l'égalité : l'algorithme de Congruence Closure
  - Arithmétique linéaire : la méthode de Fourier-Motzkin
- Ombinaison de procédures de décision

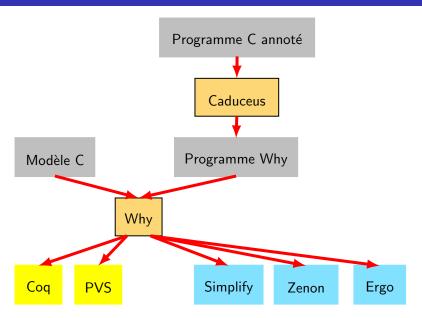
## Motivations : la vérification de programme

La vérification de programmes est une activité aussi ancienne que celle de programmer :

**Alan Turing**, Checking a large routine (1949)

Des nombreux outils de **vérification automatique** sont aujourd'hui utilisés en entreprise. Dans le *hardware* (Intel par ex.) mais aussi pour le logiciel (Ariane5, Airbus etc.)

## Motivations : exemple d'une chaîne de vérification



## Motivations: un exemple simple

```
typedef struct purse { int balance; } purse;
void credit(purse *p,int s) {
  p \rightarrow balance = p \rightarrow balance + s;
void withdraw(purse *p,int s) {
  p \rightarrow balance = p \rightarrow balance - s;
purse *new_purse() {
  purse* p = (purse*) malloc(1 * sizeof(purse));
  p \rightarrow balance = 0;
  return p;
```

## Motivations: un exemple simple

```
int test() {
  purse *p1 = new_purse();
  purse *p2 = new_purse();
  credit(p1,100);
  credit(p2,200);
  withdraw(p1,50);
  withdraw(p2,100);
  return p1→balance + p2→balance;
}
```

## Motivations : un exemple simple avec annotations

```
//@ predicate purse_inv(purse *p) {\valid(p) && p->balance>=0}
typedef struct purse { int balance; } purse;
/*0 requires purse_inv(p) && s >= 0
  @ assigns p->balance
  @ ensures purse_inv(p) && p->balance == \old(p->balance) + s
  0*/
void credit(purse *p,int s) {
  p \rightarrow balance = p \rightarrow balance + s;
```

## Motivations : un exemple simple avec annotations

```
/*@ requires purse_inv(p) && 0 <= s <= p->balance
  @ assigns p->balance
  @ ensures purse_inv(p)&&p->balance==\old(p->balance)-s
  0*/
void withdraw(purse *p,int s) {
  p \rightarrow balance = p \rightarrow balance - s;
/*@assigns \nothing
  @ensures \fresh(\result)&&purse_inv(\result)&&\result->balance==0
  0*/
purse *new_purse() {
  purse* p = (purse*) malloc(1 * sizeof(purse));
  p \rightarrow balance = 0;
  return p;
```

## Motivations : un exemple simple avec annotations

```
/*@ ensures \result == 150 @*/
int test() {
  purse *p1 = new_purse();
  purse *p2 = new_purse();
  credit(p1,100);
  credit(p2,200);
  withdraw(p1,50);
  withdraw(p2,100);
  return p1→balance + p2→balance;
```

## Motivations: un autre exemple

```
type \alpha list
logic nil : \alpha list
logic cons : \alpha, \alpha list \rightarrow \alpha list
logic hd : \alpha list \rightarrow \alpha
logic tl : \alpha list \rightarrow \alpha list
axiom a1: forall x:\alpha. forall y:\alpha list. hd(cons(x,y)) = x
axiom a2: forall x:\alpha. forall y:\alpha list. tl(cons(x,y)) = y
logic f : \alpha \rightarrow \alpha
logic g : \alpha , \alpha \rightarrow \alpha
logic Q : \alpha \rightarrow \text{prop}
logic P : \alpha , \beta , \gamma \rightarrow \text{prop}
axiom a3: forall x,y:\alpha. g(y,x) = y
axiom a4:
 forall x:\alpha. forall y:\beta. forall t:\gamma. P(cons(x,y),x,t) \rightarrow Q(t)
```

## Motivations: un autre exemple (suite)

le but à prouver est :

```
goal g:
  forall a:int list.
  forall x, y: int.
  forall z, v:int.
  hd(cons(hd(f(a)),nil)) = g(g(y,x),x) \rightarrow
  f(f(f(a)))=a \rightarrow f(f(f(f(f(a)))))=a \rightarrow
  x \le y+2 \rightarrow y \le z+4 \rightarrow z+6 \le x \rightarrow
  a=cons(x,cons(y,nil)) \rightarrow
  P(a,y,z+x+4) \rightarrow Q(x+y)
```

#### En effet...

 $1 f(f(f(a)))=a \wedge f(f(f(f(f(a)))))=a \Rightarrow f(a)=a$ 

- 1  $f(f(f(a)))=a \wedge f(f(f(f(f(a)))))=a \Rightarrow f(a)=a$
- 2 axiom a3  $\Rightarrow$  g(g(y,x),x)=y

- 2 axiom a3  $\Rightarrow$  g(g(y,x),x)=y
- 3  $hd(cons(hd(f(a)),nil)) = g(g(y,x),x) \land 1 \land 2 \Rightarrow hd(cons(hd(a),nil)) = y$

- 1  $f(f(f(a)))=a \wedge f(f(f(f(f(a)))))=a \Rightarrow f(a)=a$
- 2 axiom a3  $\Rightarrow$  g(g(y,x),x)=y
- 3  $hd(cons(hd(f(a)),nil)) = g(g(y,x),x) \land 1 \land 2 \Rightarrow hd(cons(hd(a),nil)) = y$
- 4 axiom a1  $\wedge$  3  $\Rightarrow$  hd(a) = y

- $\mathbf{1} f(f(f(a))) = a \wedge f(f(f(f(f(a))))) = a \Rightarrow f(a) = a$
- 2 axiom a3  $\Rightarrow$  g(g(y,x),x)=y
- 3  $hd(cons(hd(f(a)),nil)) = g(g(y,x),x) \land 1 \land 2 \Rightarrow hd(cons(hd(a),nil)) = y$
- 4 axiom a1  $\wedge$  3  $\Rightarrow$  hd(a) = y
- **6** axiom a1  $\land$  a=cons(x,cons(y,nil))  $\land$  **4**  $\Rightarrow$  x=y

- 2 axiom a3  $\Rightarrow$  g(g(y,x),x)=y
- 3  $hd(cons(hd(f(a)),nil)) = g(g(y,x),x) \land 1 \land 2 \Rightarrow hd(cons(hd(a),nil)) = y$
- 4 axiom a1  $\wedge$  3  $\Rightarrow$  hd(a) = y
- **6** axiom a1  $\land$  a=cons(x,cons(y,nil))  $\land$  **4**  $\Rightarrow$  x=y
- 6  $x \le v + 2 \land v \le z + 4 \land z + 6 \le x \Rightarrow x 6 = v \Rightarrow x + v = z + x + 4$

- $\mathbf{1} f(f(f(a))) = a \wedge f(f(f(f(f(a))))) = a \Rightarrow f(a) = a$
- 2 axiom a3  $\Rightarrow$  g(g(y,x),x)=y
- 4 axiom a1  $\wedge$  3  $\Rightarrow$  hd(a) = y
- **6** axiom a1  $\land$  a=cons(x,cons(y,nil))  $\land$  **4**  $\Rightarrow$  x=y
- **6**  $x \le v+2 \land v \le z+4 \land z+6 \le x \Rightarrow x-6=v \Rightarrow x+v=z+x+4$
- axiom a4  $\wedge$  a=cons(x,cons(y,nil))  $\wedge$  P(a,y,z+x+4)  $\wedge$  6  $\wedge$  6  $\Rightarrow$  Q(x+v)

## Motivations : quelques outils existants

| Prouver          | Origine      | langage   | Α∃        | sortes    | 3x + y < 4   |
|------------------|--------------|-----------|-----------|-----------|--------------|
| Simplify         | DEC/HP       | Modula-3  |           | $\oslash$ |              |
| Yices            | SRI          | $C{+}{+}$ |           | $\sqrt{}$ | $\checkmark$ |
| ICS              | SRI          | Ocaml     | $\oslash$ | $\oslash$ | $\checkmark$ |
| CVC-Lite         | U. New York  | $C{+}{+}$ |           | $\sqrt{}$ | $\checkmark$ |
| haRVey           | LORIA        | C         |           | $\sqrt{}$ | $\checkmark$ |
| haRVey-sat       | LORIA        | C         |           |           | $\sqrt{}$    |
| Zenon            | INRIA        | Ocaml     |           |           | $\oslash$    |
| MathSAT          | U. Trento    | ?         | $\oslash$ | $\oslash$ | $\checkmark$ |
| Ario             | U. Michigan  | C++       | $\oslash$ | $\oslash$ | $\sqrt{}$    |
| HTP              | Fordocsys    | C         | $\oslash$ | $\oslash$ | $\checkmark$ |
| Zap              | Microsoft    | ?         |           | $\sqrt{}$ | $\checkmark$ |
| Barcelogic Tools | U. Catalonia | $C{++}$   | $\oslash$ | $\oslash$ | $\checkmark$ |
| Sammy            | U. Iowa      | OcamI/C   | $\sqrt{}$ | $\sqrt{}$ |              |

## Motivations: la compétition SMT-comp

**SMT-LIB** (satisfiabilty modulo theories library) : un standard pour la syntaxe et la sémantique des fichiers de benchmark des démonstrateurs automatiques en théorie du 1er ordre combinant des procédures de décision.

**SMT-COMP** : la compétition associée est organisée une fois par an et permet aux différents démonstrateurs de se mesurer.

## Motivations : résultats 2006 de SMT-comp

| Logique   | 1er   | 2ème    | 3ème    |
|-----------|-------|---------|---------|
| QF_UF     | Yices | Barcelo | HTP     |
| QF_RDL    | Yices | Barcelo | MathSat |
| QF_IDL    | Yices | Barcelo | MathSat |
| QF_UFIDL  | Yices | Barcelo | MathSat |
| QF_LRA    | Yices | HTP     | MathSat |
| QF_LIA    | Yices | MathSat | Ario    |
| QF_UFLIA  | Yices | MathSat | Ario    |
| QF_AUFLIA | Yices | Barcelo | CVC     |
| AUFLIRA   | CVC   | Yices   |         |
| AUFLIA    | Yices | CVC     |         |

## Motivations : particularités des obligations de preuve

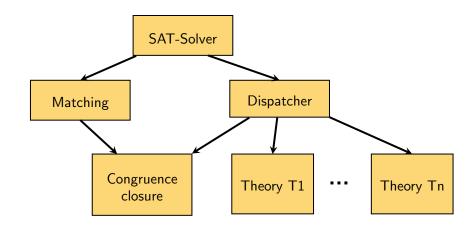
particularités des obligations de preuve de la vérification de programmes :

- contexte volumineux
- hypothèses inutiles
- buts simples
- égalités et arithmétique linéraire abondantes

+ temps de réponse du prouveur très limité (quelques secondes)

## Les briques de base

## Architecture générale d'un démonstrateur



# Logique propositionnelle

## Le problème **SAT**

Le problème **SAT** consiste à déterminer la satisfiabilité d'une formule appartenant à la logique propositionnelle.

Les algorithmes implantés ont généralement l'interface suivante :

Entrée : Un ensemble (vu comme une conjonction) de clauses

Sortie : Une affectation de variables, si l'entrée est satisfiable

**SAT** est un des grands problèmes NP-complet et c'est aussi probablement le problème de combinatoire/optimisation le plus étudié dans le monde. Il est au cœur de nombreux domaines d'applications :

- 1 la vérification de circuits;
- 2 la vérification de programmes;
- la comparaison de génomes, etc.

#### Les SAT-solvers: introduction

Grâce aux améliorations spectaculaires réalisées ces dernières années dans leurs performances, les *SAT-solvers* sont devenus d'incontournables outils de vérification. Ils sont maintenant implantés dans tous les outils de démonstration automatique basés sur la combinaison de procédures de décision.

Tous les *SAT-solvers* sont basés sur des variantes de la procédure DPLL. Les outils **modernes** sont basés sur les deux optimisations suivantes :

- Le backtracking non-chronologique (backjumping)
- 2 L'apprentissage par analyse des clauses conflits

## Les SAT-solvers : plan du cours

Nous allons étudier dans ce cours le fonctionnement interne d'un SAT-solver moderne. Pour cela, nous décrirons

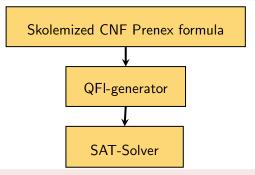
- 1 la procédure DPLL à l'aide d'un système de règles d'inférence;
- ② un mécanisme d'étiquetage des termes pour garder trace, à l'exécution, des informations de dépendance entre les clauses;
- 3 le mécanisme de backtracking non-chronologique;
- l'apprentissage par analyse des clauses générées lors des conflits.

La procédure de Davis-Putnam-Logemann-Loveland

## Démonstrateur automatique pour formules du 1er ordre

#### **Davis and Putnam**

A Computing Procedure for Quantification Theory [JACM 1960]



#### Davis, Logemann and Loveland

A Machine Program for Theorem-Proving, [CACM 1962]

Invention du mécanisme de backtracking

## Une procédure DPLL abstraite

L'état de la procédure est représenté par des **séquents**  $\Gamma \vdash \Delta$  et son évolution est décrite par des **règles d'inférence**.

- Γ est un ensemble de littéraux
- est un ensemble de clauses ( $\Delta^{\text{unit}}$  sont les clauses unitaires de  $\Delta$ )

On note vars(X) l'ensemble des **variables** propositionnelles contenues dans l'ensemble de littéraux (ou clauses) X.

#### Definition

- Un séquent  $\Gamma \vdash \Delta$  est bien formé si et seulement si  $\Gamma$  ne contient pas en même temps un littéral I et son complément  $\neg I$ .
- **2** Un séquent  $\Gamma \vdash \Delta$  est **incompatible** quand  $\Gamma \longrightarrow \neg \Delta$  est valide.

#### Le calcul DPLL

**Axiom** 
$$\Gamma \vdash \Delta, \emptyset$$

Unit 
$$\frac{I,\Gamma \vdash \Delta}{\Gamma \vdash \Delta,I}$$

Elim 
$$\frac{I, \Gamma \vdash \Delta}{I, \Gamma \vdash \Delta, I \lor C}$$

Red 
$$\frac{I, \Gamma \vdash \Delta, C}{I, \Gamma \vdash \Delta, \overline{I} \lor C}$$

Propagation des contraintes Booléennes

Split 
$$\frac{I, \Gamma \vdash \Delta \qquad \Gamma \vdash \Delta, \sqrt{I}}{\Gamma \vdash \Delta}$$

#### Le calcul DPLL

Axiom
$$\Gamma \vdash \Delta, \emptyset$$
 $\Gamma$  est bien forméUnit $\frac{I, \Gamma \vdash \Delta}{\Gamma \vdash \Delta, I}$  $I, \overline{I} \not\in \Gamma$ Elim $\frac{I, \Gamma \vdash \Delta}{I, \Gamma \vdash \Delta, I \lor C}$ PropagaRed $\frac{I, \Gamma \vdash \Delta, C}{I, \Gamma \vdash \Delta, \overline{I} \lor C}$ 

Propagation des contraintes Booléennes

Split 
$$\frac{I, \Gamma \vdash \Delta \qquad \Gamma \vdash \Delta, , \overline{I}}{\Gamma \vdash \Delta}$$
  $I, \overline{I} \not\in \Gamma \cup \Delta \text{ et } I \lor C \in \Delta$ 

## Correction de l'algorithme

#### Theorem (Correction)

Un séquent bien formé  $\Gamma \vdash \Delta$  est **incompatible** si et seulement si il est la racine d'un arbre de dérivation fini dans le calcul DPLL.

La preuve *papier* de ce théorème ne pose pas de problèmes particuliers. La preuve *formelle* en **Coq** est elle un peu plus longue (environ 1800 lignes de définitions et tactiques!).

#### Démonstration.

Une simple analyse par cas des règles suffit à prouver la sûreté de l'algorithme. La complétude se prouve par une induction sur la taille d'un séquent  $\Delta$  définie comme la paire  $(\mathcal{F},\mathcal{S})$  où  $\mathcal{F}$  est le nombre d'éléments de l'ensemble  $\mathrm{vars}(\Delta)\setminus (\mathrm{vars}(\Gamma)\cup \mathrm{vars}(\Delta^{\mathrm{unit}}))$  et  $\mathcal{S}$  est la somme du nombre de littéraux dans chaque clause de  $\Delta$ .

#### Procédure de décision

Le résultat suivant permet de déterminer la satisfiabilité d'une formule propositionnelle :

Un ensemble de clauses  $\Delta$  est insatisfiable si et seulement si  $\emptyset \vdash \Delta$  est dérivable dans DPLL.

Les side conditions du système d'inférence laissent un large choix dans l'ordre d'application des règles. Une procédure de décision est obtenue en choisissant une **stratégie** dont il faut alors prouver la complétude.

Dans le cas d'une preuve en **Coq**, la stratégie est en fait *inscrite* dans la preuve constructive.

$$\Delta \left\{ \begin{array}{lll} \omega_0 = \{x_0, \bar{x}_3, x_5\} & \omega_1 = \{x_1, \bar{x}_3, x_4\} & \omega_2 = \{\bar{x}_4, \bar{x}_5\} \\ \omega_3 = \{x_3, x_6\} & \omega_4 = \{x_3, x_7\} & \omega_5 = \{\bar{x}_6, \bar{x}_7\} \\ \omega_6 = \{x_2, x_5, x_7\} & \omega_7 = \{\bar{x}_0, \bar{x}_7\} & \omega_8 = \{\bar{x}, \bar{x}_1, \bar{x}_3\} \end{array} \right.$$

$$\Delta \begin{cases}
\omega_0 = \{x_0, \bar{x}_3, x_5\} & \omega_1 = \{x_1, \bar{x}_3, x_4\} & \omega_2 = \{\bar{x}_4, \bar{x}_5\} \\
\omega_3 = \{x_3, x_6\} & \omega_4 = \{x_3, x_7\} & \omega_5 = \{\bar{x}_6, \bar{x}_7\} \\
\omega_6 = \{x_2, x_5, x_7\} & \omega_7 = \{\bar{x}_0, \bar{x}_7\} & \omega_8 = \{\bar{x}, \bar{x}_1, \bar{x}_3\}
\end{cases}$$

 $\bar{x}_0 \vdash$ 

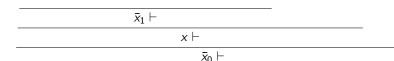
30 / 131

$$\Delta \begin{cases}
\omega_0 = \{ \bar{x}_3, x_5 \} & \omega_1 = \{x_1, \bar{x}_3, x_4 \} & \omega_2 = \{\bar{x}_4, \bar{x}_5 \} \\
\omega_3 = \{x_3, x_6 \} & \omega_4 = \{x_3, x_7 \} & \omega_5 = \{\bar{x}_6, \bar{x}_7 \} \\
\omega_6 = \{x_2, x_5, x_7 \} & \omega_8 = \{\bar{x}, \bar{x}_1, \bar{x}_3 \}
\end{cases}$$

 $egin{array}{c} x \vdash & & & \\ & ar{x}_0 \vdash & & & \\ & & & & \end{array}$ 

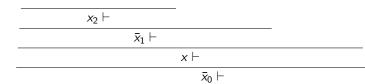
30 / 131

$$\Delta \begin{cases}
\omega_0 = \{ \bar{x}_3, x_5 \} & \omega_1 = \{x_1, \bar{x}_3, x_4 \} & \omega_2 = \{\bar{x}_4, \bar{x}_5 \} \\
\omega_3 = \{x_3, x_6 \} & \omega_4 = \{x_3, x_7 \} & \omega_5 = \{\bar{x}_6, \bar{x}_7 \} \\
\omega_6 = \{x_2, x_5, x_7 \} & \omega_8 = \{ \bar{x}_1, \bar{x}_3 \}
\end{cases}$$

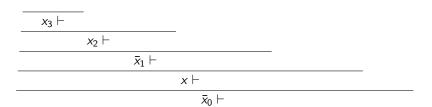


30 / 131

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ & \bar{x}_3, x_5 \} & \omega_1 = \{ & \bar{x}_3, x_4 \} & \omega_2 = \{ \bar{x}_4, \bar{x}_5 \} \\ \omega_3 = \{ x_3, x_6 \} & \omega_4 = \{ x_3, x_7 \} & \omega_5 = \{ \bar{x}_6, \bar{x}_7 \} \\ \omega_6 = \{ x_2, x_5, x_7 \} \end{array} \right.$$



$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ & \bar{x}_3, x_5 \} & \omega_1 = \{ & \bar{x}_3, x_4 \} & \omega_2 = \{ \bar{x}_4, \bar{x}_5 \} \\ \omega_3 = \{ x_3, x_6 \} & \omega_4 = \{ x_3, x_7 \} & \omega_5 = \{ \bar{x}_6, \bar{x}_7 \} \end{array} \right.$$



$$\Delta \begin{cases} \omega_0 = \{ & x_5 \} & \omega_1 = \{ & x_4 \} & \omega_2 = \{\bar{x}_4, \bar{x}_5\} \\ \omega_5 = \{\bar{x}_6, \bar{x}_7\} \end{cases}$$

```
\begin{array}{c|c}
\hline
x_4 \vdash \\
\hline
x_3 \vdash \\
\hline
\hline
x_2 \vdash \\
\hline
\hline
\hline
x_1 \vdash \\
\hline
\hline
x_0 \vdash
\end{array}
```

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ & x_5 \} \\ & \omega_2 = \{ \overline{x}_5 \} \\ & \omega_5 = \{ \overline{x}_6, \overline{x}_7 \} \end{array} \right.$$

```
\begin{array}{c|c}
\hline
x_5 \vdash \\
\hline
x_4 \vdash \\
\hline
x_3 \vdash \\
\hline
\hline
x_2 \vdash \\
\hline
\hline
x_1 \vdash \\
\hline
\hline
x_0 \vdash
\end{array}
```

$$\Delta \left\{ \begin{array}{c} \omega_2 = \{ \\ \omega_5 = \{ \bar{x}_6, \bar{x}_7 \} \end{array} \right.$$

```
\frac{\left[\bar{x}_{0}, \bar{x}_{1}, x_{3}\right]}{x_{5} \vdash}

\frac{x_{4} \vdash}{x_{3} \vdash}

x_{2} \vdash

\bar{x}_{1} \vdash

\bar{x}_{0} \vdash
```

$$\omega_2 = \{ \\ \omega_5 = \{ \bar{x}_6, \bar{x}_7 \}$$

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ & x_5 \} \\ \omega_5 = \{ \bar{x}_6, \bar{x}_7 \} \end{array} \right.$$

```
\frac{\left[\overline{x}_{0}, \overline{x}_{1}, x_{3}\right]}{x_{5} \vdash}

\frac{x_{4} \vdash}{x_{3} \vdash}

\overline{x}_{1} \vdash

x \vdash

\overline{x}_{0} \vdash
```

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ & x_5 \} & \omega_1 = \{ & x_4 \} & \omega_2 = \{ \bar{x}_4, \bar{x}_5 \} \\ & \omega_5 = \{ \bar{x}_6, \bar{x}_7 \} \end{array} \right.$$

```
\frac{\left[\bar{x}_{0}, \bar{x}_{1}, x_{3}\right]}{x_{5} \vdash}

x_{4} \vdash

x_{3} \vdash

\bar{x}_{1} \vdash

x \vdash

\bar{x}_{0} \vdash
```

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ \ \bar{x}_3, x_5 \} & \omega_1 = \{ \ \bar{x}_3, x_4 \} & \omega_2 = \{ \bar{x}_4, \bar{x}_5 \} \\ \omega_3 = \{ x_3, x_6 \} & \omega_4 = \{ x_3, x_7 \} & \omega_5 = \{ \bar{x}_6, \bar{x}_7 \} \end{array} \right.$$

```
\frac{\left[\overline{x}_{0}, \overline{x}_{1}, x_{3}\right]}{x_{5} \vdash}

\frac{x_{4} \vdash}{x_{3} \vdash}

x_{2} \vdash

\overline{x}_{1} \vdash

x \vdash

\overline{x}_{0} \vdash
```

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ & \bar{x}_3, x_5 \} & \omega_1 = \{ & \bar{x}_3, x_4 \} & \omega_2 = \{ \bar{x}_4, \bar{x}_5 \} \\ \omega_3 = \{ x_3, x_6 \} & \omega_4 = \{ x_3, x_7 \} & \omega_5 = \{ \bar{x}_6, \bar{x}_7 \} \end{array} \right.$$

```
\frac{\begin{bmatrix} \bar{x}_0, \bar{x}_1, x_3 \end{bmatrix}}{x_5 \vdash}

\frac{x_4 \vdash}{x_3 \vdash}

\frac{x_2 \vdash}{x_1 \vdash}

x \vdash

\bar{x}_0 \vdash
```

$$\Delta \left\{ \begin{array}{ll} \omega_2 = \{\bar{x}_4, \bar{x}_5\} \\ \omega_3 = \{ \quad x_6\} \end{array} \right. \quad \omega_4 = \left\{ \quad x_7 \right\} \quad \begin{array}{ll} \omega_2 = \{\bar{x}_4, \bar{x}_5\} \\ \omega_5 = \{\bar{x}_6, \bar{x}_7\} \end{array} \right.$$

```
\frac{\begin{bmatrix} \bar{x}_0, \bar{x}_1, x_3 \end{bmatrix}}{x_5 \vdash}

\frac{x_4 \vdash}{x_3 \vdash}

\frac{x_6 \vdash}{\bar{x}_3 \vdash}

\frac{x_2 \vdash}{\bar{x}_1 \vdash}

\frac{x \vdash}{\bar{x}_0 \vdash}
```

$$\Delta \left\{ \begin{array}{cc} \omega_2 = \{\bar{x}_4, \bar{x}_5\} \\ \omega_4 = \{ & x_7 \} \end{array} \right. \quad \omega_5 = \left\{ \begin{array}{c} \bar{x}_7 \\ \end{array} \right\}$$

```
\begin{array}{c|c} \overline{[\bar{\chi}_0, \bar{\chi}_1, \chi_3]} \\ \hline x_5 \vdash & x_7 \vdash \\ \hline x_4 \vdash & x_6 \vdash \\ \hline x_3 \vdash & \overline{x}_3 \vdash \\ \hline \hline & x_2 \vdash \\ \hline \hline & x_1 \vdash \\ \hline \hline & x \vdash \\ \hline \hline & x_0 \vdash \\ \hline
\end{array}
```

$$\Delta \left\{ \begin{array}{c} \omega_2 = \{\bar{x}_4, \bar{x}_5\} \\ \omega_5 = \{ \end{array} \right\}$$

$$\frac{[\bar{x}_{0}, \bar{x}_{1}, x_{3}]}{x_{5} \vdash} = \frac{[\bar{x}_{0}, \bar{x}_{1}, \bar{x}_{3}]}{x_{7} \vdash} \\
\underline{x_{4} \vdash} = \underline{x_{6} \vdash} \\
\underline{x_{3} \vdash} = \overline{x_{3} \vdash} \\
\underline{x_{2} \vdash} \\
\underline{x_{1} \vdash} \\
\underline{x_{2} \vdash} \\
\underline{x_{2} \vdash} \\
\underline{x_{1} \vdash} \\
\underline{x_{2} \vdash} \\
\underline{x_{2$$

$$\omega_2 = \{\bar{x}_4, \bar{x}_5\}$$
$$\omega_5 = \{\}$$

$$\Delta \left\{ \begin{array}{ccc} \omega_2 = \{\bar{x}_4, \bar{x}_5\} \\ \omega_4 = \{ & x_7 \} \end{array} \right. \quad \omega_5 = \{ \bar{x}_7 \}$$

$$\frac{\left[\bar{x}_{0}, \bar{x}_{1}, x_{3}\right]}{x_{5} \vdash} = \frac{\left[\bar{x}_{0}, \bar{x}_{1}, \bar{x}_{3}\right]}{x_{7} \vdash} \\
\underline{x_{4} \vdash} = x_{6} \vdash \\
\underline{x_{3} \vdash} = x_{2} \vdash \\
\underline{x_{1} \vdash} = x \vdash \\
\underline{x_{1} \vdash} = x_{1} \vdash \\
\underline{x_{1} \vdash} = x_{1} \vdash \\
\underline{x_{1} \vdash} = x_{2} \vdash \\
\underline{x_{1} \vdash} = x_{2} \vdash \\
\underline{x_{2} \vdash} = x_{2} \vdash \\
\underline$$

$$\Delta \left\{ \begin{array}{ll} \omega_2 = \{\bar{x}_4, \bar{x}_5\} \\ \omega_3 = \{ \quad x_6\} & \omega_4 = \{ \quad x_7\} & \omega_5 = \{\bar{x}_6, \bar{x}_7\} \end{array} \right.$$

$$\frac{\begin{bmatrix} \bar{x}_0, \bar{x}_1, x_3 \end{bmatrix}}{x_5 \vdash} = \frac{\begin{bmatrix} \bar{x}_0, \bar{x}_1, \bar{x}_3 \end{bmatrix}}{x_7 \vdash} \\
\underline{x_4 \vdash} = \underline{x_6 \vdash} \\
\underline{x_3 \vdash} = \overline{x_3 \vdash} \\
\underline{x_2 \vdash} \\
\underline{x_1 \vdash} \\
x_1 \vdash \\
\underline{x_0 \vdash}$$

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ \ \bar{x}_3, x_5 \} & \omega_1 = \{ \ \bar{x}_3, x_4 \} & \omega_2 = \{ \bar{x}_4, \bar{x}_5 \} \\ \omega_3 = \{ x_3, x_6 \} & \omega_4 = \{ x_3, x_7 \} & \omega_5 = \{ \bar{x}_6, \bar{x}_7 \} \end{array} \right.$$

$$\frac{\begin{bmatrix} \bar{x}_0, \bar{x}_1, x_3 \end{bmatrix}}{x_5 \vdash} = \frac{\begin{bmatrix} \bar{x}_0, \bar{x}_1, \bar{x}_3 \end{bmatrix}}{x_7 \vdash} \\
\underline{x_4 \vdash} = x_6 \vdash} \\
\underline{x_3 \vdash} = \overline{x_3 \vdash} \\
\underline{x_2 \vdash} \\
\underline{x_1 \vdash} \\
\underline{x_1 \vdash} \\
\underline{x_0 \vdash}$$

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ & \bar{x}_3, x_5 \} & \omega_1 = \{ & \bar{x}_3, x_4 \} & \omega_2 = \{ \bar{x}_4, \bar{x}_5 \} \\ \omega_3 = \{ x_3, x_6 \} & \omega_4 = \{ x_3, x_7 \} & \omega_5 = \{ \bar{x}_6, \bar{x}_7 \} \\ \omega_6 = \{ x_2, x_5, x_7 \} \end{array} \right.$$

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ & \bar{x}_3, x_5 \} & \omega_1 = \{ & \bar{x}_3, x_4 \} & \omega_2 = \{ \bar{x}_4, \bar{x}_5 \} \\ \omega_3 = \{ x_3, x_6 \} & \omega_4 = \{ x_3, x_7 \} & \omega_5 = \{ \bar{x}_6, \bar{x}_7 \} \\ \omega_6 = \{ x_2, x_5, x_7 \} \end{array} \right.$$

$$\frac{\begin{bmatrix} \bar{x}_0, \bar{x}_1, x_3 \end{bmatrix}}{x_5 \vdash} = \frac{\begin{bmatrix} \bar{x}_0, \bar{x}_1, \bar{x}_3 \end{bmatrix}}{x_7 \vdash} \\
\underline{x_4 \vdash} = \underline{x_6 \vdash} \\
\underline{x_3 \vdash} = \overline{x_3 \vdash} \\
\underline{x_2 \vdash} = \overline{x_2 \vdash} \\
\underline{x_1 \vdash} \\
\underline{x_1 \vdash} \\
\underline{x_0 \vdash}$$

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ & \bar{x}_3, x_5 \} & \omega_1 = \{ & \bar{x}_3, x_4 \} & \omega_2 = \{ \bar{x}_4, \bar{x}_5 \} \\ \omega_3 = \{ x_3, x_6 \} & \omega_4 = \{ x_3, x_7 \} & \omega_5 = \{ \bar{x}_6, \bar{x}_7 \} \\ \omega_6 = \{ & x_5, x_7 \} \end{array} \right.$$

$$\frac{\left[\overline{x}_{0}, \overline{x}_{1}, x_{3}\right]}{x_{5} \vdash} \qquad \frac{\left[\overline{x}_{0}, \overline{x}_{1}, \overline{x}_{3}\right]}{x_{7} \vdash} \\
\underline{x_{4} \vdash} \qquad \underline{x_{6} \vdash} \\
\underline{x_{3} \vdash} \qquad \underline{x_{3} \vdash} \\
\underline{x_{2} \vdash} \qquad \underline{x_{2} \vdash} \\
\underline{x_{1} \vdash} \\
\underline{x_{2} \vdash} \\
\underline{$$

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ & x_5 \} & \omega_1 = \{ & x_4 \} & \omega_2 = \{ \bar{x}_4, \bar{x}_5 \} \\ & \omega_5 = \{ \bar{x}_6, \bar{x}_7 \} \\ & \omega_6 = \{ & x_5, x_7 \} \end{array} \right.$$

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ & x_5 \} \\ \omega_0 = \{ & \bar{x}_5 \} \\ \omega_6 = \{ & x_5, x_7 \} \end{array} \right.$$

$$\Delta \left\{ \begin{array}{c} \omega_2 = \{\\ \omega_5 = \{\bar{x}_6, \bar{x}_7\} \end{array} \right.$$

$$\omega_6 = \{ x_5, x_7\}$$

$$\frac{[\bar{x}_{0}, \bar{x}_{1}, x_{3}]}{x_{5} \vdash} = \frac{[\bar{x}_{0}, \bar{x}_{1}, \bar{x}_{3}]}{x_{7} \vdash} = \frac{[\bar{x}_{0}, \bar{x}_{1}, x_{3}]}{x_{5} \vdash} \\
\underline{x_{4} \vdash} = \underline{x_{6} \vdash} = \underline{x_{4} \vdash} \\
\underline{x_{3} \vdash} = \underline{x_{3} \vdash} = \underline{x_{3} \vdash} \\
\underline{x_{1} \vdash} = \underline{x_{1} \vdash} \\
\underline{x_{1} \vdash} = \underline{x_{1} \vdash} = \underline{x_{1} \vdash} \\
\underline{x_{2} \vdash} = \underline{x_{2} \vdash} = \underline{x_{2} \vdash} \\
\underline{x_{2} \vdash} = \underline{x_{2} \vdash} = \underline{x_{2} \vdash} \\
\underline{x_{2} \vdash} = \underline{x_{2} \vdash} = \underline{x_{2} \vdash} \\
\underline{x_{2} \vdash} = \underline{x_{2} \vdash} = \underline{x_{2} \vdash} \\
\underline{x_{2} \vdash} = \underline{x_{2} \vdash} = \underline{x_{2} \vdash} \\
\underline{x_{2} \vdash} = \underline{x_{2} \vdash} = \underline{x_{2} \vdash} \\
\underline{x_{2} \vdash} = \underline{x_{2} \vdash} = \underline{x_{2} \vdash} \\
\underline{x_{2} \vdash} = \underline{x_{2} \vdash} = \underline{x_{2} \vdash} = \underline{x_{2} \vdash} \\
\underline{x_{2} \vdash} = \underline{x_{2} \vdash} = \underline{x_{2} \vdash} = \underline{x_{2} \vdash} \\
\underline{x_{2} \vdash} = \underline{x_{2} \vdash} = \underline{x_{2} \vdash} = \underline{x_{2} \vdash} = \underline{x_{2} \vdash} \\
\underline{x_{2} \vdash} = \underline{x$$

$$\Delta \left\{ \begin{array}{ll} \omega_2 = \{\\ \omega_5 = \{\bar{x}_6, \bar{x}_7\} \end{array} \right.$$
 
$$\omega_6 = \left\{ \begin{array}{ll} \omega_5 = \{\bar{x}_6, \bar{x}_7\} \end{array} \right.$$

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ & x_5 \} & \omega_2 = \{ & \bar{x}_5 \} \\ \omega_5 = \{ \bar{x}_6, \bar{x}_7 \} \end{array} \right.$$

$$\frac{\begin{bmatrix} \bar{x}_{0}, \bar{x}_{1}, x_{3} \end{bmatrix}}{x_{5} \vdash} = \frac{\begin{bmatrix} \bar{x}_{0}, \bar{x}_{1}, \bar{x}_{3} \end{bmatrix}}{x_{7} \vdash} = \frac{\begin{bmatrix} \bar{x}_{0}, \bar{x}_{1}, x_{3} \end{bmatrix}}{x_{5} \vdash} = \frac{\bar{x}_{5} \vdash}{x_{4} \vdash} = \frac{\bar{x}_{3} \vdash}{x_{3} \vdash} = \frac{\bar{x}_{1} \vdash}{\bar{x}_{2} \vdash} = \frac{\bar{x}_{2} \vdash}{\bar{x}_{2} \vdash} = \frac{\bar{x}_{2}$$

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ & x_5 \} & \omega_1 = \{ & x_4 \} & \omega_2 = \{ \bar{x}_4, \bar{x}_5 \} \\ & \omega_5 = \{ \bar{x}_6, \bar{x}_7 \} \\ \omega_6 = \{ & x_5, x_7 \} \end{array} \right.$$

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ & \bar{x}_3, x_5 \} & \omega_1 = \{ & \bar{x}_3, x_4 \} & \omega_2 = \{ \bar{x}_4, \bar{x}_5 \} \\ \omega_3 = \{ x_3, x_6 \} & \omega_4 = \{ x_3, x_7 \} & \omega_5 = \{ \bar{x}_6, \bar{x}_7 \} \\ \omega_6 = \{ & x_5, x_7 \} \end{array} \right.$$

$$\frac{[\bar{x}_{0}, \bar{x}_{1}, x_{3}]}{x_{5} \vdash} \qquad \frac{[\bar{x}_{0}, \bar{x}_{1}, \bar{x}_{3}]}{x_{7} \vdash} \qquad \frac{[\bar{x}_{0}, \bar{x}_{1}, x_{3}]}{x_{5} \vdash} \\
\underline{x_{4} \vdash} \qquad \underline{x_{6} \vdash} \qquad \underline{x_{4} \vdash} \\
\underline{x_{3} \vdash} \qquad \underline{x_{3} \vdash} \qquad \underline{x_{3} \vdash} \\
\underline{x_{2} \vdash} \qquad \underline{x_{2} \vdash} \qquad \underline{x_{2} \vdash} \\
\underline{x_{1} \vdash} \qquad \underline{x} \vdash \\
\underline{x_{0} \vdash}$$

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ & \bar{x}_3, x_5 \} & \omega_1 = \{ & \bar{x}_3, x_4 \} & \omega_2 = \{ \bar{x}_4, \bar{x}_5 \} \\ \omega_3 = \{ x_3, x_6 \} & \omega_4 = \{ x_3, x_7 \} & \omega_5 = \{ \bar{x}_6, \bar{x}_7 \} \\ \omega_6 = \{ x_2, x_5, x_7 \} \end{array} \right.$$

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ & \bar{x}_3, x_5 \} & \omega_1 = \{x_1, \bar{x}_3, x_4 \} & \omega_2 = \{\bar{x}_4, \bar{x}_5 \} \\ \omega_3 = \{x_3, x_6 \} & \omega_4 = \{x_3, x_7 \} & \omega_5 = \{\bar{x}_6, \bar{x}_7 \} \\ \omega_6 = \{x_2, x_5, x_7 \} & \omega_8 = \{ & \bar{x}_1, \bar{x}_3 \} \end{array} \right.$$

$$\frac{[\bar{x}_{0}, \bar{x}_{1}, x_{3}]}{x_{5} \vdash} = \frac{[\bar{x}_{0}, \bar{x}_{1}, \bar{x}_{3}]}{x_{7} \vdash} = \frac{[\bar{x}_{0}, \bar{x}_{1}, x_{3}]}{x_{5} \vdash} \\
\underline{x_{4} \vdash} = \underline{x_{6} \vdash} = \underline{x_{4} \vdash} \\
\underline{x_{3} \vdash} = \underline{x_{3} \vdash} \\
\underline{x_{2} \vdash} = \underline{x_{1} \vdash} \\
\underline{x_{2} \vdash} \\
\underline{x$$

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ & \bar{x}_3, x_5 \} & \omega_1 = \{x_1, \bar{x}_3, x_4 \} & \omega_2 = \{\bar{x}_4, \bar{x}_5 \} \\ \omega_3 = \{x_3, x_6 \} & \omega_4 = \{x_3, x_7 \} & \omega_5 = \{\bar{x}_6, \bar{x}_7 \} \\ \omega_6 = \{x_2, x_5, x_7 \} & \omega_8 = \{ & \bar{x}_1, \bar{x}_3 \} \end{array} \right.$$

$$\Delta \begin{cases} \omega_0 = \{ \ \bar{x}_3, x_5 \} & \omega_2 = \{ \bar{x}_4, \bar{x}_5 \} \\ \omega_3 = \{ x_3, x_6 \} & \omega_4 = \{ x_3, x_7 \} & \omega_5 = \{ \bar{x}_6, \bar{x}_7 \} \\ \omega_6 = \{ x_2, x_5, x_7 \} & \omega_8 = \{ \ \bar{x}_3 \} \end{cases}$$

$$\Delta \left\{ \begin{array}{ll} \omega_2 = \{\bar{x}_4, \bar{x}_5\} \\ \omega_3 = \{ x_6\} \\ \omega_6 = \{x_2, x_5, x_7\} \end{array} \right. \quad \omega_4 = \{ x_7\} \quad \omega_5 = \{\bar{x}_6, \bar{x}_7\}$$

$$\Delta \left\{ \begin{array}{ccc} \omega_2 = \{\bar{x}_4, \bar{x}_5\} \\ \omega_6 = \{x_2, x_5, x_7\} \end{array} \right. \quad \omega_4 = \left\{ \begin{array}{ccc} \omega_7 \\ \omega_5 = \{ & \bar{x}_7 \} \end{array} \right.$$

$$\Delta \left\{
\begin{array}{c}
\omega_2 = \{\bar{x}_4, \bar{x}_5\} \\
\omega_5 = \{
\end{array}\right\}$$

$$\Delta \left\{ \begin{array}{c} \omega_2 = \{\bar{x}_4, \bar{x}_5\} \\ \omega_5 = \{ \end{array} \right\}$$

$$\Delta \left\{ \begin{array}{ccc} \omega_2 = \{\bar{x}_4, \bar{x}_5\} \\ \omega_6 = \{x_2, x_5, x_7\} \end{array} \right. \quad \omega_4 = \left\{ \begin{array}{ccc} \omega_2 = \{\bar{x}_4, \bar{x}_5\} \\ \omega_5 = \{\bar{x}_7\} \end{array} \right.$$

 $\bar{x}_0 \vdash$ 

$$\Delta \left\{ \begin{array}{ll} \omega_2 = \{\bar{x}_4, \bar{x}_5\} \\ \omega_3 = \{ x_6\} & \omega_4 = \{ x_7\} \\ \omega_6 = \{x_2, x_5, x_7\} \end{array} \right.$$

 $\bar{x}_0 \vdash$ 

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ \ \bar{x}_3, x_5 \} & \omega_2 = \{ \bar{x}_4, \bar{x}_5 \} \\ \omega_3 = \{ x_3, x_6 \} & \omega_4 = \{ x_3, x_7 \} & \omega_5 = \{ \bar{x}_6, \bar{x}_7 \} \\ \omega_6 = \{ x_2, x_5, x_7 \} & \omega_8 = \{ \ \bar{x}_3 \} \end{array} \right.$$

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ & \bar{x}_3, x_5 \} & \omega_1 = \{x_1, \bar{x}_3, x_4 \} & \omega_2 = \{\bar{x}_4, \bar{x}_5 \} \\ \omega_3 = \{x_3, x_6 \} & \omega_4 = \{x_3, x_7 \} & \omega_5 = \{\bar{x}_6, \bar{x}_7 \} \\ \omega_6 = \{x_2, x_5, x_7 \} & \omega_8 = \{ & \bar{x}_1, \bar{x}_3 \} \end{array} \right.$$

 $\bar{x}_0 \vdash$ 

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ & \bar{x}_3, x_5 \} & \omega_1 = \{x_1, \bar{x}_3, x_4 \} & \omega_2 = \{\bar{x}_4, \bar{x}_5 \} \\ \omega_3 = \{x_3, x_6 \} & \omega_4 = \{x_3, x_7 \} & \omega_5 = \{\bar{x}_6, \bar{x}_7 \} \\ \omega_6 = \{x_2, x_5, x_7 \} & \omega_8 = \{\bar{x}, \bar{x}_1, \bar{x}_3 \} \end{array} \right.$$

 $\bar{x}_0 \vdash$ 

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ \ \ \bar{x}_3, x_5 \} & \omega_1 = \{x_1, \bar{x}_3, x_4 \} & \omega_2 = \{\bar{x}_4, \bar{x}_5 \} \\ \omega_3 = \{x_3, x_6 \} & \omega_4 = \{x_3, x_7 \} & \omega_5 = \{\bar{x}_6, \bar{x}_7 \} \\ \omega_6 = \{x_2, x_5, x_7 \} & \omega_8 = \{\bar{x}, \bar{x}_1, \bar{x}_3 \} \end{array} \right.$$

#### SAT-solvers efficaces

```
\begin{array}{c|c}
\hline
x_5 \vdash \\
\hline
x_4 \vdash \\
\hline
x_3 \vdash \\
\hline
\hline
\hline
x_1 \vdash \\
\hline
\hline
x_0 \vdash
\end{array}
```

```
\frac{\begin{bmatrix} \bar{x}_0, \bar{x}_1, x_3 \end{bmatrix}}{x_5 \vdash}

\frac{x_4 \vdash}{x_3 \vdash}

\frac{x_2 \vdash}{\bar{x}_1 \vdash}

x \vdash

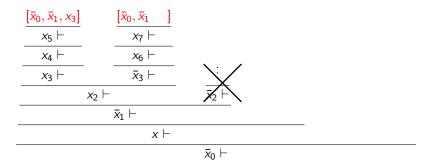
\bar{x}_0 \vdash
```

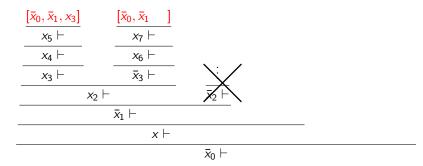
```
\frac{\begin{bmatrix} \bar{x}_0, \bar{x}_1, x_3 \end{bmatrix}}{x_5 \vdash} \qquad \frac{x_7 \vdash}{x_6 \vdash} \\
 x_4 \vdash \qquad \qquad x_6 \vdash} \\
 x_3 \vdash \qquad \qquad \bar{x}_3 \vdash \\
 \hline
 x_2 \vdash \\
 \hline
 x_1 \vdash \\
 x \vdash} \\
 x_0 \vdash
```

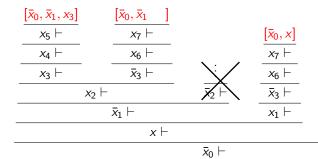
| $[\bar{x}_0,\bar{x}_1,x_3]$                    | $[\bar{x}_0,\bar{x}_1,\bar{x}_3]$ |                    |   |
|------------------------------------------------|-----------------------------------|--------------------|---|
|                                                | x <sub>7</sub> ⊢                  |                    |   |
| $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$ | $\overline{x_6 \vdash}$           |                    |   |
| $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$ | $\overline{\bar{x}_3} \vdash$     |                    |   |
|                                                | F                                 |                    |   |
| $\overline{ar{x}_1} \vdash$                    |                                   |                    |   |
|                                                | <i>x</i> ⊢                        |                    | _ |
|                                                |                                   | $\bar{x}_0 \vdash$ |   |

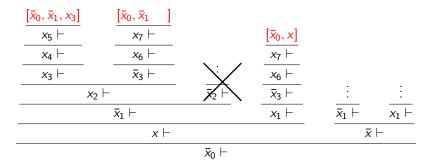
| $[\bar{x}_0,\bar{x}_1,x_3]$ | $[\bar{x}_0, \bar{x}_1]$      |                    |   |
|-----------------------------|-------------------------------|--------------------|---|
| <i>x</i> <sub>5</sub> ⊢     | x <sub>7</sub> ⊢              |                    |   |
| $\overline{x_4 \vdash}$     | $\overline{x_6} \vdash$       |                    |   |
|                             | $\overline{\bar{x}_3} \vdash$ |                    |   |
|                             | _                             |                    |   |
| $\bar{z}_1 \vdash$          |                               |                    |   |
|                             | <i>x</i> ⊢                    |                    | _ |
|                             |                               | $\bar{x}_0 \vdash$ |   |

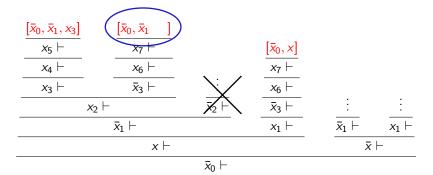
| $[\bar{x}_0,\bar{x}_1,x_3]$ | $[\bar{x}_0, \bar{x}_1]$      |                               |   |  |
|-----------------------------|-------------------------------|-------------------------------|---|--|
| <u>x<sub>5</sub> ⊢</u>      |                               |                               |   |  |
|                             | $\overline{x_6} \vdash$       |                               |   |  |
|                             | $\overline{\bar{x}_3} \vdash$ | :                             |   |  |
|                             | F                             | $\overline{\bar{x}_2} \vdash$ |   |  |
| $\bar{x}_1 \vdash$          |                               |                               |   |  |
|                             | <i>x</i> ⊢                    |                               | _ |  |
|                             |                               | $\bar{x}_0 \vdash$            |   |  |

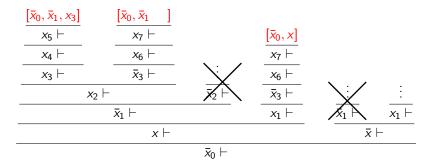


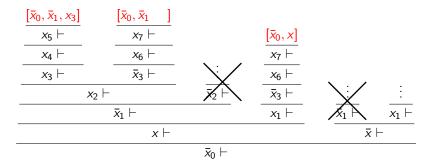












- C'est le backtraking non-chronologique
- C'est l'apprentissage

$$\Delta \left\{ \begin{array}{lll} \omega_0 = \{x_0, \bar{x}_3, x_5\} & \omega_1 = \{x_1, \bar{x}_3, x_4\} & \omega_2 = \{\bar{x}_4, \bar{x}_5\} \\ \omega_3 = \{x_3, x_6\} & \omega_4 = \{x_3, x_7\} & \omega_5 = \{\bar{x}_6, \bar{x}_7\} \\ \omega_6 = \{x_2, x_5, x_7\} & \omega_7 = \{\bar{x}_0, \bar{x}_7\} & \omega_8 = \{\bar{x}, \bar{x}_1, \bar{x}_3\} \end{array} \right.$$

$$\Delta \left\{ \begin{array}{lll} \omega_0 = \{x_0, \bar{x}_3, x_5\} & \omega_1 = \{x_1, \bar{x}_3, x_4\} & \omega_2 = \{\bar{x}_4, \bar{x}_5\} \\ \omega_3 = \{x_3, x_6\} & \omega_4 = \{x_3, x_7\} & \omega_5 = \{\bar{x}_6, \bar{x}_7\} \\ \omega_6 = \{x_2, x_5, x_7\} & \omega_7 = \{\bar{x}_0, \bar{x}_7\} & \omega_8 = \{\bar{x}, \bar{x}_1, \bar{x}_3\} \end{array} \right.$$

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ \ \bar{x}_3, x_5 \} & \omega_1 = \{x_1, \bar{x}_3, x_4 \} & \omega_2 = \{\bar{x}_4, \bar{x}_5 \} \\ \omega_3 = \{x_3, x_6 \} & \omega_4 = \{x_3, x_7 \} & \omega_5 = \{\bar{x}_6, \bar{x}_7 \} \\ \omega_6 = \{x_2, x_5, x_7 \} & \omega_8 = \{\bar{x}, \bar{x}_1, \bar{x}_3 \} \end{array} \right.$$

$$\Delta \begin{cases}
\omega_0 = \{ \bar{x}_3, x_5 \} & \omega_1 = \{x_1, \bar{x}_3, x_4 \} & \omega_2 = \{\bar{x}_4, \bar{x}_5 \} \\
\omega_3 = \{x_3, x_6 \} & \omega_4 = \{x_3, x_7 \} & \omega_5 = \{\bar{x}_6, \bar{x}_7 \} \\
\omega_6 = \{x_2, x_5, x_7 \} & \omega_8 = \{ \bar{x}_1, \bar{x}_3 \}
\end{cases}$$

$$\Delta \begin{cases}
\omega_0 = \{ \bar{x}_3, x_5 \} & \omega_1 = \{ \bar{x}_3, x_4 \} & \omega_2 = \{ \bar{x}_4, \bar{x}_5 \} \\
\omega_3 = \{ x_3, x_6 \} & \omega_4 = \{ x_3, x_7 \} & \omega_5 = \{ \bar{x}_6, \bar{x}_7 \} \\
\omega_6 = \{ x_2, x_5, x_7 \}
\end{cases}$$

 $\bar{x}_0$ 

$$\Delta \begin{cases}
\omega_0 = \{ \bar{x}_3, x_5 \} & \omega_1 = \{ \bar{x}_3, x_4 \} & \omega_2 = \{ \bar{x}_4, \bar{x}_5 \} \\
\omega_3 = \{ x_3, x_6 \} & \omega_4 = \{ x_3, x_7 \} & \omega_5 = \{ \bar{x}_6, \bar{x}_7 \}
\end{cases}$$

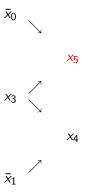
 $\bar{x}_0$ 

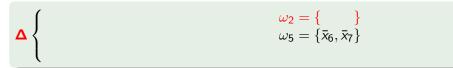
*X*3

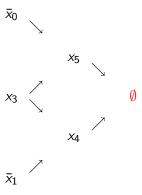
$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ & x_5 \} & \omega_1 = \{ & x_4 \} & \omega_2 = \{ \bar{x}_4, \bar{x}_5 \} \\ & \omega_5 = \{ \bar{x}_6, \bar{x}_7 \} \end{array} \right.$$



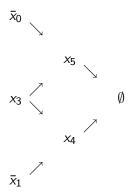
$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ & x_5 \} \\ \omega_5 = \{ \bar{x}_6, \bar{x}_7 \} \end{array} \right.$$







$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{x_0, \bar{x}_3, x_5\} & \omega_1 = \{x_1, \bar{x}_3, x_4\} & \omega_2 = \{\bar{x}_4, \bar{x}_5\} \\ \omega_3 = \{x_3, x_6\} & \omega_4 = \{x_3, x_7\} & \omega_5 = \{\bar{x}_6, \bar{x}_7\} \\ \omega_6 = \{x_2, x_5, x_7\} & \omega_7 = \{\bar{x}_0, \bar{x}_7\} & \omega_8 = \{\bar{x}, \bar{x}_1, \bar{x}_3\} \end{array} \right.$$



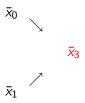
#### Un nouveau graphe d'implication

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ \ \bar{x}_3, x_5 \} & \omega_1 = \{ \ \bar{x}_3, x_4 \} & \omega_2 = \{ \bar{x}_4, \bar{x}_5 \} \\ \omega_3 = \{ x_3, x_6 \} & \omega_4 = \{ x_3, x_7 \} & \omega_5 = \{ \bar{x}_6, \bar{x}_7 \} \end{array} \right.$$

 $\bar{x}_0$ 

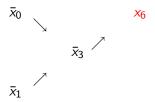
#### Un nouveau graphe d'implication

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ & \bar{x}_3, x_5 \} & \omega_1 = \{ & \bar{x}_3, x_4 \} & \omega_2 = \{ \bar{x}_4, \bar{x}_5 \} \\ \omega_3 = \{ x_3, x_6 \} & \omega_4 = \{ x_3, x_7 \} & \omega_5 = \{ \bar{x}_6, \bar{x}_7 \} \end{array} \right.$$



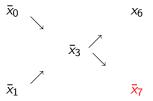
#### Un nouveau graphe d'implication

$$\Delta \left\{ \begin{array}{ll} \omega_2 = \{\bar{x}_4, \bar{x}_5\} \\ \omega_3 = \{ \quad x_6\} & \omega_4 = \{ \quad x_7\} & \omega_5 = \{\bar{x}_6, \bar{x}_7\} \end{array} \right.$$

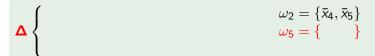


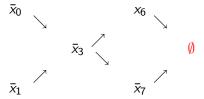
## Un nouveau graphe d'implication

$$\Delta \left\{ \begin{array}{ccc} \omega_2 = \{\bar{x}_4, \bar{x}_5\} \\ \omega_4 = \{ & x_7 \} \end{array} \right. \quad \omega_5 = \left\{ \begin{array}{ccc} \bar{x}_7 \\ \end{array} \right\}$$



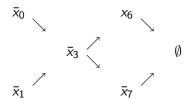
## Un nouveau graphe d'implication





## Un nouveau graphe d'implication

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{x_0, \bar{x}_3, x_5\} & \omega_1 = \{x_1, \bar{x}_3, x_4\} & \omega_2 = \{\bar{x}_4, \bar{x}_5\} \\ \omega_3 = \{x_3, x_6\} & \omega_4 = \{x_3, x_7\} & \omega_5 = \{\bar{x}_6, \bar{x}_7\} \\ \omega_6 = \{x_2, x_5, x_7\} & \omega_7 = \{\bar{x}_0, \bar{x}_7\} & \omega_8 = \{\bar{x}, \bar{x}_1, \bar{x}_3\} \end{array} \right.$$



## Analyse de dépendance pour le calcul DPLL

Les littéraux et les clauses sont maintenant étiquetés par des informations de **dépendance**.

Étant donné un ensemble de littéraux  $\mathcal{A}$ , on note  $I[\mathcal{A}]$  le littéral I annoté par  $\mathcal{A}$  (resp.  $C[\mathcal{A}]$  est la clause C annotée par  $\mathcal{A}$ ).

L'état de la procédure est représenté par des séquents  $\Gamma \vdash \Delta : \mathcal{A}$ 

- A est un ensemble de littéraux;
- © F est un ensemble de littéraux annotés;
- $\bullet$  est un ensemble de clauses annotées.

On note  $\Gamma^{\#}$  (resp.  $\Delta^{\#}$ ) l'ensemble obtenu en supprimant les annotations contenues dans  $\Gamma$  (resp.  $\Delta$ ).

## DPLL avec *dépendances* (DPLL-B) : propagation des contraintes Booléennes

$$\textbf{BAxiom} \quad \frac{}{\Gamma \vdash \Delta, \emptyset[\mathcal{A}] : \mathcal{A}}$$

**BUnit** 
$$\frac{I[\mathcal{B}], \Gamma \vdash \Delta : \mathcal{A}}{\Gamma \vdash \Delta, I[\mathcal{B}] : \mathcal{A}}$$

**BElim** 
$$\frac{I[\mathcal{B}], \Gamma \vdash \Delta : \mathcal{A}}{I[\mathcal{B}], \Gamma \vdash \Delta, I \lor C[\mathcal{C}] : \mathcal{A}}$$

**BRed** 
$$\frac{I[\mathcal{B}], \Gamma \vdash \Delta, C[\mathcal{C} \cup \mathcal{B}] : \mathcal{A}}{I[\mathcal{B}], \Gamma \vdash \Delta, \overline{I} \lor C[\mathcal{C}] : \mathcal{A}}$$

## DPLL avec *dépendances* (DPLL-B) : propagation des contraintes Booléennes

BAxiom
$$\Gamma \vdash \Delta, \emptyset[\mathcal{A}] : \mathcal{A}$$
 $\Gamma$  est bien forméBUnit $\frac{I[\mathcal{B}], \Gamma \vdash \Delta : \mathcal{A}}{\Gamma \vdash \Delta, I[\mathcal{B}] : \mathcal{A}}$  $I, \overline{I} \not\in \Gamma^{\#}$ BElim $\frac{I[\mathcal{B}], \Gamma \vdash \Delta : \mathcal{A}}{I[\mathcal{B}], \Gamma \vdash \Delta, I \lor C[\mathcal{C}] : \mathcal{A}}$ BRed $\frac{I[\mathcal{B}], \Gamma \vdash \Delta, C[\mathcal{C} \cup \mathcal{B}] : \mathcal{A}}{I[\mathcal{B}], \Gamma \vdash \Delta, \overline{I} \lor C[\mathcal{C}] : \mathcal{A}}$ 

# DPLL avec *dépendances* (DPLL-B) : backtracking *non-chronologique*

$$\textbf{BSplit} \quad \frac{\textit{I[I]}, \Gamma \vdash \Delta : \mathcal{B} \quad \Gamma \vdash \Delta, \overline{\textit{I[B} \setminus \textit{I]}} : \mathcal{A} \quad \textit{I} \in \mathcal{B}}{\Gamma \vdash \Delta : \mathcal{A}}$$

$$BJ \quad \frac{I[I], \Gamma \vdash \Delta : \mathcal{A} \qquad I \notin \mathcal{A}}{\Gamma \vdash \Delta : \mathcal{A}}$$

# DPLL avec *dépendances* (DPLL-B) : backtracking *non-chronologique*

**BSplit** 
$$\frac{I[I], \Gamma \vdash \Delta : \mathcal{B} \quad \Gamma \vdash \Delta, \overline{I}[\mathcal{B} \setminus I] : \mathcal{A} \quad I \in \mathcal{B}}{\Gamma \vdash \Delta : \mathcal{A}} \qquad I, \overline{I} \not\in (\Gamma \cup \Delta)^{\#}$$
$$I \lor C \in \Delta^{\#}$$

$$\mathbf{BJ} \quad \frac{I[I], \Gamma \vdash \Delta : \mathcal{A} \qquad I \not\in \mathcal{A}}{\Gamma \vdash \Delta : \mathcal{A}} \qquad I, \overline{I} \not\in (\Gamma \cup \Delta)^{\#} \text{ and } I \lor C \in \Delta^{\#}$$

#### Correction: stabilité

#### Notations:

- **①**  $\Gamma$  est l'ensemble obtenu en annotant les littéraux de  $\Gamma$  avec  $[\emptyset]$ ;
- **2**  $[\Gamma]_{\mathcal{A}}$  est l'ensemble obtenu en supprimant les éléments  $I[\mathcal{B}]$  de  $\Gamma$  quand  $\mathcal{B} \not\subseteq \mathcal{A}$ .

On suppose que les séquents sont bien annotés, c'est à dire que pour toute annotation I contenue dans  $\Gamma \vdash \Delta : A$ , il existe un littéral  $I[I] \in \Gamma$ .

On montre que les règles d'inférence propagent correctement les informations de dépendance par la propriété de stabilité suivante :

#### Lemma (Stabilité)

Si  $\Gamma \vdash \Delta : \mathcal{A}$  est dérivable alors  $[\Gamma]_A \vdash [\Delta]_A : \mathcal{A}$  l'est aussi.

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{x_0, \bar{x}_3, x_5\}[ & ] & \omega_1 = \{x_1, \bar{x}_3, x_4\}[ & ] & \omega_2 = \{\bar{x}_4, \bar{x}_5\}[ & ] \\ \omega_3 = \{x_3, x_6\}[ & ] & \omega_4 = \{x_3, x_7\}[ & ] & \omega_5 = \{\bar{x}_6, \bar{x}_7\}[ & ] \\ \omega_6 = \{x_2, x_5, x_7\}[] & \omega_7 = \{\bar{x}_0, \bar{x}_7\}[] & \omega_8 = \{\bar{x}, \bar{x}_1, \bar{x}_3\}[ & ] \end{array} \right.$$

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{x_0, \bar{x}_3, x_5\}[ & ] & \omega_1 = \{x_1, \bar{x}_3, x_4\}[ & ] & \omega_2 = \{\bar{x}_4, \bar{x}_5\}[ & ] \\ \omega_3 = \{x_3, x_6\}[ & ] & \omega_4 = \{x_3, x_7\}[ & ] & \omega_5 = \{\bar{x}_6, \bar{x}_7\}[ & ] \\ \omega_6 = \{x_2, x_5, x_7\}[] & \omega_7 = \{\bar{x}_0, \bar{x}_7\}[] & \omega_8 = \{\bar{x}, \bar{x}_1, \bar{x}_3\}[ & ] \end{array} \right.$$

$$\bar{x}_0[\bar{x}_0] \vdash$$

$$x[x] \vdash \bar{x}_0[\bar{x}_0] \vdash$$

$$\cfrac{ x_2[x_2] \vdash \\ \bar{x}_1[\bar{x}_1] \vdash \\ x[x] \vdash \\ \bar{x}_0[\bar{x}_0] \vdash }$$

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ & \bar{x}_3, x_5 \}[\bar{x}_0, & ] & \omega_1 = \{ & \bar{x}_3, x_4 \}[\bar{x}_1, & ] & \omega_2 = \{\bar{x}_4, \bar{x}_5 \}[ \\ \omega_3 = \{x_3, x_6 \}[ & ] & \omega_4 = \{x_3, x_7 \}[ & ] & \omega_5 = \{\bar{x}_6, \bar{x}_7 \}[ & ] \end{array} \right.$$

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ & x_5 \}[\bar{x}_0, x_3] & \omega_1 = \{ & x_4 \}[\bar{x}_1, x_3] & \omega_2 = \{\bar{x}_4, \bar{x}_5\}[ \\ & \omega_5 = \{\bar{x}_6, \bar{x}_7\}[ & ] \end{array} \right.$$

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ & x_5 \} [\bar{x}_0, x_3] \\ \omega_5 = \{ \bar{x}_6, \bar{x}_7 \} [ & ] \end{array} \right.$$

```
\frac{x_{5}[\bar{x}_{0}, x_{3}] \vdash}{x_{4}[\bar{x}_{1}, x_{3}] \vdash}

\frac{x_{5}[\bar{x}_{0}, x_{3}] \vdash}{x_{3}[x_{3}] \vdash}

\frac{x_{2}[x_{2}] \vdash}{\bar{x}_{1}[\bar{x}_{1}] \vdash}

x[x] \vdash

\bar{x}_{0}[\bar{x}_{0}] \vdash
```

```
\frac{x_{5}[\bar{x}_{0}, x_{3}] \vdash}{x_{4}[\bar{x}_{1}, x_{3}] \vdash} \\
\underline{x_{3}[x_{3}] \vdash} \\
\underline{x_{2}[x_{2}] \vdash} \\
\underline{x_{1}[\bar{x}_{1}] \vdash} \\
\underline{x[x] \vdash} \\
\underline{x[x] \vdash} \\
\bar{x}_{0}[\bar{x}_{0}] \vdash}
```



$$\begin{array}{l} \omega_2 = \{ \\ \omega_5 = \{\bar{x}_6, \bar{x}_7\}[ \\ \end{bmatrix} \\ \omega_5 = \{\bar{x}_6, \bar{x}_7\}[ \\ \end{bmatrix}$$

$$\frac{x_{5}[\bar{x}_{0}, x_{3}] \vdash [\bar{x}_{0}, \bar{x}_{1}, x_{3}]}{x_{4}[\bar{x}_{1}, x_{3}] \vdash}
\frac{x_{3}[x_{3}] \vdash}{x_{3}[x_{3}] \vdash}
\frac{x_{2}[x_{2}] \vdash}{\bar{x}_{1}[\bar{x}_{1}] \vdash}
\frac{x[x] \vdash}{\bar{x}_{0}[\bar{x}_{0}] \vdash}$$

$$\triangle \left\{ \begin{array}{ll} \omega_0 = \{ & x_5 \} [\bar{x}_0, x_3] \end{array} \right.$$

$$\begin{array}{ll} \omega_2 = \{ \ \overline{x}_5 \} [\overline{x}_1, \quad x_3] \\ \omega_5 = \{ \overline{x}_6, \overline{x}_7 \} [ \quad ] \end{array}$$

$$\frac{x_{5}[\bar{x}_{0}, x_{3}] \vdash [\bar{x}_{0}, \bar{x}_{1}, x_{3}]}{x_{4}[\bar{x}_{1}, x_{3}] \vdash }$$

$$\frac{x_{3}[x_{3}] \vdash }{x_{3}[x_{3}] \vdash }$$

$$\frac{x_{2}[x_{2}] \vdash }{\bar{x}_{1}[\bar{x}_{1}] \vdash }$$

$$x[x] \vdash \\
\bar{x}_{0}[\bar{x}_{0}] \vdash$$

$$\Delta \left\{ \begin{array}{lll} \omega_0 = \{ & x_5 \}[\bar{x}_0, x_3] & \omega_1 = \{ & x_4 \}[\bar{x}_1, x_3] & \omega_2 = \{\bar{x}_4, \bar{x}_5 \}[ \\ & \omega_5 = \{\bar{x}_6, \bar{x}_7 \}[ \end{array} \right]$$

$$\frac{x_{5}[\bar{x}_{0}, x_{3}] \vdash [\bar{x}_{0}, \bar{x}_{1}, x_{3}]}{x_{4}[\bar{x}_{1}, x_{3}] \vdash [\bar{x}_{0}, \bar{x}_{1}, x_{3}]}}{x_{3}[x_{3}] \vdash }$$

$$\frac{x_{2}[x_{2}] \vdash }{\bar{x}_{1}[\bar{x}_{1}] \vdash }$$

$$x[x] \vdash \\
\bar{x}_{0}[\bar{x}_{0}] \vdash$$

$$\Delta \left\{ \begin{array}{lll} \omega_0 = \{ & \bar{x}_3, x_5 \}[\bar{x}_0, & ] & \omega_1 = \{ & \bar{x}_3, x_4 \}[\bar{x}_1, & ] & \omega_2 = \{\bar{x}_4, \bar{x}_5 \}[ \\ \omega_3 = \{x_3, x_6 \}[ & ] & \omega_4 = \{x_3, x_7 \}[ & ] & \omega_5 = \{\bar{x}_6, \bar{x}_7 \}[ & ] \end{array} \right.$$

$$\frac{x_{5}[\bar{x}_{0}, x_{3}] \vdash [\bar{x}_{0}, \bar{x}_{1}, x_{3}]}{x_{4}[\bar{x}_{1}, x_{3}] \vdash [\bar{x}_{0}, \bar{x}_{1}, x_{3}]}}{x_{3}[x_{3}] \vdash [\bar{x}_{0}, \bar{x}_{1}, x_{3}]}$$

$$\frac{x_{2}[x_{2}] \vdash}{\bar{x}_{1}[\bar{x}_{1}] \vdash}$$

$$x[x] \vdash$$

$$\bar{x}_{0}[\bar{x}_{0}] \vdash$$

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ & \bar{x}_3, x_5 \}[\bar{x}_0, & ] & \omega_1 = \{ & \bar{x}_3, x_4 \}[\bar{x}_1, & ] & \omega_2 = \{\bar{x}_4, \bar{x}_5 \}[ \\ \omega_3 = \{x_3, x_6 \}[ & ] & \omega_4 = \{x_3, x_7 \}[ & ] & \omega_5 = \{\bar{x}_6, \bar{x}_7 \}[ & ] \end{array} \right.$$

$$\frac{x_{5}[\bar{x}_{0}, x_{3}] \vdash [\bar{x}_{0}, \bar{x}_{1}, x_{3}]}{x_{4}[\bar{x}_{1}, x_{3}] \vdash [\bar{x}_{0}, \bar{x}_{1}, x_{3}]} \times x_{3}[x_{3}] \vdash [\bar{x}_{0}, \bar{x}_{1}, x_{3}]} \times x_{3}[x_{3}] \vdash [\bar{x}_{0}, \bar{x}_{1}, x_{3}]} \times x_{2}[x_{2}] \vdash x_{3}[\bar{x}_{1}] \vdash x_{3}[$$

$$\Delta \left\{ \begin{array}{ll} \omega_2 = \{\bar{x}_4, \bar{x}_5\}[ \\ \omega_3 = \{ \quad x_6\}[\bar{x}_0, \bar{x}_1] \end{array} \right. \quad \omega_4 = \left\{ \quad x_7\}[\bar{x}_0, \bar{x}_1] \right. \quad \omega_5 = \left\{ \bar{x}_6, \bar{x}_7 \right\}[ \end{array} \right]$$

$$\frac{x_{5}[\bar{x}_{0}, x_{3}] \vdash [\bar{x}_{0}, \bar{x}_{1}, x_{3}]}{x_{4}[\bar{x}_{1}, x_{3}] \vdash [\bar{x}_{0}, \bar{x}_{1}, x_{3}]} \qquad \frac{x_{6}[\bar{x}_{0}, \bar{x}_{1}] \vdash}{x_{3}[\bar{x}_{0}, \bar{x}_{1}] \vdash} \\
\underline{x_{2}[x_{2}] \vdash} \\
\underline{x_{1}[\bar{x}_{1}] \vdash} \\
x[x] \vdash \\
x_{0}[\bar{x}_{0}] \vdash$$

$$\boldsymbol{\Delta} \left\{ \begin{array}{ccc} \omega_2 = \{\bar{\mathsf{x}}_4, \bar{\mathsf{x}}_5\}[ & ] \\ \omega_4 = \{ & \mathsf{x}_7\}[\bar{\mathsf{x}}_0, \bar{\mathsf{x}}_1] & \omega_5 = \{ & \bar{\mathsf{x}}_7\}[\bar{\mathsf{x}}_0, \bar{\mathsf{x}}_1] \end{array} \right.$$

$$\frac{x_{5}[\bar{x}_{0}, x_{3}] \vdash [\bar{x}_{0}, \bar{x}_{1}, x_{3}]}{x_{4}[\bar{x}_{1}, x_{3}] \vdash [\bar{x}_{0}, \bar{x}_{1}, x_{3}]} \qquad \frac{x_{7}[\bar{x}_{0}, \bar{x}_{1}] \vdash}{x_{6}[\bar{x}_{0}, \bar{x}_{1}] \vdash} \\
\underline{x_{3}[x_{3}] \vdash [\bar{x}_{0}, \bar{x}_{1}, x_{3}]} \qquad \frac{x_{7}[\bar{x}_{0}, \bar{x}_{1}] \vdash}{\bar{x}_{3}[\bar{x}_{0}, \bar{x}_{1}] \vdash} \\
\underline{x_{2}[x_{2}] \vdash} \\
\underline{x_{1}[\bar{x}_{1}] \vdash} \\
\underline{x[x] \vdash} \\
\underline{x_{0}[\bar{x}_{0}] \vdash}$$

$$\omega_2 = \{\bar{x}_4, \bar{x}_5\}[ \\
\omega_5 = \{ \}[\bar{x}_0, \bar{x}_1]$$

$$\begin{array}{c} x_{5}[\bar{x}_{0},x_{3}] \vdash [\bar{x}_{0},\bar{x}_{1},x_{3}] & x_{7}[\bar{x}_{0},\bar{x}_{1}] \vdash [\bar{x}_{0},\bar{x}_{1}] \\ x_{4}[\bar{x}_{1},x_{3}] \vdash [\bar{x}_{0},\bar{x}_{1},x_{3}] & x_{6}[\bar{x}_{0},\bar{x}_{1}] \vdash \\ x_{3}[x_{3}] \vdash [\bar{x}_{0},\bar{x}_{1},x_{3}] & \bar{x}_{3}[\bar{x}_{0},\bar{x}_{1}] \vdash \\ \hline x_{2}[x_{2}] \vdash \\ \hline \bar{x}_{1}[\bar{x}_{1}] \vdash \\ & x[x] \vdash \\ \hline \bar{x}_{0}[\bar{x}_{0}] \vdash \\ \end{array}$$

$$\omega_{2} = \{\bar{x}_{4}, \bar{x}_{5}\}[] \qquad \omega_{4} = \{ x_{7}\}[\bar{x}_{0}, \bar{x}_{1}] \qquad \omega_{5} = \{ \bar{x}_{7}\}[\bar{x}_{0}, \bar{x}_{1}]$$

$$\begin{array}{c} x_{5}[\bar{x}_{0},x_{3}] \vdash [\bar{x}_{0},\bar{x}_{1},x_{3}] & x_{7}[\bar{x}_{0},\bar{x}_{1}] \vdash [\bar{x}_{0},\bar{x}_{1}] \\ x_{4}[\bar{x}_{1},x_{3}] \vdash [\bar{x}_{0},\bar{x}_{1},x_{3}] & x_{6}[\bar{x}_{0},\bar{x}_{1}] \vdash \\ x_{3}[x_{3}] \vdash [\bar{x}_{0},\bar{x}_{1},x_{3}] & \bar{x}_{3}[\bar{x}_{0},\bar{x}_{1}] \vdash \\ & x_{2}[x_{2}] \vdash \\ & \bar{x}_{1}[\bar{x}_{1}] \vdash \\ & x[x] \vdash \\ & \bar{x}_{0}[\bar{x}_{0}] \vdash \end{array}$$

$$\Delta \left\{ \begin{array}{ll} \omega_2 = \{\bar{x}_4, \bar{x}_5\}[ \\ \omega_3 = \{ x_6\}[\bar{x}_0, \bar{x}_1] \end{array} \right. \quad \omega_4 = \{ x_7\}[\bar{x}_0, \bar{x}_1] \quad \omega_5 = \{\bar{x}_6, \bar{x}_7\}[ \end{array} \right]$$

$$\frac{x_{5}[\bar{x}_{0}, x_{3}] \vdash [\bar{x}_{0}, \bar{x}_{1}, x_{3}]}{x_{4}[\bar{x}_{1}, x_{3}] \vdash [\bar{x}_{0}, \bar{x}_{1}, x_{3}]} \underbrace{\begin{array}{c} x_{7}[\bar{x}_{0}, \bar{x}_{1}] \vdash [\bar{x}_{0}, \bar{x}_{1}] \\ x_{6}[\bar{x}_{0}, \bar{x}_{1}] \vdash [\bar{x}_{0}, \bar{x}_{1}] \\ \hline x_{3}[x_{3}] \vdash [\bar{x}_{0}, \bar{x}_{1}, x_{3}] \\ \hline x_{2}[x_{2}] \vdash \\ \hline \hline x_{1}[\bar{x}_{1}] \vdash \\ \hline x_{2}[x_{2}] \vdash \\ \hline x_{3}[\bar{x}_{0}, \bar{x}_{1}] \vdash \\ \hline x_{2}[x_{2}] \vdash \\ \hline x_{3}[\bar{x}_{0}, \bar{x}_{1}] \vdash \\ x_{3}[\bar{x}_{0}, \bar{x}_{1}] \vdash \\ \hline x_{4}[\bar{x}_{1}, \bar{x}_{2}] \vdash \\ \hline x_{5}[\bar{x}_{1}] \vdash \\ \hline x_{5}[\bar{x}_{1}] \vdash \\ \hline x_{5}[\bar{x}_{1}] \vdash \\ \bar{x}_{5}[\bar{x}_{1}] \vdash \\ \bar{x}_{5}[\bar$$

$$\Delta \left\{ \begin{array}{lll} \omega_0 = \{ & \bar{x}_3, x_5 \}[\bar{x}_0, & ] & \omega_1 = \{ & \bar{x}_3, x_4 \}[\bar{x}_1, & ] & \omega_2 = \{\bar{x}_4, \bar{x}_5 \}[ \\ \omega_3 = \{x_3, x_6 \}[ & ] & \omega_4 = \{x_3, x_7 \}[ & ] & \omega_5 = \{\bar{x}_6, \bar{x}_7 \}[ & ] \end{array} \right.$$

$$\begin{array}{c} \underline{x_{5}[\bar{x}_{0},x_{3}] \vdash [\bar{x}_{0},\bar{x}_{1},x_{3}]} \\ \underline{x_{4}[\bar{x}_{1},x_{3}] \vdash [\bar{x}_{0},\bar{x}_{1},x_{3}]} \\ \underline{x_{3}[x_{3}] \vdash [\bar{x}_{0},\bar{x}_{1},x_{3}]} \\ \underline{x_{2}[x_{2}] \vdash \\ \\ \underline{x_{1}[\bar{x}_{1}] \vdash \\ \\ \underline{x_{2}[x_{2}] \vdash \\ \\ \\ \underline{x_{2$$

$$\begin{array}{c} x_{5}[\bar{x}_{0},x_{3}] \vdash [\bar{x}_{0},\bar{x}_{1},x_{3}] & x_{7}[\bar{x}_{0},\bar{x}_{1}] \vdash [\bar{x}_{0},\bar{x}_{1}] \\ x_{4}[\bar{x}_{1},x_{3}] \vdash [\bar{x}_{0},\bar{x}_{1},x_{3}] & x_{6}[\bar{x}_{0},\bar{x}_{1}] \vdash [\bar{x}_{0},\bar{x}_{1}] \\ x_{3}[x_{3}] \vdash [\bar{x}_{0},\bar{x}_{1},x_{3}] & \bar{x}_{3}[\bar{x}_{0},\bar{x}_{1}] \vdash [\bar{x}_{0},\bar{x}_{1}] \\ \hline x_{2}[x_{2}] \vdash [\bar{x}_{0},\bar{x}_{1}] \\ \hline \bar{x}_{1}[\bar{x}_{1}] \vdash \\ & x[x] \vdash \\ \hline \bar{x}_{0}[\bar{x}_{0}] \vdash \\ \end{array}$$

$$\frac{x_{5}[\bar{x}_{0}, x_{3}] \vdash [\bar{x}_{0}, \bar{x}_{1}, x_{3}]}{x_{4}[\bar{x}_{1}, x_{3}] \vdash [\bar{x}_{0}, \bar{x}_{1}, x_{3}]} \qquad \frac{x_{7}[\bar{x}_{0}, \bar{x}_{1}] \vdash [\bar{x}_{0}, \bar{x}_{1}]}{x_{6}[\bar{x}_{0}, \bar{x}_{1}] \vdash [\bar{x}_{0}, \bar{x}_{1}]} \qquad \frac{x_{6}[\bar{x}_{0}, \bar{x}_{1}] \vdash [\bar{x}_{0}, \bar{x}_{1}]}{x_{3}[\bar{x}_{0}, \bar{x}_{1}] \vdash [\bar{x}_{0}, \bar{x}_{1}]} \qquad [BJ]$$

$$\frac{x_{1}[\bar{x}_{1}] \vdash [\bar{x}_{0}, \bar{x}_{1}]}{x_{1}[\bar{x}_{1}] \vdash [\bar{x}_{0}, \bar{x}_{1}]} \qquad x[x] \vdash x_{1}[x_{1}] \vdash x_{$$

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ \ \bar{x}_3, x_5 \} [\bar{x}_0, \ ] & \omega_1 = \{x_1, \bar{x}_3, x_4 \} [ \ ] \\ \omega_3 = \{x_3, x_6 \} [ \ ] & \omega_4 = \{x_3, x_7 \} [ \ ] \\ \omega_6 = \{x_2, x_5, x_7 \} [] & \omega_8 = \{ \ \bar{x}_1, \bar{x}_3 \} [x \ ] \end{array} \right.$$

$$\frac{x_{5}[\bar{x}_{0}, x_{3}] \vdash [\bar{x}_{0}, \bar{x}_{1}, x_{3}]}{x_{4}[\bar{x}_{1}, x_{3}] \vdash [\bar{x}_{0}, \bar{x}_{1}, x_{3}]} = \frac{x_{7}[\bar{x}_{0}, \bar{x}_{1}] \vdash [\bar{x}_{0}, \bar{x}_{1}]}{x_{6}[\bar{x}_{0}, \bar{x}_{1}] \vdash [\bar{x}_{0}, \bar{x}_{1}]} = \frac{x_{6}[\bar{x}_{0}, \bar{x}_{1}] \vdash [\bar{x}_{0}, \bar{x}_{1}]}{x_{3}[x_{3}] \vdash [\bar{x}_{0}, \bar{x}_{1}]} = \frac{x_{1}[\bar{x}_{1}] \vdash [\bar{x}_{0}, \bar{x}_{1}]}{x_{2}[x_{2}] \vdash [\bar{x}_{0}, \bar{x}_{1}]} = \frac{x_{1}[\bar{x}_{1}] \vdash [\bar{x}_{0}, \bar{x}_{1}]}{x_{1}[\bar{x}_{1}] \vdash [\bar{x}_{0}, \bar{x}_{1}]} = \frac{x_{1}[\bar{x}_{0}] \vdash x_{1}[\bar{x}_{0}] \vdash x_{1}[\bar{x}_{0}] \vdash x_{1}[\bar{x}_{0}]}{x_{1}[\bar{x}_{0}] \vdash x_{1}[\bar{x}_{0}]} = \frac{x_{1}[\bar{x}_{0}] \vdash x_{1}[\bar{x}_{0}] \vdash x_{1}[\bar{x}_{0}]}{x_{1}[\bar{x}_{0}] \vdash x_{1}[\bar{x}_{0}]} = \frac{x_{1}[\bar{x}_{0}] \vdash x_{1}[\bar{x}_{0}]}{x_{1}[\bar{x}_{0}] \vdash x_{1}[\bar{x}_{0}]} = \frac{x_{1}[\bar{x}_{0}] \vdash x_{1}[\bar{x}_{0}]}{x_{1}[\bar{x}_{0}]} = \frac{x_{1}[\bar{x}_{0}]}{x_{1}[\bar{x}_{0}]} = \frac{x_{1}[\bar{x}_{0$$

$$\Delta \left\{ \begin{array}{ll} \omega_0 = \{ \ \bar{x}_3, x_5 \}[\bar{x}_0, \ ] & \omega_2 = \{ \bar{x}_4, \bar{x}_5 \}[ \ ] \\ \omega_3 = \{ x_3, x_6 \}[ \ ] & \omega_4 = \{ x_3, x_7 \}[ \ ] & \omega_5 = \{ \bar{x}_6, \bar{x}_7 \}[ \ ] \\ \omega_6 = \{ x_2, x_5, x_7 \}[] & \omega_8 = \{ \ \bar{x}_1, \bar{x}_3 \}[x, \bar{x}_0] \end{array} \right.$$

$$\begin{array}{c|c} x_{5}[\bar{x}_{0},x_{3}] \vdash [\bar{x}_{0},\bar{x}_{1},x_{3}] & x_{7}[\bar{x}_{0},\bar{x}_{1}] \vdash [\bar{x}_{0},\bar{x}_{1}] \\ \hline x_{4}[\bar{x}_{1},x_{3}] \vdash [\bar{x}_{0},\bar{x}_{1},x_{3}] & x_{6}[\bar{x}_{0},\bar{x}_{1}] \vdash [\bar{x}_{0},\bar{x}_{1}] \\ \hline x_{3}[x_{3}] \vdash [\bar{x}_{0},\bar{x}_{1},x_{3}] & \bar{x}_{3}[\bar{x}_{0},\bar{x}_{1}] \vdash [\bar{x}_{0},\bar{x}_{1}] \\ \hline x_{2}[x_{2}] \vdash [\bar{x}_{0},\bar{x}_{1}] & \vdots \\ \hline \bar{x}_{1}[\bar{x}_{1}] \vdash [\bar{x}_{0},\bar{x}_{1}] & x_{1}[\bar{x}_{0}] \vdash \\ \hline x[x] \vdash \\ \hline \bar{x}_{0}[\bar{x}_{0}] \vdash \\ \hline \end{array}$$

#### Exemple...

$$\Delta \left\{ \begin{array}{lll} \omega_0 = \{x_0, \bar{x}_3, x_5\} [\bar{x}_0, x_3] & \omega_1 = \{x_1, \bar{x}_3, x_4\} [\bar{x}_1, x_3] & \omega_2 = \{\bar{x}_4, \bar{x}_5\} [\bar{x}_1, \bar{x}_0, x_3] \\ \omega_3 = \{x_3, x_6\} [\bar{x}_0, \bar{x}_1] & \omega_4 = \{x_3, x_7\} [\bar{x}_0, \bar{x}_1] & \omega_5 = \{\bar{x}_6, \bar{x}_7\} [\bar{x}_0, \bar{x}_1] \\ \omega_6 = \{x_2, x_5, x_7\} [] & \omega_7 = \{\bar{x}_0, \bar{x}_7\} [] & \omega_8 = \{\bar{x}, \bar{x}_1, \bar{x}_3\} [x, \bar{x}_0] \end{array} \right.$$

#### Exemple...

$$\Delta \left\{ \begin{array}{lll} \omega_0 = \{x_0, \bar{x}_3, x_5\}[\bar{x}_0, x_3] & \omega_1 = \{x_1, \bar{x}_3, x_4\}[\bar{x}_1, x_3] & \omega_2 = \{\bar{x}_4, \bar{x}_5\}[\bar{x}_1, \bar{x}_0, x_3] \\ \omega_3 = \{x_3, x_6\}[\bar{x}_0, \bar{x}_1] & \omega_4 = \{x_3, x_7\}[\bar{x}_0, \bar{x}_1] & \omega_5 = \{\bar{x}_6, \bar{x}_7\}[\bar{x}_0, \bar{x}_1] \\ \omega_6 = \{x_2, x_5, x_7\}[] & \omega_7 = \{\bar{x}_0, \bar{x}_7\}[] & \omega_8 = \{\bar{x}, \bar{x}_1, \bar{x}_3\}[x, \bar{x}_0] \end{array} \right.$$

$$\begin{array}{c|c} x_{5}[\bar{x}_{0},x_{3}] \vdash [\bar{x}_{0},\bar{x}_{1},x_{3}] & x_{7}[\bar{x}_{0},\bar{x}_{1}] \vdash [\bar{x}_{0},\bar{x}_{1}] \\ \hline x_{4}[\bar{x}_{1},x_{3}] \vdash [\bar{x}_{0},\bar{x}_{1},x_{3}] & x_{6}[\bar{x}_{0},\bar{x}_{1}] \vdash [\bar{x}_{0},\bar{x}_{1}] \\ \hline x_{3}[x_{3}] \vdash [\bar{x}_{0},\bar{x}_{1},x_{3}] & \bar{x}_{3}[\bar{x}_{0},\bar{x}_{1}] \vdash [\bar{x}_{0},\bar{x}_{1}] \\ \hline x_{2}[x_{2}] \vdash [\bar{x}_{0},\bar{x}_{1}] & \vdots \\ \hline \bar{x}_{1}[\bar{x}_{1}] \vdash [\bar{x}_{0},\bar{x}_{1}] & x_{1}[\bar{x}_{0}] \vdash \\ \hline & x[x] \vdash \\ \hline \bar{x}_{0}[\bar{x}_{0}] \vdash \end{array}$$

#### Correction de DPLL-B

#### Theorem (Sûreté)

Si  $\Gamma \vdash \Delta$ :  $\mathcal{A}$  est dérivable dans DPLL-B alors  $\Gamma^{\#} \vdash \Delta^{\#}$  est incompatible.

La complétude peut s'obtenir en utilisant le système DPLL (puisque ce système est complet).

#### Theorem (Complétude)

Si  $\Gamma \vdash \Delta$  est un séquent bien formé et dérivable dans DPLL alors il existe un ensemble  $\mathcal{A}$  tel que  $\Gamma \vdash \Delta$ :  $\mathcal{A}$  soit dérivable dans DPLL-B.

La preuve de correction en **Coq** ajoute environ 2000 lignes de tactiques à celle de DPLL.

# Apprentissage (tentative...)

L'état de la procédure est maintenant représentée par des séquents de la forme  $\Gamma \vdash \Delta : \mathbb{A}$  où  $\mathbb{A}$  est un ensemble de **clauses annotées** (les ensembles  $\Gamma$  et  $\Delta$  sont inchangés).

Étant donné un littéral I, on définit la fonction Shift, par :

```
 \begin{array}{l} (\mathtt{Shift}_I \; \emptyset) = \emptyset \\ (\mathtt{Shift}_I \; \{ C[\mathcal{A}, I] \} \cup \mathbb{A} \; ) = \{ \overline{I} \vee C[\mathcal{A}] \} \cup (\mathtt{Shift}_I \mathbb{A} \; ) \\ (\mathtt{Shift}_I \; \{ C[\mathcal{A}] \} \cup \mathbb{A} \; ) = \{ C[\mathcal{A}] \} \cup (\mathtt{Shift}_I \mathbb{A} \; ) \qquad \text{si } I \not\in \mathcal{A} \end{array}
```

# DPLL avec apprentissage (DPLL-C) : propagation des contraintes booléennes

CUnit 
$$\frac{I[\mathcal{B}], \Gamma \vdash \Delta : \mathbb{A}}{\Gamma \vdash \Delta, I[\mathcal{B}] : \mathbb{A}}$$

**CElim** 
$$\frac{I[\mathcal{B}], \Gamma \vdash \Delta : \mathbb{A}}{I[\mathcal{B}], \Gamma \vdash \Delta, I \lor C[\mathcal{C}] : \mathbb{A}}$$

CRed 
$$\frac{I[\mathcal{B}], \Gamma \vdash \Delta, C[\mathcal{C} \cup \mathcal{B}] : \mathbb{A}}{I[\mathcal{B}], \Gamma \vdash \Delta, \overline{I} \lor C[\mathcal{C}] : \mathbb{A}}$$

# DPLL avec apprentissage (DPLL-C): propagation des contraintes booléennes

**CAxiom** 
$$\frac{}{\Gamma \vdash \Delta, \emptyset[\mathcal{A}] : \{ \emptyset[\mathcal{A}] \}}$$

Γ est bien formé

CUnit 
$$\frac{I[\mathcal{B}], \Gamma \vdash \Delta : \mathbb{A}}{\Gamma \vdash \Delta, I[\mathcal{B}] : \mathbb{A}}$$
  $I, \overline{I} \notin \Gamma^{\#}$ 

$$I, \overline{I} \not\in \Gamma^{\#}$$

**CElim** 
$$\frac{I[\mathcal{B}], \Gamma \vdash \Delta : \mathbb{A}}{I[\mathcal{B}], \Gamma \vdash \Delta, I \lor C[\mathcal{C}] : \mathbb{A}}$$

$$\textbf{CRed} \ \frac{I[\mathcal{B}], \Gamma \vdash \Delta, C[\mathcal{C} \cup \mathcal{B}] : \mathbb{A}}{I[\mathcal{B}], \Gamma \vdash \Delta, \overline{I} \lor C[\mathcal{C}] : \mathbb{A}}$$

## DPLL-C: apprentissage

$$\textbf{CSplit} \quad \frac{/[\emph{I}], \Gamma \vdash \Delta : \mathbb{B} \quad \Gamma \vdash \Delta, \big( \mathtt{Shift}_{\emph{I}} \mathbb{B} \, \big) : \mathbb{A} \quad \emptyset[\mathcal{B}, \emph{I}] \in \mathbb{B} }{\Gamma \vdash \Delta : \big( \mathtt{Shift}_{\emph{I}} \mathbb{B} \, \big) \cup \mathbb{A} }$$

$$\textbf{CBJ} \quad \frac{\textit{I[I]}, \Gamma \vdash \Delta : \mathbb{A} \qquad \not \exists. \ \emptyset[\mathcal{A}, \textit{I}] \in \mathbb{A} }{\Gamma \vdash \Delta : \big( \texttt{Shift}_{\textit{I}} \mathbb{A} \big) }$$

## DPLL-C: apprentissage

$$\textbf{CSplit} \quad \frac{I[I], \Gamma \vdash \Delta : \mathbb{B} \quad \Gamma \vdash \Delta, (\textbf{Shift}_{I}\mathbb{B}) : \mathbb{A} \quad \emptyset[\mathcal{B}, I] \in \mathbb{B} }{\Gamma \vdash \Delta : (\textbf{Shift}_{I}\mathbb{B}) \cup \mathbb{A} }$$

$$I, \overline{I} \not\in (\Gamma \cup \Delta)^{\#} \text{ et } I \lor C \in \Delta^{\#}$$

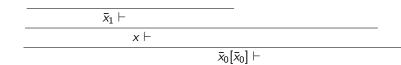
$$\textbf{CBJ} \quad \frac{\textit{I[I]}, \Gamma \vdash \Delta : \mathbb{A} \qquad \not\exists. \ \emptyset[\mathcal{A}, \textit{I}] \in \mathbb{A} }{\Gamma \vdash \Delta : \big( \texttt{Shift}_{\textit{I}} \mathbb{A} \, \big) }$$

$$I, \overline{I} \not\in (\Gamma \cup \Delta)^{\#}$$
 et  $I \vee C \in \Delta^{\#}$ 





 $\bar{x}_0[\bar{x}_0] \vdash$ 



$$\cfrac{\overline{x_2 \vdash}}{\overline{x_1 \vdash}}$$

$$x \vdash$$

$$\overline{x_0}[\overline{x_0}] \vdash$$

 $\frac{\overline{x_3} \vdash}{x_2 \vdash}$   $\overline{\overline{x_1} \vdash}$   $x \vdash$   $\overline{x_0}[\overline{x_0}] \vdash$ 

$$\frac{\overline{x_4 \vdash}}{x_3 \vdash}$$

$$\overline{x_2 \vdash}$$

$$\overline{x_1 \vdash}$$

$$x \vdash$$

$$\overline{x_0[\overline{x}_0] \vdash}$$

```
\frac{x_5 \vdash \frac{x_4 \vdash \frac{x_4 \vdash \frac{x_5 \vdash x_4 \vdash x_5 \vdash \frac{x_5 \vdash x_5 \vdash
```

$$\frac{x_5 \vdash : \mathbb{A}_1}{x_4 \vdash}$$

$$\frac{x_3 \vdash}{x_3 \vdash}$$

$$\frac{x_2 \vdash}{x_1 \vdash}$$

$$x \vdash$$

$$\overline{x_0}[\overline{x_0}] \vdash$$

$$\frac{x_5 \vdash : \mathbb{A}_1}{x_4 \vdash}$$

$$\frac{x_3 \vdash}{x_3 \vdash}$$

$$\frac{x_2 \vdash}{x_1 \vdash}$$

$$x \vdash$$

$$\overline{x_0}[\overline{x_0}] \vdash$$

$$\mathbb{A}_1 = \{ \emptyset[\bar{x}_0, \bar{x}_1, x_3] \}$$

$$\frac{x_5 \vdash : \mathbb{A}_1}{x_4 \vdash : \mathbb{A}_1}$$

$$\frac{x_3 \vdash}{x_3 \vdash}$$

$$\overline{x_1 \vdash}$$

$$x \vdash$$

$$\overline{x_0[x_0] \vdash}$$

$$\mathbb{A}_1 = \{ \emptyset[\bar{x}_0, \bar{x}_1, x_3] \}$$

$$\frac{x_5 \vdash : \mathbb{A}_1}{x_4 \vdash : \mathbb{A}_1}$$

$$\frac{x_3 \vdash : \mathbb{A}_1}{x_3 \vdash : \mathbb{A}_1}$$

$$\overline{x_2 \vdash}$$

$$\overline{x_1 \vdash}$$

$$x \vdash$$

$$\overline{x_0[\bar{x}_0] \vdash}$$

$$\mathbb{A}_1 = \{ \emptyset[\bar{x}_0, \bar{x}_1, x_3] \}$$

$$egin{array}{c} x_5 dash : \mathbb{A}_1 \ x_4 dash : \mathbb{A}_1 \ x_3 dash : \mathbb{A}_1 \ \hline \hline x_2 dash \ \hline \hline & x_1 dash \ \hline & x_0 ig[ar{x}_0] dash \ \hline \end{array}$$

$$\mathbb{A}_1 = \{ \emptyset[\bar{x}_0, \bar{x}_1, x_3] \}$$

$$egin{array}{c} x_5 dash : \mathbb{A}_1 \ x_4 dash : \mathbb{A}_1 \ x_3 dash : \mathbb{A}_1 \ \hline x_2 dash & \overline{x_3}[ar{x}_0, ar{x}_1] dash \ dash (\operatorname{Shift}_{x_3} \mathbb{A}_1) \ \hline \hline x_1 dash \ \hline & x dash \ \hline & x_0[ar{x}_0] dash \end{array}$$

$$\mathbb{A}_1 = \{ \emptyset[\bar{x}_0, \bar{x}_1, x_3] \}$$

$$\frac{x_{5} \vdash : \mathbb{A}_{1}}{x_{4} \vdash : \mathbb{A}_{1}} \qquad \frac{x_{6} \vdash}{\bar{x}_{3}[\bar{x}_{0}, \bar{x}_{1}] \vdash} \\ \frac{x_{3} \vdash : \mathbb{A}_{1}}{x_{2} \vdash} \qquad \frac{\vdash (\mathtt{Shift}_{x_{3}} \mathbb{A}_{1})}{\bar{x}_{1} \vdash} \\ \hline x \vdash \\ \hline x_{0}[\bar{x}_{0}] \vdash$$

$$\mathbb{A}_1 = \{ \emptyset[\bar{x}_0, \bar{x}_1, x_3] \}$$

$$\frac{x_{5}\vdash:\mathbb{A}_{1}}{x_{4}\vdash:\mathbb{A}_{1}} = \frac{\begin{array}{c}x_{7}\vdash\\\overline{x_{6}\vdash}\\\overline{x_{3}[\bar{x}_{0},\bar{x}_{1}]\vdash\\}\\\hline x_{3}\vdash:\mathbb{A}_{1}\end{array}}{\begin{array}{c}x_{5}\vdash:\mathbb{A}_{1}\\\hline x_{5}[\bar{x}_{0},\bar{x}_{1}]\vdash\\\hline \vdash(\mathtt{Shift}_{x_{3}}\mathbb{A}_{1})\end{array}}$$

$$\frac{x_{2}\vdash}{\bar{x}_{1}\vdash}$$

$$x\vdash$$

$$\overline{x_{0}[\bar{x}_{0}]\vdash}$$

$$\mathbb{A}_1 = \{ \emptyset[\bar{x}_0, \bar{x}_1, x_3] \}$$

$$\frac{ \begin{array}{c} x_{5} \vdash : \mathbb{A}_{1} \\ x_{4} \vdash : \mathbb{A}_{1} \\ \hline x_{3} \vdash : \mathbb{A}_{1} \end{array} \qquad \begin{array}{c} \frac{x_{7} \vdash : \mathbb{A}_{2}}{x_{6} \vdash} \\ \hline \overline{x}_{3}[\overline{x}_{0}, \overline{x}_{1}] \vdash \\ \hline \vdash (\operatorname{Shift}_{x_{3}} \mathbb{A}_{1}) \\ \hline x_{2} \vdash \\ \hline \hline x_{1} \vdash \\ \hline x \vdash \\ \hline \hline x_{0}[\overline{x}_{0}] \vdash \\ \end{array}$$

$$\begin{array}{rcl}
\mathbb{A}_1 &= \{ \emptyset[\bar{x}_0, \bar{x}_1, x_3] \} \\
\mathbb{A}_2 &= \{ \emptyset[\bar{x}_0, \bar{x}_1] \}
\end{array}$$

$$\frac{x_{5} \vdash : \mathbb{A}_{1}}{x_{4} \vdash : \mathbb{A}_{1}} = \frac{x_{7} \vdash : \mathbb{A}_{2}}{x_{6} \vdash}$$

$$\frac{x_{5} \vdash : \mathbb{A}_{1}}{x_{3} \vdash : \mathbb{A}_{1}} = \frac{\bar{x}_{3}[\bar{x}_{0}, \bar{x}_{1}] \vdash}{\bar{x}_{3}[\bar{x}_{0}, \bar{x}_{1}] \vdash}$$

$$\frac{x_{2} \vdash}{\bar{x}_{1} \vdash}$$

$$x \vdash$$

$$\bar{x}_{0}[\bar{x}_{0}] \vdash$$

$$\begin{array}{rcl}
\mathbb{A}_1 &= \{ \emptyset[\bar{x}_0, \bar{x}_1, x_3] \} \\
\mathbb{A}_2 &= \{ \emptyset[\bar{x}_0, \bar{x}_1] \}
\end{array}$$

$$\frac{ \begin{array}{c} x_{5} \vdash : \mathbb{A}_{1} \\ x_{4} \vdash : \mathbb{A}_{1} \\ \hline x_{3} \vdash : \mathbb{A}_{1} \end{array} \qquad \begin{array}{c} \frac{x_{7} \vdash : \mathbb{A}_{2}}{x_{6} \vdash : \mathbb{A}_{2}} \\ \hline x_{3}[\bar{x}_{0}, \bar{x}_{1}] \vdash \\ \hline \vdash (\mathrm{Shift}_{x_{3}} \mathbb{A}_{1}) \\ \hline x_{2} \vdash \\ \hline \hline x_{1} \vdash \\ \hline x_{6}[\bar{x}_{0}] \vdash \end{array}$$

$$\begin{array}{rcl}
\mathbb{A}_1 &= \{ \emptyset[\bar{x}_0, \bar{x}_1, x_3] \} \\
\mathbb{A}_2 &= \{ \emptyset[\bar{x}_0, \bar{x}_1] \}
\end{array}$$

$$\frac{x_{5} \vdash : \mathbb{A}_{1}}{x_{4} \vdash : \mathbb{A}_{1}} = \underbrace{\frac{x_{7} \vdash : \mathbb{A}_{2}}{x_{6} \vdash : \mathbb{A}_{2}}}_{\overline{x}_{3}[\overline{x}_{0}, \overline{x}_{1}] \vdash : \mathbb{A}_{2}} + \underbrace{\frac{\overline{x}_{3}[\overline{x}_{0}, \overline{x}_{1}] \vdash : \mathbb{A}_{2}}{\overline{x}_{3}[\overline{x}_{0}, \overline{x}_{1}] \vdash : \mathbb{A}_{2}}}_{\overline{x}_{1} \vdash \overline{x}_{1} \vdash \overline{x}_{1}}$$

$$x \vdash \overline{x}_{0}[\overline{x}_{0}] \vdash$$

$$\begin{array}{rcl}
\mathbb{A}_1 &= \{ \emptyset[\bar{x}_0, \bar{x}_1, x_3] \} \\
\mathbb{A}_2 &= \{ \emptyset[\bar{x}_0, \bar{x}_1] \}
\end{array}$$

$$\frac{x_{5} \vdash : \mathbb{A}_{1}}{x_{4} \vdash : \mathbb{A}_{1}} = \frac{\frac{x_{7} \vdash : \mathbb{A}_{2}}{x_{6} \vdash : \mathbb{A}_{2}}}{\frac{\overline{x}_{3}[\overline{x}_{0}, \overline{x}_{1}] \vdash : \mathbb{A}_{2}}{\vdash (Shift_{x_{3}}\mathbb{A}_{1}) : \mathbb{A}_{2}}}$$

$$\frac{x_{2} \vdash}{\overline{x}_{1} \vdash} = \overline{x}_{1} \vdash \overline{x}_{2}$$

$$x \vdash \overline{x}_{3}[\overline{x}_{0}] \vdash \overline{x}_{3$$

$$\begin{array}{rcl}
\mathbb{A}_1 &=& \{ \emptyset[\bar{x}_0, \bar{x}_1, x_3] \} \\
\mathbb{A}_2 &=& \{ \emptyset[\bar{x}_0, \bar{x}_1] \}
\end{array}$$

$$\frac{x_{5}\vdash:\mathbb{A}_{1}}{x_{4}\vdash:\mathbb{A}_{1}} = \frac{\frac{x_{7}\vdash:\mathbb{A}_{2}}{x_{6}\vdash:\mathbb{A}_{2}}}{\frac{\bar{x}_{3}[\bar{x}_{0},\bar{x}_{1}]\vdash:\mathbb{A}_{2}}{\bar{x}_{3}[\bar{x}_{0},\bar{x}_{1}]\vdash:\mathbb{A}_{2}}}{\frac{x_{2}\vdash:(\mathrm{Shift}_{x_{3}}\mathbb{A}_{1}):\mathbb{A}_{2}}{\bar{x}_{1}\vdash}}$$

$$x\vdash$$

$$\bar{x}_{0}[\bar{x}_{0}]\vdash$$

$$\begin{array}{rcl} \mathbb{A}_1 & = & \{ \emptyset[\bar{x}_0, \bar{x}_1, x_3] \} \\ \mathbb{A}_2 & = & \{ \emptyset[\bar{x}_0, \bar{x}_1] \} \end{array}$$

$$\frac{x_{5} \vdash : \mathbb{A}_{1}}{x_{4} \vdash : \mathbb{A}_{1}} = \underbrace{\frac{x_{7} \vdash : \mathbb{A}_{2}}{x_{6} \vdash : \mathbb{A}_{2}}}_{\overline{x}_{3}[\overline{x}_{0}, \overline{x}_{1}] \vdash : \mathbb{A}_{2}} \\
\underline{x_{3} \vdash : \mathbb{A}_{1}} \vdash (Shift_{x_{3}}\mathbb{A}_{1}) : \mathbb{A}_{2}}_{x_{2} \vdash : (Shift_{x_{3}}\mathbb{A}_{1}) \cup \mathbb{A}_{2}} \\
\underline{x_{1} \vdash : \mathbb{A}_{3}}_{x \vdash}$$

 $\bar{x}_0[\bar{x}_0] \vdash$ 

$$\begin{array}{lll} \mathbb{A}_{1} & = & \{ \ \emptyset[\bar{x}_{0}, \bar{x}_{1}, x_{3}] \ \} \\ \mathbb{A}_{2} & = & \{ \emptyset[\bar{x}_{0}, \bar{x}_{1}] \} \\ \mathbb{A}_{3} & = & (\mathrm{Shift}_{x_{2}, x_{3}} \mathbb{A}_{1}) \cup (\mathrm{Shift}_{x_{2}} \mathbb{A}_{2}) = \{ \ \bar{x}_{3}[\bar{x}_{0}, \bar{x}_{1}], \ \emptyset[\bar{x}_{1}, \bar{x}_{0}] \ \} \end{array}$$

$$\begin{array}{c} x_{5} \vdash : \mathbb{A}_{1} \\ x_{4} \vdash : \mathbb{A}_{1} \\ \hline x_{3} \vdash : \mathbb{A}_{1} \\ \hline x_{2} \vdash (\operatorname{Shift}_{x_{3}} \mathbb{A}_{1}) : \mathbb{A}_{2} \\ \hline x_{2} \vdash : (\operatorname{Shift}_{x_{3}} \mathbb{A}_{1}) \cup \mathbb{A}_{2} \\ \hline \hline x_{1} \vdash : \mathbb{A}_{3} \\ \hline \end{array} \quad \begin{array}{c} F_{1} \vdash (\operatorname{Shift}_{x_{1}} \mathbb{A}_{3}) \\ \hline F_{2} \vdash (\operatorname{Shift}_{x_{1}} \mathbb{A}_{3}) \\ \hline F_{3} \vdash : \mathbb{A}_{3} \\ \hline F_{4} \vdash : \mathbb{A}_{3} \\ \hline \end{array}$$

 $\bar{x}_0[\bar{x}_0] \vdash$ 

$$\begin{array}{lll} \mathbb{A}_{1} & = & \{ \ \emptyset[\bar{x}_{0}, \bar{x}_{1}, x_{3}] \ \} \\ \mathbb{A}_{2} & = & \{ \emptyset[\bar{x}_{0}, \bar{x}_{1}] \} \\ \mathbb{A}_{3} & = & (\mathtt{Shift}_{x_{2}, x_{3}} \mathbb{A}_{1}) \cup (\mathtt{Shift}_{x_{2}} \mathbb{A}_{2}) = \{ \ \bar{x}_{3}[\bar{x}_{0}, \bar{x}_{1}], \ \emptyset[\bar{x}_{1}, \bar{x}_{0}] \ \} \end{array}$$

$$\frac{x_{5} \vdash : \mathbb{A}_{1}}{x_{4} \vdash : \mathbb{A}_{1}} = \frac{x_{7} \vdash : \mathbb{A}_{2}}{\overline{x}_{3} [\overline{x}_{0}, \overline{x}_{1}] \vdash : \mathbb{A}_{2}} \\ \overline{x_{3} \vdash : \mathbb{A}_{1}} = \frac{\overline{x}_{3} [\overline{x}_{0}, \overline{x}_{1}] \vdash : \mathbb{A}_{2}}{\overline{x}_{3} [\overline{x}_{0}, \overline{x}_{1}] \vdash : \mathbb{A}_{2}} \\ \overline{x_{2} \vdash : (\operatorname{Shift}_{x_{3}} \mathbb{A}_{1}) \cup \mathbb{A}_{2}} = \frac{x_{1} [\overline{x}_{0}] \vdash}{\overline{x}_{1} \vdash : \mathbb{A}_{3}} \\ x \vdash \overline{x_{0}} [\overline{x}_{0}] \vdash$$

$$\begin{array}{lll} \mathbb{A}_{1} & = & \{ \ \emptyset[\bar{x}_{0}, \bar{x}_{1}, x_{3}] \ \} \\ \mathbb{A}_{2} & = & \{ \emptyset[\bar{x}_{0}, \bar{x}_{1}] \} \\ \mathbb{A}_{3} & = & (\mathrm{Shift}_{x_{2}, x_{3}} \mathbb{A}_{1}) \cup (\mathrm{Shift}_{x_{2}} \mathbb{A}_{2}) = \{ \ \bar{x}_{3}[\bar{x}_{0}, \bar{x}_{1}], \ \emptyset[\bar{x}_{1}, \bar{x}_{0}] \ \} \end{array}$$

$$\begin{array}{c} x_{5} \vdash : \mathbb{A}_{1} \\ x_{4} \vdash : \mathbb{A}_{1} \\ \hline x_{3} \vdash : \mathbb{A}_{1} \\ \hline x_{5} \vdash : \mathbb{A}_{2} \\ \hline x_{5} \vdash : \mathbb{A}_{2} \\ \hline \hline x_{5} \vdash : \mathbb{A}_{2} \\ \hline \vdots \\ \hline x_{5} \vdash : \mathbb{A}_{1} \\ \hline \hline x_{5} \vdash : \mathbb{A}_{1} \\ \hline \hline \vdots \\ \hline \end{array}$$

$$\begin{array}{c} x_{7} \vdash : \mathbb{A}_{2} \\ \hline \hline \vdots \\ \hline \end{array}$$

$$\begin{array}{c} x_{7} \vdash : \mathbb{A}_{2} \\ \hline \vdots \\ \hline \end{array}$$

$$\begin{array}{c} x_{3} \vdash \\ \hline \vdots \\ \hline \vdots \\ \hline \vdots \\ \hline \vdots \\ \hline \end{array}$$

$$\begin{array}{c} x_{3} \vdash \\ \hline \vdots \\ \hline \vdots \\ \hline \vdots \\ \hline \end{array}$$

$$\begin{array}{c} x_{3} \vdash \\ \hline \vdots \\ \hline \vdots \\ \hline \end{array}$$

$$\begin{array}{c} x_{3} \vdash \\ \hline \vdots \\ \hline \vdots \\ \hline \end{array}$$

$$\begin{array}{c} x_{3} \vdash \\ \hline \vdots \\ \hline \end{array}$$

$$\begin{array}{c} x_{3} \vdash \\ \hline \vdots \\ \hline \end{array}$$

$$\begin{array}{c} x_{1} \vdash \vdots \\ \vdots \\ \hline \end{array}$$

$$\begin{array}{c} x_{3} \vdash \\ \hline \vdots \\ \hline \end{array}$$

$$\begin{array}{c} x_{3} \vdash \\ \hline \end{array}$$

$$\begin{array}{c} x_{1} \vdash \vdots \\ \vdots \\ \hline \end{array}$$

$$\begin{array}{c} x_{1} \vdash \vdots \\ \vdots \\ \hline \end{array}$$

$$\bar{x}_0[\bar{x}_0] \vdash$$

$$\begin{array}{lll} \mathbb{A}_{1} & = & \{ \ \emptyset[\bar{x}_{0}, \bar{x}_{1}, x_{3}] \ \} \\ \mathbb{A}_{2} & = & \{ \emptyset[\bar{x}_{0}, \bar{x}_{1}] \} \\ \mathbb{A}_{3} & = & (\mathrm{Shift}_{x_{2}, x_{3}} \mathbb{A}_{1}) \cup (\mathrm{Shift}_{x_{2}} \mathbb{A}_{2}) = \{ \ \bar{x}_{3}[\bar{x}_{0}, \bar{x}_{1}], \ \emptyset[\bar{x}_{1}, \bar{x}_{0}] \ \} \end{array}$$

$$\begin{array}{c} x_{5} \vdash : \mathbb{A}_{1} \\ x_{4} \vdash : \mathbb{A}_{1} \\ \hline x_{3} \vdash : \mathbb{A}_{1} \\ \hline x_{5} \vdash : \mathbb{A}_{2} \\ \hline x_{6} \vdash : \mathbb{A}_{2} \\ \hline \hline x_{5} [\bar{x}_{0}, \bar{x}_{1}] \vdash : \mathbb{A}_{2} \\ \hline + (\operatorname{Shift}_{x_{3}} \mathbb{A}_{1}) : \mathbb{A}_{2} \\ \hline x_{2} \vdash : (\operatorname{Shift}_{x_{3}} \mathbb{A}_{1}) \cup \mathbb{A}_{2} \\ \hline \hline \bar{x}_{1} \vdash : \mathbb{A}_{3} \\ \hline x \vdash \end{array}$$

$$\begin{array}{c} x_{6} \vdash \\ \hline \bar{x}_{3} \vdash \\ \hline x_{1} [\bar{x}_{0}] \vdash \\ \hline \vdash (\operatorname{Shift}_{\bar{x}_{1}} \mathbb{A}_{3}) \\ \hline \end{array}$$

$$\bar{x}_0[\bar{x}_0] \vdash$$

$$\begin{array}{lll} \mathbb{A}_{1} & = & \{ \ \emptyset[\bar{x}_{0}, \bar{x}_{1}, x_{3}] \ \} \\ \mathbb{A}_{2} & = & \{ \emptyset[\bar{x}_{0}, \bar{x}_{1}] \} \\ \mathbb{A}_{3} & = & (\mathrm{Shift}_{x_{2}, x_{3}} \mathbb{A}_{1}) \cup (\mathrm{Shift}_{x_{2}} \mathbb{A}_{2}) = \{ \ \bar{x}_{3}[\bar{x}_{0}, \bar{x}_{1}], \ \emptyset[\bar{x}_{1}, \bar{x}_{0}] \ \} \end{array}$$

$$\bar{x}_0[\bar{x}_0] \vdash$$

$$\begin{array}{lll} \mathbb{A}_{1} & = & \{ \ \emptyset[\bar{x}_{0}, \bar{x}_{1}, x_{3}] \ \} \\ \mathbb{A}_{2} & = & \{ \emptyset[\bar{x}_{0}, \bar{x}_{1}] \} \\ \mathbb{A}_{3} & = & (\mathrm{Shift}_{x_{2}, x_{3}} \mathbb{A}_{1}) \cup (\mathrm{Shift}_{x_{2}} \mathbb{A}_{2}) = \{ \ \bar{x}_{3}[\bar{x}_{0}, \bar{x}_{1}], \ \emptyset[\bar{x}_{1}, \bar{x}_{0}] \ \} \end{array}$$

$$\begin{array}{c} x_{5} \vdash : \mathbb{A}_{1} \\ x_{4} \vdash : \mathbb{A}_{1} \\ \hline x_{3} \vdash : \mathbb{A}_{1} \\ \hline x_{2} \vdash : (\operatorname{Shift}_{x_{3}} \mathbb{A}_{1}) : \mathbb{A}_{2} \\ \hline x_{2} \vdash : (\operatorname{Shift}_{x_{3}} \mathbb{A}_{1}) \cup \mathbb{A}_{2} \\ \hline \hline x_{1} \vdash : \mathbb{A}_{3} \\ \hline \end{array} \begin{array}{c} x_{7} \vdash : \mathbb{A}_{4} \\ \hline x_{6} \vdash \\ \hline \hline x_{3} \vdash \\ \hline \hline x_{1} \vdash : \mathbb{A}_{3} \\ \hline \end{array}$$

$$\bar{x}_0[\bar{x}_0] \vdash$$

```
\begin{array}{lll} \mathbb{A}_{1} &=& \{ \ \emptyset[\bar{x}_{0},\bar{x}_{1},x_{3}] \ \} \\ \mathbb{A}_{2} &=& \{ \emptyset[\bar{x}_{0},\bar{x}_{1}] \} \\ \mathbb{A}_{3} &=& (\mathrm{Shift}_{x_{2},x_{3}}\mathbb{A}_{1}) \cup (\mathrm{Shift}_{x_{2}}\mathbb{A}_{2}) = \{ \ \bar{x}_{3}[\bar{x}_{0},\bar{x}_{1}], \ \emptyset[\bar{x}_{1},\bar{x}_{0}] \ \} \\ \mathbb{A}_{4} &=& \{ \emptyset[\bar{x}_{0},x] \} \end{array}
```

$$\begin{array}{c} x_{7} \vdash : \mathbb{A}_{2} \\ x_{5} \vdash : \mathbb{A}_{1} \\ \hline x_{4} \vdash : \mathbb{A}_{1} \\ \hline x_{3} \vdash : \mathbb{A}_{1} \\ \hline x_{5} \vdash : \mathbb{A}_{2} \\ \hline x_{5} \vdash : \mathbb{A}_{3} \\ \hline \hline x_{7} \vdash : \mathbb{A}_{4} \\ \hline x_{6} \vdash \\ \hline \hline x_{3} \vdash \\ \hline x_{7} \vdash : \mathbb{A}_{4} \\ \hline \hline x_{7} \vdash : \mathbb{A}_{4} \\ \hline x_{7} \vdash : \mathbb{A}_{4} \\ \hline x_{8} \vdash : \mathbb{A}_{5} \\ \hline x_{8} \vdash : \mathbb{A}_{7} \\ \hline x_{8} \vdash : \mathbb{A}_{8} \\ \hline x_{8} \vdash : \mathbb{A}_{9} \\ \hline x_{9} \vdash$$

$$\bar{x}_0[\bar{x}_0] \vdash$$

```
\begin{array}{lll} \mathbb{A}_{1} & = & \{ \ \emptyset[\bar{x}_{0}, \bar{x}_{1}, x_{3}] \ \} \\ \mathbb{A}_{2} & = & \{ \emptyset[\bar{x}_{0}, \bar{x}_{1}] \} \\ \mathbb{A}_{3} & = & (\mathrm{Shift}_{x_{2}, x_{3}} \mathbb{A}_{1}) \cup (\mathrm{Shift}_{x_{2}} \mathbb{A}_{2}) = \{ \ \bar{x}_{3}[\bar{x}_{0}, \bar{x}_{1}], \ \emptyset[\bar{x}_{1}, \bar{x}_{0}] \ \} \\ \mathbb{A}_{4} & = & \{ \emptyset[\bar{x}_{0}, x] \} \end{array}
```

$$\begin{array}{c} x_{7} \vdash : \mathbb{A}_{2} \\ x_{5} \vdash : \mathbb{A}_{1} \\ \hline x_{4} \vdash : \mathbb{A}_{1} \\ \hline x_{3} \vdash : \mathbb{A}_{1} \\ \hline x_{5} \vdash : \mathbb{A}_{2} \\ \hline \hline x_{5} \vdash : \mathbb{A}_{2} \\ \hline \hline x_{5} \vdash : \mathbb{A}_{3} \\ \hline \hline x_{7} \vdash : \mathbb{A}_{4} \\ \hline \hline x_{6} \vdash : \mathbb{A}_{4} \\ \hline \hline x_{7} \vdash : \mathbb{A}_{4} \\ \hline x_{8} \vdash : \mathbb{A}_{4} \\ \hline x_{9} \vdash : \mathbb{A}_{4} \\ \hline x_{9}$$

 $\bar{x}_0[\bar{x}_0] \vdash$ 

$$\begin{array}{lll} \mathbb{A}_{1} & = & \{ \ \emptyset[\bar{x}_{0}, \bar{x}_{1}, x_{3}] \ \} \\ \mathbb{A}_{2} & = & \{ \emptyset[\bar{x}_{0}, \bar{x}_{1}] \} \\ \mathbb{A}_{3} & = & (\mathrm{Shift}_{x_{2}, x_{3}} \mathbb{A}_{1}) \cup (\mathrm{Shift}_{x_{2}} \mathbb{A}_{2}) = \{ \ \bar{x}_{3}[\bar{x}_{0}, \bar{x}_{1}], \ \emptyset[\bar{x}_{1}, \bar{x}_{0}] \ \} \\ \mathbb{A}_{4} & = & \{ \emptyset[\bar{x}_{0}, x] \} \end{array}$$

$$\begin{array}{c} x_{7} \vdash : \mathbb{A}_{2} \\ x_{5} \vdash : \mathbb{A}_{1} \\ \hline x_{4} \vdash : \mathbb{A}_{1} \\ \hline x_{3} \vdash : \mathbb{A}_{1} \\ \hline x_{5} \vdash : \mathbb{A}_{2} \\ \hline \hline x_{7} \vdash : \mathbb{A}_{4} \\ \hline \hline x_{1} \vdash : \mathbb{A}_{3} \\ \hline \hline x \vdash \\ \hline \end{array}$$

 $\bar{x}_0[\bar{x}_0] \vdash$ 

$$\begin{array}{lll} \mathbb{A}_{1} & = & \{ \ \emptyset[\bar{x}_{0}, \bar{x}_{1}, x_{3}] \ \} \\ \mathbb{A}_{2} & = & \{ \emptyset[\bar{x}_{0}, \bar{x}_{1}] \} \\ \mathbb{A}_{3} & = & (\mathrm{Shift}_{x_{2}, x_{3}} \mathbb{A}_{1}) \cup (\mathrm{Shift}_{x_{2}} \mathbb{A}_{2}) = \{ \ \bar{x}_{3}[\bar{x}_{0}, \bar{x}_{1}], \ \emptyset[\bar{x}_{1}, \bar{x}_{0}] \ \} \\ \mathbb{A}_{4} & = & \{ \emptyset[\bar{x}_{0}, x] \} \end{array}$$

$$\begin{array}{c} x_{7} \vdash : \mathbb{A}_{2} \\ x_{5} \vdash : \mathbb{A}_{1} \\ \hline x_{4} \vdash : \mathbb{A}_{1} \\ \hline x_{3} \vdash : \mathbb{A}_{1} \\ \hline x_{5} \vdash : \mathbb{A}_{2} \\ \hline \hline x_{7} \vdash : \mathbb{A}_{4} \\ \hline \hline x_{7} \vdash : \mathbb{A}_{4} \\ \hline \hline x_{7} \vdash : \mathbb{A}_{3} \\ \hline \hline x_{7} \vdash : \mathbb{A}_{4} \\ \hline \hline x_{7} \vdash : \mathbb{A}_{4} \\ \hline \hline x_{7} \vdash : \mathbb{A}_{3} \\ \hline \hline x \vdash \\ \end{array}$$

 $\bar{x}_0[\bar{x}_0] \vdash$ 

```
\begin{array}{lll} \mathbb{A}_{1} & = & \{ \ \emptyset[\bar{x}_{0}, \bar{x}_{1}, x_{3}] \ \} \\ \mathbb{A}_{2} & = & \{ \emptyset[\bar{x}_{0}, \bar{x}_{1}] \} \\ \mathbb{A}_{3} & = & (\mathrm{Shift}_{x_{2}, x_{3}} \mathbb{A}_{1}) \cup (\mathrm{Shift}_{x_{2}} \mathbb{A}_{2}) = \{ \ \bar{x}_{3}[\bar{x}_{0}, \bar{x}_{1}], \ \emptyset[\bar{x}_{1}, \bar{x}_{0}] \ \} \\ \mathbb{A}_{4} & = & \{ \emptyset[\bar{x}_{0}, x] \} \end{array}
```

$$\begin{array}{c} x_{7} \vdash : \mathbb{A}_{2} \\ x_{5} \vdash : \mathbb{A}_{1} \\ \hline x_{4} \vdash : \mathbb{A}_{1} \\ \hline x_{3} \vdash : \mathbb{A}_{1} \\ \hline x_{5} \vdash : \mathbb{A}_{2} \\ \hline \hline x_{7} \vdash : \mathbb{A}_{4} \\ \hline \hline x_{5} \vdash : \mathbb{A}_{4} \\ \hline \hline x_{7} \vdash : \mathbb{A}_{4} \\ \hline \hline x_{7} \vdash : \mathbb{A}_{4} \\ \hline \hline x_{7} \vdash : \mathbb{A}_{4} \\ \hline \hline x_{1} \vdash : \mathbb{A}_{3} \\ \hline \hline x \vdash \\ \hline \end{array}$$

$$\bar{x}_0[\bar{x}_0] \vdash$$

```
\begin{array}{lll} \mathbb{A}_{1} & = & \{ \ \emptyset[\bar{x}_{0}, \bar{x}_{1}, x_{3}] \ \} \\ \mathbb{A}_{2} & = & \{ \emptyset[\bar{x}_{0}, \bar{x}_{1}] \} \\ \mathbb{A}_{3} & = & (\mathrm{Shift}_{x_{2}, x_{3}} \mathbb{A}_{1}) \cup (\mathrm{Shift}_{x_{2}} \mathbb{A}_{2}) = \{ \ \bar{x}_{3}[\bar{x}_{0}, \bar{x}_{1}], \ \emptyset[\bar{x}_{1}, \bar{x}_{0}] \ \} \\ \mathbb{A}_{4} & = & \{ \emptyset[\bar{x}_{0}, x] \} \end{array}
```

$$\begin{array}{lll} \mathbb{A}_{1} & = & \{ \; \emptyset[\bar{x}_{0}, \bar{x}_{1}, x_{3}] \; \} \\ \mathbb{A}_{2} & = & \{ \emptyset[\bar{x}_{0}, \bar{x}_{1}] \} \\ \mathbb{A}_{3} & = & (\mathrm{Shift}_{x_{2}, x_{3}} \mathbb{A}_{1}) \cup (\mathrm{Shift}_{x_{2}} \mathbb{A}_{2}) = \{ \; \bar{x}_{3}[\bar{x}_{0}, \bar{x}_{1}] \,, \; \emptyset[\bar{x}_{1}, \bar{x}_{0}] \; \} \\ \mathbb{A}_{4} & = & \{ \emptyset[\bar{x}_{0}, x] \} \end{array}$$

```
\begin{array}{lll} \mathbb{A}_{1} & = & \{ \ \emptyset[\bar{x}_{0}, \bar{x}_{1}, x_{3}] \ \} \\ \mathbb{A}_{2} & = & \{ \emptyset[\bar{x}_{0}, \bar{x}_{1}] \} \\ \mathbb{A}_{3} & = & (\mathrm{Shift}_{x_{2}, x_{3}} \mathbb{A}_{1}) \cup (\mathrm{Shift}_{x_{2}} \mathbb{A}_{2}) = \{ \ \bar{x}_{3}[\bar{x}_{0}, \bar{x}_{1}], \ \emptyset[\bar{x}_{1}, \bar{x}_{0}] \ \} \\ \mathbb{A}_{4} & = & \{ \emptyset[\bar{x}_{0}, x] \} \\ \mathbb{A}_{5} & = & (\mathrm{Shift}_{x_{1}, \bar{x}_{1}} \mathbb{A}_{3}) \cup (\mathrm{Shift}_{x} \mathbb{A}_{4}) = \{ \ \{x_{1}, \bar{x}_{3}\}[\bar{x}_{0}], \ x_{1}[\bar{x}_{0}], \ \bar{x}[\bar{x}_{0}] \ \} \end{array}
```

```
x_7 \vdash : \mathbb{A}_2
x_5 \vdash : \mathbb{A}_1
                                         x_6 \vdash : \mathbb{A}_2
                                                                                                                 x_7 \vdash : \mathbb{A}_4
x_4 \vdash : \mathbb{A}_1 \qquad \bar{x}_3[\bar{x}_0, \bar{x}_1] \vdash : \mathbb{A}_2
                                                                                                                 x_6 \vdash : \mathbb{A}_4
x_3 \vdash : \mathbb{A}_1 \qquad \vdash (Shift_{x_3} \mathbb{A}_1) : \mathbb{A}_2
                                                                                                             \bar{x}_3 \vdash : \mathbb{A}_4
            x_2 \vdash : (Shift_{x_2} \mathbb{A}_1) \cup \mathbb{A}_2
                                                                                                              x_1[\bar{x}_0] \vdash : \mathbb{A}_4
                                                                                                      \vdash (Shift_{\bar{x}_1} \mathbb{A}_3) : \mathbb{A}_4
                                                                                                                                                                      \bar{x}[\bar{x}_0] \vdash
                               \bar{x}_1 \vdash : \mathbb{A}_3
                                            x \vdash : (Shift_{\bar{x}_1} \mathbb{A}_3) \cup \mathbb{A}_4
                                                                                                                                                                          \vdash A_5
                                                                                  \bar{x}_0[\bar{x}_0] \vdash
```

```
\begin{array}{lll} \mathbb{A}_{1} & = & \{ \ \emptyset[\bar{x}_{0}, \bar{x}_{1}, x_{3}] \ \} \\ \mathbb{A}_{2} & = & \{ \emptyset[\bar{x}_{0}, \bar{x}_{1}] \} \\ \mathbb{A}_{3} & = & (\mathrm{Shift}_{x_{2}, x_{3}} \mathbb{A}_{1}) \cup (\mathrm{Shift}_{x_{2}} \mathbb{A}_{2}) = \{ \ \bar{x}_{3}[\bar{x}_{0}, \bar{x}_{1}], \ \emptyset[\bar{x}_{1}, \bar{x}_{0}] \ \} \\ \mathbb{A}_{4} & = & \{ \emptyset[\bar{x}_{0}, x] \} \\ \mathbb{A}_{5} & = & (\mathrm{Shift}_{x, \bar{x}_{1}} \mathbb{A}_{3}) \cup (\mathrm{Shift}_{x} \mathbb{A}_{4}) = \{ \ \{ x_{1}, \bar{x}_{3} \}[\bar{x}_{0}], \ x_{1}[\bar{x}_{0}], \ \bar{x}[\bar{x}_{0}] \ \} \end{array}
```

```
x_7 \vdash : \mathbb{A}_2
x_5 \vdash : \mathbb{A}_1
                                             x_6 \vdash : \mathbb{A}_2
                                                                                                                   x_7 \vdash : \mathbb{A}_4
x_4 \vdash : \mathbb{A}_1 \qquad \bar{x}_3[\bar{x}_0, \bar{x}_1] \vdash : \mathbb{A}_2
                                                                                                                  x_6 \vdash : \mathbb{A}_4
x_3 \vdash : \mathbb{A}_1 \qquad \vdash (Shift_{x_3} \mathbb{A}_1) : \mathbb{A}_2
                                                                                                               \bar{x}_3 \vdash : \mathbb{A}_4
            x_2 \vdash : (Shift_{x_2} \mathbb{A}_1) \cup \mathbb{A}_2
                                                                                                                x_1[\bar{x}_0] \vdash : \mathbb{A}_4
                                                                                                                                                                        \bar{x}_1[\bar{x}_0] \vdash
                                                                                                                                                                         \bar{x}[\bar{x}_0] \vdash
                                                                                                        \vdash (Shift_{\bar{x}_1} \mathbb{A}_3) : \mathbb{A}_4
                                \bar{x}_1 \vdash : \mathbb{A}_3
                                             x \vdash : (Shift_{\bar{x}_1} \mathbb{A}_3) \cup \mathbb{A}_4
                                                                                                                                                                            \vdash A_5
                                                                                   \bar{x}_0[\bar{x}_0] \vdash
```

$$\begin{array}{lll} \mathbb{A}_{1} & = & \{ \ \emptyset[\bar{x}_{0}, \bar{x}_{1}, x_{3}] \ \} \\ \mathbb{A}_{2} & = & \{ \emptyset[\bar{x}_{0}, \bar{x}_{1}] \} \\ \mathbb{A}_{3} & = & (\mathrm{Shift}_{x_{2}, x_{3}} \mathbb{A}_{1}) \cup (\mathrm{Shift}_{x_{2}} \mathbb{A}_{2}) = \{ \ \bar{x}_{3}[\bar{x}_{0}, \bar{x}_{1}], \ \emptyset[\bar{x}_{1}, \bar{x}_{0}] \ \} \\ \mathbb{A}_{4} & = & \{ \emptyset[\bar{x}_{0}, x] \} \\ \mathbb{A}_{5} & = & (\mathrm{Shift}_{x_{1}, \bar{x}_{1}} \mathbb{A}_{3}) \cup (\mathrm{Shift}_{x} \mathbb{A}_{4}) = \{ \ \{x_{1}, \bar{x}_{3}\}[\bar{x}_{0}], \ x_{1}[\bar{x}_{0}], \ \bar{x}[\bar{x}_{0}] \ \} \end{array}$$

# Efficacité des optimisations (Pentium 4 2GHz 512Mo)

Le tableau ci-dessous récapitule les résultats obtenus avec un SAT-solver implantant le backtracking non-chronologique et l'apprentissage.

|                   | DPLL  | DPLL-B | DPLL-C | bj(max)   |
|-------------------|-------|--------|--------|-----------|
| aim-50 (50,80)    | 4s    | 40ms   | 4ms    | 28(14)    |
| aim-100 (100,200) | > 10m | 33s    | 0.3s   | 1491(27)  |
| aim-200 (200,400) | > 10m | 7m     | 4s     | 7837(45)  |
| uf-125 (125,538)  | 22s   | 12s    | 10s    | 8489(14)  |
| dubois (66,176)   | 8m30s | 47s    | 52s    | 300e3(20) |

| bj(max)   | СС    |
|-----------|-------|
| 28(14)    | 56    |
| 1491(27)  | 2806  |
| 7837(45)  | 150e2 |
| 8489(14)  | 150e2 |
| 300e3(20) | 600e3 |
|           |       |

# Remarque : SAT modulo une théorie T

$$\mathbf{BRed} \quad \frac{\Gamma \vdash_{\mathcal{T}} \Delta, C[\mathcal{C} \cup \mathcal{B}] : \mathcal{A}}{\Gamma \vdash_{\mathcal{T}} \Delta, \overline{l} \lor C[\mathcal{C}] : \mathcal{A}} \quad \boxed{\mathcal{T}, \Gamma \vdash l : \mathcal{B}}$$

# Le problème de la mise en CNF

La mise en CNF de  $(a_1 \wedge b_1) \vee (a_2 \wedge b_2) \vee \cdots \vee (a_n \wedge b_n)$  produit  $2^n$  clauses.

On évite l'explosion en remplaçant chaque sous-formules  $a_i \wedge b_i$  par une variable, on obtient :

$$X_1 \vee X_2 \vee \cdots \vee X_n$$

et on ajoute les clauses pour  $X_i \leftrightarrow (a_i \wedge b_i)$  soit

$$(\bar{a}_i \vee \bar{b}_i \vee X_i) \wedge (\bar{X}_i \vee a_i) \wedge (\bar{X}_i \vee b_i)$$

Nous allons voir comment la technique de *hash-consing* peut être utilisée pour résoudre de manière élégante ce problème.

### Interaction entre CNF équisatisfiables et SAT-solver

On restreint l'espace de recherche en ajoutant les clauses  $X_i \leftrightarrow (a_i \wedge b_i)$  dans l'état du SAT solveur au moment où  $X_i$  ou  $\bar{X}_i$  est supposé.

| Proxy                                 | X asserted                | $\neg X$ asserted        |
|---------------------------------------|---------------------------|--------------------------|
| $X \leftrightarrow Y \wedge Z$        | { <i>Y</i> } { <i>Z</i> } | $\{\neg Y \lor \neg Z\}$ |
| $X \leftrightarrow Y \lor Z$          | $\{Y \lor Z\}$            | $\{\neg Y\} \{\neg Z\}$  |
| $X \leftrightarrow (Y \rightarrow Z)$ | $\{\neg Y \lor Z\}$       | $\{Y\} \{\neg Z\}$       |

## La signature du module Cnf

```
module type CNF = sig
  type t
  type pclause = U of txt | C of txt | L of string x bool
  type view = { pos : pclause; neg : pclause}
  val equal : t \rightarrow t \rightarrow bool
  val view : t \rightarrow view
  val mk_atom : string \rightarrow t
  val mk\_not : t \rightarrow t
  val mk_and : t \rightarrow t \rightarrow t
  val mk_or : t \rightarrow t \rightarrow t
  val mk_ip : t \rightarrow t \rightarrow t
end
```

# Une bibliothèque de hash-consing générique (J-C. Filliâtre)

```
type \alpha hash_consed = private {
  node : \alpha ;
  tag : int;
  hkey : int }
module type HashedType = sig
  type t
  val equal: t \times t \rightarrow bool
  val hash: t \rightarrow int
end
module Make(H : HashedType) : sig
  type t
  val create : int \rightarrow t
  val hashcons : t \rightarrow H.t \rightarrow H.t hash\_consed
end
```

## L'implantation du module Cnf

```
type pclause = C of t \times t \mid U of t \times t \mid L of string \times bool
and view = { pos : pclause; neg : pclause}
and t = view Hashcons.hash consed
module View = struct
  open Hashcons
  type t = view
  let eqc c1 c2 = match c1,c2 with
       U(f1,f2) , U(g1,g2) | C(f1,f2) , C(g1,g2) \rightarrow
        f1==g1 && f2==g2 || f1==g2 && f2==g1
     L(x1,b1) , L(x2,b2) \rightarrow x1=x2 \&\& b1=b2
     I_{-} \rightarrow \mathtt{false}
  let equal f1 f2 = eqc f1.pos f2.pos && eqc f1.neg f2.neg
  let hash f = \dots
end
```

# L'implantation du module Cnf

```
module H = Hashcons.Make(View)
open Hashcons
let tbl = H.create 251
let view t = t.node
let compare f1 f2 = compare f1.tag f2.tag
let equal f1 f2 = f1.tag == f2.tag
let mk atom a =
  H.hashcons tbl ({pos=L(a,true);neg=L(a,false)})
let mk_not f = let f = view f in
  H.hashcons tbl ({pos=f.neg;neg=f.pos})
let mk_and f1 f2 = if equal f1 f2 then f1 else
  H.hashcons tbl {pos=U(f1,f2); neg=C(mk_not f1,mk_not f2)}
```

#### Le module Sat

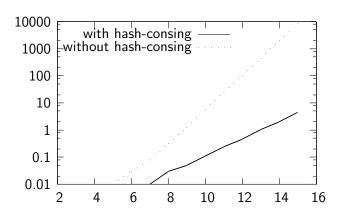
```
module S = Set.Make(Cnf)
type t = { gamma : S.t;
            delta : (Cnf.t×Cnf.t) list}
let rec assume env f = (* unit *)
  if S.mem (mk_not f) env.gamma then raise Unsat;
  if S.mem f env.gamma then env
  else
   let env = { env with gamma = S.add f env.gamma } in
   match view f with
     Proxy \{pos=U(f1,f2)\} \rightarrow assume (assume env f1) f2
   | Proxy \{pos=C(f1,f2)\} \rightarrow
       bcp { env with delta=(f1,f2) ::env.delta }
   I_{-} \rightarrow \texttt{bcp} env
```

#### Le module Sat

```
and bcp env = (* red + elim *)
 let cl , u = List.fold_left
  (fun (cl,u) (f1,f2) \rightarrow
   if S.mem f1 env.gamma | | S.mem f2 env.gamma then (cl,u)
   else if S.mem (mk_not f1) env.gamma then (c1,f2 ::u)
   else if S.mem (mk_not f2) env.gamma then (c1,f1 ::u)
   else (f1,f2) ::cl , u ) ([],[]) env.delta
 in List.fold_left assume {env with delta=cl} u
let rec unsat f env = try (* split *)
  let env = assume env f in match env.delta with
    \bigcap \rightarrow raise Sat
  | (a,b) :: 1 \rightarrow
     sat a {env with delta=l};
     sat (mk_not a) (assume {env with delta=1} b)
 with Unsat \rightarrow ()
```

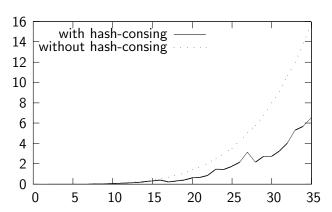
### **Benchmarks**

$$deb(n) = \left( \bigwedge_{i=0}^{2n} (p_i \leftrightarrow p_{i+1 \, \text{mod} \, 2n}) \rightarrow c \right) \rightarrow c$$



### **Benchmarks**

$$ph(n) = \left(\bigwedge_{p=1}^{n+1} \bigvee_{h=1}^{n} x_{p,h}\right) \rightarrow \bigvee_{h=1}^{h} \bigvee_{p=1}^{n+1} \bigvee_{q=1}^{n+1} x_{p,h} \wedge x_{q,h}$$



Traitement de l'égalité

# La théorie de l'égalité avec symboles non interprétés

Cette théorie, notée  $\mathcal{E}$ , est basée sur la signature suivante :

$$\Sigma = \{=, \neq, f, g, \ldots\}$$

Elle est définie par les axiomes suivants :

**Réflexivité** : 
$$\forall x.x = x$$

**Réflexivité** : 
$$\forall x.x = x$$
 **Symétrie** :  $\forall xy.x = y \longrightarrow y = x$ 

**Transitivité**: 
$$\forall xyz.x = y \land y = z \longrightarrow x = z$$

**Congruence**: pour tout symbole f de  $\Sigma$ ,  $\forall xy.x = y \longrightarrow f(x) = f(y)$ 

#### Exemples déjà rencontrés

$$g(y,x) = y \longrightarrow g(g(y,x),x) = y$$
$$f(f(f(a))) = a \wedge f(f(f(f(f(a))))) = a \longrightarrow f(a) = a$$

# Fermeture par congruence (Congruence Closure)

- **1** Soit  $\mathcal{R}$  une relation d'équivalence sur les termes.
- ② On note  $dom(\mathcal{R})$  le **domaine** de  $\mathcal{R}$ , i.e. l'ensemble des termes t tel qu'il existe une paire  $(t, t') \in \mathcal{R}$ , et on suppose que le domaine de  $\mathcal{R}$  contient tous les sous-termes de chacun de ses termes.

### Definition (Congruence)

Deux termes t et u sont congruents par  $\mathcal{R}$  s'ils sont respectivement de la forme  $\mathbf{f}(\mathbf{t}_1,\ldots,\mathbf{t}_n)$  et  $\mathbf{f}(\mathbf{u}_1,\ldots,\mathbf{u}_n)$  et que  $(\mathbf{t}_i,\mathbf{u}_i)\in\mathcal{R}$  pour tout i.

 $\mathcal{R}$  est close par congruence si pour tous termes  $t, u \in \text{dom}(\mathcal{R})$  et congruent par  $\mathcal{R}$  on a  $(t, u) \in \mathcal{R}$ .

### Definition (Fermeture par congruence)

La fermeture par congruence de  $\mathcal{R}$  est la **plus petite** relation contenant  $\mathcal{R}$  et close par **congruence**.

## Représentation des termes et de la relation d'égalité

• Les termes sont représentés par des DAGs (directed acyclic graph) afin de représenter le partage (et donc la partie réflexive de la relation  $\mathcal{R}$ ).

Par exemple, le terme f(f(a,b),b) est représenté par le DAG suivant :



# Représentation des termes et de la relation d'égalité

• Les termes sont représentés par des DAGs (directed acyclic graph) afin de représenter le partage (et donc la partie réflexive de la relation  $\mathcal{R}$ ).

Par exemple, le terme f(f(a,b),b) est représenté par le DAG suivant :

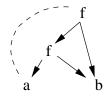


② La relation  $\mathcal{R}$  (sans la partie réflexive et transitive) est représentée par des lignes en **pointillées**. Par exemple, la représentation de f(f(a,b),b) = a.

## Représentation des termes et de la relation d'égalité

• Les termes sont représentés par des DAGs (directed acyclic graph) afin de représenter le partage (et donc la partie réflexive de la relation  $\mathcal{R}$ ).

Par exemple, le terme f(f(a,b),b) est représenté par le DAG suivant :



- ② La relation  $\mathcal{R}$  (sans la partie réflexive et transitive) est représentée par des lignes en **pointillées**. Par exemple, la représentation de f(f(a,b),b) = a.
- Un DAG qui contient également une relation d'équivalence est généralement appelé un E-DAG (equality DAG)

# Calcul de la fermeture par congruence

L'implantation de la relation d'équivalence  $\mathcal{R}$  (i.e. des lignes en pointillées) est réalisée à l'aide d'une structure de données union-find qui permet de construire des classes d'équivalence pour les noeuds du DAG.

- **1** find(n) retourne le représentant de la classe du noeud n
- 2 union(n, m) regroupe les classes d'équivalence de n et m.

L'algorithme (naı̈f) suivant permet de construire la fermeture par congruence d'une relation  $\mathcal{R}$ .

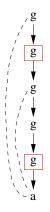
Pour chaque noeuds du DAG n et m tels que find $(n) \neq find(m)$ ,

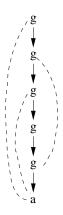
- 1 si n et m sont étiquetés avec le même symbole;
- 2 s'ils ont le même nombre de fils :
- 3 si find $(n_i)$  = find $(m_i)$  pour chacun des fils  $n_i$  de n et  $m_i$  de m.

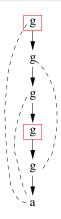
Alors, on regroupe les classes de n et m par union(n, m)

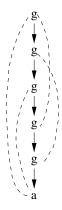


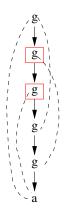


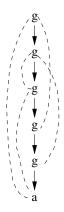


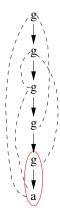






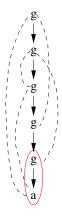






#### Exemple

Pour trouver que  $g(g(g(a))) = a \land g(g(g(g(g(a))))) = a \longrightarrow g(a) = a$ , on construit les DAGs suivants



Par transitivité, on a bien g(a) = a dans le E-DAG

#### Formalisation par règles d'inférence

#### Trois structures fondamentales

- Φ contient les équations closes à traiter
- ▲ est une structure union-find
- Γ est un dictionnaire "est utilisé par".

CONGR 
$$\frac{\langle \Phi \uplus \{u = v\} \mid \Delta \mid \Gamma \cup \{\Delta(u) \mapsto C, \Delta(v) \mapsto D\}\rangle}{\langle \Phi \cup \Phi' \mid \Delta' \mid \Gamma \cup \{\Delta'(u) \mapsto C \cup D\}\rangle} \Delta(u) \neq \Delta(v)$$

avec 
$$\Delta' = \Delta + \{u = v\}$$
$$\Phi' = \{f(\vec{u}) = f(\vec{v}) \mid f(\vec{u}) \in C \land f(\vec{v}) \in D \land \Delta(\vec{u}) = \Delta(\vec{v})\}$$

$$\frac{\text{Remove}}{\langle \Phi \uplus \{u = v\} \mid \Delta \mid \Gamma \rangle} \ \Delta(u) = \Delta(v)$$

#### Preuve de correction

Soit  $\mathcal T$  un ensemble de termes clos par sous-termes et E un ensemble d'équations sur  $\mathcal T$ . On note  $K_0 = \langle E \mid \mathtt{id} \mid \Gamma_{\mathcal T} \rangle$  où  $\Gamma_{\mathcal T}$  est le "DAG renversé" des sous-termes directs avec partage maximal et  $K \to K'$  si une règle s'applique.

#### Terminaison de $\rightarrow$

On utilise la mesure (c, n) où c est le nombre de classes d'équivalence dans  $\Delta$  et n le nombre d'équations dans  $\Phi$ .

On montre aussi facilement qu'une configuration irréductible obtenue à partir de  $K_0$  est de la forme  $\langle \emptyset \mid \Delta \mid \Gamma \rangle$ . On note  $\langle \emptyset \mid \Delta_{\infty} \mid \Gamma_{\infty} \rangle$  les configurations irréductibles.

Soit  $=_E$  la théorie équationnelle induite par E.

## Preuve de correction (suite)

si 
$$\mathsf{K}_0 o^* \langle \emptyset \mid \Delta_\infty \mid \mathsf{\Gamma}_\infty 
angle$$
 alors  $orall u, v \in \mathcal{T}, u =_{\mathsf{E}} v$  ssi  $\Delta_\infty(u) = \Delta_\infty(v)$ 

on prouve la direction ← en montrant l'invariant :

$$I_1(\langle \Phi \mid \Delta \mid \Gamma \rangle) = \forall u, v \in T(\Sigma), \begin{cases} \Delta(u) = \Delta(v) \Rightarrow u =_E v \\ u = v \in \Phi \Rightarrow u =_E v \end{cases}$$

on prouve la direction  $\to$  en montrant tout d'abord les deux invariants suivant, où  $=_{\Delta}$  est l'ensemble  $\{u=v\mid \Delta(u)=\Delta(v)\}$ 

$$I_{2}(\langle \Phi \mid \Delta \mid \Gamma \rangle) = \forall t_{1}, \dots, t_{n} \in T(\Sigma),$$

$$f(t_{1}, \dots, t_{n}) \in \mathcal{T} \Rightarrow \forall i, f(t_{1}, \dots, t_{n}) \in \Gamma(\Delta(t_{i}))$$

$$I_{3}(\langle \Phi \mid \Delta \mid \Gamma \rangle) = \forall u, v \in \mathcal{T}, u =_{E} v \Rightarrow (u, v) \in (=_{\Phi} \cup =_{\Delta})^{*}$$

puis par induction sur la taille de la preuve de  $u=_{\Delta_\infty}v$  avec la propriété de congruence sur  $\Delta_\infty$  suivante :

$$\mathsf{si}\ f(\vec{u}), f(\vec{v}) \in \mathcal{T}\ \mathsf{et}\ \Delta_{\infty}(\vec{u}) = \Delta_{\infty}(\vec{v})\ \mathsf{alors}\ \Delta_{\infty}(f(\vec{u})) = \Delta_{\infty}(f(\vec{v})).$$

## Une règle de plus pour l'incrémentalité

$$\frac{\mathsf{ADDTerm}}{\langle \Phi'; \, \mathcal{C}[f(\vec{a})]; \Phi \mid \Delta \mid \Gamma \uplus \cup_{v \in \vec{a}} \{\Delta(v) \mapsto \mathcal{C}_v\} \rangle}{\langle \Phi'; \, \mathcal{C}[f(\vec{a})]; \Phi \mid \Delta \mid \Gamma \uplus \Gamma' \rangle} \; \Gamma(f(\vec{a})) = \bot$$

où  $C[f(\vec{a})]$  représente une équation contenant le terme  $f(\vec{a})$ 

avec 
$$\left\{ \begin{array}{ll} \Gamma' = & (f(\vec{a}) \mapsto \{\}) + \{\Delta(v) \mapsto \mathcal{C}_v + f(\vec{a}) \mid v \in \vec{a}\} \\ \Phi' = & \left\{ \left. f(\vec{a}) = f(\vec{b}) \right| v \in \vec{a}, f(\vec{b}) \in \mathcal{C}_v \land \Delta(\vec{a}) = \Delta(\vec{b}) \end{array} \right. \right\}$$

Traitement de l'arithmétique linéaire

#### La théorie de l'arithmétique linéaire

Soit  $X = \{x_1, \dots, x_n\}$  un ensemble fini de variables. Pour simplifier, les formules de cette théorie seront les inéquations  $\mathcal C$  mises sous la forme canonique suivante :

$$\sum_{i=1}^{n} a_i x_i \le a_0 \qquad \forall k \in 0..n, a_k \in \mathbb{Q}$$

Afin de définir une procédure de décision pour cette théorie, nous n'avons besoin que de deux opérations :

#### La théorie de l'arithmétique linéaire

Soit  $X = \{x_1, \dots, x_n\}$  un ensemble fini de variables. Pour simplifier, les formules de cette théorie seront les inéquations  $\mathcal C$  mises sous la forme canonique suivante :

$$\sum_{i=1}^{n} a_i x_i \le a_0 \qquad \forall k \in 0..n, a_k \in \mathbb{Q}$$

Afin de définir une procédure de décision pour cette théorie, nous n'avons besoin que de deux opérations :

**1** La multiplication d'une inéquation  $\mathcal C$  par un rationnel  $\alpha$ , notée  $\alpha \mathcal C$ 

$$\sum_{i=1}^{n} \alpha a_i x_i \le \alpha a_0$$

#### La théorie de l'arithmétique linéaire

Soit  $X = \{x_1, \dots, x_n\}$  un ensemble fini de variables. Pour simplifier, les formules de cette théorie seront les inéquations  $\mathcal C$  mises sous la forme canonique suivante :

$$\sum_{i=1}^{n} a_i x_i \le a_0 \qquad \forall k \in 0..n, a_k \in \mathbb{Q}$$

Afin de définir une procédure de décision pour cette théorie, nous n'avons besoin que de deux opérations :

**1** La multiplication d'une inéquation  $\mathcal C$  par un rationnel  $\alpha$ , notée  $\alpha \mathcal C$ 

$$\sum_{i=1}^{n} \alpha a_i x_i \le \alpha a_0$$

2 L'addition de deux inéquations  $C_1$  et  $C_2$ , notée  $C_1 + C_2$ 

$$\sum_{i=1}^{n} (a_{1,i} + a_{2,i}) x_i \leq a_0 + b_0$$

#### L'algorithme de Fourier-Motzkin

Soit  $\mathcal{I} = \{\mathcal{C}_1, \dots, \mathcal{C}_k\}$  un ensemble fini d'inéquations. Chaque étape de l'algorithme de **Fourier-Motzkin** consiste à éliminer une variable x de l'ensemble  $\mathcal{I}$  apparaissant au moins une fois avec un coefficient non nul.

- Si x n'apparaît qu'avec des coefficients de même signe dans  $\mathcal{I}$  alors supprimer toutes les inéquations où x apparaît (avec un coefficient non nul).
- ② Sinon, soit  $\mathcal{I}^+$  (resp  $\mathcal{I}^-$ ) le sous-ensemble des inéquations de  $\mathcal{I}$  dans lesquelles x apparaît positivement (resp. négativement).
- Calculer l'ensemble

$$\mathcal{I}_{x} = \bigcup_{\mathcal{C} \in \mathcal{I}^{+}, \mathcal{D} \in \mathcal{I}^{-}} \beta \mathcal{C} + \alpha \mathcal{D} \quad \text{où } \alpha x \in \mathcal{C} \text{ et } -\beta x \in \mathcal{D}$$

**3** Remplacer  $\mathcal{I}$  par  $\mathcal{I}' = \mathcal{I}_{\times} \cup \mathcal{I}^0$  où  $\mathcal{I}^0$  est le sous-ensemble des inéquations de  $\mathcal{I}$  où  $\times$  apparaît avec un coefficient nul.

#### Inférence d'égalités

Le résultat suivant permet d'inférer des égalités à partir d'un ensemble d'inégalités.

#### Theorem

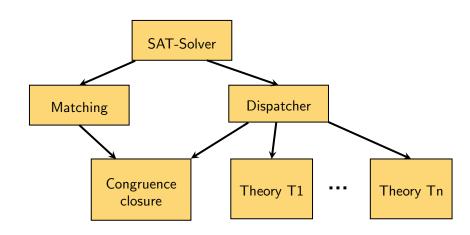
Si une combinaison strictement positive d'inéquations  $\sum_{i \in 1..m} \alpha_i C_i$  est de la forme  $0 \le 0$  alors toutes les inéquations  $C_i$  sont des égalités.

Il suffit alors de modifier légèrement l'algorithme de **Fourier-Motzkin** avec des informations de dépendance pour retrouver ces égalités.

- Associer à chaque inéquation  $C_i$  un ensemble  $S_i$  contenant les inéquations grâce auxquelles elle a été dérivée.
- ② Initialiser chaque inéquation  $C_i$  de l'ensemble de départ  $\mathcal{I}$  avec un ensemble  $S_i = \{C_i\}$ .
- **3** À chaque étape de calcul, associer l'ensemble  $S_{\mathcal{C}} \cup S_{\mathcal{D}}$  à l'inéquation  $\beta \mathcal{C} + \alpha \mathcal{D}$ .

La combinaison des briques de base

# Rappel : architecture d'un démonstrateur automatique pour la preuve de programmes



## Théories du premier ordre

 Signature : ensemble de symboles de constantes, fonctions, prédicats

ex. 
$$\Sigma = \{+, -, 0, 1, f, \dots, \leq, \leq\}$$

• Signature : ensemble de symboles de constantes, fonctions, prédicats

ex. 
$$\Sigma = \{+, -, 0, 1, f, \dots, \leq, \leq\}$$

• Σ-Termes : ils sont définis par la grammaire

$$\texttt{t} := x \mid \texttt{c} \mid f(t_1, \dots, t_n)$$

avec X un ensemble dénombrable de variables,  $x \in X$  et  $c, f \in \Sigma$  on note  $T_{\Sigma}(X)$  l'ensemble des  $\Sigma$ -termes.

• Signature : ensemble de symboles de constantes, fonctions, prédicats

ex. 
$$\Sigma = \{+, -, 0, 1, f, \dots, \leq, \leq\}$$

• Σ-Termes : ils sont définis par la grammaire

$$\texttt{t} := x \mid \texttt{c} \mid f(t_1, \dots, t_n)$$

avec X un ensemble dénombrable de variables,  $x \in X$  et  $c, f \in \Sigma$  on note  $T_{\Sigma}(X)$  l'ensemble des  $\Sigma$ -termes.

Les termes peuvent être vus comme des arbres. Les sous-termes d'un terme t peuvent donc être identifiés par leur position dans l'arbre.

- ullet t $_{\pi}$  le sous-terme de t à la position  $\pi$
- ullet  ${\sf t}[\pi \mapsto {\sf t}']$  le remplacement de  $t_\pi$  par le terme t'

• Σ-Atomes : égalités et applications de prédicats

$$\mathbf{a} := p(t_1, \dots, t_n) \mid t_1 = t_2 \mid \text{true} \mid \text{false}$$

• Σ-Atomes : égalités et applications de prédicats

$$\mathbf{a}$$
 :=  $p(t_1,\ldots,t_n)$  |  $t_1=t_2$  | true | false

• Σ-Littéraux : formules atomiques (positif) et leur négation (négatif)

Si  $\Delta$  est un ensemble de littéraux, on note  $\Delta^+$  (resp.  $\Delta^-$ ) le sous-ensemble des littéraux positifs (resp. négatifs) de  $\Delta$ 

• Σ-Atomes : égalités et applications de prédicats

$$\mathtt{a}$$
 :=  $p(t_1,\ldots,t_n)$  |  $t_1=t_2$  | true | false

ullet  $\Sigma$ -Littéraux : formules atomiques (positif) et leur négation (négatif)

Si  $\Delta$  est un ensemble de littéraux, on note  $\Delta^+$  (resp.  $\Delta^-$ ) le sous-ensemble des littéraux positifs (resp. négatifs) de  $\Delta$ 

• Σ-Atomes : égalités et applications de prédicats

$$\mathbf{a}$$
 :=  $p(t_1,\ldots,t_n)$  |  $t_1=t_2$  | true | false

• Σ-Littéraux : formules atomiques (positif) et leur négation (négatif)

Si  $\Delta$  est un ensemble de littéraux, on note  $\Delta^+$  (resp.  $\Delta^-$ ) le sous-ensemble des littéraux positifs (resp. négatifs) de  $\Delta$ 

- Clauses : disjonctions de littéraux (p-clause =  $\bigvee$  littéraux positifs)
- Σ-Formules : combinaison de littéraux avec les connecteurs suivants

• Σ-Atomes : égalités et applications de prédicats

$$\mathbf{a}$$
 :=  $p(t_1, \dots, t_n)$  |  $t_1 = t_2$  | true | false

• Σ-Littéraux : formules atomiques (positif) et leur négation (négatif)

Si  $\Delta$  est un ensemble de littéraux, on note  $\Delta^+$  (resp.  $\Delta^-$ ) le sous-ensemble des littéraux positifs (resp. négatifs) de  $\Delta$ 

- Clauses : disjonctions de littéraux (p-clause =  $\bigvee$  littéraux positifs)
- Σ-Formules : combinaison de littéraux avec les connecteurs suivants

•  $\Sigma$ -Théorie T: un ensemble de formules closes

•  $\Sigma$ -structure  $\mathcal A$ : un ensemble d'éléments, de fonctions et de prédicats qui interprètent les symboles de  $\Sigma$ 

- $\Sigma$ -structure  $\mathcal A$ : un ensemble d'éléments, de fonctions et de prédicats qui interprètent les symboles de  $\Sigma$
- $A, \rho \models \Phi$ :  $\Phi$  est vraie dans A pour l'affectation de variables  $\rho$

- $\Sigma$ -structure  $\mathcal A$ : un ensemble d'éléments, de fonctions et de prédicats qui interprètent les symboles de  $\Sigma$
- $\mathcal{A}, \rho \models \Phi$ :  $\Phi$  est vraie dans  $\mathcal{A}$  pour l'affectation de variables  $\rho$
- $\Phi$  est valide : si  $A, \rho \models \Phi$  pour tout A et tout  $\rho$

- $\Sigma$ -structure  $\mathcal A$  : un ensemble d'éléments, de fonctions et de prédicats qui interprètent les symboles de  $\Sigma$
- $\mathcal{A}, \rho \models \Phi$ :  $\Phi$  est vraie dans  $\mathcal{A}$  pour l'affectation de variables  $\rho$
- $\Phi$  est valide : si  $A, \rho \models \Phi$  pour tout A et tout  $\rho$
- $\Phi$  est satisfiable : s'il existe une structure  $\mathcal{A}$  et une affectation de variables  $\rho$  telles que  $\mathcal{A}, \rho \models \Phi$ . De manière équivalente, si X est l'ensemble des variables libres de  $\Phi$ ,  $\mathcal{A} \models \exists X$ .  $\Phi$ .

• Modèles d'une théorie  $\mathcal T$ :  $\Sigma$ -structures dans lesquelles toutes les formules de  $\mathcal T$  sont vraies

- Modèles d'une théorie  $\mathcal T$  :  $\Sigma$ -structures dans lesquelles toutes les formules de  $\mathcal T$  sont vraies
- $\mathcal{T}$ -satisfiabilité de  $\Phi$  :  $\mathcal{T} \cup \{\Phi\}$  est satisfiable

- Modèles d'une théorie  $\mathcal T$ :  $\Sigma$ -structures dans lesquelles toutes les formules de  $\mathcal T$  sont vraies
- $\mathcal{T}$ -satisfiabilité de  $\Phi$  :  $\mathcal{T} \cup \{\Phi\}$  est satisfiable
- $\mathcal{T}$ -validité :  $\Phi$  est  $\mathcal{T}$ -valide, noté  $\mathcal{T} \models \Phi$ , si elle est valide dans tous les modèles de  $\mathcal{T}$ .

- Modèles d'une théorie  $\mathcal T$ :  $\Sigma$ -structures dans lesquelles toutes les formules de  $\mathcal T$  sont vraies
- $\mathcal{T}$ -satisfiabilité de  $\Phi$  :  $\mathcal{T} \cup \{\Phi\}$  est satisfiable
- $\mathcal{T}$ -validité :  $\Phi$  est  $\mathcal{T}$ -valide, noté  $\mathcal{T} \models \Phi$ , si elle est valide dans tous les modèles de  $\mathcal{T}$ .

 $\Phi$  est  $\mathcal{T}$ -valide ssi  $\neg \Phi$  n'est pas  $\mathcal{T}$ -satisfiable

- Modèles d'une théorie  $\mathcal T$ :  $\Sigma$ -structures dans lesquelles toutes les formules de  $\mathcal T$  sont vraies
- $\mathcal{T}$ -satisfiabilité de  $\Phi$  :  $\mathcal{T} \cup \{\Phi\}$  est satisfiable
- $\mathcal{T}$ -validité :  $\Phi$  est  $\mathcal{T}$ -valide, noté  $\mathcal{T} \models \Phi$ , si elle est valide dans tous les modèles de  $\mathcal{T}$

```
\Phi \ \text{est} \ \mathcal{T}\text{-valide} \quad \text{ssi} \quad \neg \Phi \quad \text{n'est pas} \ \mathcal{T}\text{-satisfiable}
```

• Théorie cohérente : une théorie qui admet au moins un modèle

- Modèles d'une théorie  $\mathcal T$  :  $\Sigma$ -structures dans lesquelles toutes les formules de  $\mathcal T$  sont vraies
- $\mathcal{T}$ -satisfiabilité de  $\Phi$  :  $\mathcal{T} \cup \{\Phi\}$  est satisfiable
- $\mathcal{T}$ -validité :  $\Phi$  est  $\mathcal{T}$ -valide, noté  $\mathcal{T} \models \Phi$ , si elle est valide dans tous les modèles de  $\mathcal{T}$ .

 $\Phi \ \text{est} \ \mathcal{T}\text{-valide} \quad \text{ssi} \quad \neg \Phi \quad \text{n'est pas} \ \mathcal{T}\text{-satisfiable}$ 

- Théorie cohérente : une théorie qui admet au moins un modèle
- Procédure de décision pour  $\mathcal{T}$ : c'est un algorithme qui décide si une formule  $\Phi$  est  $\mathcal{T}$ -valide (i.e.  $\mathcal{T} \models \Phi$ )



#### Combinaison de procédures de décision

On note  $\mathcal{T}_1 \cup \mathcal{T}_2$  l'union de théories  $\mathcal{T}_1$  et  $\mathcal{T}_2$  de signatures respectives  $\Sigma_1$  et  $\Sigma_2$ .

#### Le problème de la combinaison de procédures de décision :

Soient  $\mathcal{T}_1$  et  $\mathcal{T}_2$  deux théories cohérentes et  $\Gamma$  un ensemble de  $\Sigma_1 \cup \Sigma_2$ -littéraux. Peut-on déterminer si

$$\mathcal{T}_1 \cup \mathcal{T}_2 \models \Gamma$$
?

sachant que pour tout ensemble de littéraux  $\Gamma_i$  de  $\mathcal{T}_i$  on sait déterminer si  $\mathcal{T}_i \models \Gamma_i$  (i.e. que l'on a une procédure de décision pour chaque  $\mathcal{T}_i$ ).

Ce problème pose en fait les deux questions suivantes :

#### Combinaison de procédures de décision

On note  $\mathcal{T}_1 \cup \mathcal{T}_2$  l'union de théories  $\mathcal{T}_1$  et  $\mathcal{T}_2$  de signatures respectives  $\Sigma_1$  et  $\Sigma_2$ .

#### Le problème de la combinaison de procédures de décision :

Soient  $\mathcal{T}_1$  et  $\mathcal{T}_2$  deux théories cohérentes et  $\Gamma$  un ensemble de  $\Sigma_1 \cup \Sigma_2$ -littéraux. Peut-on déterminer si

$$\mathcal{T}_1 \cup \mathcal{T}_2 \models \Gamma$$
?

sachant que pour tout ensemble de littéraux  $\Gamma_i$  de  $\mathcal{T}_i$  on sait déterminer si  $\mathcal{T}_i \models \Gamma_i$  (i.e. que l'on a une procédure de décision pour chaque  $\mathcal{T}_i$ ).

Ce problème pose en fait les deux questions suivantes :

**1** Est-ce que  $\mathcal{T}_1 \cup \mathcal{T}_2$  est cohérente si  $\mathcal{T}_1$  et  $\mathcal{T}_2$  le sont?

#### Combinaison de procédures de décision

On note  $\mathcal{T}_1 \cup \mathcal{T}_2$  l'union de théories  $\mathcal{T}_1$  et  $\mathcal{T}_2$  de signatures respectives  $\Sigma_1$  et  $\Sigma_2$ .

#### Le problème de la combinaison de procédures de décision :

Soient  $\mathcal{T}_1$  et  $\mathcal{T}_2$  deux théories cohérentes et  $\Gamma$  un ensemble de  $\Sigma_1 \cup \Sigma_2$ -littéraux. Peut-on déterminer si

$$\mathcal{T}_1 \cup \mathcal{T}_2 \models \Gamma$$
?

sachant que pour tout ensemble de littéraux  $\Gamma_i$  de  $\mathcal{T}_i$  on sait déterminer si  $\mathcal{T}_i \models \Gamma_i$  (i.e. que l'on a une procédure de décision pour chaque  $\mathcal{T}_i$ ).

Ce problème pose en fait les deux questions suivantes :

- **①** Est-ce que  $\mathcal{T}_1 \cup \mathcal{T}_2$  est cohérente si  $\mathcal{T}_1$  et  $\mathcal{T}_2$  le sont ?
- ② Comment construire une procédure de décision pour  $\mathcal{T}_1 \cup \mathcal{T}_2$  à partir des procédures de décision de  $\mathcal{T}_1$  et  $\mathcal{T}_2$ ?

Le fameux théorème de **Craig-Robinson** localise l'incohérence potentielle de l'union de deux théories cohérentes  $\mathcal{T}_1$  et  $\mathcal{T}_2$  dans les formules partagées par ces deux théories.

#### Theorem (Joint consistency theorem)

 $\mathcal{T}_1 \cup \mathcal{T}_2$  est incohérente si et seulement si il existe une formule close  $\Phi$  telle que  $\mathcal{T}_1 \models \Phi$  et  $\mathcal{T}_2 \models \neg \Phi$ .

Le fameux théorème de **Craig-Robinson** localise l'incohérence potentielle de l'union de deux théories cohérentes  $\mathcal{T}_1$  et  $\mathcal{T}_2$  dans les formules partagées par ces deux théories.

#### Theorem (Joint consistency theorem)

 $\mathcal{T}_1 \cup \mathcal{T}_2$  est incohérente si et seulement si il existe une formule close  $\Phi$  telle que  $\mathcal{T}_1 \models \Phi$  et  $\mathcal{T}_2 \models \neg \Phi$ .

Dans le cas où les signatures  $\Sigma_1$  et  $\Sigma_2$  sont disjointes, on peut montrer la propriété suivante :

#### Corollary (Tinelli - 1996)

L'union  $\mathcal{T}_1 \cup \mathcal{T}_2$  est cohérente si  $\mathcal{T}_1$  et  $\mathcal{T}_2$  admettent chacune un modèle de cardinalité infinie.

#### Démonstration.

① Soient  $\mathcal{A}_1$  un modèle de  $\mathcal{T}_1$  et  $\mathcal{A}_2$  un modèle de  $\mathcal{T}_2$ . D'après le théorème de **Lówenheim-Skolem-Tarski**, si  $\mathcal{T}_1$  et  $\mathcal{T}_2$  admettent un modèle infini alors elles admettent un modèle de n'importe quelle cardinalité infinie. On peut donc supposer que  $\mathcal{A}_1$  et  $\mathcal{A}_2$  ont la même cardinalité.

#### Démonstration.

- Soient  $\mathcal{A}_1$  un modèle de  $\mathcal{T}_1$  et  $\mathcal{A}_2$  un modèle de  $\mathcal{T}_2$ . D'après le théorème de **Lówenheim-Skolem-Tarski**, si  $\mathcal{T}_1$  et  $\mathcal{T}_2$  admettent un modèle infini alors elles admettent un modèle de n'importe quelle cardinalité infinie. On peut donc supposer que  $\mathcal{A}_1$  et  $\mathcal{A}_2$  ont la même cardinalité.
- ② D'après le théorème de **Craig-Robinson**, si  $\mathcal{T}_1 \cup \mathcal{T}_2$  est incohérente alors il existe  $\Phi$  telle que  $\mathcal{A}_1 \models \Phi$  et  $\mathcal{A}_2 \models \neg \Phi$  (1).

#### Démonstration.

- Soient A<sub>1</sub> un modèle de T<sub>1</sub> et A<sub>2</sub> un modèle de T<sub>2</sub>. D'après le théorème de Lówenheim-Skolem-Tarski, si T<sub>1</sub> et T<sub>2</sub> admettent un modèle infini alors elles admettent un modèle de n'importe quelle cardinalité infinie. On peut donc supposer que A<sub>1</sub> et A<sub>2</sub> ont la même cardinalité.
- ② D'après le théorème de **Craig-Robinson**, si  $\mathcal{T}_1 \cup \mathcal{T}_2$  est incohérente alors il existe  $\Phi$  telle que  $\mathcal{A}_1 \models \Phi$  et  $\mathcal{A}_2 \models \neg \Phi$  (1).
- **3** Maintenant, puisque  $\Sigma_1 \cap \Sigma_2 = \emptyset$ , les formules de  $\mathcal{T}_1 \cap \mathcal{T}_2$  sont des formules *simple*, i.e. que  $\Phi$  est une formule composée uniquement de littéraux de la forme x = y ou  $x \neq y$ .

#### Démonstration.

- Soient A<sub>1</sub> un modèle de T<sub>1</sub> et A<sub>2</sub> un modèle de T<sub>2</sub>. D'après le théorème de Lówenheim-Skolem-Tarski, si T<sub>1</sub> et T<sub>2</sub> admettent un modèle infini alors elles admettent un modèle de n'importe quelle cardinalité infinie. On peut donc supposer que A<sub>1</sub> et A<sub>2</sub> ont la même cardinalité.
- ② D'après le théorème de **Craig-Robinson**, si  $\mathcal{T}_1 \cup \mathcal{T}_2$  est incohérente alors il existe  $\Phi$  telle que  $\mathcal{A}_1 \models \Phi$  et  $\mathcal{A}_2 \models \neg \Phi$  (1).
- **3** Maintenant, puisque  $\Sigma_1 \cap \Sigma_2 = \emptyset$ , les formules de  $\mathcal{T}_1 \cap \mathcal{T}_2$  sont des formules *simple*, i.e. que  $\Phi$  est une formule composée uniquement de littéraux de la forme x = y ou  $x \neq y$ .
- Enfin, on montre facilement que les réduits de deux modèles à la signature vide qui ont la même cardinalité sont isomorphes (n'importe quelle bijection convient). Par conséquent,  $\mathcal{A}_1$  et  $\mathcal{A}_2$  sont soit tous les deux des modèles de  $\Phi$  ou aucun d'eux ne l'est, ce qui contredit (1).

## Combinaison naïve (I)

Soit  $\mathcal A$  la théorie de l'arithmétique linéaire et  $\mathcal T$  la théorie définie par les deux axiomes suivants :

$$\mathcal{T} = \begin{cases} r(w(v, i, e), i) = e \\ i \neq j \Rightarrow r(w(v, i, e), j) = r(v, j) \end{cases}$$

Est-ce que la formule  $\Phi$  suivante est  $(A \cup T)$ -satisfiable?

$$r(w(v,i,r(v,j)),i) \neq r(v,i) \land i+j \leq 2j \land j+4i \leq 5i$$

## Combinaison naïve (II)

 ${\bf 0}$  On peut décomposer la formule  $\Phi$  en deux sous-formules  $\Phi_{\mathcal A}$  et  $\Phi_{\mathcal T}$ 

$$\Phi_{\mathcal{A}} = i + j \le 2j \land j + 4i \le 5i$$
  
$$\Phi_{\mathcal{T}} = r(w(v, i, r(v, j)), i) \ne r(v, i)$$

## Combinaison naïve (II)

 $\bullet \ \, \text{On peut décomposer la formule } \Phi \ \, \text{en deux sous-formules} \ \, \Phi_{\mathcal{A}} \ \, \text{et} \ \, \Phi_{\mathcal{T}}$ 

$$\Phi_{\mathcal{A}} = i + j \le 2j \land j + 4i \le 5i$$
  
$$\Phi_{\mathcal{T}} = r(w(v, i, r(v, j)), i) \ne r(v, i)$$

2 Puis appliquer les procédures de décision de  $\mathcal{A}$  et  $\mathcal{T}$  séparément sur  $\Phi_{\mathcal{A}}$  et  $\Phi_{\mathcal{T}}$  qui retournent satisfiable dans les deux cas.

## Combinaison naïve (II)

 ${\bf 0}$  On peut décomposer la formule  $\Phi$  en deux sous-formules  $\Phi_{\mathcal A}$  et  $\Phi_{\mathcal T}$ 

$$\Phi_{\mathcal{A}} = i + j \le 2j \land j + 4i \le 5i$$
  
$$\Phi_{\mathcal{T}} = r(w(v, i, r(v, j)), i) \ne r(v, i)$$

② Puis appliquer les procédures de décision de  $\mathcal{A}$  et  $\mathcal{T}$  séparément sur  $\Phi_{\mathcal{A}}$  et  $\Phi_{\mathcal{T}}$  qui retournent satisfiable dans les deux cas.

Pour autant, est-ce que  $\Phi$  est bien satifiable?

## Combinaison naïve (III)

En fait  $\Phi$  n'est pas satisfiable, en effet :

$$i + j \le 2j \land j + 4i \le 5i \Rightarrow i = j$$

$$r(w(v,i,r(v,j)),i) \neq r(v,i) \land i = j \Rightarrow r(v,i) \neq r(v,i)$$

Le problème vient du fait que ces formules ne sont pas *indépendantes*. Elles partagent des variables ainsi que le prédicat d'égalité.

La solution adoptée par l'algorithme de Nelson-Oppen est de **propager** les contraintes d'égalité entre les variables partagées.

## L'algorithme de Nelson-Oppen

## Algorithme de Nelson-Oppen : vue globale du système

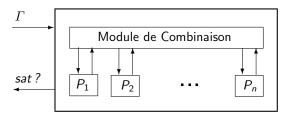
**G. Nelson, D.C.Oppen** Simplification by cooperating decision procedures, 1979

#### Entrée :

- théories  $\mathcal{T}_1, \ldots, \mathcal{T}_n$  à signatures disjointes  $\Sigma_1, \ldots, \Sigma_n$
- procédures de décision  $P_i$  décidant de la satisfiabilité d'un ensemble de  $\mathcal{T}_i$ -littéraux

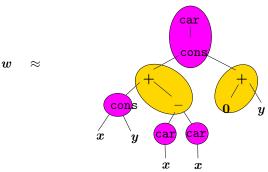
#### Sortie:

• une procédure de décision décidant la satisfiabilité d'un ensemble de  $(\mathcal{T}_1 + \cdots + \mathcal{T}_n)$ -littéraux.



## L'abstraction par variables

#### Chaque littéral mixte



est équi-satisfiable avec un ensemble de littéraux pures :

$$z_1 = \operatorname{car}(x)$$

$$z_2 = cons(x, y)$$

$$z_3 = z_1 + (z_2 - z_2)$$

$$z_4 = 0 + y$$

$$z_5 = \operatorname{car}(\operatorname{cons}(z_3, z_4))$$

$$w=z_5$$

## L'algorithme de Nelson-Oppen : Étape 1

#### Variable Abstraction

Transformer l'ensemble  $\Gamma$  des littéraux (mixtes) en entrée en un ensemble équi-satisfiable  $\Delta + \Phi_1 + \cdots + \Phi_n$  de littéraux pures, où  $\Delta$  ne contient que des littéraux entre variables, et  $\Phi_i$  ne contient que des symboles de  $\mathcal{T}_i$ .

**Exemple.**  $\mathcal{T}_1$  est la théorie libre de f,  $\mathcal{T}_2$  est la théorie de l'arithmétique linéaire, et  $\Gamma$  a deux littéraux : f(x) = x,  $f(2x - f(x)) \neq x$ . Après l'étape 1, on a : :

$$\Delta: \quad y=x \qquad \qquad u\neq x$$

$$\Phi_1: \quad y=f(x) \qquad u=f(z)$$

$$\Phi_2: \quad z = 2x - y$$

## L'algorithme de Nelson-Oppen : Étape 2

#### Propagation des égalités

Saturer l'ensemble  $\Delta$  avec les égalités entre variables retournées par chaque procédure  $P_i$ . Retourner "satisfiable" ssi tous les ensembles  $\Delta \cup \Phi_i$  sont  $\mathcal{T}_i$ -satisfiables.

#### Exemple (suite).

$$\Delta: \quad y=x \qquad \qquad u\neq x \qquad \qquad z=x$$

$$\Phi_1: \quad y=f(x) \qquad u=f(z)$$

$$\Phi_2: \quad z = 2x - y$$

Inférer z=x à partir de  $\Delta \cup \Phi_2$ ; puis  $\Delta \cup \Phi_1$  devient insatisfiable.

## Les difficultés liées à l'algorithme de Nelson-Oppen

De nombreuses preuves de correction de l'algorithme de Nelson-Oppen ont été proposées. Parmi celles-ci, on distingue la preuve de

• Tinelli-Harandi (1996) : preuve de haut niveau d'une version non-déterministe de l'algorithme, plus simple et plus élégante que celle proposée initialement par Nelson-Oppen

Mais la preuve de correction devient difficile dès que l'on essaie de décrire l'algorithme à un niveau de précision expliquant des détails important d'implantation. Par exemple :

• Clark Barrett (2002) 400 lignes de pseudo-code annoté, pas de preuve de terminaison, une preuve de correction partielle de plus de 120 pages.

#### Le but de cette partie

Décrire cet algorithme à un niveau d'abstraction suffisamment haut pour que la preuve de correction soit simple, et suffisamment bas pour décrire les optimisations importantes faites dans les implantations.

- Un ensemble de règles d'inférence décrivant le système de Nelson-Oppen
- De nouvelles règles pour décrire les optimisations cruciales
- De multiples algorithmes de combinaison décrits comme des stratégies spécifiques d'application des règles
- Les optimisations à la Shostak

#### Configurations

L'état est représenté par des configurations  $\langle V \ | \ \Delta \ | \ \Gamma \ | \ \Phi_1, \ldots, \Phi_n \rangle$ 

et son évolution est décrite par des règles d'inférence.

• If est un ensemble de littéraux de la forme a = b ou  $a \neq b$ , où a et b appartiennent à la théorie  $\mathcal{T}_1 + \cdots + \mathcal{T}_n$ 

#### Configurations

L'état est représenté par des configurations  $\langle V \mid \Delta \mid \Gamma \mid \Phi_1, \ldots, \Phi_n \rangle$ 

et son évolution est décrite par des règles d'inférence.

- If est un ensemble de littéraux de la forme a = b ou  $a \neq b$ , où a et b appartiennent à la théorie  $\mathcal{T}_1 + \cdots + \mathcal{T}_n$
- $\Delta$  est un ensemble de littéraux de la forme x = y ou  $x \neq y$ , où x et y sont des variables

#### Configurations

L'état est représenté par des configurations  $\langle V \parallel \Delta \parallel \Gamma \parallel \Phi_1, \dots, \Phi_n \rangle$ 

et son évolution est décrite par des règles d'inférence.

- If est un ensemble de littéraux de la forme a = b ou  $a \neq b$ , où a et b appartiennent à la théorie  $\mathcal{T}_1 + \cdots + \mathcal{T}_n$
- $\Delta$  est un ensemble de littéraux de la forme x = y ou  $x \neq y$ , où x et y sont des variables
- $\Phi_i$  est un ensemble de  $\mathcal{T}_i$ -équations pures de la forme x = a

#### Configurations

L'état est représenté par des configurations  $\langle V \ | \ \Delta \ | \ \Gamma \ | \ \Phi_1, \ldots, \Phi_n \rangle$ 

et son évolution est décrite par des règles d'inférence.

- If est un ensemble de littéraux de la forme a = b ou  $a \neq b$ , où a et b appartiennent à la théorie  $\mathcal{T}_1 + \cdots + \mathcal{T}_n$
- $\Delta$  est un ensemble de littéraux de la forme x = y ou  $x \neq y$ , où x et y sont des variables
- $\Phi_i$  est un ensemble de  $T_i$ -équations pures de la forme x = a
- V est un ensemble de variables contenant celles de  $\Gamma$  et  $\Delta$

#### Configurations

L'état est représenté par des *configurations*  $\langle V \parallel \Delta \parallel \Gamma \parallel \Phi_1, \dots, \Phi_n \rangle$ 

et son évolution est décrite par des règles d'inférence.

- If est un ensemble de littéraux de la forme a = b ou  $a \neq b$ , où a et b appartiennent à la théorie  $\mathcal{T}_1 + \cdots + \mathcal{T}_n$
- $\Delta$  est un ensemble de littéraux de la forme x = y ou  $x \neq y$ , où x et y sont des variables
- $\Phi_i$  est un ensemble de  $T_i$ -équations pures de la forme x = a
- V est un ensemble de variables contenant celles de  $\Gamma$  et  $\Delta$

On utilisera également 🔔 pour représenter une configuration particulière.

## L'Abstraction par Variables

# Abstract $\frac{\langle V \parallel \Delta \parallel \Gamma \uplus \{a=b\} \parallel \dots, \Phi_i, \dots \rangle}{\langle V \cup \{z\} \parallel \Delta \parallel \Gamma \cup \{a[\pi \mapsto z]=b\} \parallel \dots, \Phi_i \cup \{z=a_{\pi}\}, \dots \rangle}$

en supposant \* et que z est une variable fraîche

$$\label{eq:bounds} \begin{split} &\frac{\text{Share}}{\left\langle V \parallel \Delta \parallel \Gamma \uplus \left\{ \mathbf{a} = \mathbf{b} \right\} \parallel \Phi_1, \dots, \Phi_n \right\rangle} \\ &\frac{\left\langle V \parallel \Delta \parallel \Gamma \cup \left\{ \mathbf{a} \left[ \pi \mapsto \mathbf{z} \right] = \mathbf{b} \right\} \parallel \Phi_1, \dots, \Phi_n \right\rangle} \end{split}$$

en supposant st et :  $\mathcal{T}_i, \Phi_i, \Delta \models z = a_\pi$ 

\*  $a_{\pi}$  est un pur  $T_i$ -terme et  $a_{\pi} \notin X$ 

## Propagation des Égalités

$$\label{eq:continuity} \begin{split} & \frac{\text{Arrange}}{\langle \textit{V} \parallel \Delta \parallel \Gamma \uplus \{\textit{x} = \textit{y}\} \parallel \Phi_1, \dots, \Phi_n \rangle} \\ & \frac{\langle \textit{V} \parallel \Delta \cup \{\textit{x} = \textit{y}\} \parallel \Gamma \parallel \Phi_1, \dots, \Phi_n \rangle}{\langle \textit{V} \parallel \Delta \cup \{\textit{x} = \textit{y}\} \parallel \Gamma \parallel \Phi_1, \dots, \Phi_n \rangle} \end{split}$$

$$\frac{\text{Deduct}}{\langle \textit{V} \parallel \Delta \parallel \Gamma \parallel \Phi_1, \dots, \Phi_n \rangle} \\ \frac{\langle \textit{V} \parallel \Delta \cup x = \textbf{y} \parallel \Gamma \parallel \Phi_1, \dots, \Phi_n \rangle}{\langle \textit{V} \parallel \Delta \cup x = \textbf{y} \parallel \Gamma \parallel \Phi_1, \dots, \Phi_n \rangle}$$

$$\mathcal{T}_i, \Phi_i, \Delta \models x = y \text{ et } \Delta \not\models x = y$$

$$\frac{\text{Contradict}}{ \left< V \parallel \Delta \parallel \Gamma \parallel \Phi_1, \dots, \Phi_n \right>}$$

 $\Phi_i \wedge \Delta$  n'est par satisfiable

## Exemple: $f(x) = x \longrightarrow f(2x - f(x)) = x$

| V          | Δ          | Γ                  | $\Phi_1$ | Φ2     | Rule            |
|------------|------------|--------------------|----------|--------|-----------------|
|            |            | f(x) = x           |          |        |                 |
| X          | Ø          | $f(2x-f(x))\neq x$ | Ø        | Ø      |                 |
|            |            | y = x              |          |        |                 |
| x, y       | Ø          | $f(2x-f(x))\neq x$ | y = f(x) | Ø      | $Ab_1$          |
| x, y       | y = x      | $f(2x-f(x))\neq x$ | y = f(x) | Ø      | Ar              |
| x, y       | y = x      | $f(2x-y)\neq x$    | y = f(x) | Ø      | Sh <sub>1</sub> |
| X, y, Z    | y = x      | $f(z) \neq x$      | y = f(x) | z=2x-y | $Ab_2$          |
| x, y, z, u | y = x      | $u \neq x$         | y = f(x) | z=2x-y | $Ab_1$          |
|            |            |                    | u = f(z) |        | 701             |
| x, y, z, u | y = x      | Ø                  | y = f(x) | z=2x-y | Ar              |
|            | $u \neq x$ |                    | u = f(z) |        | _ ^'            |
|            | y = x      |                    | y = f(x) |        |                 |
| x, y, z, u | $u \neq x$ | Ø                  | u = f(z) | z=2x-y | $\mathbf{De}_2$ |
|            | z = x      |                    | u = r(z) |        |                 |
| Τ          |            |                    |          |        | $\mathbf{Co}_1$ |

#### Théories convexes

La règle **Deduct** ne s'applique que s'il est toujours possible pour une théorie  $T_i$  d'inférer une **unique** égalité à partir de  $\Phi_i \wedge \Delta$ . Cette propriété est appelée **convexité**.

#### Definition (Théorie convexe)

Une théorie  $\mathcal{T}$  est **convexe** si pour toute conjonction  $\Gamma$  de littéraux et tous termes  $a_1,b_1,\ldots,a_k,b_k$ , si  $\mathcal{T}\models\Gamma\Rightarrow a_1=b_1\vee\cdots\vee a_k=b_k$  alors il existe i tel que  $\mathcal{T}\models\Gamma\Rightarrow a_i=b_i$ .

## Correction de l'algorithme (I)

#### Definition (Satisfiabilité)

Une configuration  $\langle V \parallel \Delta \parallel \Gamma \parallel \Phi_1, \dots, \Phi_n \rangle$  est **satisfiable** si la formule  $\Gamma \wedge \Phi_1 \wedge \dots \wedge \Phi_n \wedge \Delta$  est satisfiable. La configuration  $\bot$  est insatisfiable.

La satisfiabilité d'une conjonction de littéraux  $\Gamma$  est donc équivalente à la satisfiabilité de la configuration initiale  $\langle V \parallel \emptyset \parallel \Gamma \parallel \emptyset \rangle$ 

On note  $\mathcal{C}\Rightarrow\mathcal{C}'$  la **réduction** de la configuration  $\mathcal{C}$  vers la configuration  $\mathcal{C}'$  par une des règles d'inférence. Une configuration qui ne peut se réduire est dite **irréductible** et elle est **propre** si elle est différente de  $\bot$ .

#### Theorem (Correction)

Un ensemble de littéraux  $\Gamma$  est satisfiable si et seulement si il existe une configuration irréductible et propre  $\mathcal C$  telle que  $\langle V \parallel \emptyset \parallel \Gamma \parallel \emptyset \rangle \Rightarrow^* \mathcal C$ .

## Correction de l'algorithme (II) : Terminaison

### Lemma (terminaison)

La relation de réduction ⇒ termine

#### Démonstration.

On mesure la complexité des configurations par

- la taille de Γ, i.e la somme des tailles de ses éléments.
- l'ensemble  $\Delta$ , ordonné par l'ordre d'implication :  $\Delta \succ \Delta'$  ssi  $\Delta' \models \Delta$  et  $\Delta \not\models \Delta'$ .

Alors les règles **Abstract** et **Arrange** font décroître la première composante, alors que **Deduct** laisse  $\Gamma$  constant, ainsi que l'ensemble des variables de la configuration, et fait décroître  $\Delta$ . On conclut en remarquant que pour un ensemble fixé de variables, l'ordre d'implication est bien fondé (car il n'y a qu'un nombre fini de  $\Delta$  possibles!). Enfin, la règle **Contradict** ne pose pas de problème puisqu'elle termine toujours une réduction.

## Correction de l'algorithme (III) : Théorie à modèles finis

Soit  $\mathcal{T}_1$  une  $\Sigma_1$ -théorie dont les modèles ont au plus 2 éléments et  $\mathcal{T}_2$  une  $\Sigma_2$ -théorie admettant des modèles de cardinalité quelconque.

• Soient  $f \in \Sigma_1$  et  $g \in \Sigma_2$  avec

$$\mathcal{T}_1 \not\models \forall x, y. f(x) = f(y) \text{ et } \mathcal{T}_2 \not\models \forall x, y. g(x) = g(y)$$

On considère l'ensemble Γ suivant

$$\Gamma = \{f(x) \neq f(y), g(x) \neq g(z), g(y) \neq g(z)\}\$$

Partant de  $\langle V \parallel \emptyset \parallel \Gamma \parallel \emptyset \rangle$ , la configuration **finale** de l'algorithme est :

$$\langle \mathit{V}' \ [] \ \emptyset \ [] \ \Delta \ [] \ \Phi_1, \Phi_2 \rangle$$

avec

$$\Delta = \{x_1 \neq y_1, x_2 \neq z_2, y_2 \neq z_2\}$$
  

$$\Phi_1 = \{x_1 = f(x), y_1 = f(y)\}$$
  

$$\Phi_2 = \{x_2 = g(x), y_2 = g(y), z_2 = g(z)\}$$

## Correction de l'algorithme (III) : Théorie à modèles finis

Maintenant, puisque seules les variables x et y sont partagées par les deux théories, les seules égalités potentiellement partagées sont x = y ou  $x \neq y$ .

- x = y est impossible car la procédure atteint l'état  $\bot$  avec cette équation
- avec  $x \neq y$ ,  $\Delta \cup \Phi_1$  et  $\Delta \cup \Phi_2$  sont satisfiables.

Malheureusement,

$$T_1 \cup T_2 \models \Gamma \Rightarrow x \neq y \land x \neq z \land y \neq z$$

donc  $\Gamma$  est insatisfiable puisque  $\mathcal{T}$  (comme  $\mathcal{T}_1$ ) ne peut admettre que des modèles d'au plus 2 éléments.

L'algorithme de Nelson-Oppen échoue donc dand ce cas!

## Correction de l'algorithme (IV) : Théories stables-infinies

On ne pourra donc combiner, avec cet algorithme, que des théories admettant toujours au moins des modèles de cardinalité infinie.

#### Definition (Stable-infinie)

Une théorie  $\mathcal{T}$  est stable-infinie si toute formule satisfiable admet un modèle infini.

Cette condition permet en outre de s'assurer que l'union de telles théories est cohérente, cf. corollaire de **Tinelli**.

## Correction de l'algorithme (V) : Le théorème de Tinelli-Harandi

#### Definition (Arrangement)

Un arrangement  $\Delta(V)$  d'un ensemble de variables V est un ensemble de formules de la forme x=y ou  $x\neq y$  tel que pour toute paire de variables  $x,y\in V$  on ait  $\Delta(V)\models x=y$  ou bien  $\Delta(V)\models x\neq y$ .

La preuve de correction de l'algorithme repose sur le théorème suivant :

#### Theorem (Tinelli-Harandi (1996))

Soient  $\mathcal{T}_i$  une  $\Sigma_i$ -théorie stable-infinie et  $\Phi_i$  un ensemble de  $\Sigma_i$ -littéraux avec  $\bigcap \Sigma_i = \emptyset$  pour  $i \in \{1, \ldots, n\}$ . Soit V les variables partagées par les  $\Phi_i$  et  $\Delta(V)$  un arrangement. Si  $\Phi_i \wedge \Delta(V)$  est  $\mathcal{T}_i$ -satisfiable pour  $i \in \{1, \ldots, n\}$  alors  $\Phi_1 \wedge \cdots \wedge \Phi_n$  est  $(\mathcal{T}_1 \cup \cdots \cup \mathcal{T}_n)$ -satisfiable.

## Correction de l'algorithme (VI) : Irréductibilité

#### Lemma (Irréductibilité)

Toute configuration irréductible propre est satisfiable

#### Démonstration.

Soit  $\langle V \parallel \Delta \parallel \Gamma \parallel \Phi_1, \dots, \Phi_n \rangle$  une telle configuration. Puisque **Abtract** et Arrange ne s'appliquent  $\Gamma$  doit être vide. Puisque Contradict ne s'appliquent pas,  $\Delta \wedge \Phi_i$  est  $\mathcal{T}_i$ -satisfiable. Si  $\Delta(V)$  est un arrangement on conclut par le Théorème de **Tinelli-Harandi**. Sinon, soit  $\Delta' = \Delta \cup \{x_1 \neq y_1, \dots, x_k \neq y_k\}$  l'extension maximale et satisfiable de  $\Delta$ telle que  $\Delta \not\models x_i \neq y_i$ .  $\Delta'(V)$  est un arrangement. Si  $\Phi_i \wedge \Delta'$  n'est pas  $\mathcal{T}_i$ -satisfiable alors  $\mathcal{T}_i, \Phi_i \models \Delta^+ \longrightarrow \neg \Delta^- \vee \delta$  où  $\delta$  est la clause  $x_1 = y_1 \vee \cdots \vee x_k = y_k$ . Puisque  $\mathcal{T}_i$  est convexe,

 $\mathcal{T}_i, \Phi_i \models \Delta^+ \longrightarrow x = y \text{ où } x = y \in \neg \Delta^- \vee \delta.$  Puisque **Deduct** ne

s'applique pas, on a  $\Delta \models x = y$  et donc (puisque  $\Delta \models \Delta^-$ )  $\Delta \models \delta$ , ce qui

contredit la satisfiabilité de  $\Delta'$ .

## Correction de l'algorithme (VII) : Preuve finale

#### Lemma (equi-satisfiabilité)

Si  $\mathcal{C} \Rightarrow \mathcal{C}'$  alors  $\mathcal{C}$  et  $\mathcal{C}'$  sont equi-satisfiables.

#### Théorème de correction final.

Il suffit de montrer que pour toute configuration  $\mathcal{C}$ ,  $\mathcal{C}$  est satisfiable ssi il existe  $\mathcal{C}'$  irréductible et propre telle que  $\mathcal{C} \Rightarrow^* \mathcal{C}'$ . On raisonne par induction par rapport à  $\Rightarrow$ , qui est bien-fondée grâce au lemme de terminaison. Si  $\mathcal{C}$  est irréductible, le lemme d'irréductibilité permet de conclure. Si  $\mathcal{C}$  est réductible en  $\mathcal{C}'$  on utilise le lemme d'equi-satisfiabilité et on conclut par l'hypothèse de récurrence sur  $\mathcal{C}'$ .

## Traitement des théories non-convexes (I)

Nous avons besoin de deux changements pour traiter le cas des théories non-convexes.

① On remplace

$$\frac{\mathsf{Deduct}}{\langle V \parallel \Delta \parallel \Gamma \parallel \Phi_1, \dots, \Phi_n \rangle} \frac{\langle V \parallel \Delta \cup X = y \parallel \Gamma \parallel \Phi_1, \dots, \Phi_n \rangle}{\langle V \parallel \Delta \cup X = y \parallel \Gamma \parallel \Phi_1, \dots, \Phi_n \rangle}$$

$$\mathcal{T}_i, \Phi_i, \Delta \models x = y \text{ et } \Delta \not\models x = y$$

$$\frac{\text{Deduct}}{\langle \textit{V} \parallel \Delta \parallel \textit{\Gamma} \parallel \Phi_0, \dots, \Phi_n \rangle} \\ \frac{\langle \textit{V} \parallel \Delta \parallel \textit{\Gamma} \parallel \Phi_0, \dots, \Phi_n \rangle}{\langle \textit{V} \parallel \Delta \cup \delta \parallel \textit{\Gamma} \parallel \Phi_0, \dots, \Phi_n \rangle}$$

$$\mathcal{T}_i, \Phi_i, \Delta \models \delta$$
 et  $\Delta \not\models \delta$ 

où  $\delta$  est une disjonction d'égalités entre variables.

# Traitement des théories non-convexes (II)

2 Et on doit aussi ajouter une règle de branchement.

Branch
$$\frac{\langle V \parallel \Delta \uplus \{x_1 = y_1 \lor \dots \lor x_k = y_k\} \parallel \Gamma \parallel \Phi_0, \dots, \Phi_n \rangle}{\langle V \parallel \Delta \cup \{x_i = y_i\} \parallel \Gamma \parallel \Phi_0, \dots, \Phi_n \rangle}$$

$$\Delta \not\models x_i = y_i \quad (1 \le i \le k)$$

L'énoncé du théorème de correction reste inchangé :

### Theorem (Correction)

Un ensemble de littéraux  $\Gamma$  est satisfiable si et seulement si il existe une configuration irréductible et propre  $\mathcal C$  telle que  $\langle V \parallel \emptyset \parallel \Gamma \parallel \emptyset \rangle \Rightarrow^* \mathcal C$ .

# Traitement des théories non-convexes (II)

Les modifications à apporter aux lemmes (ou preuves) précédents sont les suivantes :

#### Preuve du lemme d'irréductibilité.

 $\Delta$  est de la forme  $\Delta^+ \wedge \Delta^-$  car **Branch** ne s'applique pas. Ensuite, de  $\mathcal{T}_i, \Phi_i \models \Delta^+ \longrightarrow \neg \Delta^- \vee \delta$  on conclut directement que  $\Delta \models \delta$  car **Deduct** ne s'applique pas.

### Lemma (equi-satisfiabilité)

 $Si \ \mathcal{C} \Rightarrow \mathcal{C}'$  par une règle autre que **Branch**, alors  $\mathcal{C}$  et  $\mathcal{C}'$  sont équi-satisfaisables.

# Traitement des théories non-convexes (III)

Enfin, on ajoute une propriété sur le branchement :

### Lemma (Branchement)

 $Si \ \mathcal{C} \Rightarrow \mathcal{C}' \ par \ \mathbf{Branch}, \ alors$ 

- Si C' est satisfiable, alors C est satisfiable.
- Si  $\mathcal C$  est satisfiable, alors il existe une réduction par **Branch**  $\mathcal C\Rightarrow\mathcal C''$  telle que  $\mathcal C''$  est satisfiable.

La preuve finale est quasi inchangée :

### Démonstration.

...

Si  $\mathcal{C}$  est irréductible, le lemme d'irréductibilité permet de conclure. Si  $\mathcal{C}$  est réductible en  $\mathcal{C}'$ , si c'est par une règle autre que **Branch**, on utilise le lemme d'equi-satisfiabilité et on conclut par l'hypothèse de récurrence sur  $\mathcal{C}'$ , et si c'est par **Branch** on utilise le lemme de branchement et on applique l'hypothèse de récurrence sur  $\mathcal{C}'$  et  $\mathcal{C}''$ .

# Preuve du théorème de Tinelli-Harandi (I)

### Theorem (Tinelli-Harandi (1996))

Soient  $\mathcal{T}_1$  et  $\Phi_1$  (resp.  $\mathcal{T}_2$  et  $\Phi_2$ ) une théorie stable-infinie et un ensemble de littéraux de signatures  $\Sigma_1$  (resp.  $\Sigma_2$ ) avec  $\Sigma_1 \cap \Sigma_2 = \emptyset$ . Soit V les variables partagées par  $\Phi_1$  et  $\Phi_2$  et  $\Delta(V)$  un arrangement. Si  $\Phi_1 \wedge \Delta(V)$  (resp.  $\Phi_2 \wedge \Delta(V)$ ) est  $\mathcal{T}_1$ -satisfiable (resp.  $\mathcal{T}_2$ -satisfiable) alors  $\Phi_1 \wedge \Phi_2$  est  $(\mathcal{T}_1 \cup \mathcal{T}_2)$ -satisfiable.

La preuve du théorème repose sur le lemme d'interpolation de **Craig-Robinson** et sur deux propriétés importantes de la théorie vide  $\mathcal{T}_{\emptyset}$  (celles des **formules simples** i.e. des formules dont les littéraux sont de la forme x = y ou  $x \neq y$ ).

### Lemma (Interpolation de Craig-Robinson)

Si  $\mathcal{T}_1 \cup \mathcal{T}_2 \models \Phi_2 \longrightarrow \Phi_2$ , il existe une formule  $\Psi$  dont l'ensemble des variables libres est un sous-ensemble de V telle que  $\mathcal{T}_1 \models \Phi_1 \longrightarrow \Psi$  et  $\mathcal{T}_2 \models \Psi \longrightarrow \Phi_2$  ( $\Psi$  est appelée **interpolant**).

# Preuve du théorème de Tinelli-Harandi (II)

Si X est un ensemble de variables, on note D(X) la formule suivante :

$$D(X) = \bigwedge_{x,y \in X, x \not\equiv y} x \not= y$$

Soit  $\mathcal A$  un modèle de  $\mathcal T_\emptyset$  et  $\rho: X \to \mathcal A$  une interprétation des variables de X dans le modèle  $\mathcal A$ .

#### Lemma

Soit  $\Phi$  est une formule simple et X est l'ensemble de ses variables libres. Si  $\mathcal{A}, \rho \models D(X) \land \Phi$  alors  $\mathcal{A} \models \forall X. (D(X) \longrightarrow \Phi)$ .

#### Lemma

Si  $\Phi$  est une formule simple close satisfiable dans un modèle infini de  $\mathcal{T}_{\emptyset}$  alors elle est satisfiable dans tous les modèles infinis de  $\mathcal{T}_{\emptyset}$ .

# Preuve du théorème de Tinelli-Harandi (III)

#### Preuve du théorème de Tinelli-Harandi.

• Soit  $\sigma$  la substitution obtenue à partir de  $\Delta(V)$  qui remplace chaque variable par son représentant. L'ensemble des variables partagées par les  $\Phi_i' = \Phi_i \sigma$  est donc maintenant  $U \subseteq V$ . Il est clair que  $\Phi_i' \wedge \Delta(V) \sigma$  est toujours  $\mathcal{T}_i$ -satisfiable et que  $\Delta(V) \sigma$  est équivalent à D(U).

# Preuve du théorème de Tinelli-Harandi (III)

#### Preuve du théorème de Tinelli-Harandi.

- Soit  $\sigma$  la substitution obtenue à partir de  $\Delta(V)$  qui remplace chaque variable par son représentant. L'ensemble des variables partagées par les  $\Phi_i' = \Phi_i \sigma$  est donc maintenant  $U \subseteq V$ . Il est clair que  $\Phi_i' \wedge \Delta(V) \sigma$  est toujours  $\mathcal{T}_i$ -satisfiable et que  $\Delta(V) \sigma$  est équivalent à D(U).
- ② Si  $\Phi_1' \wedge \Phi_2'$  est insatisfiable alors,  $\mathcal{T}_1 \cup \mathcal{T}_2 \models \Phi_1' \longrightarrow \neg \Phi_2'$  et, d'après le lemme d'interpolation, il existe une formule simple  $\Psi$  ayant un ensemble de variables libres  $W \subseteq U$  telle que  $\mathcal{T}_1 \models \Phi_1' \longrightarrow \Psi$  et  $\mathcal{T}_2 \models \Phi_2' \longrightarrow \neg \Psi$ .

# Preuve du théorème de Tinelli-Harandi (III)

#### Preuve du théorème de Tinelli-Harandi.

- Soit  $\sigma$  la substitution obtenue à partir de  $\Delta(V)$  qui remplace chaque variable par son représentant. L'ensemble des variables partagées par les  $\Phi_i' = \Phi_i \sigma$  est donc maintenant  $U \subseteq V$ . Il est clair que  $\Phi_i' \wedge \Delta(V) \sigma$  est toujours  $\mathcal{T}_i$ -satisfiable et que  $\Delta(V) \sigma$  est équivalent à D(U).
- Si Φ'<sub>1</sub> ∧ Φ'<sub>2</sub> est insatisfiable alors, T<sub>1</sub> ∪ T<sub>2</sub> |= Φ'<sub>1</sub> → ¬Φ'<sub>2</sub> et, d'après le lemme d'interpolation, il existe une formule simple Ψ ayant un ensemble de variables libres W ⊆ U telle que T<sub>1</sub> |= Φ'<sub>1</sub> → Ψ et T<sub>2</sub> |= Φ'<sub>2</sub> → ¬Ψ.
- ② Puisque  $\mathcal{T}_1$  est stable-infinie  $\Phi'_1 \wedge D(W)$  est satisfiable dans un modèle infini  $\mathcal{A}_1$  de  $\mathcal{T}_1$ . Maintenant,  $\mathcal{A}_1$  est également un modèle de  $\mathcal{T}_\emptyset$ , aussi d'après les lemmes sur  $\mathcal{T}_\emptyset$ ,  $\forall X.\ (D(W) \longrightarrow \Psi)$  est satisfiable dans tous les modèles infinis de  $\mathcal{T}_\emptyset$ . De la même manière on montre que  $\forall X.\ (D(W) \longrightarrow \neg \Psi)$  est satisfiable dans tous les modèles infinis de  $\mathcal{T}_\emptyset$ : contradiction.

## Des règles d'inférence vers une procédure de décision

Les trois propriétés suivantes du système de règles d'inférence permettent facilement de construire une procédure de décision :

① D'après le lemme de terminaison et le lemme de König (tout arbre infini à branchement fini a une branche infinie), l'arbre de dérivation de ⇒ à partir d'une configuration C est fini.

## Des règles d'inférence vers une procédure de décision

Les trois propriétés suivantes du système de règles d'inférence permettent facilement de construire une procédure de décision :

- ① D'après le lemme de terminaison et le lemme de König (tout arbre infini à branchement fini a une branche infinie), l'arbre de dérivation de ⇒ à partir d'une configuration C est fini.
- ② Ces feuilles sont des configurations irréductibles (dans le cas de théories convexes, toutes les feuilles sont soit  $\bot$  soit différentes de  $\bot$ ).

# Des règles d'inférence vers une procédure de décision

Les trois propriétés suivantes du système de règles d'inférence permettent facilement de construire une procédure de décision :

- ① D'après le lemme de terminaison et le lemme de König (tout arbre infini à branchement fini a une branche infinie), l'arbre de dérivation de ⇒ à partir d'une configuration C est fini.
- ② Ces feuilles sont des configurations irréductibles (dans le cas de théories convexes, toutes les feuilles sont soit ⊥ soit différentes de ⊥).
- **1** Une configuration  $\mathcal{C}$  est satisfiable ssi il existe une feuille  $\neq \bot$ .

#### Procédure de décision

Soit  $\mathcal C$  une configuration d'entrée, choisir  $\mathcal C'$  telle que  $\mathcal C\Rightarrow\mathcal C'$ , puis se rappeler récursivement sur  $\mathcal C'$  et *backtracker* uniquement si **Branch** est utilisée.

Il nous faut donc une **stratégie** pour choisir C'

# Stratégies

Un simple langage d'expressions régulières suffit à exprimer quelques algorithmes :

$$\mathbf{Ab}^* \cdot \mathbf{Ar}^* \cdot (\mathbf{Co} \oplus \mathbf{De})^*$$

$$(\mathsf{Sh} \oplus \mathsf{Ab})^* \cdot \mathsf{Ar}^* \cdot (\mathsf{Co} \oplus \mathsf{De})^*$$

Ou mieux:

$$(\mathsf{Ar} \oplus \mathsf{Sh} \oplus \mathsf{Ab})^* \cdot (\mathsf{Co} \oplus \mathsf{De})^*$$

Les deux conditions suivantes sont suffisantes pour établir la complétude d'une stratégie e:

• Pour toute configuration  $\mathcal{C}$ , il existe une configuration  $\mathcal{C}'$  telle que  $\mathcal{C} \Rightarrow_{\mathsf{e}} \mathcal{C}'$ , et toutes ces configurations  $\mathcal{C}'$  sont irréductibles.

# Stratégies

Un simple langage d'expressions régulières suffit à exprimer quelques algorithmes :

$$\mathbf{Ab}^* \cdot \mathbf{Ar}^* \cdot (\mathbf{Co} \oplus \mathbf{De})^*$$

$$(\mathsf{Sh} \oplus \mathsf{Ab})^* \cdot \mathsf{Ar}^* \cdot (\mathsf{Co} \oplus \mathsf{De})^*$$

Ou mieux:

$$(\mathsf{Ar} \oplus \mathsf{Sh} \oplus \mathsf{Ab})^* \cdot (\mathsf{Co} \oplus \mathsf{De})^*$$

Les deux conditions suivantes sont suffisantes pour établir la complétude d'une stratégie e :

- Pour toute configuration  $\mathcal{C}$ , il existe une configuration  $\mathcal{C}'$  telle que  $\mathcal{C} \Rightarrow_{\mathsf{e}} \mathcal{C}'$ , et toutes ces configurations  $\mathcal{C}'$  sont irréductibles.
- ② Si  $\mathcal{C}$  est satisfiable alors il existe une configuration satisfiable  $\mathcal{C}'$  telle que  $\mathcal{C} \Rightarrow_{e} \mathcal{C}'$  (cas non-convexe).

Cette preuve ne demande habituellement qu'un petit effort.

# Sélection des égalités utiles (I)

Le mécanisme d'abstraction par variables peut introduire des équations inutiles dans le système. Par exemple, l'application de la règle **Abstract** sur le littéral car(cons(t,4x+2))=a introduit une équation z=4x+2 qui est inutile puisque car(cons(t,4x+2))=t.

On utilise un mécanisme de dépendances entre variables pour se débarrasser de ces équations inutiles (sources d'inefficacité).

### Configurations avec dépendances

On ajoute une relation  $E \subseteq V \times V$  aux configurations pour tracer les dépendances  $\langle (\mathbf{V}, \mathbf{E}) \parallel \Delta \parallel \Gamma \parallel \Phi_1, \dots, \Phi_n \rangle$ 

On considère alors les sous-ensembles de variables et d'équations utiles  $V^{util}$  et  $\Phi_i^{util}$  de V et  $\Phi_i$ , définis par :

$$V^{util} = \{ y \mid x E^* y \text{ et } x \in vars(\Delta) \}$$
  
$$\Phi_i^{util} = \{ y = a \in \Phi_i \mid y \in V^{util} \}$$

# Sélection des égalités utiles (II)

Nous avons besoin de remplacer trois règles pour n'utiliser que les variables et les équations utiles dans le système.

1 La règle Abstract devient Abstract util

Abstract<sup>util</sup>

$$\frac{\langle (V, E) \parallel \Delta \parallel \Gamma \uplus \{a = b\} \parallel \dots, \Phi_i, \dots \rangle}{\langle (V \cup \{z\}, E \cup E') \parallel \Delta \parallel \Gamma \cup \{a[\pi \mapsto z] = b\} \parallel \dots, \Phi_i \cup \{z = c\}, \dots \rangle}$$

avec z une variable fraîche,  $a_{\pi}$  un pur  $\mathcal{T}_i$ -terme tel que  $a_{\pi} \notin X$  et  $\mathcal{T}_i, \Phi_i, \Delta^+ \models c = a_{\pi}$  et  $E' = \{(z, x) \mid x \in \text{vars}(c)\}$ 

La nouvelle équation z=c (où c est un terme équivalent à  $a_{\pi}$ ) permet de marquer les variables utiles de  $a_{\pi}$  dans E.

# Sélection des égalités utiles (III)

La règle Deduct devient Deduct<sup>util</sup>

$$\frac{\mathsf{Deduct}^{\mathit{util}}}{\langle (V,E) \ [] \ \Delta \ [] \ \Gamma \ [] \ \Phi_1,\dots,\Phi_n \rangle} \frac{\langle (V,E) \ [] \ \Delta \cup \mathbf{x} = \mathbf{y} \ [] \ \Gamma \ [] \ \Phi_1,\dots,\Phi_n \rangle}{\langle (V,E) \ [] \ \Delta \cup \mathbf{x} = \mathbf{y} \ [] \ \Gamma \ [] \ \Phi_1,\dots,\Phi_n \rangle}$$

$$\mathcal{T}_i, \Phi_i^{util}, \Delta^+ \models x = y \text{ et } \Delta \not\models x = y$$

3 La règle Contradict devient Contradict<sup>util</sup>

$$\frac{\text{Contradict}^{\textit{util}}}{\frac{\langle (\textit{V},\textit{E}) \; | \; \Delta \; | \; \Gamma \; | \; \Phi_1,\ldots,\Phi_n \rangle}{\bot}}$$

 $\Phi_i^{util} \wedge \Delta$  n'est par satisfiable

# Sélection des égalités utiles (IV) : correction

Le théorème de correction du système complet reste vrai. Seule la preuve de correction du lemme d'irréductibilité doit être reprouvée.

### Démonstration de l'irréductibilité pour les nouvelles règles.

Soit  $\langle (V, E) \ | \ \Delta \ | \ \emptyset \ | \ \Phi_1, \dots, \Phi_n \rangle$  une configuration irréductible.

① Il est immédiat que  $\langle V^{util} \ \| \ \Delta \ \| \ \emptyset \ \| \ \Phi_1^{util}, \dots, \Phi_n^{util} \rangle$  est irréductible dans l'ancien système.

# Sélection des égalités utiles (IV) : correction

Le théorème de correction du système complet reste vrai. Seule la preuve de correction du lemme d'irréductibilité doit être reprouvée.

### Démonstration de l'irréductibilité pour les nouvelles règles.

Soit  $\langle (V, E) \ | \ \Delta \ | \ \emptyset \ | \ \Phi_1, \dots, \Phi_n \rangle$  une configuration irréductible.

- **1** Il est immédiat que  $\langle V^{util} \ \| \ \Delta \ \| \ \emptyset \ \| \ \Phi_1^{util}, \dots, \Phi_n^{util} \rangle$  est irréductible dans l'ancien système.
- ② Soient  $z_1, \ldots, z_k$  les variables introduites, dans cet ordre, par la règle **Abstract** util. La formule  $\Phi_1 \wedge \cdots \wedge \Phi_n$  est donc équivalente à une formule  $\Psi$  de la forme  $z_1 = t_1 \wedge \cdots \wedge z_k = t_k$  et pour tout  $j \geq i$ ,  $z_j \not\in \text{vars}(t_i)$ . Soit  $y_1 = u_1 \wedge \cdots \wedge y_l = u_l$  la sous-séquence de  $\Psi$  telle que  $u_i \in V \setminus V^{util}$ . Donc  $\Phi_1 \wedge \cdots \wedge \Phi_n \wedge \Delta$  est équivalente à :

$$\Phi_1^{util} \wedge \cdots \wedge \Phi_n^{util} \wedge \Delta \wedge y_1 = u_1 \wedge \cdots \wedge y_l = u_l$$

On conclut en remarquant que  $\Theta \wedge y = u$  est satisfiable si  $\Theta$  est satisfiable et si y n'apparaît ni dans  $\Theta$  ni dans u.

# Comment déduire de nouvelles égalités?

Dans la règle **Deduct**, il faut trouver une nouvelle paire de variables (x, y) telle que :

$$\mathcal{T}_i, \Delta, \Phi_i \models x = y$$

### Une solution générique :

Pour chaque paire, utiliser la procédure de décision de  $\mathcal{T}_i$  afin de déterminer si  $\Delta \cup \Phi_i \cup \{x \neq y\}$  est  $\mathcal{T}_i$ -satisfiable.

Mais cette solution n'est pas très satisfaisante; en fait, de nombreuses procédures de décision **convexes** peuvent être modifiées pour inférer ces égalités de manières plus efficace. Pour cela, elles maintiennent toutes une structure de données de type **union-find** sur les termes de manière à ce que x = y peut être déduit en vérifiant que find(x) = find(y).

Pour maintenir cette structure *union-find*, chaque procédure de décision fait appel à une **fonction de normalisation** (spécifique à chaque théorie). Une étape de normalisation est représentée par la relation :

$$(\Delta, \Phi_i) \Rightarrow (\Delta, \Phi_i')$$

Intuitivement,  $\Phi_i$  peut être simplifié, éventuellement à l'aide de  $\Delta$ , en un ensemble équivalent  $\Phi'_i$  plus normalisé. Trois conditions sont nécessaires :

■ la relation ⇒ doit terminer

Pour maintenir cette structure *union-find*, chaque procédure de décision fait appel à une **fonction de normalisation** (spécifique à chaque théorie). Une étape de normalisation est représentée par la relation :

$$(\Delta, \Phi_i) \Rightarrow (\Delta, \Phi_i')$$

Intuitivement,  $\Phi_i$  peut être simplifié, éventuellement à l'aide de  $\Delta$ , en un ensemble équivalent  $\Phi'_i$  plus normalisé. Trois conditions sont nécessaires :

- la relation ⇒ doit terminer
- 2 L'equi-satisfiabilité de  $\Phi_i \wedge \Delta$  et  $\Phi'_i \wedge \Delta$

Pour maintenir cette structure *union-find*, chaque procédure de décision fait appel à une **fonction de normalisation** (spécifique à chaque théorie). Une étape de normalisation est représentée par la relation :

$$(\Delta, \Phi_i) \Rightarrow (\Delta, \Phi_i')$$

Intuitivement,  $\Phi_i$  peut être simplifié, éventuellement à l'aide de  $\Delta$ , en un ensemble équivalent  $\Phi'_i$  plus normalisé. Trois conditions sont nécessaires :

- la relation ⇒ doit terminer
- ② L'equi-satisfiabilité de  $\Phi_i \wedge \Delta$  et  $\Phi'_i \wedge \Delta$
- **3** La complétude de  $\Rightarrow$ : si  $\mathcal{T}_i, \Phi_i, \Delta \models x = y$  et  $\Delta \not\models x = y$  alors il existe  $\Phi_i'$  tel que  $(\Phi_i, \Delta) \Rightarrow^* (\Phi_i', \Delta)$  tel que  $\{x = t, y = t\} \subseteq \Phi_i'$

Pour maintenir cette structure union-find, chaque procédure de décision fait appel à une fonction de normalisation (spécifique à chaque théorie). Une étape de normalisation est représentée par la relation :

$$(\Delta, \Phi_i) \Rightarrow (\Delta, \Phi_i')$$

Intuitivement,  $\Phi_i$  peut être simplifié, éventuellement à l'aide de  $\Delta$ , en un ensemble équivalent  $\Phi'_i$  plus normalisé. Trois conditions sont nécessaires :

- la relation ⇒ doit terminer
- 2 L'equi-satisfiabilité de  $\Phi_i \wedge \Delta$  et  $\Phi'_i \wedge \Delta$
- **3** La complétude de  $\Rightarrow$  : si  $\mathcal{T}_i, \Phi_i, \Delta \models x = y$  et  $\Delta \not\models x = y$  alors il existe  $\Phi'_i$  tel que  $(\Phi_i, \Delta) \Rightarrow^* (\Phi'_i, \Delta)$  tel que  $\{x = t, y = t\} \subseteq \Phi'_i$

$$\frac{\langle V \parallel \Delta \parallel \Gamma \parallel \dots, \Phi_i, \dots \rangle}{\langle V \parallel \Delta \parallel \Gamma \parallel \dots, \Phi'_i, \dots \rangle} \qquad (\Delta, \Phi) \Rightarrow (\Delta, \Phi')$$

## Règle de déduction efficace

On implante  $\Delta$  comme une structure *union-find* et on note  $\Delta(x)$  le représentant de la variable x.

Grâce à la normalisation des états, les égalités entre variables peuvent alors être détectées par une simple inspection dans la structure de donnée.

$$\frac{\mathsf{TDeduct}}{\langle V \parallel \Delta \parallel \Gamma \parallel \ldots, \Phi_i \cup \{x = a, y = a\}, \ldots \rangle}$$
$$\frac{\langle V \parallel \Delta \cup \{x = y\} \parallel \Gamma \parallel \ldots, \Phi_i \cup \{x = a, y = a\}, \ldots \rangle}{\langle V \parallel \Delta \cup \{x = y\} \parallel \Gamma \parallel \ldots, \Phi_i \cup \{x = a, y = a\}, \ldots \rangle}$$

$$\Delta(x) \neq \Delta(y)$$

### Règle de déduction efficace : correction

### Theorem (Correction)

Le système reste correct si Deduct est remplacé par Norm et TDeduct.

#### Démonstration.

① Les propriétés de terminaison et d'équi-satisfiabilité de ⇒ permettent clairement d'ajouter sans risque ces deux règles dans le système.

## Règle de déduction efficace : correction

### Theorem (Correction)

Le système reste correct si Deduct est remplacé par Norm et TDeduct.

#### Démonstration.

- Les propriétés de terminaison et d'équi-satisfiabilité de ⇒ permettent clairement d'ajouter sans risque ces deux règles dans le système.
- ② Maintenant, si C peut être réduite par Deduct pour produire l'égalité x = y alors, en appliquant suffisamment la règle Norm on obtient une configuration C' telle que, d'après la propriété de complétude de ⇒, l'égalité x = y peut également être déduite par TDeduct à partir de C'. La règle Deduct peut donc être supprimée du système.



# Normalisation pour les théories libres

On étend la notation  $\Delta(x)$  aux termes  $\Delta(t)$ .

Si  $T_i$  est une théorie libre, on supposera qu'après le mécanisme d'abstraction par variable les ensembles  $\Phi_i$  sont de la forme x=y ou  $x=f(y_1,\ldots,y_k)$  où les  $y_i$  sont des variables. Alors, **Norm** = **Subst**, où

Subst
$$\frac{\langle V \parallel \Delta \parallel \Gamma \parallel \dots, \Phi_i \uplus \{x = t\}, \dots \rangle}{\langle V \parallel \Delta \parallel \Gamma \parallel \dots, \Phi_i \cup \{x = \Delta(t)\}, \dots \rangle}$$

$$t \neq \Delta(t)$$

### Theorem (Correction)

Les propriétés de terminaison et d'equi-satisfiabilité sont évidentes. La preuve de complétude est équivalent à la preuve de complétude de l'algorithme de congruence closure

Une théorie de **Shostak** est une théorie **convexe** équipée d'un **canonizer** et d'un **solver**.

Definition (Canonizer 
$$\sigma \colon T_{\Sigma}(X) \longrightarrow T_{\Sigma}(X)$$
)

Une théorie de **Shostak** est une théorie **convexe** équipée d'un **canonizer** et d'un **solver**.

# Definition (Canonizer $\sigma \colon T_{\Sigma}(X) \longrightarrow T_{\Sigma}(X)$ )

Une théorie de **Shostak** est une théorie **convexe** équipée d'un **canonizer** et d'un **solver**.

# Definition (Canonizer $\sigma \colon T_{\Sigma}(X) \longrightarrow T_{\Sigma}(X)$ )

Une théorie de **Shostak** est une théorie **convexe** équipée d'un **canonizer** et d'un **solver**.

# Definition (Canonizer $\sigma \colon T_{\Sigma}(X) \longrightarrow T_{\Sigma}(X)$ )

- **3** Chaque variable apparaissant dans  $\sigma(u)$  apparaît également dans u

Une théorie de **Shostak** est une théorie **convexe** équipée d'un **canonizer** et d'un **solver**.

# Definition (Canonizer $\sigma \colon T_{\Sigma}(X) \longrightarrow T_{\Sigma}(X)$ )

- **3** Chaque variable apparaissant dans  $\sigma(u)$  apparaît également dans u
- **1** Si  $\sigma(u) = u$  alors  $\sigma(v) = v$  pour chaque sous-terme v de u

Une théorie de **Shostak** est une théorie **convexe** équipée d'un **canonizer** et d'un **solver**.

# Definition (Canonizer $\sigma \colon T_{\Sigma}(X) \longrightarrow T_{\Sigma}(X)$ )

Un canonizer est un algorithme qui satisfait le conditions suivantes :

- **3** Chaque variable apparaissant dans  $\sigma(u)$  apparaît également dans u
- **3** Si  $\sigma(u) = u$  alors  $\sigma(v) = v$  pour chaque sous-terme v de u

De tels canonizers existent pour de nombreuses théories utilisées dans la preuve de programmes.

# Équations : solutions générales

### Exemples:

$$x^{2} + y^{2} = 1 \qquad \Longrightarrow \qquad \begin{cases} x = \cos(t) \\ y = \sin(t) \end{cases}$$

$$\operatorname{car}(x) = \operatorname{cdr}(\operatorname{car}(y)) \qquad \Longrightarrow \qquad \begin{cases} x = \cos(t, u) \\ y = \cos((\cos(v, t), w)) \end{cases}$$

Une solution générale d'une équation  $u(x_1, ..., x_k) = v(x_1, ..., x_k)$  est un ensemble d'équations

$$x_1 = t_1, \dots, x_k = t_k$$
 où  $y_1, \dots, y_m$  sont les variables des  $t_i$ 

tel que 
$$\mathcal{T} \models u = v \longleftrightarrow (\exists y_1 \dots y_m) (x_1 = t_1 \land \dots \land x_k = t_k)$$

### Solvers

### Definition (Solver)

Un **solver** pour une théorie  $\mathcal{T}$  prend en entrée une équation u = v (avec  $x_1, \ldots, x_k$  ses variables), vérifie si l'équation est  $\mathcal{T}$ -satisfiable, et si c'est le cas, retourne sa **solution générale** :

$$x_1 = t_1, \ldots, x_k = t_k$$

telle que les variables  $x_i$  n'apparaissant pas dans les termes  $t_j$ .

Exemples de théories équipées de solvers :

- R<sup>+</sup> (pivot de Gauss)
- 2 La théorie des types algébriques
- L'algèbre Booléenne
- etc.

Si  $\mathcal{T}$  est une théorie de **Shostak**, on fait en sorte que  $\Phi$  ait la forme

$$\{x_1=t_1,\ldots,x_k=t_k\}$$

et que les variables  $x_1, \ldots, x_k$  n'apparaissent pas dans les termes  $t_i$ .

Si  $\mathcal{T}$  est une théorie de **Shostak**, on fait en sorte que  $\Phi$  ait la forme

$$\{x_1=t_1,\ldots,x_k=t_k\}$$

et que les variables  $x_1, \ldots, x_k$  n'apparaissent pas dans les termes  $t_j$ .

### Exemple

 $oldsymbol{0}$  Supposons que  $\Phi$  soit de la forme

$${x_1 = u - v, x_2 = 2v - u, x_3 = 2u - v, x_4 = 2v}$$

et que 
$$\Delta = \{x_1 = x_2\}$$
.

Si  $\mathcal T$  est une théorie de **Shostak**, on fait en sorte que  $\Phi$  ait la forme

$$\{x_1=t_1,\ldots,x_k=t_k\}$$

et que les variables  $x_1, \ldots, x_k$  n'apparaissent pas dans les termes  $t_j$ .

### Exemple

Supposons que Φ soit de la forme

$${x_1 = u - v, x_2 = 2v - u, x_3 = 2u - v, x_4 = 2v}$$

et que 
$$\Delta = \{x_1 = x_2\}$$
.

**2** Résolvons  $x_1 = x_2$  pour u, v: la solution générale est u = 3t, v = 2t.

Si  $\mathcal{T}$  est une théorie de **Shostak**, on fait en sorte que  $\Phi$  ait la forme

$$\{x_1=t_1,\ldots,x_k=t_k\}$$

et que les variables  $x_1, \ldots, x_k$  n'apparaissent pas dans les termes  $t_j$ .

### Exemple

Supposons que Φ soit de la forme

$${x_1 = u - v, x_2 = 2v - u, x_3 = 2u - v, x_4 = 2v}$$

et que 
$$\Delta = \{x_1 = x_2\}$$
 .

- **2** Résolvons  $x_1 = x_2$  pour u, v: la solution générale est u = 3t, v = 2t.
- **3** On remplace alors u et v dans  $\Phi$  et on canonize les parties droites.
- **1** On obtient  $\Phi'_i = \{x_1 = t, x_2 = t, x_3 = 4t, x_4 = 4t\}$ .

Si  $\mathcal{T}$  est une théorie de **Shostak**, on fait en sorte que  $\Phi$  ait la forme

$$\{x_1=t_1,\ldots,x_k=t_k\}$$

et que les variables  $x_1,\ldots,x_k$  n'apparaissent pas dans les termes  $t_j$ .

### Exemple

Supposons que Φ soit de la forme

$${x_1 = u - v, x_2 = 2v - u, x_3 = 2u - v, x_4 = 2v}$$

et que 
$$\Delta = \{x_1 = x_2\}$$
 .

- **2** Résolvons  $x_1 = x_2$  pour u, v: la solution générale est u = 3t, v = 2t.
- **3** On remplace alors u et v dans  $\Phi$  et on canonize les parties droites.
- **1** On obtient  $\Phi'_i = \{x_1 = t, x_2 = t, x_3 = 4t, x_4 = 4t\}$ .
- **3** On peut alors appliquer la règle **TDeduct** qui infère que  $x_3 = x_4$ .

Si  $T_i$  est une théorie de **Shostak** équipée d'un *canonizer* canon<sub>i</sub> et d'un *solver* solve<sub>i</sub>, alors

#### $Norm = Canon \oplus Solve$

est une fonction de normalisation correcte, où

$$\frac{\mathsf{Canon}}{\langle V \ [ \ \Delta \ [ \ \Gamma \ [ \ \dots, \Phi_i \uplus \{x = a\}, \dots \rangle}{\langle V \ [ \ \Delta \ [ \ \Gamma \ [ \ \dots, \Phi_i \cup \{x = \mathsf{canon}_i(a)\}, \dots \rangle}$$

$$a \neq \mathsf{canon}_i(a)$$

$$\frac{ \langle V \parallel \Delta \parallel \Gamma \parallel \dots, \Phi_i \cup \{x = a, y = b\}, \dots \rangle}{\langle V \parallel \Delta \parallel \Gamma \parallel \dots, (\Phi_i \cup \{x = a, y = b\} \cup \mathsf{solve}(a = b))^2, \dots \rangle}$$

$$\Delta(x) = \Delta(y)$$
 et  $a \neq b$  et  $a = b$  est  $\mathcal{T}_i$ -satisfiable