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Introduction

Notation. I use Greek letters for functions, lower case letters for elements,
capital letters for sets and cursive letters for sets of sets. Thus I write: “let s be
an element of a semigroup S and let P(S) be the set of subsets of S”. I write
functions on the left and transformations and actions on the right.

I use the term morphism for homomorphism. Alphabets are usually denoted
by A or B and letters by a, b, c, . . .
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Chapter I

Algebraic preliminaries

1 Subsets, relations and functions

1.1 Sets

The set of subsets of a set E is denoted by P(E) (or sometimes 2E). The
positive Boolean operations on P(E) comprise union and intersection. The
Boolean operations also include complementation. The complement of a subset
X of E is denoted by Xc.

We denote by |E| the number of elements of a finite set E, also called the
size of E. A singleton is a set of size 1. We shall frequently identify a singleton
{s} with its unique element s.

1.2 Relations

Let E and F be two sets. A relation on E and F is a subset of E×F . If E = F ,
it is simply called a relation on E. A relation can also be viewed as a function1

from E into P(F ) by setting, for each x ∈ E,

τ(x) = {y ∈ F | (x, y) ∈ τ}

By abuse of language, we say that τ is a relation from E into F .
The inverse of a relation τ ⊆ E × F is the relation τ−1 ⊆ F ×E defined by

τ−1 = {(y, x) ∈ F × E | (x, y) ∈ E × F}

Note that if τ is a relation from E in F , the relation τ−1 can be also viewed as
a function from F into P(E) defined by

τ−1(y) = {x ∈ E | y ∈ τ(x)}

A relation from E into F can be extended into a function from P(E) into P(F )
by setting, for each subset X of E,

τ(X) =
⋃

x∈X

τ(x) = {y ∈ F | for some x ∈ X , (x, y) ∈ τ}

1Functions are formally defined in the next section, but we assume the reader is already

familiar with this notion.
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If Y is a subset of F , we then have

τ−1(Y ) =
⋃

y∈Y

τ−1(y) = {x ∈ E | there exists y ∈ Y such that y ∈ τ(x)}

= {x ∈ E | τ(x) ∩ Y 6= ∅}

Example 1.1 Let τ be the relation from E = {1, 2, 3} into F = {1, 2, 3, 4}
defined by τ = {(1, 1), (1, 2), (2, 1), (2, 3), (2, 4)}.

E

1

2

3

F

1

2

3

4

Figure 1.1. The relation τ .

Then τ(1) = {1, 2}, τ(2) = {1, 3, 4}, τ(3) = ∅, τ−1(1) = {1, 2}, τ−1(2) = {1},
τ−1(3) = {2}, τ−1(4) = {2}.

Given two relations τ1 : E → F and τ2 : F → G, we denote by τ1τ2 or by τ2 ◦ τ1
the composition of τ1 and τ2, which is the relation from E into G defined by

τ2 ◦ τ1(x) = {z ∈ G | there exists y ∈ F such that y ∈ τ1(x) and z ∈ τ2(y)}

1.3 Functions

A (partial) function ϕ : E → F is a relation on E and F such that for every
x ∈ E, there exists one and only one (in the case of a partial function, at most
one) element y ∈ F such that (x, y) ∈ ϕ. When this y exists, it is denoted by
ϕ(x). The set

Dom(ϕ) = {x ∈ E | there exists y ∈ F such that (x, y) ∈ ϕ}

is called the domain of ϕ. A function of domain E is sometimes called a total
function or a mapping from E into F . The set

Im(ϕ) = {y ∈ F | there exists x ∈ E such that (x, y) ∈ ϕ}

is called the range or the image of ϕ. Given a set E, the identity mapping on
E is the mapping IdE : E → E defined by IdE(x) = x for all x ∈ E.

A mapping ϕ : E → F is called injective if, for every u, v ∈ E, ϕ(u) = ϕ(v)
implies u = v. It is surjective if, for every v ∈ F , there exists u ∈ E such
that v ∈ ϕ(u). It is bijective if it is simultaneously injective and surjective. For
instance, the identity mapping IdE(x) is bijective.
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Proposition 1.1 Let ϕ : E → F be a mapping. Then ϕ is surjective if and
only if there exists a mapping ψ : F → E such that ϕ ◦ ψ = IdF .

Proof. If there exists a mapping ψ with these properties, we have ϕ(ψ(x)) = x
for all x ∈ E and thus ϕ is surjective. Conversely, suppose that ϕ is surjective.
For each element y ∈ F , select an element ψ(y) in the nonempty set ϕ−1(y).
This defines a mapping ψ : F → E such that ϕ ◦ ψ(y) = y for all y ∈ F .

A consequence of Proposition 1.1 is that surjective maps are right cancellative
(the definition of a right cancellative map is transparent, but if needed, a formal
definition is given in Section II.1.2).

Corollary 1.2 Let ϕ : E → F be a surjective mapping and let α and β be two
mappings from F into G. If α ◦ ϕ = β ◦ ϕ, then α = β.

Proof. By Proposition 1.1, there exists a mapping ψ : F → E such that ϕ◦ψ =
IdF . Therefore α ◦ ϕ = β ◦ ϕ implies α ◦ ϕ ◦ ψ = β ◦ ϕ ◦ ψ, whence α = β.

Proposition 1.3 Let ϕ : E → F be a mapping. Then ϕ is injective if and only
if there exists a mapping ψ : Im(ϕ) → E such that ψ ◦ ϕ = IdE.

Proof. Suppose there exists a mapping ψ with these properties. Then ϕ is
injective since the condition ϕ(x) = ϕ(y) implies ψ ◦ ϕ(x) = ψ ◦ ϕ(y), that is,
x = y. Conversely, suppose that ϕ is injective. Define a mapping ψ : Im(ϕ) → E
by setting ψ(y) = x, where x is the unique element of E such that ϕ(x) = y.
Then ψ ◦ ϕ = IdE by construction.

It follows that injective maps are left cancellative.

Corollary 1.4 Let ϕ : F → G be an injective mapping and let α and β be two
mappings from E into F . If ϕ ◦ α = ϕ ◦ β, then α = β.

Proof. By Proposition 1.3, there exists a mapping ψ : Im(ϕ) → E such that
ψ◦ϕ = IdF . Therefore ϕ◦α = ϕ◦β implies ψ◦ϕ◦α = ψ◦ϕ◦β, whence α = β.

We come to a standard property of bijective maps.

Proposition 1.5 If ϕ : E → F is a bijective mapping, there exists a unique
bijective mapping from F to E, denoted by ϕ−1, such that ϕ ◦ ϕ−1 = IdF and
ϕ−1 ◦ ϕ = IdE .

Proof. Since ϕ is bijective, for each y ∈ F there exists a unique x ∈ E such that
ϕ(x) = y. Thus the condition ϕ−1 ◦ ϕ = IdE requires that x = ϕ−1(ϕ(x)) =
ϕ−1(y). This insures the unicity of the solution. Now, the mapping ϕ−1 : F →
E defined by ϕ−1(y) = x, where x is the unique element such that ϕ(x) = y,
clearly satisfies the two conditions ϕ ◦ ϕ−1 = IdF and ϕ−1 ◦ ϕ = IdE .
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The mapping ϕ−1 is called the inverse of ϕ.
It is clear that the composition of two injective (resp. surjective) mappings

is injective (resp. surjective). A partial converse to this result is given in the
next proposition.

Proposition 1.6 Let α : E → F and β : F → G be two mappings and let
γ = β ◦ α be their composition.

(1) If γ is injective, then α is injective. If furthermore α is surjective, then β
is injective.

(2) If γ is surjective, then β is surjective. If furthermore β is injective, then
α is surjective.

Proof. (1) Suppose that γ is injective. If α(x) = α(y), then β(α(x)) = β(α(y)),
whence γ(x) = γ(y) and x = y since γ is injective. Thus α is injective. If,
furthermore, α is surjective, then it is bijective and, by Proposition 1.5, γ◦α−1 =
β ◦ α ◦ α−1 = β. It follows that β is the composition of the two injective maps
γ and α−1 and hence is injective.

(2) Suppose that γ is surjective. Then for each z ∈ G, there exists x ∈ E
such that γ(x) = z. It follows that z = β(α(x)) and thus β is surjective. If,
furthermore, β is injective, then it is bijective and, by Proposition 1.5, β−1 ◦γ =
β−1 ◦ β ◦α = α. It follows that α is the composition of the two surjective maps
β−1 and γ and hence is surjective.

The next result is extremely useful.

Proposition 1.7 Let E and F be two finite sets such that |E| = |F | and let
ϕ : E → F be a function. The following conditions are equivalent:

(1) ϕ is injective,

(2) ϕ is surjective,

(3) ϕ is bijective.

Proof. Clearly it suffices to show that (1) and (2) are equivalent. If ϕ is injec-
tive, then ϕ induces a bijection from E onto ϕ(E). Thus |E| = |ϕ(E)| 6 |F | =
|E|, whence |ϕ(E)| = |F | and ϕ(E) = F since F is finite.

Conversely, suppose that ϕ is surjective. By Proposition 1.1, there exists a
mapping ψ : F → E such that ϕ ◦ ψ = IdF . Since ψ is injective by Proposition
1.6, and since we have already proved that (1) implies (2), ψ is surjective. It
follows by Proposition 1.6 that ϕ is injective.

1.4 Injective and surjective relations

The notions of surjective and injective functions can be extended to relations as
follows. A relation τ : E → F is surjective if, for every v ∈ F , there exists u ∈ E
such that v ∈ τ(u). It is called injective if, for every u, v ∈ E, τ(u) ∩ τ(v) 6= ∅
implies u = v. The next three propositions provide equivalent definitions.

Proposition 1.8 A relation is injective if and only if it is the inverse of a
partial function.
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Proof. Let τ : E → F be a relation. Suppose that τ is injective. If y1, y2 ∈ τ(x),
then x ∈ τ−1(y1) ∩ τ−1(y2) and thus y1 = y2 since τ is injective. Thus τ−1 is a
partial function.

Suppose now that τ is a partial function. If τ(x) ∩ τ(y) 6= ∅, there exists
some element c in τ(x)∩τ(y). It follows that x, y ∈ τ−1(c) and thus x = y since
τ−1 is a partial function.

Proposition 1.9 Let τ : E → F be a relation. Then τ is injective if and only
if, for every X,Y ⊆ E, X ∩ Y = ∅ implies τ(X) ∩ τ(Y ) = ∅.

Proof. Suppose that τ is injective and let X and Y be two disjoint subsets of
E. If τ(X) ∩ τ(Y ) 6= ∅, then τ(x) ∩ τ(y) 6= ∅ for some x ∈ X and y ∈ Y . Since
τ is injective, it follows x = y and hence X ∩ Y 6= ∅, a contradiction. Thus
X ∩ Y = ∅.

If the condition of the statement holds, then it can be applied in particular
when X and Y are singletons, say X = {x} and Y = {y}. Then the condition
becomes x 6= y implies τ(x) ∩ τ(y) = ∅, that is, τ is injective.

Proposition 1.10 Let τ : E → F be a relation. The following conditions are
equivalent:

(1) τ is injective,

(2) τ−1 ◦ τ = IdDom(τ),

(3) τ−1 ◦ τ ⊆ IdE .

Proof. (1) implies (2). Suppose that τ is injective and let y ∈ τ−1 ◦ τ(x). By
definition, there exists z ∈ τ(x) such that y ∈ τ−1(z). Thus x ∈ Dom(τ) and
z ∈ τ(y). Now, τ(x) ∩ τ(y) 6= ∅ and since τ is injective, x = y. Therefore
τ−1 ◦ τ ⊆ IdDom(τ). But if x ∈ IdDom(τ), there exists by definition y ∈ τ(x) and
thus x ∈ τ−1 ◦ τ(x). Thus τ−1 ◦ τ = IdDom(τ).
(2) implies (3) is trivial.
(3) implies (2). Suppose that τ−1 ◦ τ ⊆ IdE and let x, y ∈ E. If τ(x) ∩ τ(y)
contains an element z, then z ∈ τ(x), z ∈ τ(y) and y ∈ τ−1(z), whence y ∈
τ−1 ◦ τ(x). Since τ−1 ◦ τ ⊆ IdE , it follows that y = x and thus τ is injective.

Proposition 1.10 has two useful consequences.

Corollary 1.11 Let τ : E → F be a relation. The following conditions are
equivalent:

(1) τ is a partial function,

(2) τ ◦ τ−1 = IdIm(τ),

(3) τ ◦ τ−1 ⊆ IdF .

Proof. The result follows from Proposition 1.10 since, by Proposition 1.8, τ is
a partial function if and only if τ−1 is injective.

Corollary 1.12 Let τ : E → F be a relation. Then τ is a surjective partial
function if and only if τ ◦ τ−1 = IdF .
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Proof. Suppose that τ is a surjective partial function and let y ∈ F . Then y =
τ(x) for some x ∈ E and thus y ∈ τ(τ−1(y)). Furthermore, if y′ ∈ τ(τ−1(y)),
then y′ = τ(x′) for some x′ ∈ τ−1(y). It follows that τ(x′) = y and thus y = y′.
Thus τ ◦ τ−1 = IdF .

Conversely, if τ ◦ τ−1 = IdF , then τ is a partial function by Corollary 1.11.
Let y ∈ F . Then y ∈ τ ◦ τ−1(y) and thus y = τ(x) for some x ∈ τ−1(y).
Therefore τ is surjective.

Corollary 1.12 is often used under the following form.

Corollary 1.13 Let α : F → G and β : E → F be two functions and let
γ = α ◦ β. If β is surjective, the relation γ ◦ β−1 is equal to α.

Proof. Indeed, γ = α ◦ β implies γ ◦ β−1 = α ◦ β ◦ β−1. Now, by Corollary
1.12, β ◦ β−1 = IdF . Thus γ ◦ β−1 = α.

It is clear that the composition of two injective (resp. surjective) relations
is injective (resp. surjective). Proposition 1.6 can be also partially adapted to
relations.

Proposition 1.14 Let α : E → F and β : F → G be two relations and let
γ = β ◦ α be their composition.

(1) If γ is injective, then α is injective. If furthermore α is a surjective partial
function, then β is injective.

(2) If γ is surjective, then β is surjective. If furthermore β is injective of
domain F , then α is surjective.

Proof. (1) Suppose that γ is injective. If α(x) ∩ α(y) 6= ∅, there exists an
element z ∈ α(x) ∩ α(y). Let t ∈ β(z). Then t ∈ β(α(x)) ∩ β(α(y)), whence
γ(x) = γ(y) and x = y since γ is injective. Thus α is injective.

If furthermore α is a surjective partial function, then by Proposition 1.8,
α−1 is an injective relation and by Corollary 1.12, α ◦ α−1 = IdF . It follows
that γ ◦ α−1 = β ◦ α ◦ α−1 = β. Thus β is the composition of the two injective
relations γ and α−1 and hence is injective.

(2) Suppose that γ is surjective. Then for each z ∈ G, there exists x ∈ E
such that z ∈ γ(x). Thus there exists y ∈ α(x) such that z ∈ β(y), which shows
that β is surjective.

Suppose that β is injective of domain F or, equivalently, that β−1 is a
surjective partial map. Then by Proposition 1.10, β−1 ◦ β = IdF . It follows
that β−1 ◦ γ = β−1 ◦ β ◦ α = α. Therefore α is the composition of the two
surjective relations β−1 and γ and hence is surjective.

Proposition 1.15 Let E,F,G be three sets and α : G → E and β : G → F
be two functions. Suppose that α is surjective and that, for every s, t ∈ G,
α(s) = α(t) implies β(s) = β(t). Then the relation β ◦ α−1 : E → F is a
function.

Proof. Let x ∈ E. Since α is surjective, there exists y ∈ G such that α(y) = x.
Setting z = β(y), one has z ∈ β ◦ α−1(x).
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E F

G

α

β ◦ α−1

β

Let z′ ∈ β ◦α−1(x). Then z′ = β(y′) for some y′ ∈ α−1(x). Thus α(y′) = x and
since α(y) = α(y′), the condition of the statement implies that β(y) = β(y′).
Thus z = z′, which shows that β ◦ α−1 is a function.

1.5 Relations and set operations

We gather in this section three elementary properties of relations. The first
two propositions can be summarized by saying that “union commutes with
relations”, “Boolean operations commute with inverses of functions”, “union,
intersection and set difference commute with injective relations”. The last one
is a more subtle property of surjective partial functions.

Proposition 1.16 Let τ : E → F be a relation. Then for every X,Y ⊆ E, the
relation τ(X ∪ Y ) = τ(X) ∪ τ(Y ) holds.

Proof. It follows immediately from the definition:

τ(X ∪ Y ) =
⋃

z∈X∪Y

τ(x) =
( ⋃

z∈X

τ(x)
)
∪

( ⋃

z∈Y

τ(x)
)

= τ(X) ∪ τ(Y ).

Proposition 1.17 Let τ : E → F be an injective relation. Then, for every
X,Y ⊆ E, the following relations hold:

τ(X ∪ Y ) = τ(X)∪ τ(Y ) τ(X ∩ Y ) = τ(X) ∩ τ(Y ) τ(X \ Y ) = τ(X) \ τ(Y ).

Proof. The first formula follows from Proposition 1.16.
It follows from the inclusion X∩Y ⊆ X that τ(X ∩Y ) ⊆ τ(X) and similarly

τ(X ∩ Y ) ⊆ τ(Y ). Thus τ(X ∩ Y ) ⊆ τ(X) ∩ τ(Y ). Now, if z ∈ τ(X) ∩ τ(Y ),
then z ∈ τ(x) ∩ τ(y) for some x ∈ X and y ∈ Y . But since τ is injective, it
follows x = y and thus z ∈ τ(X ∩ Y ). Thus τ(X) ∩ τ(Y ) ⊆ τ(X ∩ Y ), which
proves the second relation.

The first relation gives τ(X \ Y ) ∪ τ(Y ) = τ(X ∪ Y ). Thus

τ(X) \ τ(Y ) ⊆ τ(X ∪ Y ) \ τ(Y ) ⊆ τ(X \ Y )

Furthermore, τ(X \ Y ) ⊆ τ(X) and since τ is injective, τ(X \ Y )∩ τ(Y ) = ∅ by
Proposition 1.9. Thus τ(X\Y ) ⊆ τ(X)\τ(Y ) and finally τ(X\Y ) = τ(X)\τ(Y ),
which proves the third relation.

More precise results hold for inverse of functions on the one hand, and for
surjective partial functions on the other hand.
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Proposition 1.18 Let ϕ : E → F be a function. Then, for every X,Y ⊆ F ,
the following relations hold:

ϕ−1(X ∪ Y ) = ϕ−1(X) ∪ ϕ−1(Y )

ϕ−1(X ∩ Y ) = ϕ−1(X) ∩ ϕ−1(Y )

ϕ−1(Xc) = (ϕ−1(X))c.

Proof. By Proposition 1.8, the relation ϕ−1 is injective and thus Proposition
1.17 gives the first two formulas. The third one relies on the fact that ϕ−1(F ) =
E. Indeed, the third property of Proposition 1.17 gives ϕ−1(Xc) = ϕ−1(F\X) =
ϕ−1(F ) \ ϕ−1(X) = E \ ϕ−1(X) = (ϕ−1(X))c.

Proposition 1.19 Let ϕ : E → F be a surjective partial function. Then for
every X ⊆ E and Y ⊆ F , the following relations hold:

ϕ(X) ∩ Y = ϕ(X) ∩ ϕ
(
ϕ−1(Y )

)
= ϕ

(
X ∩ ϕ−1(Y )

)

Proof. By Corollary 1.12, ϕ ◦ ϕ−1 = IdF . It follows that ϕ(X) ∩ Y = ϕ(X) ∩
ϕ
(
ϕ−1(Y )

)
. Furthermore, ϕ

(
X ∩ ϕ−1(Y )

)
⊆ ϕ(X) ∩ ϕ

(
ϕ−1(Y )

)
. Finally, if

y ∈ ϕ(X) ∩ Y , then y = ϕ(x) for some x ∈ X and since y ∈ Y , x ∈ ϕ−1(Y ).
It follows that ϕ(X) ∩ Y ⊆ ϕ

(
X ∩ ϕ−1(Y )

)
, which concludes the proof.

2 Ordered sets

If R is a relation on E, two elements x and y of E are said to be related by R
if (x, y) ∈ R, which is also denoted by x R y.

A relation R is reflexive if, for each x ∈ E, x R x, symmetric if, for each
x, y ∈ E, x R y implies y R x, antisymmetric if, for each x, y ∈ E, x R y and
y R x imply x = y and transitive if, for each x, y, z ∈ E, x R y and y R z
implies x R z.

A relation is a preorder if it is reflexive and transitive, an order (or partial
order) if it is reflexive, transitive and antisymmetric and an equivalence relation
(or an equivalence) if it is reflexive, transitive and symmetric. If R is a preorder,
the relation ∼ defined by x ∼ y if and only if x R y and y R x is an equivalence
relation, called the equivalence relation associated with R.

Relations are ordered by inclusion. More precisely, if R1 and R2 are two
relations on a set S, R1 refines R2 (or R1 is thinner than R2, or R2 is coarser
than R1) if and only if, for each s, t ∈ S, s R1 t implies s R2 t. Equality is
thus the thinnest equivalence relation and the universal relation, in which all
elements are related, is the coarsest. The following property is obvious.

Proposition 2.1 Any intersection of preorders (resp. equivalence relations) is
a preorder (resp. an equivalence relation).

It follows that, given a set R of relations on a set E, there is a smaller
preorder (resp. equivalence relation) containing all the relations of E. This
relation is called the preorder (resp. equivalence relation) generated by R.
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An order ideal of an ordered set (E,6) is a subset I of E such that, if x 6 y
and y ∈ I, then x ∈ I. The order ideal generated by an element x is the set ↓x
of all y ∈ E such that y 6 x. The intersection (resp. union) of any family of
order ideals is also an order ideal.



14 CHAPTER I. ALGEBRAIC PRELIMINARIES



Chapter II

Semigroups

1 Semigroups, monoids and groups

1.1 Semigroups, monoids

Let S be a set. A binary operation on S is a mapping from S × S into S. The
image of (x, y) under this mapping is often denoted by xy and is called the
product of x and y. In this case, it is convenient to call multiplication the binary
operation. Sometimes, the additive notation x + y is adopted, the operation is
called addition and x+ y denotes the sum of x and y.

An operation on S is associative if, for every x, y, z in S, (xy)z = x(yz). It
is commutative, if, for every x, y in S, xy = yx.

An element 1 of S is called an identity element or simply identity or unit for
the operation if, for all x ∈ S, x1 = x = 1x. It is easy to see there can be at
most one identity, which is then called the identity. Indeed if 1 and 1′ are two
identities, one has simultaneously 11′ = 1′, since 1 is a identity, and 11′ = 1,
since 1′ is a identity, whence 1 = 1′.

A semigroup is a pair consisting of a set S and an associative binary operation
on S. A semigroup is a pair, but we shall usually say that S is a semigroup and
assume its binary operation is known. A monoid is a triple consisting of a set
M , an associative binary operation on M and an identity for this operation.

The dual semigroup of a semigroup S, denoted by S̃, is the semigroup defined
on the set S by the operation ∗ given by s ∗ t = ts.

A semigroup (resp. monoid, group) is said to be commutative if its operation
is commutative.

If S is a semigroup, S1 denotes the monoid equal to S if S is a monoid,
and to S ∪ {1} if S is not a monoid. In the latter case, the operation of S is
completed by the rules

1s = s1 = s

for each s ∈ S1.

1.2 Special elements

Being idempotent, zero and cancellable are the three important properties of
an element of a semigroup defined in this section. We also define the notion

15
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of semigroup inverse of an element. Regular elements, which form another
important category of elements, will be introduced in Section V.3.2.

Idempotents

Let S be a semigroup. An element e of S is an idempotent if e = e2. The set of
idempotents of S is denoted by E(S). We shall see later that idempotents play
a fundamental role in the study of finite semigroups.

An element e of S is a right identity (resp. left identity) of S if, for all
s ∈ S, se = s (resp. es = s). Observe that e is an identity if and only if it
is simultaneously a right and a left identity. Furthermore, a right (resp. left)
identity is necessarily idempotent. The following elementary result illustrates
these notions.

Proposition 1.1 (Simplification lemma) Let S be a semigroup. Let s ∈ S
and e, f be idempotents of S1. If s = esf , then es = s = sf .

Proof. If s = esf , then es = eesf = esf = s and sf = esff = esf = s.

Zeros

An element e is said to be a zero (resp. right zero, left zero) if, for all s ∈ S,
es = e = es (resp. se = e, es = e).

Proposition 1.2 A semigroup has at most one zero element.

Proof. Assume that e and e′ are zero elements of a semigroup S. Then by
definition, e = ee′ = e′ and thus e = e′.

If S is a semigroup, we denote by S0 the semigroup obtained from S by
addition of a zero: the support of S0 is the disjoint union of S and the singleton1

0 and the multiplication (here denoted ∗) is defined by

s ∗ t =

{
st if s, t ∈ S

0 if s = 0 or t = 0.

A semigroup is called null if it has a zero and if the product of two elements is
always zero.

Cancellative elements

An element s of a semigroup S is said to be right cancellative (resp. left can-
cellative) if, for every x, y ∈ S, the conditions xs = ys (resp. sx = sy) imply
x = y. It is cancellative if it is simultaneously right and left cancellative.

A semigroup S is right cancellative (resp. left cancellative, cancellative) if
all its elements are right cancellative (resp. left cancellative, cancellative).

1A singleton {s} will also be denoted by s.
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Inverses

We have to face a slight terminological problem with the notion of inverse. In
group theory, and elsewhere in mathematics, an inverse is defined as follows.
Given an element x of a monoid M , a right inverse (resp. left inverse) of x is
an element x′ such that xx′ = 1 (resp. x′x = 1). An inverse of x is an element
x′ which is simultaneously a right and left inverse of x, so that xx′ = x′x = 1.

Semigroup theorists have introduced a different notion with the same name.
Given an element x of a semigroup S, an element x′ is an inverse of x if xx′x = x
and x′xx′ = x′.

Usually, the context will permit to clarify which definition is understood.
If some ambiguity subsists, the term group inverse will be used for the first
definition (xx′ = x′x = 1), and semigroup inverse for the latter one (xx′x = x
and x′xx′ = x′). It is clear that any group inverse is a semigroup inverse but
the converse is not true. A thorough study of semigroup inverses is given in
Section V.3.

1.3 Groups

A monoid is a group if each of its elements has a group inverse. A slightly weaker
condition can be given.

Proposition 1.3 A monoid is a group if and only if each of its elements has a
right inverse and a left inverse.

Proof. In a group, every element has a right inverse and a left inverse. Con-
versely, let G be a monoid in which every element has a right inverse and a left
inverse. Let g ∈ G, let g′ (resp. g′′) be a right (resp. left) inverse of g. Thus,
by definition, gg′ = 1 and g′′g = 1. It follows that g′′ = g′′(gg′) = (g′′g)g′ = g′.
Thus g′ = g′′ is an inverse of g. Thus G is a group.

For finite groups, this result can be further strengthened as follows:

Proposition 1.4 A finite monoid G is a group if and only if every element of
G has a left inverse.

Proof. Let G be a finite monoid in which every element has a left inverse.
Given an element g ∈ G, consider the map ϕ : G → G defined by ϕ(x) = gx.
We claim that ϕ is injective. Suppose that gx = gy for some x, y ∈ G and let
g′ be the left inverse of g. Then g′gx = g′gy, that is x = y, proving the claim.
Since G is finite, Proposition I.1.7 shows that ϕ is also surjective. In particular,
there exists an element g′′ ∈ G such that 1 = gg′′. Thus every element of G has
a right inverse and by Proposition 1.3, G is a group.

Proposition 1.5 A group is a cancellative monoid. In a group, every element
has a unique inverse.

Proof. Let G be a group. Let g, x, y ∈ G and let g′ be an inverse of g. If
gx = gy, then g′gx = g′gy, that is x = y. Similarly, xg = yg implies x = y
and thus G is cancellative. In particular, if g′ and g′′ are two inverses of g,
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gg′ = gg′′ and thus g′ = g′′. Thus every element has a unique inverse.

In a group, the unique inverse of an element x is denoted by x−1. Thus xx−1 =
x−1x = 1. It follows that the equation gx = h (resp. xg = h) has a unique
solution: x = g−1h (resp. x = hg−1).

1.4 Ordered semigroups and monoids

An ordered semigroup is a semigroup S equipped with an order relation 6 on
S which is compatible with the product: for every x, y ∈ S, for every u, v ∈ S1

x 6 y implies uxv 6 uyv.
The notation (S,6) will sometimes be used to emphasize the role of the

order relation, but most of the time the order will be implicit and the notation
S will be used for semigroups as well as for ordered semigroups. If (S,6) is an
ordered semigroup, then (S,>) is also an ordered semigroup, called the dual of
S. Ordered monoids are defined analogously.

1.5 Examples

We give successively some examples of semigroups, monoids, groups and ordered
monoids.

Examples of semigroups

(1) The set N+ of positive integers is a commutative semigroup for the usual
addition of integers. It is also a commutative semigroup for the usual
multiplication of integers.

(2) Let I and J be two nonempty sets. Define an operation on I × J by
setting, for every (i, j), (i′, j′) ∈ I × J ,

(i, j)(i′, j′) = (i, j′)

This defines a semigroup, usually denoted by B(I, J).

(3) Let n be a positive integer. Let Bn be the set of all matrices of size n× n
with zero-one entries and at most one nonzero entry. Equipped with the
usual multiplication of matrices, Bn is a semigroup. For instance,

B2 =

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
,

(
0 0
0 0

)}

This semigroup is nicknamed the universal counterexample because it pro-
vides many counterexamples in semigroup theory. Setting a = ( 0 1

0 0 )
and b = ( 0 0

1 0 ), one gets ab = ( 1 0
0 0 ), ba = ( 0 0

0 1 ) and 0 = ( 0 0
0 0 ). thus

B2 = {a, b, ab, ba, 0}. Furthermore, the relations aa = bb = 0, aba = a and
bab = b suffice to recover completely the multiplication in B2.

(4) Let S be a set. Define an operation on S by setting st = s for every s ∈ S.
Then every element of S is a left zero, and S forms a left zero semigroup.

(5) Let S be the semigroup of matrices of the form
(
a 0
b 1

)
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where a and b are positive rational numbers, under matrix multiplication.
We claim that S is a cancellative semigroup without identity. Indeed,
since (

a 0
b 1

) (
x 0
y 1

)
=

(
ax 0

bx+ y 1

)

it follows that if
(
a 0
b 1

) (
x1 0
y1 1

)
=

(
a 0
b 1

) (
x2 0
y2 1

)

then ax1 = ax2 and bx1+y1 = bx2+y2, whence x1 = x2 and y1 = y2, which
proves that S is left cancellative. The proof that S is right cancellative is
dual.

(6) If S is a semigroup, the set P(S) of subsets of S is also a semigroup, for
the multiplication defined, for every X,Y ∈ P(S), by

XY = {xy | x ∈ X, y ∈ Y }

Examples of monoids

(1) The trivial monoid, denoted by 1, consists of a single element, the identity.

(2) The set N of nonnegative integers is a commutative monoid for the ad-
dition, whose identity is 0. It is also a commutative monoid for the max
operation, whose identity is also 0 and for the multiplication, whose iden-
tity is 1.

(3) The monoid U1 = {1, 0} defined by its multiplication table 1 ∗ 1 = 1 and
0 ∗ 1 = 0 ∗ 0 = 1 ∗ 0 = 0.

(4) More generally, for each nonnegative integer n, the monoid Un is defined
on the set {1, a1, . . . , an} by the multiplication aiaj = aj for each i, j ∈
{1, . . . , n} and 1ai = ai1 = ai for 1 6 i 6 n.

(5) The monoid Ũn has the same underlying set as Un, but the multiplication
is defined in the opposite way: aiaj = ai for each i, j ∈ {1, . . . , n} and
1ai = ai1 = ai for 1 6 i 6 n.

(6) The monoid B1
2 is obtained from the semigroup B2 by adding an identity.

Thus B1
2 = {1, a, b, ab, ba, 0} where aba = a, bab = b and aa = bb = 0.

(7) The bicyclic monoid is the monoid M = {(i, j) | (i, j) ∈ N2} under the
operation

(i, j)(i′, j′) = (i+ i′ − min(j, i′), j + j′ − min(j, i′))

Examples of groups

(1) The set Z of integers is a commutative group for the addition, whose
identity is 0.

(2) The set Z/nZ of integers modulo n, under addition is also a commutative
group.

(3) The set of 2× 2 matrices with entries in Z and determinant ±1 is a group
under the usual multiplication of matrices. This group is denoted by
SL2(Z).
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Examples of ordered monoids

(1) Every monoid can be equipped with the equality order, which is compati-
ble with the product. It is actually often convenient to consider a monoid
M as the ordered monoid (M,=).

(2) The natural order on nonnegative integers is compatible with addition and
with the max operation. Thus (N,+,6) and (N,max,6) are both ordered
monoids.

(3) The monoid U1 = {1, 0} can be ordered by setting 0 6 1.

1.6 Morphisms

On a general level, a morphism between two algebraic structures is a map pre-
serving the operations. Therefore a semigroup morphism is a map ϕ from a
semigroup S into a semigroup T such that, for every s1, s2 ∈ S,

(1) ϕ(s1s2) = ϕ(s1)ϕ(s2).

Similarly, a monoid morphism is a map ϕ from a monoid S into a monoid T
satisfying (1) and

(2) ϕ(1) = 1.

A morphism of ordered monoids is a map ϕ from an ordered monoid (S,6) into
a monoid (T,6) satisfying (1), (2) and, for every s1, s2 ∈ S such that s1 6 s2,

(3) ϕ(s1) 6 ϕ(s2).

Formally, a group morphism between two groups S and T is a monoid mor-
phism ϕ satisfying, for every s ∈ S, ϕ(s−1) = ϕ(s)−1. In fact, this condition
follows from (1) and (2) since ϕ(s−1)ϕ(s) = ϕ(ss−1) = ϕ(1) = 1 and similarly
ϕ(s)ϕ(s−1) = ϕ(s−1s) = ϕ(1) = 1.

The semigroups (or monoids), together with the morphisms defined above,
form a category. We shall encounter in Chapter X another interesting cate-
gory whose objects are semigroups and whose morphisms are called relational
morphisms.

A morphism ϕ : S → T is an isomorphism if there exists a morphism ψ :
T → S such that ϕ ◦ ψ = IdT and ψ ◦ ϕ = IdS .

Proposition 1.6 In the category of semigroups (resp. monoids, groups), a
morphism is an isomorphism if and only if it is bijective.

Proof. If ϕ : S → T an isomorphism, then ϕ is bijective since there exists a
morphism ψ : T → S such that ϕ ◦ ψ = IdT and ψ ◦ ϕ = IdS .

Suppose now that ϕ : S → T is a bijective morphism. Then ϕ−1 is a
morphism from T into S, since, for each x, y ∈ T ,

ϕ(ϕ−1(x)ϕ−1(y)) = ϕ(ϕ−1(x))ϕ(ϕ−1(y)) = xy

Thus ϕ is an isomorphism.

Proposition 1.6 does not hold for morphisms of ordered monoids. In partic-
ular, if (M,6) is an ordered monoid, the identity induces a bijective morphism
from (M,=) onto (M,6) which is not in general an isomorphism. In fact, a
morphism of ordered monoids ϕ : M → N is an isomorphism if and only if ϕ is
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a bijective monoid morphism and, for every x, y ∈M , x 6 y is equivalent with
ϕ(x) 6 ϕ(y).

Two semigroups (monoids, ordered monoids) are isomorphic if there exists
an isomorphism from one to the other. As a general rule, we shall identify two
isomorphic semigroups.

2 Basic algebraic structures

2.1 Subsemigroups

A subsemigroup of a semigroup S is a subset T of S such that s1 ∈ T and s2 ∈ T
imply s1s2 ∈ T . A submonoid of a monoid is a subsemigroup containing the
identity. A subgroup of a group is a submonoid containing the inverse of each
of its elements.

A subsemigroup G of a semigroup S is said to be a group in S if there is
an idempotent e ∈ G such that G, under the operation of S, is a group with
identity e.

Proposition 2.1 Let ϕ : S → T be a semigroup morphism. If S′ is a subsemi-
group of S, then ϕ(S′) is a subsemigroup of T . If T ′ is a subsemigroup of T ,
then ϕ−1(T ′) is a subsemigroup of S.

Proof. Let t1, t2 ∈ ϕ(S′). Then t1 = ϕ(s1) and t2 = ϕ(s2) for some s1, s2 ∈ S′.
Since S′ is a subsemigroup of S, s1s2 ∈ S′ and thus ϕ(s1s2) ∈ ϕ(S′). Now since
ϕ is a morphism, ϕ(s1s2) = ϕ(s1)ϕ(s2) = t1t2. Thus t1t2 ∈ ϕ(S′) and ϕ(S′) is
a subsemigroup of T .

Let s1, s2 ∈ ϕ−1(T ′). Then ϕ(s1), ϕ(s2) ∈ T ′ and since T ′ is a subsemigroup
of T , ϕ(s1)ϕ(s2) ∈ T ′. Since ϕ is a morphism, ϕ(s1)ϕ(s2) = ϕ(s1s2) and thus
s1s2 ∈ ϕ−1(T ′). Therefore ϕ−1(T ′) is a subsemigroup of S.

Proposition 2.1 can be summarized as follows: substructures are preserved
by morphisms and by inverse morphisms. A similar statement holds for monoid
morphisms and for group morphims.

Given a subset R of a semigroup S, the subsemigroup of S generated by R is
the smallest subsemigroup of S containing R. Is is denoted by 〈R〉 and consists
of all products r1 · · · rn of elements of R. If S is a monoid, the submonoid
generated by R is defined in a similar way, but it always contains the identity of
S. Finally, if S is a group, the subgroup generated by R is the smallest subgroup
of S containing R. It consists of all products of the form r1 · · · rn, where each
ri is either an element of R or the inverse of an element of R.

A semigroup (resp. monoid, group) is called monogenic if it is generated by
a single element.

2.2 Quotients, divisions and products

Let S and T be two semigroups (resp. monoids). Then T is a quotient of S
if there exists a surjective morphism from S onto T . Finally, a semigroup S
divides a semigroup T (notation S 4 T ) and if S is quotient of a subsemigroup
of T .
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Proposition 2.2 The division relation is transitive.

Proof. Suppose that S1 4 S2 4 S3. Then there exists a subsemigroup T1

of S2, a subsemigroup T2 of S3 and surjective morphisms π1 : T1 → S1 and
π2 : T2 → S2. Put T = π−1

2 (T1). Then T is a subsemigroup of S3 and S1

is a quotient of T since π1(π2(T )) = π1(T1) = S1. Thus S1 divides S3.

The next proposition shows that division is a partial order on finite semigroups,
up to isomorphism.

Proposition 2.3 Two finite semigroups that divide each other are isomorphic.

Proof. We keep the notation of the proof of Proposition 2.2, with S3 = S1.
Since T1 is a subsemigroup of S2 and T2 is a subsemigroup of S1, one has |T1| 6

|S2| and |T2| 6 |S1|. Furthermore, since π1 and π2 are surjective, |S1| 6 |T1|
and |S2| 6 |T2|. It follows that |S1| = |T1| = |S2| = |T2|, whence T1 = S2

and T2 = S1. Furthermore, π1 and π2 are bijections and thus S1 and S2 are
isomorphic.

Given a family (Si)i∈I of semigroups (resp. monoids), the product Πi∈ISi is
the semigroup (monoid) defined on the cartesian product of the sets Si by the
operation

(si)i∈I(s
′
i)i∈I = (sis

′
i)i∈I

Note that the monoid 1 is the identity for the product of semigroups (resp.
monoids). Following an usual convention, which can also be justified in the
framework of category theory, we put

∏
i∈∅ Si = 1.

Given a family (Mi)i∈I of ordered monoids, the product
∏

i∈I Mi is naturally
equipped with the order

(si)i∈I 6 (s′i)i∈I if and only if, for all i ∈ I, si 6 s′i.

The resulting ordered monoid is the product of the ordered monoids (Mi)i∈I .

2.3 Ideals

Let S be a semigroup. A right ideal of S is a subset R of S such that RS ⊆ R.
Thus R is a right ideal if, for each r ∈ R and s ∈ S, rs ∈ R. Symmetrically, a
left ideal is a subset L of S such that SL ⊆ L. An ideal is a subset of S which
is simultaneously a right and a left ideal.

Observe that a subset I of S is an ideal if and only if, for every s ∈ I and
x, y ∈ S1, xsy ∈ I. Here, the use of S1 instead of S allows to include the cases
x = 1 and y = 1, which are necessary to recover the conditions SI ⊆ S and
SI ⊆ I. Slight variations on the definition are therefore possible:

(1) R is a right ideal if and only if RS1 ⊆ R or, equivalently, RS1 = R,

(2) L is a left ideal if and only if S1L ⊆ L or, equivalently, S1L = L,

(3) I is an ideal if and only if S1IS1 ⊆ I or, equivalently, S1IS1 = I.

Note that any intersection of ideals (resp. right ideals, left ideals) of S is again
an ideal (resp. right ideal, left ideal).
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Let R be a subset of a semigroup S. The ideal (resp. right ideal, left ideal)
generated by R is the set S1RS1 (resp. RS1, S1R). It is the smallest ideal (resp.
right ideal, left ideal) containing R. An ideal (resp. right ideal, left ideal) is
called principal if it is generated by a single element. Note that the ideal (resp.
right ideal, left ideal) generated by an idempotent e is equal to SeS (resp. eS,
Se). Indeed, the equality S1eS1 = SeS follows from the fact that e = eee.

Ideals are stable under surjective morphisms and inverse of morphisms.

Proposition 2.4 Let ϕ : S → T be a semigroup morphism. If J is an ideal of
T , then ϕ−1(J) is a subsemigroup of S. Furthermore, if ϕ is surjective and I
is an ideal of S, then ϕ(I) is an ideal of T . Similar results apply to right and
left ideals.

Proof. If J is an ideal of T , then

S1ϕ−1(I)S1 ⊆ ϕ−1(T 1)ϕ−1(J)ϕ−1(T 1) ⊆ ϕ−1(T 1JT 1) ⊆ ϕ−1(J)

Thus ϕ−1(J) is an ideal of S.
Suppose that ϕ is surjective. If I is an ideal of S, then

T 1ϕ(I)T 1 = ϕ(S1)ϕ(I)ϕ(S1) = ϕ(S1IS1) = ϕ(I)

Thus ϕ(I) is an ideal of T .

Let, for 1 6 k 6 n, Ik be an ideal of a semigroup S. The set

I1I2 · · · In = {s1s2 · · · sn | s1 ∈ I1, s2 ∈ I2, . . . , sn ∈ Sn}

is the product of the ideals I1, . . . , In.

Proposition 2.5 The product of the ideals I1, . . . , In is an ideal contained in
their intersection.

Proof. Since I1 and In are ideals, S1I1 = I1 and InS
1 = In. Therefore

S1(I1I2 · · · In)S1 = (S1I1)I2 · · · (InS
1) = I1I2 · · · In

and thus I1I2 · · · In is an ideal. Furthermore, for 1 6 k 6 n, I1I2 · · · In ⊆
S1IkS

1 = Ik. Thus I1I2 · · · In is contained in
⋂

16k6n Ik.

A nonempty ideal I of a semigroup S is called minimal if, for every nonempty
ideal J of S, J ⊆ I implies J = I.

Proposition 2.6 A semigroup has at most one minimal ideal.

Proof. Let I1 and I2 be two minimal ideals of a semigroup S. Then by Propo-
sition 2.5, I1I2 is a nonempty ideal of S contained in I1 ∩ I2. Now since I1 and
I2 are minimal ideals, I = I1 = I2.

The existence of a minimal ideal is assured in two important cases, namely
if S is finite or if S possesses a zero. In the latter case, 0 is the minimal ideal. A
nonempty ideal I 6= 0 such that, for every nonempty ideal J of S, J ⊆ I implies
J = 0 or J = I is called a 0-minimal ideal. It should be noted that a semigroup
may have several 0-minimal ideals as shown in the next example.

Example 2.1 Let S = {s, t, 0} be the semigroup defined by xy = 0 for every
x, y ∈ S. Then 0 is the minimal ideal of S and {s, 0} and {t, 0} are two 0-minimal
ideals.
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2.4 Simple and 0-simple semigroups

A semigroup S is called simple if its only ideals are ∅ and S. It is called 0-simple
if it has a zero, denoted by 0, if S2 6= 0 and if ∅, 0 and S are its only ideals. The
notions of right simple, right 0-simple, left simple and left 0-simple semigroups
are defined analogously.

Lemma 2.7 Let S be a 0-simple semigroup. Then S2 = S.

Proof. Since S2 is a nonempty, nonzero ideal, one has S2 = S.

Proposition 2.8

(1) A semigroup S is simple if and only if SsS = S for every s ∈ S.

(2) A semigroup S is 0-simple if and only if S 6= ∅ and SsS = S for every
s ∈ S \ 0.

Proof. We shall prove only (2), but the proof of (1) is similar.

Let S be a 0-simple semigroup. Then S2 = S by Lemma 2.7 and hence
S3 = S.

Let I be set of the elements s of S such that SsS = 0. This set is an ideal of
S containing 0 but not equal to S, since

⋃
s∈S SsS = S3 = S. Therefore I = 0.

In particular, if s 6= 0, then SsS 6= 0, and since SsS is an ideal of S, it follows
that SsS = S.

Conversely, if S 6= ∅ and SsS = S for every s ∈ S \0, we have S = SsS ⊆ S2

and therefore S2 6= 0. Furthermore, if J is a nonzero ideal of S, it contains an
element s 6= 0. We then have S = SsS ⊆ SJS = J , whence S = J . Therefore
S is 0-simple.

The structure of simple semigroups will be detailed in Section V.4.

2.5 Congruences

A semigroup congruence is a stable equivalence relation. Thus an equivalence
relation ∼ on a semigroup S is a congruence if, for each s, t ∈ S and u, v ∈ S1,
we have

s ∼ t implies usv ∼ utv.

The set S/∼ of equivalence classes of the elements of S is naturally equipped
with a structure of semigroup, and the function which maps every element onto
its equivalence class is a semigroup morphism from S onto S/∼. Four particular
cases of congruences are extensively used.

(a) Rees congruence

Let I be an ideal of a semigroup S and let ≡I be the equivalence relation
identifying all the elements of I and separating the other elements. Formally,
s ≡I t if and only if s = t or s, t ∈ I. Then ≡I is a congruence called the
Rees congruence of I. The quotient of S by ≡I is usually denoted by S/I. The
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support of this semigroup is the set (S \ I) ∪ 0 and the multiplication (here
denoted ∗) is defined by

s ∗ t =

{
st if s, t ∈ S \ I

0 if s = 0 or t = 0.

(b) Syntactic congruence

Let P be a subset of a semigroup S. The syntactic congruence of P is the
congruence ∼P over S defined by s ∼P t if and only if, for every x, y ∈ S1,

xsy ∈ P ⇐⇒ xty ∈ P

This congruence is particularly important in the theory of formal languages.

(c) Congruence generated by a relation

Let R be a relation on S, that is, a subset of S×S. The set of all congruences
containing R is nonempty since it contains the universal relation S×S. Further,
it is closed under intersection. It follows that the intersection of all congruences
containing R is a congruence, called the congruence generated by R.

The proposition below gives a more constructive definition.

Proposition 2.9 The congruence generated by a relation R on a semigroup S
is the reflexive-transitive closure of the relation {(xry, xsy) | (r, s) ∈ R}.

Proof. TO DO.

(d) Nuclear congruence

For each semigroup morphism ϕ : S → T , the equivalence ∼ϕ defined on S by

x ∼ϕ y if and only if ϕ(x) = ϕ(y)

is a congruence. This congruence, called the nuclear congruence of ϕ, has the
following standard property.

Proposition 2.10 (First isomorphism theorem) Let ϕ : S → T be a mor-
phism of semigroups and let π : S → S/∼ϕ be the quotient morphism. Then
there exists a unique semigroup morphism ϕ̄ : S/∼ϕ → T such that ϕ = ϕ̄ ◦ π.
Moreover, ϕ̄ is an isomorphism from S/∼ϕ onto ϕ(S).

Proof. The situation is summed up in the following diagram:

S/∼ϕ T

S

π

ϕ̃

ϕ



26 CHAPTER II. SEMIGROUPS

Unicity is clear: if s is the ∼ϕ-class of some element x, then necessarily

ϕ̃(s) = ϕ(x) (2.1)

Furthermore, if x and y are arbitrary elements of s, then ϕ(x) = ϕ(y). Therefore,
there is a well-defined function ϕ̃ defined by Formula (2.1). Moreover, if π(x1) =
s1 and π2(x2) = s2, then π(x1x2) = s1s2, whence

ϕ̃(s1)ϕ̃(s2) = ϕ(x1)ϕ(x2) = ϕ(x1x2) = ϕ̃(s1s2)

Therefore ϕ̃ is a morphism. We claim that ϕ̃ is injective. Indeed, suppose that
ϕ̃(s1) = ϕ̃(s2), and let x1 ∈ π−1(s1) and x2 ∈ π−1(s2). Then ϕ(x1) = ϕ(x2)
and thus x1 ∼ϕ x2. It follows that π(x1) = π(x2), that is, s1 = s2. Thus ϕ̄
induces an isomorphism from S/∼ϕ onto ϕ(S).

When two congruences are comparable, the quotient structures associated
with them can also be compared.

Proposition 2.11 (Second isomorphism theorem) Let ∼1 and ∼2 be two
congruences on a semigroup S and π1 (resp. π2) the canonical morphism from
S onto S/∼1 (resp. S/∼2). If ∼2 is coarser than ∼1, there exists a unique
surjective morphism π : S/∼1 → S/∼2 such that π ◦ π1 = π2.

Proof. Since π ◦ π1 = π2, Corollary I.1.13 shows that π is necessarily equal to
the relation π2 ◦ π

−1
1 . Furthermore, Proposition I.1.15 shows that this relation

is actually a function.
Since π1 and π2 are morphisms,

π(π1(s)π1(t)) = π(π1(st)) = π2(st) = π2(s)π2(t) = π(π1(s))π(π1(t))

and thus π is a morphism.

Proposition 2.12 Let S be a semigroup, (∼i)i∈I be a family of congruences
on S and ∼ be the intersection of these congruences. Then the semigroup S/∼
is isomorphic to a subsemigroup of the product

∏
i∈I S/∼i.

Proof. Denote by πi : S → S/∼i the projections and by π : S →
∏

i∈I S/∼i the
morphism defined by π(s) = (πi(s))i∈I for every s ∈ S. The nuclear congruence
of π is equal to ∼, and thus, by Proposition 2.10, S/∼ is isomorphic to π(S).

3 Transformation semigroups

3.1 Definitions

A transformation on a set P is a map from P into itself. A permutation is a
bijective transformation.

Let P be a set and S be a semigroup. A right action from S on P is a map
P × S → P , denoted (p, s) 7→ p· s, such that, for each s, t ∈ S and p ∈ P ,

(p· s)· t = p· (st)
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This condition implies that one may use the notation p· st in the place of (p· s)· t
or p· (st) without any ambiguity. We will follow this convention in the sequel.

An action is faithful if the condition

for all p ∈ P , p· s = p· t

implies s = t. A transformation semigroup on P is a semigroup S equipped
with a faithful action of S on P .

Given an action of S on P , the relation ∼ defined on S by s ∼ t if and only
if

for all p ∈ P , p· s = p· t

is a congruence on S and the action of S on P induces a faithfull action of S/∼
on P . The resulting transformation semigroup (P, S/∼) is called the transfor-
mation semigroup induced by the action of S on P .

Example 3.1 Each semigroup S defines a transformation semigroup (S1, S),
given by the faithful action q · s = qs.

Example 3.2 With each finite set R, one can associate a transformation semi-
group (R,R) defined by the action r· s = s for every r, s ∈ R. In particular, if
R = {1, . . . , n}, this transformation semigroup is usually denoted by n̄.

A transformation semigroup (P, S) is said to be fixpoint-free if, for every
p ∈ P and every s ∈ S,

p · s = p implies s = s2.

For instance, translations of the plane form a fixpoint-free transformation semi-
group.

3.2 Full transformation semigroup and symmetric group

The full transformation semigroup on a set P is the semigroup T(P ) of all trans-
formations on P . If P = {1, . . . , n}, the notation Tn is also used. According
to the definition of a transformation semigroup, the product of two transforma-
tions α and β is the transformation αβ defined by p· (αβ) = (p·α)·β. At this
stage, the reader should be warned that the product αβ is not equal to α ◦ β,
but to β ◦ α. In other words, the operation on T(P ) is reverse composition.

The symmetric group on a set P is the group S(P ) of all permutations on
P . If P = {1, . . . , n}, the notation Sn is also used.

The importance of these examples stems from the following embedding re-
sults.

Proposition 3.1 Every semigroup S is isomorphic to a subsemigroup of T(S1).
In particular, every finite semigroup is isomorphic to a subsemigroup of Tn for
some n.

Proof. Let S be a semigroup. We associate with each element s of S the
transformation on S1, also denoted by s, and defined, for each q ∈ S1, by
q · s = qs. This defines an injective morphism from S into T(S1) and thus S is
isomorphic to a subsemigroup of T(S1).

A similar proof leads to the following result, known as Cayley theorem.
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Theorem 3.2 (Cayley theorem) Every group G is isomorphic to a subgroup
of S(G). In particular, every finite group is isomorphic to a subgroup of Sn for
some n.

3.3 Product and division

Let (Pi, Si)i∈I be a family of transformation semigroups. The product of this
family is the transformation semigroup (

∏
i∈I Pi,

∏
i∈I Si). The action is defined

componentwise:
(pi)i∈I · (si)i∈I = (pi · si)i∈I .

A transformation semigroup (P, S) divides a transformation semigroup (Q, T )
if there exists a surjective partial function π : Q → P and, for every s ∈ S, an
element ŝ ∈ T , called a cover of s, such that, for each q ∈ Dom(π), π(q)· s =
π(q · ŝ). The chosen terminology is justified by the following result.

Proposition 3.3 If (P, S) divides (Q, T ), then S divides T . If S divides T ,
then (S1, S) divides (T 1, T ).

Proof. If (P, S) divides (Q, T ), there exists a surjective partial function π : Q→
P such that every element s ∈ S has at least one cover. Furthermore, if ŝ1 is a
cover of s1 and ŝ2 is a cover of s2, then ŝ1ŝ2 is a cover of s1s2, since, for each
q ∈ Dom(π),

π(q)· s1s2 = π(q · ŝ1)· s2 = π((q · ŝ1)· ŝ2) = π(q · ŝ1ŝ2).

Therefore, the set of all covers of elements of S form a subsemigroup R of T .
Furthermore, if two elements s1 and s2 have the same cover ŝ, then, for each
q ∈ Dom(π),

π(q)· s1 = π(q · ŝ) = π(q)· s2

Since π is surjective and the action of S is faithful, it follows s1 = s2. Therefore,
there is a well-defined map π : ŝ→ s from R onto S and this map is a morphism.

Suppose now that S divides T . Then there exists a subsemigroup R of
T and a surjective morphism π from R onto S, which can be extended to a
surjective partial function from T 1 onto S1, by setting π(1) = 1 if R is not a
monoid. For each s ∈ S, choose an element ŝ ∈ π−1(s). Then, for every q ∈ R1,
π(q · ŝ) = π(q)s and thus (S1, S) divides (T 1, T ).

4 Free semigroups

Let A be a set called an alphabet, whose elements are called letters. A finite
sequence of elements of A is called a finite word on A, or just a word. We denote
by mere juxtaposition

a0a1 · · ·an

the sequence (a0, a1, . . . , an). The set of words is endowed with the operation
of concatenation product also called product, which associates with two words
x = a0a1 · · ·ap and y = b0b1 · · · bq the word xy = a0a1 · · · apb0b1 · · · bq. This
operation is associative. It has an identity, the empty word, denoted by 1 or ε
and which is the empty sequence.
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If u is a word and a a letter, we denote by |u|a the number of occurrences of
a in u. Thus, if A = {a, b} and and u = abaab, we have |u|a = 3 and |u|b = 2.
The sum

|u| =
∑

a∈A

|u|a

is the length of the word u. Thus |abaab| = 5.
We denote by A∗ the set of words on A and by A+ the set of nonempty

words. The set A∗ (resp. A+), equipped with the concatenation product is
thus a monoid with identity 1 (resp. a semigroup). The set A∗ is called the
free monoid on A and A+ the free semigroup on A. Free structures are defined
in category theory by a so-called universal property. The next proposition,
which shows that A+ (resp. A∗) satisfies this universal property, justifies our
terminology.

Proposition 4.1 If ϕ is a function from A into a semigroup (resp. monoid)
S, there exists a unique semigroup (resp. monoid) morphism ϕ̄ : A+ → S (resp.
A∗ → S) such that, for each a ∈ A, ϕ̄(a) = ϕ(a). Moreover, ϕ̄ is surjective if
and only if the set ϕ(A) generates S.

Proof. Define a mapping ϕ̄ : A+ → S by setting, for each word a0a1 · · ·an,

ϕ̄(a0a1 · · · an) = ϕ(a0)ϕ(a1) · · ·ϕ(an)

One can easily verify that ϕ̄ is the required morphism. On the other hand,
any morphism ϕ̄ such that ϕ̄(a) = ϕ(a) for each a ∈ A must satisfy these two
equalities, which shows it is unique.

By construction, the set ϕ(A) generates ϕ̄(A). Consequently, the morphism
ϕ̄ is surjective if and only if the set ϕ(A) generates S.

These results have several frequently used corollaries.

Corollary 4.2 Let S be a semigroup and let A be a subset of S generating S.
The identity map from A into S induces a morphism of semigroups from A+

onto S.

This morphism is called the natural morphism from A+ onto S.

Corollary 4.3 Let η : A+ → S be a morphism and β : T → S be surjective
morphism. Then there exists a morphism ϕ : A+ → T such that η = β ◦ ϕ.

A+ T

S

η

ϕ

β

Proof. Let us associate with each letter a ∈ A an element ϕ(a) of β−1(η(a)).
We thus define a function ϕ : A→ T , which, by Proposition 4.1, can be extended
to a morphism ϕ : A+ → T such that η = β ◦ ϕ.



30 CHAPTER II. SEMIGROUPS

5 Idempotents in finite semigroups

If S is a monogenic semigroup, generated by a single element x, the set S consists
of the successive powers of x. If S is infinite, it is isomorphic to the additive
semigroup of strictly positive integers. If S is finite, there exist integers i, p > 0
such that

xi+p = xi.

The minimal i and p with this property are called respectively the index and the
period of x. The semigroup S then has i+ p− 1 elements and its multiplicative
structure is represented in Figure 5.1.

•
x

•
x2

•
x3

. . . . . . . . . . . .xi+p = xi

•

xi+1

•
xi+2

•

xi+p−1
•

Figure 5.1. The semigroup generated by x.

The next result is a key property of finite semigroups.

Proposition 5.1 In a finite semigroup, each element has an idempotent power.

Proof. Let i and p be the index and the period of an element x. Observe that,
for k > i, xk = xk+p. In particular, if k is a multiple of p, we have

(xk)2 = x2k = xk+qp = xk

and thus xk is idempotent. In fact, it is easy to see that the subsemigroup
{xi, . . . , xi+p−1} is isomorphic to the additive group Z/pZ.

Proposition 5.1 has two important consequences.

Corollary 5.2 Every nonempty finite semigroup contains at least one idempo-
tent.

Proposition 5.3 For each finite semigroup S, there exists an integer ω such
that, for each s ∈ S, sω is idempotent.

Proof. By Proposition 5.1, every element s of S has an idempotent power sns .
Let n be the least common multiple of the ns, for s ∈ S. Then sn is idempotent
for each s ∈ S.

The least integer ω satisfying the property stated in Proposition 5.3 is called
the exponent of S.

Here is another elementary property connected with idempotents.

Proposition 5.4 Let S be a finite semigroup and let n = |S|. For every se-
quence s1, . . . , sn of n elements of S, there exists an index i ∈ {1, . . . , n} and
an idempotent e ∈ S such that s1 · · · sie = s1 · · · si.
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Proof. Consider the sequence s1, s1s2, . . . , s1 · · · sn. If these elements are all
distinct, the sequence exhausts the elements of S and one of them, say s1 · · · si,
is idempotent. The result is thus clear in this case. Otherwise, two elements of
the sequence are equal, say s1 · · · si and s1 · · · sj with i < j. Then we have

s1 · · · si = s1 · · · si(si+1 · · · sj) = s1 · · · si(si+1 · · · sj)
ω

where ω is the exponent of S. The proposition follows, since (si+1 · · · sj)
ω is

idempotent.

If S is a semigroup and n is a positive integer, we set

Sn = {s1 · · · sn | si ∈ S for 1 6 i 6 n}

Corollary 5.5 Let S be a finite semigroup and let E(S) be the set of idempo-
tents of S. Then for every n > |S|, Sn = SE(S)S.

Let us state a very useful result on finite groups.

Proposition 5.6 A nonempty subsemigroup of a finite group is a subgroup.

Proof. Let G be a finite group and let S be a nonempty subsemigroup of G.
Let s ∈ S. By Proposition 5.1, s has an idempotent power, which is necessarily
the identity of G. Thus 1 ∈ S. Consider now the map ϕ : S → S defined by
ϕ(x) = xs. It is injective, for G is right cancellative, and hence bijective by
Proposition I.1.7. Consequently, there exists an element s′ such that s′s = 1.
Thus every element has a left inverse and by Proposition 1.4, S is a group.

We already stated a combinatorial property of finite semigroups: Proposition
5.4 states that every sufficiently long sequence of elements of a finite semigroup
contains a subsequence of consecutive elements whose product is idempotent.
The proof of this result was elementary and relied mainly on the pigeon-hole
principle. We shall now present a more difficult result whose proof rests on a
celebrated combinatorial theorem, due to Ramsey, which we shall admit without
proof.

A colouring of a set E in m colours is a function from E into {1, . . . ,m}.
An r-subset of E is a subset with r elements.

Theorem 5.7 (Ramsey) Let r, k,m be integers satisfying k > r, m > 0. Then
there exists an integer N = R(r, k,m) such that for every finite set having at
least N elements and for every colouring in m colours of the r-subsets of E,
there exists a k-subset of E of which all r-subsets have the same colour.

The next result clearly generalizes Proposition 5.4.

Theorem 5.8 For each finite semigroup S, for each k > 0, there exists an
integer N > 0 such that, for every alphabet A, for every morphism ϕ : A+ →
S and for every word w of A+ of length greater than or equal to N , there
exists an idempotent e ∈ S and a factorization w = xu1 · · ·uky with x, y ∈ A∗,
u1, . . . , uk ∈ A+ and ϕ(u1) = . . . = ϕ(uk) = e.
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Proof. It suffices to prove the result for k > 2. Put N = R(2, k + 1, |S|) and
let w be a word of length greater than or equal to N . Let w = a1 · · · aNw

′,
where a1, . . . , aN are letters. We define a colouring into |S| colours of pairs of
elements of {1, . . . , N} in the following way: the colour of {i, j}, where i < j, is
the element ϕ(ai · · ·aj−1) of S. According to Ramsey’s theorem, one can find
k+1 indices i0 < i1 < · · · < ik such that all the pairs of elements of {i0, . . . , ik}
have the same colour e. Since we assume k > 2, one has in particular

ϕ(ai0 ) · · ·ϕ(ai1−1) = ϕ(ai1 ) · · ·ϕ(ai2−1) = ϕ(ai0) · · ·ϕ(ai2−1)

whereby ee = e. Thus e is idempotent and we obtain the required factor-
ization by taking x = a1 · · · ai0−1, uj = aij−1

· · ·aij−1 for 1 6 j 6 k and
y = aik

· · · aNw
′.

There are many quantifiers in the statement of Theorem 5.8, but their order
is important. In particular, the integer N does not depend on the size of A,
which can even be infinite.

Theorem 5.9 For each finite semigroup S, for each k > 0, there exists an
integer N > 0 such that, for every alphabet A, for every morphism ϕ : A+ → S
and for every word w of A+ of length greater than or equal to N , there exists
an idempotent e ∈ S and a factorization w = xu1 · · ·uky with x, y ∈ A∗, |u1| =
. . . = |uk| and ϕ(u1) = . . . = ϕ(uk) = e.

6 Exercises.

Exercice 1 Let T be a semigroup and let R and S be subsemigroups of T .
Show that R ∪ S is a subsemigroup of T if and only if ST ∪ TS is a subset of
S ∪ T .

Show that this condition is satisfied if S and T are both left ideals or both
right ideals, or if either S or T is an ideal.

Exercice 2 Let (P, S) be a transformation semigroup. Show that (P, S) divides
(P, 1P ) × (S1, S).



Chapter III

Languages and automata

This chapter is a brief overview of the theory of finite automata and formal
languages. For a complete introduction to this theory, the reader is referred to
specialised books.

There are different manners to describe a set of words, or languages. The
constructive approach consists in giving a collection of basic languages and a
set of construction rules to build new languages from previously defined ones.
The definition of rational languages, given in Section 2 is of this type. In the
descriptive approach, the words of a language are characterized by a property:
the language of words of even length, the set of binary representation of prime
numbers are examples of this approach. The machine approach is a special case
of the descriptive approach: a machine reads a word as input and decides is the
word is accepted or not. The set of words accepted by the machine defines a
language.

1 Langages

Let A be a finite alphabet. The subsets of the free monoid A∗ are called lan-
guages. For instance, if A = {a, b}, the sets {aba, babaa, bb} and {anban | n > 0}
are languages.

Several operations can be defined on languages. The Boolean operations
comprise union, complement (with respect to the set A∗ of all words), intersec-
tion and difference. Thus, if L and L′ are languages of A∗, one has:

L ∪ L′ = {u ∈ A∗ | u ∈ L ou u ∈ L′}

L ∩ L′ = {u ∈ A∗ | u ∈ L et u ∈ L′}

Lc = A∗ \ L = {u ∈ A∗ | u /∈ L}

L \ L′ = L ∩ L′c = {u ∈ A∗ | u ∈ L et u /∈ L′}.

The concatenation product of two languages L and L′ is the language

LL′ = {uu′ | u ∈ L et u′ ∈ L′}.

The concatenation product is an associative operation on the set of languages,
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which admits the language1 {1} as an identity, since one has for each language
L

{1}L = L{1} = L

Thus the languages over A∗ form a monoid for the product. Note that this
monoid is not commutative if the alphabet contains at least two letters. The
product is distributive over union, which means that, for all languages L, L1

and L2, one has
L(L1 ∪ L2) = LL1 ∪ LL2

However, it is not distributive over intersection. For instance

({b} ∩ {ba}){a, aa} = ∅{a, aa} = ∅ but

{b}{a, aa} ∩ {ba}{a, aa} = {ba, baa} ∩ {baa, baaa} = {baa}

The powers of a language can be defined like in any monoid, by setting L0 = {1},
L1 = L and by induction, Ln = Ln−1L for all n > 0.
The star of a language L, denoted by L∗, is the union of all the powers of L:

L∗ =
⋃

n>0

Ln.

The operator L+ is a variant of the star operator, obtained by considering the
union of all nonzero powers of a language:

L+ =
⋃

n>0

Ln.

Example 1.1 If L = {a, ba} the words of L+, ordered by increasing length,
are a, aa, ba, aaa, aba, baa, aaaa, aaba, abaa, baaa, baba, aaaaa, aaaba, aabaa,
abaaa, ababa, baaaa, baaba, babaa, etc.

Note that the notation A∗ (resp. A+) is compatible with the definition of the
operations L∗ and L+. Also note the following formula

∅∗ = {1}, ∅+ = ∅ and {1}∗ = {1} = {1}+.

To avoid too much parentheses, it is convenient to define precedence orders for
operators on languages, summarizes in the following table 1.1.

Operateur Priorit

L∗, Lc 1

L1L2 2

L1 ∪ L2, L1 ∩ L2 3

Table 1.1. Operation precedence table.

The unary operators L∗ and Lc have higher priority and the product has
higher priority than union and intersection.

1The language {1}, which consists of only one word, the empty word, should not be con-

fused with the empty language.



2. RATIONAL LANGUAGES 35

2 Rational languages

The set of rational (or regular) languages on A∗ is the smallest set of languages
F satisfying the following conditions:

(a) F contains the languages ∅ and {a} for each a ∈ A,

(b) F is closed under finite union, product and star (i.e., if L and L′ are
languages of F , then the languages L ∪ L′, LL′ and L∗ are also in F).

The set of rational languages of A∗ is denoted by Rat(A∗).
This definition calls for a short comment. Indeed, there is a small subtlety in the
definition, since one needs to ensure the existence of a “smallest set” satisfying
the preceding conditions. For this, first observe that the set of all languages of
A∗ satisfies the conditions (a) and (b). Further, the intersection of all the sets F
satisfying Conditions (a) and (b) again satisfies these conditions: the resulting
set is by construction the smallest set satisfying (a) and (b).

To obtain a more constructive definition, one can think of the rational lan-
guages as a kind of LEGOTM box. The basic LEGO bricks are the empty
language and the languages reduced to a single letter and three operators can
be used to build more complex languages: finite union, product and star. For
instance, it is easy to obtain a language consisting of a single word. If this
word is the empty word, one makes use of the formula ∅∗ = {1}. For a word
a1a2 · · ·an of positive length, one observes that

{a1a2 · · · an} = {a1}{a2} · · · {an}.

Finite languages can be expressed as a finite union of singletons. For instance,

{abaaba, ba, baa} = {abaaba} ∪ {ba} ∪ {baa}

Consequently, finite languages are rational and the above definition is equivalent
with the following more constructive version:

Proposition 2.1 Let F0 be the set of finite languages of A∗ and, for all n > 0,
let Fn+1 be the set of languages that can be written as K ∪ K ′, KK ′ or K∗,
where K and K ′ are languages from Fn. Then

F0 ⊆ F1 ⊆ F2 · · ·

and the union of all the sets Fn is the set of rational languages.

Example 2.1 If A = {a, b}, the language {a, ab, ba}∗ is a rational language.

Example 2.2 The set L of all words containing a given factor u is rational,
since L = A∗uA∗. Similarly, the set P of all words having the word p as a prefix
is rational since P = pA∗.

Example 2.3 The set of words of even (resp. odd) length is rational. Indeed,
this language can be written as (A2)∗ (resp. (A2)∗A).

A variant of the previous description consists in using rational expressions to
represent rational languages. Rational expressions are formal expressions (like
polynomials in algebra or terms in logic) defined recursively as follows
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(1) 0 and 1 are rational expressions,

(2) for each letter a ∈ A, a is a rational expression,

(3) if e and e′ are rational expressions, then (e ∪ e′), (ee′) and e∗ are rational
expressions.

In practice, unnecessary parentheses can be wiped out by applying the prece-
dence rules given in Table 1.1. For instance, ((0∗a)(ba)∗ ∪ (bb∗))∗ is a rational
expression that should formally be written as (((0∗a)(ba)∗) ∪ (bb∗))∗.

The value of a rational expression e, denoted by v(e), is the language rep-
resented by e. The symbol 0 represents the empty language, the symbol 1 the
language reduced to the empty word, and each symbol a the language {a}. Fi-
nally, the operators union, product and star have their natural interpretation.
Formally, one has

v(0) = ∅

v(1) = {1},

v(a) = {a} for each letter a ∈ A,

v((e ∪ e′)) = v(e) ∪ v(e′)

v((ee′)) = v(e)v(e′)

v(e∗) = (v(e))∗

Beware not to confuse the notions of rational expression and of rational lan-
guage. In particular, two rational expressions can represent the same language.
For instance, the following expressions all represent the set of all of all words
on the alphabet {a, b}.

e1 = (a ∪ b)∗, e2 = (a∗b)∗a∗, e3 = 1 ∪ (a ∪ b)(a ∪ b)∗

The difficulty raised by this example is deeper than it seems. Even if a rational
language can be represented by infinitely many different raional expressions,
one could expect to have a unique reduced expression, up to a set of simple
identities like (L∗)∗ = L∗, L ∪ K = K ∪ L or L(K ∪ K ′) = LK ∪ LK ′. In
fact, one can show there is no finite basis of identities for rational expressions:
there exist no finite set of identities permitting to deduce all identities between
rational expressions. Finding a complete infinite set of identities is already a
difficult problem that leads to unexpected developments involving finite simple
groups [5, 14].

3 Finite automata

A finite automaton (fini) is a 5-tuple A = (Q,A,E, I, F ), where Q is a finite set
called the set of states, A is an alphabet, E is a subset of Q×A×Q, called the
set of transitions, I and F are subsets of Q, called respectively the set of initial
states and the set of final states.

It is convenient to represent an automaton by a labelled graph whose vertices
are the states of the automaton and the edges represent the transitions. The
initial [final] states are pictured by incoming [outgoing] arrows.
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Example 3.1 Let A = (Q,A,E, I, F ) where Q = {1, 2}, I = {1, 2}, F = {2},
A = {a, b} and E = {(1, a, 1), (2, b, 1), (1, a, 2), (2, b, 2)}. This automaton is
represented in the diagram 3.1.

1a 2 b

a

b

Figure 3.1. An automaton.

Let (p, a, q) be a transition: p is the origin, q the end and a the label of the
transition. Two transitions (p, a, q) and (p′, a′, q′) are consecutive if q = p′. A
path in the automaton A is a finite sequence of consecutive transitions

c = (q0, a1, q1), (q1, a2, q2), . . . , (qn−1, an, qn)

also denoted by

c : q0
a1−→ q1 · · · qn−1

an−→ qn ou encore q0
a1···an−−−−−→ qn.
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Chapter IV

Recognizable and rational

sets

The notions of rational and recognizable sets are usually defined for free monoids,
under the common name of regular sets.

1 Rational subsets of a monoid

Let M be a monoid. The product of two subsets X and Y of M is the subset

XY = {xy | x ∈ X et y ∈ Y }

Union and product grant the set P(M) of subsets of M with a structure of
semiring. For this reason, we shall frequently denote the union additively, and
the empty set by 0. The identity for the multiplication is the singleton {1},
where 1 is the identity of M . Since the map m → {m} is an embedding, one
can identify M with a submonoid of the multiplicative monoid P(M). This
leads to the convenient abuse of notation consisting in denoting simply by m
the singleton {m}.

The powers of a subset X of M are defined by induction by setting X0 = 1,
X1 = X and Xn = Xn−1X for all n > 1. The star and plus operations are
defined as follows:

X∗ =
∑

n>0

Xn = 1 +X +X2 +X3 + · · ·

X+ =
∑

n>0

Xn = X +X2 +X3 + · · ·

The set of rational subsets of a monoid M is the smallest set F of subsets of M
satisfying the following conditions:

(1) F contains 0 and the singletons of P(M),

(2) F is closed under union, product and star (in other words, if X,Y ∈ F ,
then X + Y ∈ F , XY ∈ F and X∗ ∈ F).

Example 1.1 In a finite monoid, all subsets are rational.

39
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Example 1.2 The rational subsets of Nk are the semilinear sets, which are
finite unions of subsets of the form

{v0 + n1v1 + . . . nrvr | n1, . . . , nr ∈ N}

where v0, v1, ..., vr are vectors of Nk.

The rational subsets are by construction closed under union, product and
star. They are also stable under morphism.

Proposition 1.1 Let ϕ : M → N be a monoid morphism. If R is a rational
subset of M , then ϕ(R) is a rational subset of N . If further ϕ is surjective, then
for each rational subset S of M , there exists a rational subset R of M such that
ϕ(R) = S.

Proof. Denote by F the set of subsets K of M such that ϕ(K) is a rational
subset of N . The set F contains the finite sets, since, if K is finite, ϕ(K) is also
finite and hence rational. Furthermore, F is stable under union: if K and K ′ are
in F , that is, if ϕ(K) and ϕ(K ′) are rational, then ϕ(K) +ϕ(K ′) = ϕ(K +K ′)
is rational, and hence K +K ′ is in F . The proof that KK ′ and K∗ are in F is
similar but rests on the formulas

ϕ(KK ′) = ϕ(K)ϕ(K ′) and ϕ(K∗) = (ϕ(K))∗.

It follows that F contains the rational subsets of M . By the definition of F ,
this means that if L is rational, so is ϕ(L).

For the second part of the statement, assume that ϕ is surjective and consider
the set S of subsets S of N such that S = ϕ(R) for some rational subset R of M .
First observe that ∅ ∈ S since ϕ(∅) = ∅. Since ϕ is surjective, every element n
of N can be written as ϕ(m) for some m ∈M . Thus S contains the singletons.
Further, the formula

ϕ(R)ϕ(R′) = ϕ(RR′) ϕ(R+R′) = ϕ(R) + ϕ(R′) ϕ(R∗) = (ϕ(R))∗

show that S is closed under union, product and star. Consequently, S contains
the rational subsets of N , which concludes the proof.

However, the rational subsets of a monoid are not necessarily closed under
intersection, as shown by the following counterexample:

Example 1.3 Let M = a∗ × {b, c}∗. Consider the rational subsets

R = (a, b)∗(1, c)∗ = {(an, bncm) | n,m > 0}

S = (1, b)∗(a, c)∗ = {(an, bmcn) | n,m > 0}

Their intersection is

R ∩ S = {(an, bncn) | n > 0}

Let π be the projection from M onto {b, c}∗. If R∩S was rational, the language
π(R ∩ S) = {bncn | n > 0} would also be rational by Proposition 1.1. But it is
well-known that this language is not rational.
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It follows also that the complement of a rational subset is not necessarily
rational. Otherwise, the rational subsets of a monoid would be closed under
union and complement and hence under intersection.

Rational subsets are closed under direct products, in the following sense:

Theorem 1.2 Let R1 (resp. R2) be a rational subset of a monoid M1 (resp.
M2). Then R1 ×R2 is a rational subset of M1 ×M2.

Proof. Let π1 : M1 → M1 ×M2 and π2 : M2 → M1 ×M2 be the morphisms
defined by π1(m) = (m, 1) and π2(m) = (1,m). Then we have

R1 ×R2 = (R1 × {1})({1} ×R2) = π1(R1)π2(R2)

which shows, by Proposition 1.1, that R1 ×R2 is rational.

Recall that a monoid is finitely generated if it admits a finite set of generators.

Proposition 1.3 Each rational subset of a monoid M is a rational subset of a
finitely generated submonoid of M .

Proof. Consider the set R of subsets R of M that are rational subsets of a
finitely generated submonoid of M . It is clear that R contains the empty set
and the singletons, since {m} is a rational subset of m∗. If R and S are in R,
there exist some finite subsets F and G of M such that R is a rational subset of
F ∗ and S is a rational subset of G∗. It follows that R+ S and RS are rational
subsets of (F + G)∗, and R∗ is a rational subset of F ∗. Consequently, R + S,
RS and R∗ are also in R, proving that R contains the rational subsets of M .

2 Recognizable subsets of a monoid

Recognizable languages are usually defined in terms of automata. This is the
best definition from an algorithmic point of view, but it is an asymmetric notion.
It turns out that to handle the fine structure of recognizable languages, it is
more appropriate to use a more abstract definition, using monoids in place
of automata, due to Rabin and Scott [30]. Although these definitions will be
mainly used in the context of free monoids, it is as simple to give them in a
more general setting.

2.1 Recognition by morphisms

Let ϕ : M → N be a monoid morphism. A subset L of M is recognized by ϕ if
there exists a subset P of N such that

L = ϕ−1(P )

Let us start by an elementary, but useful observation:

Proposition 2.1 Let ϕ : M → N be a monoid morphism and let L be a subset
of M . The following conditions are equivalent:
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(1) L is recognized by ϕ,

(2) L is saturated by ∼ϕ,

(3) ϕ−1(ϕ(L)) = L.

Proof. (1) implies (2). If L is recognized by ϕ, then L = ϕ−1(P ) for some
subset P of N . Thus if x ∈ L and x ∼ϕ y, one has ϕ(x) ∈ P and since
ϕ(x) = ϕ(y), y ∈ ϕ−1(P ) = L. Therefore L is saturated by ∼ϕ.

(2) implies (3). Suppose that L is saturated by ∼ϕ. If x ∈ ϕ−1(ϕ(L)), there
exists y ∈ L such that ϕ(x) = ϕ(y), that is, x ∼ϕ y. It follows that x ∈ L,
which proves the inclusion ϕ−1(ϕ(L)) ⊆ L. The opposite inclusion is trivial.

(3) implies (1). Setting P = ϕ(L), one has ϕ−1(P ) = L. Thus L is recognized
by ϕ.

Note that one can always assume that ϕ is surjective. Indeed ϕ induces
a morphism from M onto ϕ(N) and Q = ϕ−1(P ∩ ϕ(M)). Furthermore, if
ϕ is surjective, Proposition I.1.19 shows that the conditions L = ϕ−1(P ) and
P = ϕ(L) are equivalent.

By extension, one also says that a monoid N recognizes a subset L of a
monoid M if there exists a monoid morphism ϕ : M → N that recognizes L.

Example 2.1 Let (T,⊕) be the commutative monoid defined on {0, 1, 2} by

x⊕ y = min{x+ y, 2}

and let ϕ be the surjective morphism form (N,+) onto T defined by ϕ(0) =
0, ϕ(1) = 1 and ϕ(n) = 2 for all n > 2. The subsets of N recognized
by ϕ are ϕ−1(∅) = ∅, ϕ−1(0) = {0}, ϕ−1(1) = {1}, ϕ−1(2) = {2, 3, . . .},
ϕ−1({0, 1}) = {0, 1}, ϕ−1({0, 2}) = {0, 2, 3, 4, . . .}, ϕ−1({1, 2}) = {1, 2, 3, 4, . . .}
and ϕ−1({0, 1, 2}) = N.

Example 2.2 Let M = B1
2 = {1, a, b, ab, ba, 0} be the multiplicative monoid

defined by the relations aba = b, bab = b, aa = bb = 0. Let A = {a, b}
and let ϕ : A∗ → M be the morphism defined by ϕ(a) = a and ϕ(b) = b.
One has ϕ−1(1) = {1}, ϕ−1(a) = (ab)∗a, ϕ−1(b) = (ba)∗b, ϕ−1(ab) = (ab)+,
ϕ−1(ba) = (ba)+ and ϕ−1(0) = A∗aaA∗ ∪A∗bbA∗.

2.2 Connection with automata

The case of the free monoid is of course the most important. In this case, our
definition is equivalent with the standard definition using automata.

Recall that a (nondeterministic) automaton is a quintuple A = (Q,A,E, I, F ),
where A denotes a finite alphabet, Q is the set of states, E is the set of transi-
tions (a subset of Q×A×Q), and I and F are the set of initial and final states,
respectively. An automaton A = (Q,A,E, I, F ) is deterministic if I is a single-
ton and if the conditions (p, a, q), (p, a, q′) ∈ E imply q = q′. An automaton is
finite if its set of states is finite.

Two transitions (p, a, q) and (p′, a′, q′) are consecutive if q = p′. A path in
A is a finite sequence of consecutive transitions

e0 = (q0, a0, q1), e1 = (q1, a1, q2), . . . , en−1 = (qn−1, an−1, qn)
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also denoted

q0
a0−→ q1

a1−→ q2 · · · qn−1
an−1

−→ qn

The state q0 is the origin of the path, the state qn is its end, and the word
x = a0a1 · · · an−1 is its label. It is convenient to have also, for each state q, an
empty path of label 1 from q to q. A path in A is successful if its origin is in I
and its end is in F . The language of A∗ recognized by A is the set of the labels
of all successful paths of A.

Automata are conveniently represented by labeled graphs, as shown in Figure
2.1. Incoming arrows indicate initial states and outgoing arrows indicate final
states.

Example 2.3 Let A = (Q,A,E, I, F ) be the automaton represented below,
with Q = {1, 2}, A = {a, b}, I = {1}, F = {2} and

E = {(1, a, 1), (1, a, 2), (2, a, 2), (2, b, 2), (2, b, 1)}.

1a 2 a, b

a

b

Figure 2.1. A nondeterministic automaton.

The path (1, a, 1)(1, a, 2)(2, b, 2) is a successful path of label aab. The path
(1, a, 1)(1, a, 2)(2, b, 1) has the same label but is unsuccessful since its end is 1.
The set of words accepted by A is aA∗, the set of all words whose first letter is
a.

The equivalence between automata and monoids is based on the following ob-
servation. Let A = (Q,A,E, I, F ) be a finite automaton. To each word u ∈ A∗,
there corresponds a relation on Q, denoted by µ(u), and defined by (p, q) ∈ µ(u)
if there exists a path from p to q with label u. It is not difficult to see that µ
is a monoid morphism from A∗ into the monoid of relations on Q. The monoid
µ(A∗) is called the transition monoid of A, denoted by M(A). For practical
computation, it can be conveniently represented as a monoid of Boolean ma-
trices of order |Q| × |Q|. In this case, µ(u) can be identified with the matrix
defined by

µ(u)p,q =

{
1 if there exists a path from p to q with label u

0 otherwise

Note that a word u is recognized by A if and only if (p, q) ∈ µ(u) for some initial
state p and some final state q. This leads to the next proposition.

Proposition 2.2 If a finite automaton recognizes a language L, then its tran-
sition monoid recognizes L.
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Example 2.4 If A = (Q,A,E, I, F ) is the automaton of example 2.3, one gets

µ(a) =

(
1 1
0 1

)
µ(b) =

(
0 0
1 1

)
µ(aa) = µ(a)

µ(ab) =

(
1 1
1 1

)
µ(ba) = µ(bb) = µ(b)

Thus the transition monoid of A is the monoid of Boolean matrices

µ(A∗) =
{(

1 0

0 1

)
,

(
0 0

1 1

)
,

(
1 1

0 1

)
,

(
1 1

1 1

)}
.

The previous computation can be simplified if A is deterministic. Indeed, in
this case, the transition monoid of A is naturally embedded into the monoid of
partial transformations on Q.

Example 2.5 Let A = {a, b} and let A be the (incomplete) deterministic au-
tomaton represented below.

1 2

a

b

Figure 2.2. A deterministic automaton.

It is easy to see that A recognizes the language A∗ \ (ab)∗. The transition
monoid M of A contains six elements which correspond to the words 1, a, b, ab,
ba and aa. Furthermore aa is a zero of S and thus can be denoted 0. The other
relations defining S are aba = a, bab = b and bb = 0.

a b aa ab ba

1 2 − − 1 −

2 − 1 − − 2

One recognizes the monoid B1
2 .

Conversely, given a monoid morphism ϕ : A∗ → M and a subset P of M , one
can build a deterministic automaton recognizing L = ϕ−1(P ) as follows. Take
the right representation of A on M defined by s· a = sϕ(a). This defines an
automaton A = (M,A,E, {1}, P ), where E = {(s, a, s· a) | s ∈ M,a ∈ A} that
recognizes L.

Example 2.6 Let ϕ : {a, b}∗ → B1
2 = {1, a, b, ab, ba, 0} be the morphism de-

fined by ϕ(a) = a and ϕ(b) = b. By applying the algorithm described above,
one gets the automaton pictured in Figure 2.3, which also recognizes (ab)∗.
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a ab

1 0

b ba

a a b

b b a

b

a

a, b

a

b

Figure 2.3. The automaton associated with ϕ.

2.3 Operations on sets

Simple operations on sets have a natural algebraic counterpart. We now study
in this order complement, intersection, union, inverse morphisms and left and
right quotients.

Proposition 2.3 Let L be a subset of the monoid M . If L is recognized ϕ :
M → N , then M \ L is also recognized by ϕ.

Proof. If L = ϕ−1(P ) then, by Proposition I.1.18, M \ L = ϕ−1(N \ P ).

For 1 6 i 6 n, let ϕi : M → Mi be a surjective monoid morphism. The
product of these morphisms is the surjective morphism

ϕ : M → Im(ϕ) ⊆M1 × · · · ×Mn

defined by ϕ(x1, . . . , xn) = (ϕ1(x1), . . . , ϕn(xn)).

Proposition 2.4 Let L1, . . . , Ln be subsets of M . If each Li is recognized by
ϕi, then the sets ∩16i6nLi and ∪16i6nLi are recognized by ϕ.

Proof. Suppose that Li = ϕ−1(Pi) for some subset Pi of Mi. The result follows
immediately from the two formulas

⋂

16i6n

Li = ϕ−1(P1 × · · · × Pn)

⋃

16i6n

Li = ϕ−1
( ⋃

16i6n

M1 × · · · ×Mi−1 × Pi ×Mi+1 × · · · ×Mn

)

Proposition 2.5 Let η : R →M and ϕ : M → N be two surjective morphisms
of monoids. If ϕ recognizes a subset L of M , then ϕ ◦ η recognizes ϕ−1(L).
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Proof. Suppose that L = ϕ−1(P ) for some subset P of N . Then η−1(L) =
η−1(ϕ−1(P )) = (ϕ ◦ η)−1(P ). Thus ϕ ◦ η recognizes ϕ−1(L).

Recall that, for each subset X of S and for each element s of M , the left
(resp. right) quotient s−1X (resp. Xs−1) of X by s is defined as follows:

s−1X = {t ∈ S | st ∈ X} and Xs−1 = {t ∈ S | ts ∈ X}

More generally, for any subset K of M , the left (resp. right) quotient K−1X
(resp. XK−1) of X by K is

K−1X =
⋃

s∈K

s−1X = {t ∈ S | there exists s ∈ K such that st ∈ X}

XK−1 =
⋃

s∈K

Xs−1 = {t ∈ S | there exists s ∈ K such that ts ∈ X}

Proposition 2.6 Let ϕ : M → N be a surjective morphism of monoids. If ϕ
recognizes a subset L of M , it also recognizes K−1L and LK−1 for every subset
K of M .

Proof. Suppose that L = ϕ−1(P ) for some subset P of N , and let R = ϕ(K).
We claim that ϕ−1(R−1P ) = K−1L. Indeed, one has the following sequence of
equivalent statements:

m ∈ ϕ−1(R−1P ) ⇐⇒ ϕ(m) ∈ R−1P

⇐⇒ there exists r ∈ R such that rϕ(m) ∈ P

⇐⇒ there exists k ∈ K such that ϕ(k)ϕ(m) ∈ P

⇐⇒ there exists k ∈ K such that km ∈ ϕ−1(P )

⇐⇒ there exists k ∈ K such that km ∈ L

⇐⇒ m ∈ K−1L

Thus ϕ recognizes K−1L. A similar proof works for LK−1.

2.4 Recognizable sets

A subset of a monoid is recognizable if it is recognized by a finite monoid. We
denote by Rec(M) the set of recognizable subsets of M .

Propositions 2.4, 2.5 and 2.6 give immediately

Corollary 2.7 For any monoid M , Rec(M) is closed under Boolean operations
and left and right quotients. Further, if η : M → N is a surjective morphism,
L ∈ Rec(M) implies ϕ−1(L) ∈ Rec(N).

If M = A∗, where A is a finite alphabet, the results of Section 2.2 show that
a language is recognizable if and only if it is recognized by a finite automaton.
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2.5 Recognition by ordered monoids

We shall now slightly modify the standard definition by introducing ordered
monoids. This order occurs quite naturally and permits to distinguish between
a language and its complement.

A congruence on an ordered monoid (M,6) is a stable preorder which is
coarser than 6. In particular, the order relation 6 is itself a congruence. If
4 is a congruence on M , then the equivalence relation ∼ associated with 4 is
a congruence on M . Furthermore, there is a well-defined stable order on the
quotient set M/∼, given by

[s] 6 [t] if and only if s 4 t

Thus (M/∼,6) is an ordered monoid, also denoted M/4.
Let ϕ : M → N be a surjective morphism of ordered monoids. A subset Q

of M is recognized by ϕ if there exists an order ideal P of N such that

Q = ϕ−1(P )

This condition implies thatQ is an order ideal ofM and that ϕ(Q) = ϕ(ϕ−1(P )) =
P . By extension, a subset Q of M is said to be recognized by an ordered monoid
N if there exists a surjective morphism of ordered monoids from M onto N that
recognizes Q.

It is sometimes convenient to formulate this definition in terms of congru-
ences. Let M be an ordered monoid and let 4 a congruence on M . A subset Q
of M is said to be recognized by 4 if, for every q ∈ Q, p 4 q implies p ∈ Q. It
is easy to see that a surjective morphism of ordered monoids ϕ recognizes Q if
and only if the nuclear congruence 4ϕ recognizes Q.

2.6 Syntactic order

The syntactic congruence is one of the key notions of this chapter. Roughly
speaking, it is the monoid analog of the notion of minimal automaton. First
note that, if M is an ordered monoid, the congruence 6 recognizes every order
ideal of M . The syntactic congruence of an order ideal Q of M is the coarsest
congruence among the congruences on M that recognize Q.

Let M be an ordered monoid and let P be an order ideal of M . Define a
relation 4P on M by setting

u 4P v if and only if, for every x, y ∈M , xvy ∈ P ⇒ xuy ∈ P

One can show that the relation 4P is a congruence of ordered monoids on M
that recognizes P . This congruence is called the syntactic congruence of P in
M . The equivalence relation associated with 4P is denoted ∼P and called the
syntactic equivalence of P in M . Thus u ∼P v if and only if, for every x, y ∈M ,

xuy ∈ P ⇐⇒ xvy ∈ P

The ordered monoid M(P ) = M/4P is the syntactic ordered monoid of P , the
order relation on M(P ) the syntactic order of P and the quotient morphism ηP

from M onto M(P ) the syntactic morphism of P . The syntactic congruence is
characterized by the following property.
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Proposition 2.8 The syntactic congruence of P is the coarsest congruence that
recognizes P . Furthermore, a congruence 4 recognizes P if and only if 4P is
coarser than 4.

It is sometimes convenient to state this result in terms of morphisms:

Corollary 2.9 Let ϕ : M → N be a surjective morphism of ordered monoids
and let P be an order ideal of M . The following properties hold:

(1) The morphism ϕ recognizes P if and only if ηP factorizes through it.

(2) Let π : N → M be a surjective morphism of ordered monoids. If π ◦ ϕ
recognizes P , then ϕ recognizes P .

2.7 How to compute the syntactic monoid?

The easiest way to compute the syntactic ordered monoid of a recognizable
language L is to first compute its minimal (deterministic) automaton A =
(Q,A, · , {q0}, F ). Then the syntactic monoid of L is equal to the transition
monoid M of A and the order on S is given by s 6 t if and only if,

for every x ∈M , for every q ∈ Q, q · tx ∈ F ⇒ q · sx ∈ F

Example 2.7 Let A be the deterministic automaton of example 2.5. It is the
minimal automaton of L = A+ \ (ab)∗. The transition monoid was calculated
in the previous section. The syntactic order is given by 0 6 s for every s ∈ S.
Indeed, q· 0 = 3 ∈ F and thus, the formal implication

q· sx ∈ F ⇒ q· 0x ∈ F

holds for any q ∈ Q, s ∈ S and x ∈ S1. One can verify that there is no other
relations among the elements of S. For instance, a and ab are incomparable
since 1· aa = 3 but 1· aba = 2 /∈ F and 1· abb = 3 but 1· ab = 1 /∈ F .



Chapter V

Green’s relations and local

theory

In this chapter, all semigroups are finite.

1 Green’s relations

These fundamental equivalence relations were introduced and studied by Green
in 1951. They are now basic in the theory of semigroups.

Let S be a semigroup. We define on S four preorder relations 6R,6L,6J

and 6H as follows

s 6R t if and only if s = tu for some u ∈ S1

s 6L t if and only if s = ut for some u ∈ S1

s 6J t if and only if s = utv for some u, v ∈ S1

s 6H t if and only if s 6R t and s 6L t

These relations can be considered as a noncommutative generalisation of the
notion of multiple over the integers. For instance s 6R t if s is a right multiple
of t, in the sense that one can pass from t to s by right multiplication by some
element of S1. These definitions can be reformulated in terms of ideals as follows

s 6R t⇐⇒ sS1 ⊆ tS1

s 6L t⇐⇒ S1s ⊆ S1t

s 6J t⇐⇒ S1sS1 ⊆ S1tS1

s 6H t⇐⇒ s 6R t and s 6L t

Thus s 6J t (resp. s 6R t, s 6L t) if the ideal (resp. right ideal, left ideal)
generated by s is contained in the ideal (resp. right ideal, left ideal) generated
by t.

The equivalences associated with these four preorder relations are denoted

49
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by R, L, J and H, respectively. Therefore

s R t⇐⇒ sS1 = tS1

s L t⇐⇒ S1s = S1t

s J t⇐⇒ S1sS1 = S1tS1

s H t⇐⇒ s R t and s L t

Thus two elements s and t are R-equivalent if they generate the same right
ideal, or, equivalently, if there exist p, q ∈ S1 such that s = tp and t = sq.
The equivalence classes of the relation R are the R-classes of S. The L-classes,
J -classes and H-classes are defined in a similar way. If s is an element of S, its
R-class (resp. L-class, J -class, H-class) is denoted by R(s) (resp. L(s), J(s),
H(s)).

If K is one of the Green’s relations, we shall use the notation s <K t if s 6K t
but s 6K t. The next propositions summarize some useful properties of Green’s
relations.

Proposition 1.1 In each semigroup S, the relations 6R and R are stable on
the left and the relations 6L and L are stable on the right.

Proof. Indeed, if s 6R t, then sS1 ⊆ tS1 and thus usS1 ⊆ utS1. It follows
that us 6R ut. The other cases are analogous.

Proposition 1.2 Let S be a semigroup.

(1) Let e be an idempotent of S. Then s 6R e if and only if es = s and s 6L e
if and only if se = s.

(2) If s 6R sxy, then s R sx R sxy. If s 6L yxs, then s L xs L yxs.

Proof. We shall prove only the first part of each statement, since the other
part is dual.

(1) If s 6R e, then s = eu for some u ∈ S1. It follows that es = e(eu) =
(ee)u = eu = s. Conversely, if es = s, then s 6R e by definition.

(2) If s 6R sxy, then s 6R sxy 6R sx 6R s, whence s R sx R sxy.

There is of course a dual statement for the relation 6L. The first part of
Proposition 1.2 can be extended to the preorder 6H.

Proposition 1.3 Let S be a semigroup. Let s ∈ S and e be an idempotent of
S. Then s 6H e if and only if es = s = se.

Proof. The equivalence of (1) and (2) follows from Proposition 1.2 and its dual
version for 6L.

The restriction of the preorder 6H to E(S) is actually an order, called the
natural order on E(S) and denoted by 6.

Corollary 1.4 Let S be a semigroup and let e and f be idempotents of S. The
following conditions are equivalent:
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(1) e 6 f ,

(2) ef = e = fe,

(3) efe = e.

Proof. The equivalence of (1) and (2) follows from Proposition 1.3 and that of
(2) and (3) from the Simplification lemma.

Despite its elementary nature, the next proposition is one of the cornerstones
of semigroup theory.

Proposition 1.5 In each semigroup S, the relations 6R and 6L (resp. R and
L) commute.

Proof. Suppose that s 6R r and r 6L t. Then s = rv and r = ut for some
u, v ∈ S1. It follows that s = utv 6L tv 6R t. Thus 6L ◦ 6R ⊆ 6R ◦ 6L. The
opposite inclusion holds by duality and hence 6R and 6L commute. The proof
for R and L is similar.

Here is a first consequence of Proposition 1.5.

Proposition 1.6 The relation 6J is equal to 6L ◦ 6R and to 6R ◦ 6L. It is
also the least preorder containing both 6R and 6L.

Proof. If s 6L ◦ 6R t then for some r ∈ S, s 6R r 6L t, whence s 6J r 6J t
and s 6J t. Conversely, if s 6J t, then s = utv for some u, v ∈ S1, whence
s 6R ut 6L t. Thus 6J is equal to 6L ◦ 6R.

Let 6D be the least preorder containing both 6R and 6L. Since 6J is a
preorder containing 6R and 6L, it contains 6D. Furthermore

6J = 6L ◦ 6R ⊆ 6D ◦ 6D = 6D

and thus 6J = 6D.

We now introduce the fifth Green’s relation. The relation D is the least
equivalence relation containing both R and L. Proposition 1.5 immediately
leads to an easier definition.

Proposition 1.7 The relation D is equal to L ◦ R and to R ◦ L.

Proof. Let C = L ◦ R. We claim that R is an equivalence relation. First, it
is clearly reflexive. It is also symmetric since L and R commute. Finally, it is
transitive, since

(L◦R) ◦ (L◦R) = L◦ (R◦L) ◦R = L◦ (L◦R) ◦R = (L◦L) ◦ (R◦R) = L◦R

Since C is an equivalence relation containing both R and L, it contains D, which
is the least equivalence relation having this property. On the other hand,

C = L ◦ R ⊆ D ◦ D = D

and thus C = D.
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One can therefore give the following definition of D:

s D t⇐⇒ there exists u ∈ S such that s R u and u L t

⇐⇒ there exists v ∈ S such that s L v and v R t.

The equivalence classes of D are called the D-classes of S, and the D-class of
an element s is denoted by D(s).

It is tempting to guess, in view of Proposition 1.6, that D = J . This equality
does not hold in general for infinite semigroups (see Example 1.1 below) but it
holds for finite semigroups.

Theorem 1.8 In a finite semigroup, the Green’s relations J and D are equal.
Furthermore, the following properties hold:

(1) If s 6J sx (in particular if s J sx), then s R sx;

(2) If s 6J xs (in particular if s J xs), then s L xs.

(3) If s J t and s 6R t, then s R t;

(4) If s J t and s 6L t, then s L t;

(5) if s = usv for some u, v ∈ S1, then us H s H sv.

Proof. If x D y, there exist z ∈ S such that x R z and z L y. It follows that
x J z and z J y, whence x J y.

Conversely, suppose that x J y. Then there exist s, t, u, v ∈ S1 such that
y = txu and x = syv, whence x = stxuv. By multiplying on the left by st and
on the right by uv, we obtain by induction the relation (st)nx(uv)n = x for all
n > 0. By Proposition II.5.3, one can choose n such that both (st)n and (uv)n

are idempotent. It follows that (st)nx = (st)n(st)nx(uv)n = (st)nx(uv)n = x
and similarly x = x(uv)n. Therefore tx L x and xu R x. The first relation
implies y = txu L xu and finally y D x.

(1) If s 6J sx, there exist u, v ∈ S1 such that usxv = s. By multiplying
on the left by u and on the right by xv, we obtain by induction the relation
uns(xv)n = s for all n > 0. By Proposition II.5.3, one can choose n such that
un is idempotent. It follows that s = uns(xv)n = ununs(xv)n = uns, whence
s(xv)n = s. It follows that s R sx, since (sx)(v(xv)n−1) = s.

(2) is dual from (1).
(3) If s 6R t, there exist u ∈ S1 such that s = tu. If further s J t, then

t J tu and t R tu by (1). Thus s R t.
(4) is dual from (3).
(5) If s = usv then s 6J us. It follows by (1) that s R sv and a dual

argument shows that s L us. Since the relation R is stable on the left, one has
us R usv = s and dually, sv L s. Thus us H s H sv.

Example 1.1 Let S be the infinite semigroup of matrices of the form

(
a 0
b 1

)

where a and b are strictly positive rational numbers, equipped with the usual
multiplication of matrices. Then the four relations R, L, H and D coincide with
the equality, but S has a single J -class.
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Proposition 1.5 shows that for two elements s and t, the three conditions
s D t, R(s) ∩ L(t) 6= ∅ and L(s) ∩ R(t) 6= ∅ are equivalent. It is therefore
possible to represent D-classes by an “egg-box picture”, as in Figure 1.1. Each
row represents an R-class, each column an L-class and each cell an H-class.
The possible presence of an idempotent within an H-class is indicated by a
star. We shall see later (Proposition 1.13) that these H-classes containing an
idempotent are groups, and that all such groups occurring within a given D-class
are isomorphic.

∗

∗

∗

∗

∗

∗

Figure 1.1. A D-class.

The next proposition describes the structure of a D-class.

Proposition 1.9 (Green’s lemma) Let D be a D-class of a semigroup S, and
let s and t be two R-equivalent elements of S. If s = tp and t = sq for some
p, q ∈ S1, the maps x → xp and x → xq define inverse bijections between L(s)
and L(t), and these bijections preserve the H-classes.

Proof. Let n ∈ L(s) (see Figure 1.2). Since L is stable on the right, nq ∈ L(sq).
Furthermore, there exist u ∈ S1 such that n = us, whence nqp = usqp = utp =
us = n. Similarly, if m ∈ L(t), then mpq = m and thus the maps x → xp and
x→ xq define inverse bijections between L(s) and L(t). Moreover, Proposition
1.1 shows that the maps x→ xp and x→ xq preserve the H-classes.

n nq

s t

p

q

u v

Figure 1.2. An illustration of Green’s lemma.

There is of course a dual version of Green’s lemma for L-equivalent elements.
Green’s lemma has several important consequences. First, the “Location theo-
rem” of Clifford and Miller:
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Theorem 1.10 (Location theorem) Let D be a D-class of a semigroup S,
and let s and t be elements of D. The following conditions are equivalent:

(1) st ∈ R(s) ∩ L(t),

(2) R(t) ∩ L(s) contains an idempotent,

(3) s̄st = t and stt̄ = s for some inverse s̄ of s and some inverse t̄ of t.

If these conditions are satisfied, then st ∈ D.

Proof. (1) implies (2). If st ∈ R(s)∩ L(t), the multiplication on the right by t
is, by Green’s lemma, a bijection from L(s) onto L(t) preserving the H-classes.
In particular, there exists an element e ∈ R(t)∩L(s) such that et = t. Therefore
e = tv for some v ∈ S1 and ee = etv = tv = e. Thus e is idempotent.

s

t

st

e
∗

L(s) L(t)

R(s)

R(t)

(2) implies (3). Let e be an idempotent of R(t) ∩ L(s). Since t R e, e = tt′ for
some t′ ∈ S1. Setting t̄ = t′e, we get tt̄t = tt′et = eet = t and t̄tt̄ = t′ett′e =
t′e = t̄. Thus t̄ is an inverse of t. Furthermore, stt̄ = stt′e = se = s. The proof
of the existence of s̄ is dual.
(3) implies (1) is clear.
Finally, if condition (1) is satisfied, then st ∈ D, since R(s) is contained in D.

Here is a useful consequence of the Location theorem.

Proposition 1.11 Let D be a D-class of a semigroup S. If D contains an
idempotent, it contains at least one idempotent in each R-class and in each
L-class.

Proof. Suppose that D contains an idempotent e and let s ∈ D. Then e R r
and r L s for some r ∈ D. Thus er = r by Proposition 1.2 and ru = e for
some u ∈ S1. It follows that uer is idempotent, since ueruer = ue(ru)er =
ueer = uer. Furthermore r(uer) = eer = er = r. Consequently r L uer,
L(s) = L(r) = L(uer) and thus the L-class of s contains an idempotent.

Proposition 1.12 Let H be an H-class of a semigroup S. The following con-
ditions are equivalent:

(1) H contains an idempotent,

(2) there exist s, t ∈ H such that st ∈ H.

(3) H is a group.
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Proof. The equivalence of (1) and (2) follows from Theorem 1.10. Furthermore,
it is clear that (3) implies (1). Let us show that (1) implies (3).

Let H be a H-class containing an idempotent e. Then H is a semigroup:
indeed, if s, t ∈ H , we have st ∈ R(s) ∩ L(t) = H . Moreover, if s ∈ H , we
have s R e and hence es = s by Proposition 1.2. Finally, for each s ∈ H , the
property (1) shows that the map x→ xs is a permutation on H . In particular,
there exists t ∈ H such that ts = e, and thus H is a group with identity e.

The following is another remarkable consequence of Green’s lemma.

Proposition 1.13 Two maximal subgroups of a D-class are isomorphic.

Proof. From Proposition 1.12, the two groups are of the form H(e) and H(f)
for some idempotent e, f of the same D-class D. Since e D f , there exists
s ∈ R(e) ∩ L(f). Thus es = s, sf = s and ts = f for some t ∈ S1. By Green’s
lemma, the function ϕ defined by ϕ(x) = txs is a bijection from H(e) onto
H(f), which maps e to f since tes = ts = f .

e s

f

s

t

Figure 1.3. The D-class D.

We claim that ϕ is a morphism. First observe that st is idempotent, since
stst = sft = st. Furthermore, st R s since sts = sf = s. If y ∈ H(e), then
y R e R s R st and by Proposition 1.2, (st)y = y. It follows that for all
x, y ∈ H(e),

ϕ(xy) = txys = tx(sty)s = (txs)(tys) = ϕ(x)ϕ(y)

proving the claim. Thus H(e) and H(f) are isomorphic.

2 Green’s relations in finite semigroups

For a finite semigroup, the Location theorem can be improved as follows:

Theorem 2.1 (Location theorem for finite semigroups) Let J be a J -
class of a finite semigroup S, and let s and t be elements of J . The following
conditions are equivalent:

(1) st ∈ J ,

(2) st ∈ R(s) ∩ L(t),
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(3) R(t) ∩ L(s) contains an idempotent,

(4) s̄st = t and stt̄ = s for some inverse s̄ of s and some inverse t̄ of t.

Proof. The equivalence of (1) and (2) follows from Theorem 1.8. The other
equivalences follow from the Location theorem (Theorem 1.10).

Let us mention a useful consequence.

Proposition 2.2 Let S be a finite semigroup and let s, t ∈ S be two J -related
elements of S. If st L s or ts R s, then H(t) is a group. If st = s or ts = s,
then t is idempotent.

Proof. Suppose that st L s (the other case is dual) and let J be the common
J -class of s, t and st. Since st 6L t, Theorem 1.8 shows that t L st, whence
s L t since st L s. Thus L(s) = L(t) and R(t) ∩ L(s) = H(t). Since st ∈ J ,
Theorem 2.1 shows that H(t) contains an idempotent. Thus by Proposition
1.12, H(t) is a group.

Suppose that st = s and let e be the idempotent of H(t). By Green’s
lemma, the left multiplication by s induces a bijection from H(t) onto H(st).
But since e L s, se = s by Proposition 1.2. Thus se = s = st, whence e = t.

The case t = s is worth a separate statement, that should be compared with
Proposition 1.12.

Corollary 2.3 Let S be a finite semigroup and let s ∈ S. If s J s2, then H(s)
is a group.

We conclude our study of finite semigroups by two results on maximal J -
classes.

Proposition 2.4 In a finite monoid, the J -class of the identity is a group.

Proof. Let J be the J -class of 1. If e is an idempotent of J , then e 6 1 by
Corollary 1.4 whence e = 1 by Theorem 1.8. It follows that J contains a unique
idempotent and by Proposition 1.11, a unique R-class and a unique L-class.
Thus J is an H-class and thus a group.

Proposition 2.5 Let J be a 6J -maximal J -class of a semigroup S. If J is
finite, it is either regular or reduced to a single null element.

Proof. Let J be a maximal J -class. Suppose that J is not regular and contains
two distinct element s and t. Then s = utv and t = xsy for some x, y, u, v ∈ S1.
Thus s = uxsvy and since s 6= t, we may assume that (u, v) 6= (1, 1) whence
u ∈ S or v ∈ S. Suppose that u ∈ S, the other case being dual. Then ux ∈ S and
since s 6J ux, it follows that s J ux since J is maximal. Similarly, s 6J svy,
whence svy ∈ J . Thus J contains ux, svy and their product. Therefore it is
regular by Corollary 3.7.
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3 Inverses, weak inverses and regular elements

In this section, we study in more detail the notion of semigroup inverse intro-
duced in Chapter II.

3.1 Inverses and weak inverses

An element s̄ of a semigroup S is a weak inverse of an element s if s̄ss̄ = s̄. It
is an inverse (or a semigroup inverse) of s if, furthermore, ss̄s = s. Note that
any idempotent is its own inverse.

We denote the set of all weak inverses (resp. inverses) of the element s by
W (s) (resp. V (s)).

Proposition 3.1 If s̄ is a weak inverse of s, then s̄s and ss̄ are idempotents and
ss̄s is an inverse of s̄. Furthermore, the relations ss̄ L s̄ R s̄s and s̄s L ss̄s R ss̄
hold.

Proof. If s̄ is a weak inverse of s, then s̄ss̄ = s̄. Thus ss̄ss̄ = ss̄ and s̄ss̄s = s̄s.
Furthermore, since s̄(ss̄s)s̄ = s̄ss̄ and (ss̄s)s̄(ss̄s) = ss̄s, ss̄s is an inverse of s̄.
The relations of the statement follow immediately.

Corollary 3.2 If s̄ is an inverse of s, then s̄s and ss̄ are idempotents. Further-
more, s and s̄ are in the same D-class and the relations ss̄ L s̄ R s̄s L s R ss̄
hold.

Proof. If s̄ is an inverse of s, then ss̄s = s and the result follows from Propo-
sition 3.1.

The case where s̄ is a weak inverse (resp. an inverse) of s is depicted in Figure
3.1. However, it may happen that some of the elements represented in different
H-classes are actually in the same H-class. In particular, if s = s̄, the H-class
of s is a group H whose identity is the idempotent e = ss̄ = s̄s. Furthermore s,
s̄ and e are all in H and s̄ is the group inverse of s in H .

s̄
∗
s̄s

∗
ss̄ ss̄s

s̄
∗
s̄s

∗
ss̄ s

Figure 3.1. Two egg-box pictures. On the left, s̄ is a weak inverse of s.
On the right, s̄ is an inverse of s.

In general, an element may have several inverses. However, it has at most one
inverse in a given H-class.

Proposition 3.3 An H-class H contains an inverse s̄ of an element s if and
only if R(H) ∩ L(s) and R(s) ∩ L(H) contain an idempotent. In this case, H
contains a unique inverse of s.
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Proof. Suppose that H contains an inverse s̄ of s. Then by Corollary 3.2, the
idempotent s̄s belongs to R(s̄) ∩ L(s) and the idempotent ss̄ to R(s) ∩ L(s̄).
Conversely, suppose that R(s)∩L(H) contains an idempotent e and R(H)∩L(s)
an idempotent f . Then e R s and thus es = s by Proposition 1.2. Now, by
Green’s lemma, there exists a unique element s̄ ∈ H such that s̄s = f . Since
s L f , sf = s and hence ss̄s = s. Similarly, f R s̄, whence f s̄ = s̄ and s̄ss̄ = s̄.
Thus s̄ is an inverse of s.

Finally, suppose that H contains two inverses s̄1 and s̄2 of s. Then Corollary
3.2 shows that ss̄1 and ss̄2 are idempotents of the same H-class and hence are
equal. It follows that ss̄1s = ss̄2s, that is, s̄1 = s̄2.

Two elements s and t of a semigroup S are said to be conjugate if there
exist u, v ∈ S1 such that s = uv and t = vu. Conjugate idempotents can be
characterized as follows:

Proposition 3.4 Let e and f be two idempotents of a semigroup S. Then e
and f are conjugate if and only if they are D-equivalent.

Proof. Suppose first that e = uv and f = vu for some u, v ∈ S1. Then uvuv =
uv and vuvu = vu, whence uv R uvu and uvu L vu. Thus e = uv D vu = f .

Conversely suppose that e D f . Then there exists s ∈ S such that e R s and
s L f . By Green’s lemma, there exists an element s̄ ∈ L(e) ∩ R(f) such that
s̄s = f . Thus ss̄s = sf = s and s̄ss̄ = f s̄ = s̄.

We conclude this section by an elementary result on idempotents.

Proposition 3.5 Let e be an idempotent of a semigroup S. If e = xy for some
x, y ∈ S, then ex and ye are mutually inverse elements.

Proof. Indeed, (ex)(ye)(ex) = exyex = ex and (ye)(ex)(ye) = yexye = ye.

3.2 Regular elements

An element is regular if it has at least one inverse. A semigroup is called regular
if all its elements are regular. Similarly, a D-class (resp. L-class, R-class, J -
class) is called regular if all its elements are regular. A nonregular D-class is
also called a null D-class.

The set of regular elements of a semigroup S is denoted by Reg(S). Since
an idempotent is its own inverse, E(S) is a subset of Reg(S).

The next proposition gives various characterizations of regular elements.

Proposition 3.6 Let s be an element of a semigroup S. The following condi-
tions are equivalent:

(1) s is regular,

(2) ss̄s = s for some s̄ ∈ S,

(3) D(s) contains an idempotent,

(4) R(s) contains an idempotent,

(5) L(s) contains an idempotent,
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Proof. (1) implies (2) by definition. Condition (2) states that s is a weak
inverse of s̄. Thus Proposition 3.1 shows that (2) implies (1), (3), (4) and (5).
The equivalence of (3), (4) and (5) follows from Proposition 1.11.

(4) implies (1). Let e be an idempotent such that s R e. Then es = s
and st = e for some t ∈ S1. We claim that s̄ = tst is an inverse of s. Indeed
ss̄s = ststs = ees = e and s̄ss̄ = tststst = s̄. Thus s is regular.

It is useful to restate Proposition 3.6 in terms of D-classes.

Corollary 3.7 Let D be a D-class of a finite semigroup. The following condi-
tions are equivalent:

(1) D is regular,

(2) D contains a regular element,

(3) D contains an idempotent,

(4) each R-class of D contains an idempotent,

(5) each L-class of D contains an idempotent,

(6) there exist two elements of D whose product belongs to D.

Corollary 3.7 shows that a regular D-class contains at least one idempotent in
each R-class and in each L-class. It follows that all the R-classes and L-classes
contained in a regular D-class are regular.

Let K be one of the Green’s relations R, L, J or H. A semigroup is K-trivial
if and only if a K b implies a = b.

Proposition 3.8 Let S be a finite semigroup and let K be one of the Green’s
relations R, L, H or J . Then S is K-trivial if and only if the K-class of each
idempotent is trivial.

Proof. We prove that if the K-class of each idempotent is trivial, then S is
K-trivial.

(a) K = R. Suppose a R b. Then there exist c, d ∈ S1 such that ac = b,
bd = a, whence acd = a. Thus (1, cd) ∈ Stab(a) and since S is finite, there
exists a weak inverse (v̄, ū) of (1, cd) such that v̄aū = a. Since ūcdū = ū, one
has ū R ūc R ūcd, whence ū = ūc = ūcd since ūcd is idempotent. Therefore
a = v̄aū = v̄aūc = ac = b and hence S is R-trivial.

(b) K = L. The proof is dual.
(c) K = J . By (a) and (b), S is R-trivial and L-trivial. Since J = D = R◦L,

S is J -trivial.
(d) K = H.

The case of the H-relation, omitted in Proposition 3.8, is related to the study
of aperiodic semigroups: a finite semigroup S is aperiodic if, for every x ∈ S,
there exists an integer n such that xn = xn+1.

Proposition 3.9 Let S be a finite semigroup. The following conditions are
equivalent:

(1) S is aperiodic,

(2) S is H-trivial,

(3) the groups in S are trivial.
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Proof. (1) implies (3). Let G be a group in S, with identity e, and let x ∈ G.
By (1), there exists n such that xn = xn+1. Since xn and xn+1 are both in G,
this implies x = e. Thus G is trivial.

(3) implies (2). Suppose a H b. Then there exist u, v, x, y ∈ s1 such that
ua = b, vb = a, ax = b and by = a, whence uay = a and therefore unayn = a
for every n. Let us choose n such that un is idempotent. Since un H un+1,
un = un+1 and thus a = unayn = un+1ayn = u(unayn) = ua = b. Therefore S
is H-trivial.

(3) implies (2) follows from the fact that each group in S is contained in an
H-class.

(2) implies (1). Let x ∈ S. Since S is finite, some power xn of x belongs
to a group. By (3), this group is trivial and xn is idempotent. Furthermore,
xn+1 belongs to the H-class of xn, which is a trivial group. Thus xn = xn+1.

We conclude this section by another property of finite semigroups.

Proposition 3.10 Let S be a finite semigroup and let T be a subsemigroup of
S. Let s ∈ T and let e be an idempotent of S. Suppose that, for some u, v ∈ T 1,
e RS us, us LS s, s RS sv and sv LS e. Then e ∈ T and e RT us LT s RT

sv LT e.

e us

sv

∗

s

Proof. Since RS(us) ∩ LS(sv) contains an idempotent, Green’s lemma shows
that svus belongs to RS(sv) ∩ LS(us), which is equal to HS(s). It follows that
the right translation ρvus is a permutation on HS(s). Since T is finite, some
power of vus, say (vus)n is an idempotent f of T . Since ρvus is a permutation
on HS(s), ρf is also a permutation on HS(s) and since f2 = f , this permutation
is the identity. In particular, sf = s, that is, s(vus)n = s. It follows that s RT

sv RT svus and a dual argument shows that s LT us LT svus. Thus svus ∈
RT (sv) ∩ LT (us) and by Green’s lemma again, RT (us) ∩ LT (sv) contains an
idempotent. This idempotent belongs to the H-class RS(us) ∩ LS(sv), thereby
it is equal to e. Thus e ∈ T .

4 Finite 0-simple semigroups

The fine structure of regular D-classes will be detailed in Subsection 6. It relies
on the notions of simple and 0-simple semigroups which form the subject of this
section.

We remind the reader that a semigroup S is simple if its only ideals are ∅
and S. It is 0-simple if it has a zero, denoted by 0, if S2 6= 0 and if ∅, 0 and
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S are its only ideals. By Proposition II.2.8, a simple semigroup has a single
J -class, and a 0-simple semigroup has a single nonzero J -class.

If a semigroup S has a zero 0, it is the unique minimal idempotent. An
idempotent is called 0-minimal if, for every idempotent f , f 6 e implies f = e
or f = 0.

4.1 Structure of 0-simple semigroups

The structure of 0-simple semigroups has been elucidated by Rees and is sum-
marized in Theorem 5.4. The proof of this theorem is nontrivial and relies on a
series of propositions and lemmas. Let us start with an elementary observation.

Lemma 4.1 Let S be a 0-simple semigroup and let s, t ∈ S. If sSt = 0, then
s = 0 and t = 0.

Proof. By Lemma II.2.7, S2 = S. If s 6= 0 and t 6= 0, then SsS = StS = S.
Thus SsStS = SsSStS = S2 = S and sSt 6= 0.

We now identify the R-class of each 0-minimal idempotent.

Proposition 4.2 Let S be a 0-simple semigroup. If e is a 0-minimal idempotent
of S, then R(e) ∪ 0 = eS.

Proof. Let R = R(e). By definition R ⊆ eS and hence R ∪ 0 ⊆ eS. Let s
be a nonzero element of eS. Then s 6R e and thus es = s. Furthermore,
since SsS = S, e = usv for some u, v ∈ S. Thus e = uesv = (ue)(sv) and
by Proposition 3.5, eue and sve are mutually inverse elements. In particular,
f = (sve)(eue) is an idempotent such that f 6 e. Since e is 0-minimal, one has
e = f , whence s R e and s ∈ R. Thus eS ⊆ R ∪ 0.

Proposition 4.3 If R is a nonzero R-class of a 0-simple semigroup, then R∪0
is a 0-minimal right ideal.

Let us first show that R ∪ 0 is a right ideal. Let r ∈ R and let e be a
0-minimal idempotent. Since S = SeS, r = uev for some u, v ∈ S. Thus ev 6= 0
and by Proposition 4.2, ev R e. Therefore R = R(uev) = uR(ev) = uR(e). It
follows that R ∪ 0 = uR(e) ∪ 0 = u(R(e) ∪ 0) = ueS.

Let us verify that R ∪ 0 is 0-minimal. Let R′ be a nonempty, nonzero right
ideal contained in R ∪ 0. Taking a nonzero element r′ ∈ R′ and any element
r ∈ R, we have r′ R r, whence r ∈ r′S1 and r ∈ R′S1 = R′. This shows that
R′ = R ∪ 0.

Proposition 4.2 can now be generalised as follows:

Proposition 4.4 Let S be a 0-simple semigroup. For every s ∈ S, R(s) ∪ 0 =
sS = sS1 and this right ideal is 0-minimal.

Proof. The result is trivial if s = 0. If s 6= 0, Proposition 4.3 shows that
I = R(s)∪0 is a 0-minimal right ideal containing s. Thus sSS1 = sS ⊆ sS1 ⊆ I.
It follows that sS is a nonzero right ideal contained in I, and is consequently
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equal to I. Thus R(s) ∪ 0 = sS = sS1. The 0-minimality of I follows from
Proposition 4.3.

A dual result holds of course for L(s). This gives more insight on the Green’s
relations in S:

Corollary 4.5 Let S be a 0-simple semigroup. If s and t are elements of S,
then either st = 0 or s R st L t.

Proof. If st 6= 0, then both s are t are nonzero elements. Furthermore stS1 is
contained in sS1, and since sS1 is a 0-minimal right ideal by Proposition 4.4,
stS1 = sS1, and hence s R st. Dually st L t.

Proposition 4.6 A 0-simple semigroup contains a single nonzero D-class and
this D-class is regular.

Proof. Let s, t 6= 0. Then sSt 6= 0 by Lemma 4.1. Let r ∈ sSt \ 0. Since
r ∈ sS ∩ St, one has r ∈ R(s) ∩ L(t) by Proposition 4.4. Thus s R r L t and
s D t. It follows that S \ 0 is a D-class. Since S \ 0 contains an idempotent, this
D-class is regular by Corollary 3.7.

The counterpart of Proposition 4.6 for simple semigroups can now be stated.

Proposition 4.7 A simple semigroup contains a single D-class. This D-class
is regular and each of its H-classes is a group.

Proof. Let S be a simple semigroup. Then S0 is 0-simple and by Proposition
4.6, S is a regular D-class of S0. Furthermore, if s ∈ S, Corollary 4.5 shows
that s H s2. It follows by Proposition 1.12 that H(s) is a group.

5 Rees matrix semigroups

Rees matrix semigroups play an important role in semigroup theory. Let I and
J be two nonempty sets, G be a group and P = (pj,i)j∈J,i∈I be a J × I-matrix
with entries in G. The Rees matrix semigroup with G as structure group, P as
sandwich matrix and I and J as indexing sets, is the semigroup M(G, I, J, P )
defined on the set I ×G× J by the operation

(i, g, j)(i′, g′, j′) = (i, gpj,i′g
′, j′) (5.1)

More generally, if P = (pj,i)j∈J,i∈I is a J × I-matrix with entries in G0, we
denote by M0(G, I, J, P ) the semigroup, called a Rees matrix semigroup with
zero, defined on the set (I ×G× J) ∪ 0 by the operation

(i, g, j)(i′, g′, j′) =

{
(i, gpj,i′g

′, j′) if pj,i′ 6= 0

0 otherwise
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As suggested by the terminology, Rees matrix semigroups can be equivalently
defined as semigroups of matrices. We first define an addition on G0 by setting
g + g′ = 0 for all g ∈ G0. Then, for all g, g′, h ∈ G0,

(g + g′)h = gh+ g′h = 0 and h(g + g′) = hg + hg′ = 0,

whereby G0 is equipped with a structure of idempotent semiring. We now
identify each element of M0(G, I, J, P ) with an I × J matrix with entries in
G0: 0 is identified with the null matrix and (i, g, j) with the matrix whose sole
nonzero entry is g in row i and column j. The product of two matrices X and
Y in M0(G, I, J, P ) is XPY . Note that all products can be calculated using
only trivial sums 0 + g = g + 0 = g.

Example 5.1 A Brandt semigroup is a Rees matrix semigroup in which I = J
and P is the identity matrix. Therefore, the product is defined by

(i, g, j)(i′, g′, j′) =

{
(i, gg′, j′) if j = i′,

0 otherwise.

A Brandt aperiodic semigroup is a Brandt semigroup whose structure group is
trivial. If I = {1, . . . , n}, this semigroup is denoted by Bn. For instance, B2 is
the semigroup of 2 × 2 Boolean matrices

B2 =

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
,

(
0 0
0 0

)}

under multiplication. This semigroup is studied in more detail in Section II.1.5.

The Rees matrix semigroups with zero that arise in the study of 0-simple
semigroups are all regular. This property depends only on the sandwich matrix.

Proposition 5.1 A Rees matrix semigroup with zero is regular if and only if
every row and every column of its sandwich matrix has a nonzero entry.

Proof. Let S = M0(G, I, J, P ) be a regular Rees matrix semigroup with zero
and let s = (i, g, j) be a nonzero element of S. Since s is regular, there exists a
nonzero element s̄ = (i′, g′, j′) such that ss̄s = s. It follows that pj,i′ 6= 0 and
pj′,i 6= 0. Consequently, every row and every column of P has a nonzero entry.

Conversely, assume that in P , every row j contains a nonzero entry pj,ij

and every column i contains a nonzero entry pji,i. Then each nonzero element
s = (i, g, j) admits as an inverse the element s̄ = (ij , p

−1
j,ij
g−1p−1

ji,i
, ji) since

ss̄s = (i, gpj,ij
p−1

j,ij
g−1p−1

ji,i
pji,i

g, j) = s and

s̄ss̄ = (ij , p
−1
j,ij
g−1p−1

ji,i
pji,i

gpj,ij
p−1

j,ij
g−1p−1

ji,i
, ji) = s′

Thus S is regular.

Green’s relations in a regular Rees matrix semigroup with zero are easy to
describe.
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Proposition 5.2 Let S = M0(G, I, J, P ) be a regular Rees matrix semigroup
with zero. Then S is 0-simple. In particular, D = J in S and all the elements
of S \ 0 are in the same D-class. Furthermore, if s = (i, g, j) and s′ = (i′, g′, j′)
are two elements of S \ 0, then

s 6R s′ ⇐⇒ s R s′ ⇐⇒ i = i′, (5.2)

s 6L s
′ ⇐⇒ s L s′ ⇐⇒ j = j′, (5.3)

s 6H s′ ⇐⇒ s H s′ ⇐⇒ i = i′ and j = j′. (5.4)

Proof. Proposition 5.1 implies that in P , every row j contains a nonzero entry
pj,ij

and every column i contains a nonzero entry pji,i.
Formula 5.1 shows that if s 6R s′, then i = i′. The converse is true, since

(i, g, j)(ij, p
−1
j,ij
g−1g′, j′) = (i, gpj,ij

p−1
j,ij
g−1g′, j′) = (i, g′, j)

This proves (5.2). Property (5.3) is dual and (5.7) is the conjunction of (5.2)
and (5.6).

Setting t = (i, 1, j′), it follows in particular that s R t L s′, whence s D s′.
Thus the relations D and hence J are universal on S \ 0. Finally, if e and f
are nonzero idempotents such that e 6 f , e H f by (3), and hence e = f by
Proposition 1.12. Thus every nonzero idempotent of S is 0-minimal and S is
0-simple.

j j′

i (i, g, j) (i, gpj,i′g
′, j′)

i′
∗

(i′, g′, j′)

Figure 5.1. The product of two elements when pj,i′ 6= 0.

A slightly more precise result holds for Rees matrix semigroups.

Proposition 5.3 Let S = M(G, I, J, P ) be a Rees matrix semigroup. Then
S is simple. In particular, D and J are both the universal relation and every
H-class is a group. Furthermore, if s = (i, g, j) and s′ = (i′, g′, j′) are two
elements of S, then

s 6R s′ ⇐⇒ s R s′ ⇐⇒ i = i′, (5.5)

s 6L s
′ ⇐⇒ s L s′ ⇐⇒ j = j′, (5.6)

s 6H s′ ⇐⇒ s H s′ ⇐⇒ i = i′ and j = j′. (5.7)

Proof. The proposition mostly follows from Proposition 5.2 by considering S0.
A complementary property is that s R ss′ L s′, which shows that the relations
D and J are universal on S. It follows that S is simple. Taking s = s′, we
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get s H s2 and thus by Proposition 1.12, H(s) is a group. Consequently, each
H-class is a group.

We can now state the main theorem of this section.

Theorem 5.4 (Rees-Sushkevich theorem)

(1) A semigroup is simple if and only if it is isomorphic to some Rees matrix
semigroup.

(2) A semigroup is 0-simple if and only if it is isomorphic to some regular
Rees matrix semigroup with zero.

Proof. By Proposition 5.2, every Rees matrix semigroup with zero is 0-simple.
Similarly by Proposition 5.3, every Rees matrix semigroup is simple.

Let S be a 0-simple semigroup. Let (Ri)i∈I (resp. (Lj)j∈J ) be the set of
R-classes (resp. L-classes) of S and let e be an idempotent of S. We denote by
Hi,j the H-class Ri ∩ Lj . By Propositions 1.12 and 4.6, the H-class of e is a
group G. Let us choose for each i ∈ I an element si ∈ L(e) ∩ Ri and for each
j ∈ J an element rj ∈ R(e) ∩ Lj . By Proposition 1.2, erj = rj and sie = si.
Consequently, by Green’s lemma the map g → sigrj from G into Hi,j is a
bijection. It follows that each element of S \ 0 admits a unique representation
of the from sigrj with i ∈ I, j ∈ J and g ∈ G.

Let P = (pj,i)j∈J,i∈I be the J × I matrix with entries in G0 defined by
pj,i = rjsi. By Theorem 1.10, rjsi ∈ G if Hi,j contains an idempotent and
rjsi = 0 otherwise. Define a map ϕ : S →M0(G, I, J, P ) by setting

ϕ(s) =

{
(i, g, j) if s = sigrj

0 if s = 0

Clearly ϕ(s)ϕ(0) = ϕ(0)ϕ(s) = 0 = ϕ(0). Let now s and s′ be nonzero elements.
Setting ϕ(s) = (i, g, j) and ϕ(s′) = (i′, g′, j′), we have

ϕ(s)ϕ(s′) = (i, g, j)(i′, g′, j′) =

{
(i, grjsig

′, j) if Hi′,j contains an idempotent

0 otherwise

Since s ∈ Hi,j and s′ ∈ Hi′,j′ , Theorem 2.1 shows that ss′ 6= 0 if and only if
Hi′,j contains an idempotent and in this case, ss′ = sigrjsig

′rj = si(grjsig
′)rj .

Therefore ϕ is a morphism, bijective by construction and hence is an isomor-
phism.

The case of simple semigroups can be handled in a similar way.

The Rees-Sushkevich theorem has some particular cases of interest. If G is
trivial and Pi,j = 1 for all i ∈ I and j ∈ J , then M(I, J,G, P ) is isomorphic to
a rectangular band B(I, J), which is the set I × J with the multiplication

(i, j)(k, ℓ) = (i, ℓ)

If I = {1, . . . , n} and J = {1, . . . ,m}, the notation B(n,m) is also used.
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Figure 5.2. The rectangular band B(4, 6).

Furthermore, if I [J] is a singleton and then M(I, J,G, P ) is a right [left]
zero semigroup. Conversely, any right [left] zero semigroup is isomorphic to
such a Rees matrix semigroup.

∗

∗

∗

∗ ∗ ∗ ∗

Figure 5.3. A left zero semigroup and a right zero semigroup.

6 Structure of regular D-classes

Let D be a regular D-class of a semigroup S. We define a semigroup D0 whose
support is D ∪ 0 and multiplication (denoted by ∗) is given by

s ∗ t =

{
st if st ∈ D,

0 otherwise

We then have the following proposition.

Proposition 6.1 If D is a regular D-class of a semigroup, D0 is a regular
0-simple semigroup.

Proof. We first verify that all elements of D are D-equivalent in D0. Let
s, t ∈ D and let r ∈ D be such that s R r L t. Let u and v be elements of S1

such that r = su and s = rv. Since D is regular, L(s) (resp. L(r)) contains
an idempotent e (resp. f). Thus se = s and rf = r by Proposition 1.2. It
follows that r = s(eu) and s = r(fv). Furthermore, eu L su since e L s and
thus su ∈ D. Similarly, fv ∈ D and hence s R r in D0. Dually, r R t in D0

and finally, s D t in D0.

It follows that 0 and D0 are the only ideals of D0. Thus D0 is 0-simple.
Since D is regular, D0 is also regular.
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6.1 Structure of the minimal ideal

Proposition 6.2 Let S be a finite semigroup. Then S has a unique minimal
ideal. This ideal is a simple semigroup.

Proof. The set of all ideals has a 6J -minimal element I, which is the unique
minimal ideal of S. By construction, I is simple. Let s ∈ S. The descending
sequence s >J s2 >J s3 . . . is stationary. In particular, there exists an integer n
such that sn J s2n and hence sn H s2n. It follows by Proposition 1.12 thatH(s)
contains an idempotent. Thus E(S) is nonempty and contains a 6J -minimal
element e. This minimal idempotent belongs to I and thus I is simple.

6.2 Blocks

A 0-simple semigroup is called a block if it is generated by its groups. The term
“block” refers to a result of R. L. Graham [9] on 0-simple semigroups.

Theorem 6.3 Let S0 be a 0-simple semigroup and let T be the subsemigroup
of S0 generated by the union of all groups in S. Let (Bi)i∈I be the family of all
regular D-classes of T . The following properties hold:

(1) each Bi is a block,

(2) for all i 6= j, BiBj = BjBi = 0,

(3) for all s ∈ S \
⋃

i∈I Bi, s
2 = 0.

The Bi’s are called the blocks of S0. It is easy to compute the blocks given
the egg-box picture of S. You are given two different kind of tokens, stars and
circles. First put a star and a circle in each H-class which is a group (that is,
containing an idempotent). Next, play the following game, as long as you can:
each time there is a star in Hi,j and circles in Hi,j′ and Hi′,j, add a circle in
Hi′,j′ .

j j′

i
∗
◦ ◦

i′ ◦

→

j j′

i
∗
◦ ◦

i′ ◦ ◦

When the game is over, one gets the block structure of S.
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◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

∗ ∗

∗ ∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗ ∗

∗

∗

Figure 6.1. The block structure of a 0-simple semigroup.

Normal form, isomorphism problem. TO DO.

6.3 Examples

Rectangular bands, right groups. TO DO.

7 Green’s relations in subsemigroups and quo-

tients

Let us start with a trivial observation: Green’s relations are stable under mor-
phisms.

Proposition 7.1 Let ϕ : S → T be a surjective morphism and let K be one of
the relations 6R, 6L, 6H, 6J , R, L, H, D or J . If s K t, then ϕ(s) K ϕ(t).

Let now T be a subsemigroup (resp. a quotient) of a semigroup S. It is
often useful to compare Green’s relations defined in S and T . For this purpose,
if K is any one of Green’s relations or preorders, we denote by KS (resp. KT )
the Green’s relation or preorder defined in the semigroup S (resp. T ).

7.1 Green’s relations in subsemigroups

We first consider the case of subsemigroups.

Proposition 7.2 Let T be a subsemigroup of a finite semigroup S and let s, t ∈
T with t regular in T . Let K be one of the relations 6R, 6L, 6H, R, L or H.
If s KS t, then s KT t.

Proof. Suppose that s 6RS
t. If t̄ is an inverse of t in T , then t RT tt̄ and

thus s 6RS
tt̄. Since tt̄ is idempotent, it follows from Proposition 1.2 that

tt̄s = s. Thus s 6RT
tt̄ and finally s 6RT

t. The proof for the other relations
is similar.
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Proposition 7.2 does not extend to 6J , D nor J . Let S be, unsurprinsingly,
the universal counterexample B2 = {a, b, ab, ba, 0}, with aba = a, bab = b and
a2 = b2 = 0. Let T = E(S) = {a2, b2, 0}. Then ab JS ba, but ab 66JT

ba.
However, if T is an ideal of S, the following property holds:

Proposition 7.3 Let T be an ideal of a finite semigroup S and let s, t ∈ T with
s or t regular in T . Let K be one of the relations 6R, 6L, 6H, 6J , R, L, H
or J . If s KS t, then s KT t.

Proof. Suppose that s 6JS
t. Then s = utv for some u, v ∈ S1. If s is regular,

let s̄ be an inverse of s in T . Then s = ss̄ss̄s = ss̄utvs̄s. Since T is an ideal,
ss̄u and vs̄s are elements of T . Thus s 6JT

t. If t is regular, let t̄ be an
inverse of t in T . Then s = utv = utt̄tt̄tv. Since T is an ideal, utt̄ and t̄tv are
elements of T . Thus s 6JT

t. The proof for the other relations is similar.

If T is a local subsemigroup of S, a similar result holds without any regularity
assumption.

Proposition 7.4 Let e be an idempotent of a finite semigroup S and let T =
eSe. Let K be one of the relations 6R, 6L, 6H, 6J , R, L, H or J . If two
elements s and t of T satisfy s KS t, then s KT t.

Proof. Suppose that s 6RS
t. Then s = tu for some u ∈ S1. Since s = ese

and t = ete, s = ese = eteu = eteeue. Thus s 6RT
t. The proof for the other

relations is similar.

A useful consequence of Proposition 7.2 is the following corollary:

Corollary 7.5 Let T be a subsemigroup of a finite semigroup S and let D be a
regular DT -class of T . Then the restrictions to D of the Green’s relations in S
and T coincide.

Proof. Since D is a DT -class of T , the relations DT , DS , JT and JS are
universal on D and hence equal. The rest of the corollary follows directly from
Proposition 7.2.

7.2 Green’s relations in quotient semigroups

In this subsection, ϕ will denote a surjective morphism from a semigroup S onto
a semigroup T . Little can be said in the general case.

Proposition 7.6 Let K be one of the relations R, L, H or J and let K be a
KT -class of T . Then ϕ−1(K) is a union of KS-classes.

Proof. The result follows immediately from Proposition 7.1.

More precise results hold for finite semigroups.

Proposition 7.7 Suppose that S is finite. Let J be a J -class of T and let I be
a minimal J -class of S contained in ϕ−1(J). Then



70 CHAPTER V. GREEN’S RELATIONS AND LOCAL THEORY

(1) ϕ(I) = J and ϕ induces a surjective morphism from I0 onto J0,

(2) each R-class (resp. L-class) of S contained in I maps under ϕ onto an
R-class (resp. L-class) contained in J ,

(3) I is regular if and only if J is regular. In this case, I is the unique minimal
J -class of ϕ−1(J).

(4) If J is null, then every J -class in ϕ−1(J) is null.

Proof. TO DO. Arbib p. 160.

The following example shows that Proposition 7.7 does not extend to H.

Example 7.1 Let M and N be the monoids generated by the following partial
transformations:

M 1 2 3 4 5 6

a 2 1 5 6 3 4

b 3 4 0 0 0 0

N 1 2 3 4

a 2 1 4 3

b 3 4 0 0

Their elements are respectively

M 1 2 3 4 5 6

a 2 1 5 6 3 4

b 3 4 0 0 0 0

ab 4 3 0 0 0 0

ba 5 6 0 0 0 0

bb 0 0 0 0 0 0

aba 6 5 0 0 0 0

N 1 2 3 4

a 2 1 4 3

b 3 4 0 0

ab 4 3 0 0

bb 0 0 0 0

Thus the monoid M = {1, a, b, ab, ba, bab, 0} is presented on A by the relations
aa = 1, aab = 0 and bb = 0. The monoid N = {1, a, b, ab, 0} is presented on A
by the relations aa = 1, ba = ab and bb = 0.

The J -class structures of M and N is represented below:

∗
1, a

∗
1, a

b ba

ab aba
ab, b

∗
0

∗
0

Let ϕ : M → N be the surjective morphism defined by ϕ(1) = 1, ϕ(a) = a,
ϕ(b) = b, ϕ(ab) = ab, ϕ(ba) = ab and ϕ(aba) = b. Then J = {ab, b} is both a
J -class and an H-class of N and I = {b, ab, ba, aba} = ϕ−1(J) is a J -class of
M . However no H-class of I is mapped onto J .

However, the following result holds
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Proposition 7.8 Suppose that S is finite. For each group H in T there exists
a group G in S such that ϕ(G) = H.

Proof. TO DO.

8 Green’s relations in T(E).

Given an element a ∈ T(E), we denote by Im(a) the range of a and by Ker(a)
the partition on E induced by the equivalence relation ∼a defined by

p ∼a q ⇐⇒ p· a = q · a

Finally, we set rank(a) = Card(Im(a)) = Card(Ker(a)). For example, if

a =

(
1 2 3 4 5 6 7
1 4 5 5 5 4 1

)

we have Im(a) = {1, 4, 5} and Ker(a) = 17/26/345.

Lemma 8.1 Let a, b ∈ T(E). Then rank(ab) 6 max{rank(a), rank(b)}.

Proof. This follows from the two relations Im(ab) ⊆ Im(b) and Ker(ab) ⊆
Ker(a).

Proposition 8.2 Let a, b be elements of T(E). Then

(1) a 6R b if and only if Ker(a) is a partition coarser than Ker(b) and a R b
if and only if Ker(a) = Ker(b),

(2) a 6L b if and only if Im(a) ⊆ Im(b) and a L b if and only if Im(a) = Im(b),

(3) a 6J b if and only if rank(a) 6 rank(b) and a J b if and only if rank(a) =
rank(b).

Proof. (1) If a 6R b, there exists u ∈ T(E), such that a = bu and therefore
Ker(a) is coarser than Ker(b). Conversely, if this condition is satisfied, the
relation u = a ◦ b−1 is a function such that bu = a. Therefore a 6R b. The
result for R follows immediately.

(2) If a 6L b, there exists u ∈ T(E), such that au = b and therefore Im(a) ⊆
Im(b). Conversely, if Im(a) ⊆ Im(b), there exists for each q ∈ E an element q′

such that q′ · b = q · a. The function q → q′ defines a transformation u such that
ub = a and thus a 6L b. The result for L follows immediately.

(3) If a 6J b, there exist u, v ∈ T(E) such that a = ubv and therefore
rank(a) 6 rank(b). Conversely, suppose that rank(a) 6 rank(b). We con-
struct a transformation u by sending each class of Ker(a) onto an element
of Im(b) and two distinct classes onto two distinct elements; this is possible
since Card(Im(a)) = Card(Ker(a)) 6 Card(Im(b)). Then Ker(u) = Ker(a) and
Im(u) ⊆ Im(b) by construction. Therefore a R u by (1), u 6L b by (2) and
finally a 6J u 6J b. The result for J follows immediately.
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∗ 1 1 2 3 4

a 2 3 4 0

b 3 1 4 0

c 2 1 4 3

a2 3 4 0 0

ab 1 4 0 0

ac 1 4 3 0

ba 4 2 0 0

b2 4 3 0 0

bc 4 2 3 0

ca 3 2 0 4

cb 1 3 0 4

a3 4 0 0 0

aba 2 0 0 0

ab2 3 0 0 0

abc 2 3 0 0

aca 2 0 4 0

acb 3 0 4 0

ba2 0 3 0 0

bab 0 1 0 0

bac 3 1 0 0

b2a 0 4 0 0

bca 0 3 4 0

bcb 0 1 4 0

cab 4 1 0 0

1 2 3 4

cac 4 1 0 3

cba 2 4 0 0

cbc 2 4 0 3

∗ a4 0 0 0 0

∗ bab 1 0 0 0

∗ cac 1 0 3 0

acbc 4 0 3 0

∗ baba 0 2 0 0

bcac 0 4 3 0

∗ bcbc 0 2 3 0

cabc 3 2 0 0

∗ caca 0 2 0 4

cacb 0 3 0 4

cbac 1 3 0 0

cbca 3 0 0 4

∗ cbcb 1 0 0 4

acbca 0 0 4 0

cacac 0 1 0 3

cacbc 0 4 0 3

cbcac 4 0 0 3

cbcbc 2 0 0 3

∗ acbcac 0 0 3 0

∗ cacbca 0 0 0 4

cacbcac 0 0 0 3

Relations :

c2 = 1 a2b = a3 a2c = b2 b3 = b2a

b2c = a2 ca2 = b2 cb2 = a2 a4 = 0

aba2 = ab2 abac = abab ab2a = a3 abca = a2

abcb = ab acab = abab acba = a3 ba3 = b2a

bab2 = ba2 babc = baba baca = ba bacb = b2

b2a2 = 0 b2ab = 0 b2ac = ba2 bcab = b2a

bcba = baba caba = baba cab2 = ba2 cba2 = ab2

cbab = abab ababa = aba acaca = aca acacb = acb

acbcb = acbca babab = bab bcaca = acbca bcacb = acbca

bcbca = bca bcbcb = bcb
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1

c

a

ac

ca

cac

b

bc

cb

cbc

aa

abba

bb aaa

aba

abb

abc

aca

acb

baa

bab

bac

bba

bca

bcb

cab cba

0

0

abab

acac

acbc

baba

bcac

bcbc

cabc

caca

cacb

cbac

cbca

cbcb

acbca

cacac

cacbc cbcac

cbcbc

acbcac

cacbca

cacbcac

a
b

c

a

b

c

a

b

c

a b

c
a, b

c

a
b

c

a

b

c

a
b

c

a, b c

a
b

c

a

b
c

a

b

c

a, b

c
a

b, c

a, b, c

a

b, c a

b

c

a, b

c

a, b, c

a, c

b

a, c

b

a, b

c

a, b

c

a

b

c

a b
c

a
b

c

a
b

c

a
b

c

a, b, c

a, b, c

a, c

b

a, c

b

a, b

c

a

b, c

a, b

c

a
b, c

a

b, ca
b

c

a, b

c

a, c

b

a, b

c

a

b

c

a, b

c

a, c

b

a, b

c

a, b

c
a

b, c

a, b, c

a, b

c a, b, c

Figure 8.1. The right Cayley graph of S. To avoid unesthetic crossing
lines, the zero is represented twice in this diagram.
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1

c

a

ac

ca

cac

b

bc

cb

cbc

aa

ab

ba

bb

aaa

aba

abb abc

aca

acb

baa

bab

bac

bba

bca

bcb

cab

cba

00abab

acac

acbc

baba

bcac

bcbc

cabc

caca

cacb

cbac

cbca

cbcb

acbca

cacac

cacbccbcac

cbcbc

acbcac

cacbca

cacbcac

ab

c

a

b
c

a

b

c

a b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c
a

b, c

a

b, c

a

b, c

a

b

c

a

b

c

a

b

c

a, c

b

a, c

ba

b

c

a, c

b

a

b
c

a

bc

a

b

c

a

b

c

a

b

c

a

b

c

a, b, ca, b, c

a

b, c

a

b

c

a

b

c

a, c

b
a

bc

a

b c

a

b

c

a, c

b

a, c

b

a

b

c

a

b, c

a

b, c

a

b

c

a, c

b

a, c

ba

b, c

a

b, c

a

b

c

a, b, c

a, b, c

Figure 8.2. The left Cayley graph of S. To avoid unesthetic crossing
lines, the zero is represented twice in this diagram.
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01234

0/1/2/3/4
∗

1, c

0234 0134

1/2/3/04 a ac

1/2/4/03 ca cac

1/2/3/04 bc b

1/2/4/03 cbc cb

013 024

1/3/024
∗
acac aca

2/4/013 cacac
∗
caca

034

acb acbc

cacb cacbc

1/2/034 bac ba

1/2/034 cbac cba

a2

b2

abc ab 1/2/034

cabc cab 1/2/034

bca bcac

cbca cbcac

034

∗
bcbc bcb 2/3/014

cbcbc
∗
cbcb 1/4/023

023 014

01 02

1/0234
∗
abab aba

2/0134 bab
∗
baba

03 04

ab2 a3

ba2 b2a

∗
acbcac acbca 3/0124

cacbcac
∗
cacbca 4/0123

0

01234
∗
0

Figure 8.3. The D-class structure of S.
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The idempotents of S are 1, a4 = 0 and

e1 = acac e2 = cbcb e3 = caca e4 = bcbc

e5 = abab e6 = cacbca e7 = baba e8 = acbcac

1

e1 e2 e3 e4

e5 e6 e7 e8

0

Figure 8.4. The lattice of idempotents.

9 Exercises.

Exercice 1 Let s and t be regular elements of a semigroup S. Show that the
following conditions are equivalent:

(1) s R t

(2) there exists s̄ ∈ V (s) and t̄ ∈ V (t) such that ss̄ = tt̄,

(3) for all s̄ ∈ V (s), there exists t̄ ∈ V (t) such that ss̄ = tt̄.

A dual result holds for L. Finally, show that the following conditions are equiv-
alent:

(1) s H t

(2) there exists s̄ ∈ V (s) and t̄ ∈ V (t) such that ss̄ = tt̄ and s̄s = t̄t,

(3) for all s̄ ∈ V (s), there exists t̄ ∈ V (t) such that ss̄ = tt̄ and s̄s = t̄t.

Exercice 2 Let S be a regular semigroup. Show that the following conditions
are equivalent:

(1) S is simple

(2) for all s ∈ S, every weak inverse of s is also an inverse of s,

(3) for all s, t in S, if us = ut and sv = tv for some u, v ∈ S, then s = t.

Exercice 3 A monoid M is an inverse monoid if every element of M has a
unique inverse. Show that a finite monoid is inverse if and only if M is regular
(that is, every element of M is regular) and the idempotents commute in M .

Exercice 4 Let Q be a finite set and let I(Q) be the monoid of partial injective
functions from Q to Q under composition. Show that I(Q) is an inverse monoid
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and that if M is a finite inverse monoid, then M is isomorphic to a submonoid
of I(M).
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Chapter VI

Varieties

1 Birkhoff varieties

A Birkhoff variety of semigroups is a class of semigroups V such that:

(1) if S ∈ V and if T is a subsemigroup of S, then T ∈ V,

(2) if S ∈ V and if T is a quotient of S, then T ∈ V,

(3) if (Si)i∈I is a family of semigroups of V, the product
∏

i∈I Si is also in V.

The semigroups of a Birkhoff variety can be finite or infinite.
The definition of a Birkhoff variety can be readily generalized to monoids,

groups, ordered semigroups, ordered monoids, etc.

Example 1.1

(1) The class of all semigroups forms a Birkhoff variety.

(2) The smallest Birkhoff variety is the trivial variety, consisting only of the
empty semigroup and of the semigroup 1.

(3) The class of all commutative semigroups forms a Birkhoff variety.

(4) The class of all groups does not form a Birkhoff variety of monoids. Indeed
Z is a group, but N is a submonoid of Z which is not a group.

Let V be a Birkhoff variety of semigroups and let A be an alphabet. Consider
the collection F(A,V) of all morphisms ϕ : A+ → S, where S is a semigroup of
V. For each such morphism ϕ, denote by ∼ϕ the nuclear congruence of ϕ, and
let ∼ be the intersection of all these congruences when ϕ ranges over F(A,V).
Finally, set

FV(A) = A+/∼

and let π : A+ → FV(A) be the natural morphism. As a subsemigroup of a
product of semigroups of V, this semigroup belongs to V. It is called the V-free
semigroup on A. This terminology is justified by the following universal prop-
erty, which relativizes to V the universal property of A+ given by Proposition
II.4.1.

Proposition 1.1 If ϕ is a function from A into a semigroup S of V, there
exists a unique semigroup morphism ϕ̄ : FV(A) → S such that, for each a ∈ A,
ϕ(a) = ϕ̄(π(a)). Moreover, ϕ̄ is surjective if and only if the set ϕ(A) generates
S.

79
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Proof. First, ϕ can be extended (in a unique way) into a morphism from A+

into S. Now, since the nuclear congruence of ϕ is coarser than ∼, there exists
by Proposition II.2.11 a unique morphism ϕ̄ : FV(A) → S such that ϕ = ϕ̄ ◦ π.

Clearly, if ϕ̄ is surjective, ϕ : A+ → S is onto and thus A generates S.
Conversely, if ϕ(A) generates S, ϕ is onto and ϕ̄ is also onto.

Corollary 1.2 An A-generated semigroup belongs to V if and only if it is a
quotient of FV(A).

Proof. Let S be an A-generated semigroup of V. By definition, there exists a
surjective morphism ϕ : A+ → S. In particular, ϕ ∈ F(A) and thus π(u) = π(v)
implies ϕ(u) = ϕ(v). By Proposition II.2.11, S is a quotient of FV(A).

Conversely, assume that S is a quotient of FV(A). Since FV(A) belongs to
V, S is also in V.

Example 1.2 Let V be the Birkhoff variety of commutative monoids. It is
easy to see that the V-free monoid (called, in this case, the free commutative
monoid), is the additive monoid NA, where the addition is defined component-
wise: (na)a∈A + (n′

a)a∈A = (na + n′
a)a∈A.

A convenient way to define varieties is to use identities. Let A be an alphabet
and let u, v ∈ A+. A semigroup S satisfies the identity u = v if and only if,
for each morphism of semigroups ϕ : A+ → S, ϕ(u) = ϕ(v). For example,
a semigroup satisfies the identity xyx = x if, for each x, y ∈ S, xyx = x. A
semigroup is commutative if and only if it satisfies the identity xy = yx; it is
idempotent if and only if it satisfies the identity x = x2.

A Birkhoff variety V satisfies a given identity if every semigroup of V satisfies
this identity. We also say in this case that the given identity is an identity of
V. Identities of V are closely related to V-free semigroups.

Proposition 1.3 Let πV be the natural morphism from A+ onto the V-free
semigroup on A. Given two words u and v of A+, u = v is an identity of V if
and only if πV(u) = πV(v).

Proof. If u = v is an identity of V, then πV(u) = πV(v) since FV(A) ∈ V.
Conversely if πV(u) = πV(v), then by definition ϕ(u) = ϕ(v) for every ϕ ∈
F(A,V), and thus u = v is an identity of V.

Corollary 1.4 Let V and W be two varieties satisfying the same identities on
the alphabet A. Then the V-free semigroup and the W-free semigroup on A are
isomorphic.

Proof. Indeed, by Proposition 1.3, the nuclear congruences of πV and πW

are the same. Therefore, the semigroups πV(A+) and πW(A+) are equal.

Let E be a set of identities. The class [[E]] of semigroups is defined to be the
class of semigroups satisfying the identities of E. The next result explains the
importance of identities.
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Theorem 1.5 (Birkhoff’s theorem) A class of semigroups is a Birkhoff va-
riety if and only if it can be defined by a set of identities.

Proof. We first prove that every class defined by a set of identities is a Birkhoff
variety. Since Birkhoff varieties are closed under intersection, it suffices to es-
tablish the result when the class is defined by a single identity, say u = v. Let S
be an ordered semigroup satisfying this identity. Then clearly, every subsemi-
group of S satisfies the same identity. Furthermore, if π : S → T is an onto
morphism, T also satisfies u = v. Indeed, if ϕ : A+ → T is a morphism, there
exists by Corollary II.4.3 a morphism ψ : A+ → S such that ϕ = π ◦ ψ. Now,
ψ(u) = ψ(v) since S satisfies the identity u = v and thus π(ψ(u)) = π(ψ(v)).
Therefore, T satisfies the identity u = v. Finally, if (Si)i∈I is a family of semi-
groups satisfying the identity u = v, their product S =

∏
i∈I Si also satisfies

this identity. Indeed, let πi denotes the projection from S onto Si and let ϕ
be a morphism from A+ into S. Since πi ◦ ϕ is a morphism from A+ into Si,
πi ◦ ϕ(u) = πi ◦ ϕ(v). As this holds for each i, we have ϕ(u) = ϕ(v).

Let now V be a Birkhoff variety. Let E be the class of all identities satisfied
by V and let W = [[E]]. Clearly V ⊆ W. Let S ∈ W and let Σ be a generating
set of S. Then there exists an onto morphism ϕ : Σ+ → S. Let π : Σ̂+ → FV(Σ)
be the natural morphism. Let u, v ∈ Σ+. By Proposition 1.3, if π(u) = π(v) then
u = v is an identity of V and thus, is satisfied by S. In particular, ϕ(u) = ϕ(v).
It follows by Proposition II.2.11 that ϕ factors through π. Therefore S is a
quotient of FV(Σ) and by Corollary 1.2, S is in V. Thus V = [[E]].

2 Varieties of finite semigroups

The semigroups occurring in automata theory are mostly finite, which motivates
the following definition.
A variety of finite semigroups is a class of finite semigroups V such that:

(1) if S ∈ V and if T is a subsemigroup of S, then T ∈ V,

(2) if S ∈ V and if T is a quotient of S, then T ∈ V,

(3) if (Si)i∈I is a finite family of semigroups of V, then
∏

i∈I Si is also in V.

Condition (3) can be replaced by the conjunction of conditions (4) and (5):

(4) the trivial semigroup 1 belongs to V,

(5) if S1 and S2 are semigroups of V, then S1 × S2 is also in V.

Indeed, condition (4) is obtained by taking I = ∅ in (3).

Example 2.1

(1) The class S of all finite semigroups forms a variety of finite semigroups.

(2) The smallest variety of finite semigroups is the trivial variety, consisting
of the empty semigroup and of the semigroup with one element 1. This
variety is denoted by 1.

(3) The class of all commutative finite semigroups forms a variety of finite
semigroups, denoted by Com.

Let us give an important example of variety of finite monoids, which should be
compared with Example 1.1 (4).
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Proposition 2.1 The class of all finite groups is a variety of finite monoids,
denoted by G.

Proof. Finite groups are lcosed under quotients ad finite direct products and it
follows from Proposition II.5.6 that a submonoid of a finite group is a group.

In the sequel, we shall use the term “variety” as a shorthand for variety of finite
semigroups (resp. monoids, etc.).

The supremum of two varieties V1 and V2 is the smallest variety containing
V1 and V2. It is denoted by V1 ∨V2.

Let C be a class of semigroups. The class of all semigroups that divide a
finite product of semigroups of C is a variety, denoted 〈C〉 and called the variety
generated by C. It is the smallest variety containing C.

It is tempting to use identities to obtain a counterpart of Theorem 1.5 for
varieties of finite algebras, but an incursion into topology is necessary in order
to achieve this goal. This approach is very similar to the introduction of p-adic
numbers in number theory and is a good illustration of the following quotation
of Marshall Stone: ‘A cardinal principle of modern mathematical research may
be stated as a maxim: ”One must always topologize”’.

3 Profinite algebras

The details are provided for semigroups, but the results can be readily adapted
to monoids.

A metric semigroup is a semigroup S equipped with a metric d, such that
(S, d) is a complete metric space and the multiplication of S is uniformly contin-
uous. Morphisms between two metric semigroups are required to be uniformly
continuous.

If X is a subset of S, the metric subsemigroup of S generated by X is by
definition the smallest closed subsemigroup of S containing X .

Finite semigroups can be considered as metric semigroups, equipped with the
discrete metric. More precisely, if S is a finite semigroup, the discrete metric d
is defined by

d(s, t) =

{
0 if s = t

1 otherwise

In this section, we shall systematically consider finite semigroups as metric semi-
groups without any further warning.

Another important example of metric semigroup is the free pro-V semigroup
on A, that we now define. A semigroup S separates two words u and v of the
free semigroup A+ if there exists a morphism ϕ from A+ onto S such that
ϕ(u) 6= ϕ(v). Let V be a variety of finite semigroups. We set

rV(u, v) = min
{
Card(S) S is a semigroup of V that separates u and v }

and dV(u, v) = 2−rV(u,v), with the usual conventions min ∅ = +∞ and 2−∞ = 0.
We first establish some general properties of dV.

Proposition 3.1 The following properties hold for every u, v, w ∈ A+



3. PROFINITE ALGEBRAS 83

(1) dV(u, v) = dV(v, u)

(2) dV(uw, vw) 6 dV(u, v) and dV(wu,wv) 6 dV(u, v)

(3) dV(u,w) 6 max{dV(u, v), dV(v, w)}

Proof. The first assertion is trivial. A semigroup of V separating uw and vw
certainly separates u and v. Therefore dV(uw, vw) 6 dV(u, v), and dually,
dV(wu,wv) 6 dV(u, v).

Let S be a semigroup of V separating u and w. Then S separates either u
and v, or v and w. It follows that min(rV(u, v), rV(v, w)) 6 rV(u,w) and hence
dV(u,w) 6 max{dV(u, v), dV(v, w)}.

If V is the variety of all finite semigroups, we simplify the notation dV to d.

Proposition 3.2 The function d is an ultrametric on A+.

Proof. Suppose that d(u, v) = 0. In particular, the syntactic semigroup of {u}
does not separate u from v, showing that u = v. Thus by Proposition 3.1, d is
an ultrametric.

For the metric d, the closer are two words, the larger is the semigroup needed
to separate them.

In the general case, dV is not always a metric, because one may have
dV(u, v) = 0 even if u 6= v. For instance, if V is the variety of commuta-
tive semigroups, dV(ab, ba) = 0, since there is no way to separate ab and ba by
a commutative semigroup. To work around this difficulty, we first observe that,
by Proposition 3.1, the relation ∼V defined by

u ∼V v if and only if dV(u, v) = 0

is a congruence on A+. Then Proposition 3.2 can be generalized as follows.

Proposition 3.3

(1) The function dV is an ultrametric on A+/∼V.

(2) The product on A+/∼V is uniformly continuous for this metric.

Proof. (1) follows directly from Proposition 3.1, since dV(u, v) = 0 implies
u ∼V v by definition. We use the same proposition to obtain the relation

dV(uv, u′v′) 6 max{dV(uv, uv′), dV(uv′, u′v′)} 6 max{dV(v, v′), dV(u, u′)}

which proves (2).

The completion of A+ for d, denoted by Â+, is called the free profinite
semigroup on A. The completion of the metric space (A+/∼V, dV), denoted
by F̂V(A), is called the free pro-V semigroup on A. It satisfies the following
properties:

Proposition 3.4 Let V be a variety of semigroups and A a finite alphabet.

(1) The semigroup F̂V(A) is compact.

(2) There is a surjective morphism πV from Â+ onto F̂V(A).
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(3) Every morphism from Â+ into a semigroup of V factorizes through πV.

(4) An A-generated finite semigroup belongs to V if and only if it is a quotient
of F̂V(A).

Proof. (1) Since F̂V(A) is complete, it suffices to verify that, for every n > 0,
A+ is covered by a finite number of open balls of radius < 2−n. Consider the
congruence ∼n defined on A+ by

u ∼n v if and only if ϕ(u) = ϕ(v) for every morphism ϕ from A+

onto a semigroup of size 6 n of V.

Since A is finite, there are only finitely many morphisms from A+ onto a semi-
group of size 6 n, and thus ∼n is a congruence of finite index. Furthermore,
dV(u, v) < 2−n if and only if u and v cannot be separated by a semigroup of V
of size 6 n, i.e. are ∼n-equivalent. It follows that the ∼n-classes are open balls
of radius < 2−n and cover A+.

(2) Let πV be the natural morphism from A+ onto A+/∼V. Since dV(u, v) 6

d(u, v), πV is uniformly continuous, and can be extended into a uniformly con-

tinuous morphism from Â+ onto F̂V(A).

(3) Let ϕ be a morphism from Â+ into a semigroup S of V. Up to replacing

S by ϕ(S), we may assume that ϕ is onto. Since A+ is dense in Â+, and S
is discrete, the restriction of ϕ to A+ is also surjective. Furthermore, since
u ∼V v implies ϕ(u) = ϕ(v), Proposition II.2.11 shows that there is a surjective
morphism π from A+/∼V onto S such that ϕ = π ◦ πV. We claim that this
morphism is uniformly continuous. Indeed if dV(u, v) < 2−|S|, then u and v
cannot be separated by S, and hence ϕ(u) = ϕ(v). Since A+ is dense in F̂V(A),
π can be extended by continuity into a surjective morphism from F̂V(A) onto
S. Thus S is a quotient of F̂V(A).

(4) If S is an A-generated semigroup of V, there exists a surjective morphism
ϕ from A+ onto S. Following the argument used in (3), if dV(u, v) < 2−|S|, then
ϕ(u) = ϕ(v), and thus ϕ is uniformly continuous with respect to dV. Therefore
ϕ can be extended into a uniformly continuous morphism from F̂V(A) onto S.

Conversely, assume that S is a finite quotient of F̂V(A) and let π : F̂V(A) →
S be a surjective morphism. The set

D = {(u, v) ∈ F̂V(A) × F̂V(A) | π(u) = π(v)}

is the inverse image under π of the diagonal of S × S, and since S is discrete
and π is continuous, it is a clopen subset of F̂V(A)× F̂V(A). Let F be the class
of all morphisms from F̂V(A) onto a semigroup of V. For each ϕ ∈ F , let

Cϕ = {(u, v) ∈ F̂V(A) × F̂V(A) | ϕ(u) 6= ϕ(v)}

Each Cϕ is open by continuity of ϕ. Furthermore, if (u, v) does not belong to
any Cϕ, then u and v cannot be separated by any semigroup of V and hence
dV(u, v) = 0, which gives u = v and π(u) = π(v). It follows that the family
D ∪ (Cϕ)ϕ∈F is a covering of F̂V(A) × F̂V(A) by open sets, and since F̂V(A)
is compact, it admits a finite subcovering, say D ∪ (Cϕ)ϕ∈F . Therefore, if
ϕ(u) = ϕ(v) for each ϕ ∈ F , then π(u) = π(v). Consequently S is a quotient
of a subsemigroup of the finite semigroup

∏
ϕ∈F ϕ(F̂V(A)) and thus belongs to

V.
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We now extend the notion of identity as follows. Let A be a finite alphabet

and let u, v ∈ Â+. A finite semigroup S satisfies the identity u = v if and only

if, for each morphism ϕ : Â+ → S, ϕ(u) = ϕ(v).
A variety V satisfies a given identity if every semigroup of V satisfies this

identity. We also say in this case that the given identity is an identity of V.
Identities of V are closely related to free pro-V semigroups.

Proposition 3.5 Let A be a finite alphabet. Given two elements u and v of

Â+, u = v is an identity of V if and only if πV(u) = πV(v).

Proof. If u = v is an identity of V, then u and v cannot be separated by any
semigroup of V. Thus dV(u, v) = 0, u ∼V v and πV(u) = πV(v). Conversely
if πV(u) = πV(v), then by Proposition 3.4, ϕ(u) = ϕ(v) for every morphism

ϕ from Â+ into a semigroup of V, and thus u = v is an identity of V.

Corollary 3.6 Let V and W be two varieties of finite semigroups satisfying the
same identities on the alphabet A. Then F̂V(A) and F̂W(A) are isomorphic.

In particular, an identity of a semigroup of V can be given as a pair (u, v)
of elements of F̂V(A). We are now ready to state the generalization of Theorem
1.5. Given a set E of identities, we denote by [[E]] the class of finite semigroups
satisfying all the identities of E.

Theorem 3.7 (Reiterman’s theorem) A class of finite semigroups is a va-
riety if and only if it can be defined by a set of identities.

Proof. The fact that every class of finite semigroups defined by a set of iden-
tities is a variety can be proved exactly as in Theorem 1.5.

Let now V be a variety. Let E be the class of all identities which are satisfied
by every semigroup of V and let W = [[E]]. Clearly V ⊆ W. Let S ∈ W. Since
S is finite, there exists a finite alphabetA and a surjective morphism ϕ : A+ → S

which can be extended to a uniformly continuous morphism from Â+ onto S. Let

πV : Â+ → FV(A) be the natural morphism and let u, v ∈ Â+. By Proposition
3.5, if πV(u) = πV(v), then u = v is an identity of V and thus, is satisfied by S.
In particular, πV(u) = πV(v) implies ϕ(u) = ϕ(v) and by Proposition II.2.11,
there exists a morphism π̂ : F̂V(A) → S such that ϕ = π̂ ◦ πV.

We claim that π̂ is uniformly continuous. Since F̂V(A) is compact by Propo-
sition 3.4, it suffices to verify that π̂ is continuous. Let F be a subset of the
discrete semigroup S. We first observe that π̂−1(F ) = πV(ϕ−1(F )). Since ϕ

is continuous, ϕ−1(F ) is closed. Now, Â+ is compact, πV is continuous, and
F̂V(A) is Hausdorff. It follows that πV(ϕ−1(F )) is closed, proving the claim. It
now follows from Proposition 3.4 that S is in V. Thus V = W.

For instance, the semigroup U1 = {0, 1}, equipped with the usual multiplica-
tion of integers, generates the variety of finite idempotent and commutative
semigroups, defined by the identities xy = yx and x = x2.

Theorem 3.7 is thus formally similar to Theorem 1.5. The difference lies in
the definition of the identities. In Theorem 1.5, an identity is a pair (u, v) of

words of A+ while in Theorem 3.7, an identity is a pair (u, v) of elements of Â+.
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Each element of Â+ is the limit of a Cauchy sequence of (A+, d). The most
important example of a converging sequence is given by the next lemma.

Lemma 3.8 For each x ∈ Â+, the sequence (xn!)n>0 is a Cauchy sequence. It

converges to an idempotent element of Â+.

Proof. For the first part of the statement, it suffices to show that for p, q >

n, xp! and xq! cannot be separated by a semigroup of size 6 n. Let indeed

ϕ : Â+ → S be a morphism such that Card(S) 6 n, and put s = ϕ(x). By
Proposition II.5.1, s has an idempotent power e = sr, with r 6 n. By the
choice of p and q, the integer r divides simultaneously p! and q!. Consequently,
sp! = sq! = e, which shows that S cannot separate xp! and xq!.

For n large enough, we also have ϕ(xn!)ϕ(xn!) = ee = e = ϕ(xn!). It follows
that the limit of the sequence (xn!)n>0 is idempotent.

The limit of the sequence (xn!)n>0 is denoted xω . In practice, it suffices

to remember that its image under any morphism ϕ : Â+ → S onto a finite
semigroup is the unique idempotent of the subsemigroup of S generated by
ϕ(x). In particular, one can write ϕ(xω) = ϕ(x)ω if the integer π on the right
hand side is interpreted as the exponent of S.

4 Examples of varieties of finite semigroups

Example 4.1 The variety [[xωyxω = xω ]] is the class of semigroups S such that,
for each s ∈ S and for each idempotent e ∈ S, ese = e.

Example 4.2 A semigroup belongs to the variety GS if and only if it satisfies
the identity xωy = yxω = y.

A semigroup is aperiodic if and only if it satisfies the identity xω = xωx,
which can also be written, by abuse of notation, xω = xω+1. Other characteri-
zations of aperiodic semigroups were given in Proposition V.3.9.

A semigroup S is nilpotent if and only if, for each idempotent e of S and for
each s ∈ S, es = e = se. Thus the nilpotent semigroups form a variety, denoted
by Nil, and defined by the identities xωy = xω = yxω. In particular, a nilpotent
semigroup is aperiodic. The next proposition summarizes some characteristic
properties of the nilpotent semigroups.

Proposition 4.1 Let S be a nonempty semigroup. The following conditions
are equivalent:

(1) S is nilpotent,

(2) S has a zero which is the unique idempotent of S,

(3) there exists an integer n > 0 such that S satisfies the identity x1 · · ·xn =
y1 · · · yn.

Proof. (1) implies (2). Since S is nonempty, Proposition II.5.1 shows that S
contains an idempotent e. If S is nilpotent, we have es = e = se for each s ∈ S,
showing that e is a zero. Moreover, for each idempotent f of S, we also have
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fs = f = sf , whence in particular fe = f . Since e is a zero, it follows that
f = e.

(2) implies (3). Let n = Card(S) and let s1, . . . , sn be a finite sequence of
elements of S. By Proposition II.5.4, there exists an idempotent e ∈ S such
that s1 · · · siesi+1 · · · sn = s1 · · · sn. Since the unique idempotent of S is a zero,
we have s1 · · · sn = 0. Therefore S satisfies the identity x1 · · ·xn = y1 · · · yn.

(3) implies (1). Let s ∈ S and e ∈ E(S). Setting x1 = s and x2 = . . . =
xn = y1 = . . . = yn = e, we find s = e if n = 1 and se = e if n > 2 and hence
se = e in all cases. One would show in a similar way that es = e and hence S
is nilpotent.

A finite semigroup is aperiodic if there is an integer n > 0 such that, for
each x ∈ S, xn = xn+1. Since we assume finiteness, quantifiers can be inverted
in the definition: S is aperiodic if there is, for each x ∈ S, there is an integer
n > 0 such that xn = xn+1. Other characterizations of aperiodic semigroups
were given in Proposition V.3.9.

We denote by A the variety of finite aperiodic semigroups and by by J (resp.
R, L), the variety of finite J -trivial (resp. R-trivial, L-trivial) semigroups. The
identities defining these varieties are given in the next proposition.

Proposition 4.2 The following equalities hold

R = [[(xy)ωx = (xy)ω ]]

L = [[y(xy)ω = (xy)ω ]]

J = [[y(xy)ω = (xy)ω = (xy)ωx]] = [[xωx = xω , (xy)ω = (yx)ω ]]

A = [[xω = xω+1]]

Moreover, the identities (xωyω)ω = (xωy)ω = (xyω)ω = (xy)ω are satisfied by
J.

Proof. (1) Let M be a monoid and let x, y ∈ M . If π is interpreted as the
exponent of M , we observe that (xy)ωx R (xy)ω since ((xy)ωx)(y(xy)π−1 =
(xy)2π = (xy)ω. Thus if M is R-trivial, the identity (xy)ωx = (xy)ω holds in
M .

Conversely, assume that M satisfies the identity (xy)ωx = (xy)ω and let
u and v be two R-equivalent elements of M . Then, there exist x, y ∈ M
such that ux = v and vy = u. It follows that u = uxy = u(xy)ω and thus
v = ux = u(xy)ωx. Now, since (xy)ωx = (xy)ω , u = v and M is R trivial.

(2) The proof is dual for the variety L.
(3) Since J = R ∩ L, it follows from (1) and (2) that J is defined by the

identities y(xy)ω = (xy)ω = (xy)ωx. Taking y = 1, we obtain xπ = xπx and also
(xy)ω = y(xy)ω = (yx)ωy = (yx)ω . Conversely, suppose that a monoid satisfies
the identities xωx = xω and (xy)ω = (yx)ω . Then we have (xy)ω = (yx)π =
(yx)ω+1 = y(xy)ωx, whence (xy)ω = yω(xy)ωxω = yω+1(xy)ωxω = y(xy)ω and
likewise (xy)ω = (xy)ωx.

Note that the following inclusions hold: J ⊂ R ⊂ A and J ⊂ L ⊂ A.
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Chapter VII

Star-free languages

The characterization of star-free languages, obtained by Schützenberger in 1965,
is, after to Kleene’s theorem, the most important result of the theory of finite
automata.

1 Star-free languages

Let A be a finite alphabet. The set of star-free subsets of A∗ is the smallest set
R of subsets of A∗ such that

(a) R contains the empty set, the set {1} and, for each a ∈ A, the singleton
{a}.

(b) R is closed under finite union, finite product and complement.

Thus the definition of the star-free subsets follows the same definition scheme as
the one of rational subsets, with the difference that the star operation is replaced
by the complement. Since the rational subsets are closed under complement,
every star-free subset is rational, but we shall see later on that the converse is
not true. It follows also immediately from the definition that every finite set is
star-free.

We shall follow the notation of Chapter IV. Union will be denoted additively,
the empty set will be denoted by 0, the singleton {u} will be simply denoted
by u, the product will be denoted by simple juxtaposition and Lc will denote
the complement of a subset L of A∗. The star-free sets are thus described by
expressions using the letters of the alphabet A, the constants 0 and 1 and the
three operators union, product and complement. It is not always easy to find
such an expression, as is shown in the examples below.

Example 1.1

(1) A∗ is a set star-free, since A∗ = 0c

(2) If B is a subset of A, A∗BA∗ is star-free by (1). It follows that B∗ is
star-free, since

B∗ = A∗ \
∑

a∈A\B

A∗aA∗ =
( ∑

a∈A\B

0ca0c
)c

89
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(3) If A = {a, b}, the set (ab)∗ is star-free. Indeed

(ab)∗ = (b0c + 0ca+ 0caa0c + 0cbb0c)c

2 Schützenberger’s theorem

Recall that a finite monoid M is aperiodic if there exists an integer n such that,
for all x ∈M , xn = xn+1.

Proposition 2.1 Aperiodic monoids form a variety of finite monoids.

We also prove a useful property of aperiodic monoids.

Proposition 2.2 For a finite ordered monoid M is aperiodic if and only if it
satisfies the identity xn+1 6 xn for some n > 0

Proof. If M is aperiodic, it satisfies by definition an identity of the form xn+1 =
xn and the identity xn+1 6 xn is trivially satisfied. Conversely, this identity
implies that

xn = x2n
6 x2n−1

6 x2n−2
6 . . . 6 xn+1

6 xn

whence xn = xn+1 for all x ∈M . Thus M is aperiodic.

We are now ready to state Schützenberger’s theorem.

Theorem 2.3 (Schützenberger) A language is star-free if and only if its syn-
tactic monoid is aperiodic.

Proof. The easiest part of the proof relies on a syntactic property of the con-
catenation product1. Let L0 and L1 be two recognizable subsets of A∗ and let
L = L0L1. Let M0, M1 and M be the ordered syntactic monoids of L0, L1 and
L.

Lemma 2.4 If M0 and M1 are aperiodic, so is M .

Proof. Let n0, n1 and m be the respective exponents of M0, M1 and M and
let n be a multiple of m such that n > n0 + n1 + 1. In particular, xn = x2n for
all x ∈ M . We claim that, for all x ∈ M , xn+1 6 xn. By Proposition 2.2, this
property will suffice to show that M is aperiodic.

By the definition of the syntactic order, the claim is equivalent to proving
that, for each x, u, v ∈ A∗, uxnv ∈ L implies uxn+1y ∈ L. One can of course
suppose that x 6= 1. If uxny ∈ L, there exists a factorization uxny = x0x1

with x0 ∈ L0 and x1 ∈ L1. Two cases are possible. Either x0 = uxn0r with
rx1 = xn−n0y, or x1 = sxn1y with x0s = uxn−n1 . Let us consider the first case,
since the second case is symmetric. Since M0 is aperiodic and since uxn0r ∈ L0,
we have uxn0+1r ∈ L0 and hence xxn+1v ∈ L.

Let us fix an alphabet A and let A(A∗) be the set of languages of A∗ whose
syntactic monoide is aperiodic. An elementary computation shows that the

1an improved version of this result is given in Theorem X.4.1
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syntactic monoid of the languages {1} and a, for a ∈ A, is aperiodic. Therefore,
the set A(A∗) contains the languages of this type. Further, by Proposition
IV.2.3, a language and its complement have the same syntactic monoid, A(A∗)
is closed under complement. It is also closed under finite union by Proposition
IV.2.4 and hence under Boolean operations. Lemma 2.4 shows that A(A∗) is
also closed under product. Consequently, A(A∗) contains the star-free sets.

To establish the converse, we need two elementary properties of aperiodic
monoids. The first property is a simple reformulation of Theorem V.1.8 (5) in
the case of aperiodic monoids.

Lemma 2.5 (Simplification Lemma) Let M an aperiodic monoid and let
p, q, r ∈M . If pqr = q, then pq = q = qr.

Proof. Let n the exponent of M . Since pqr = q, we also have pnqrn = q. Since
M is aperiodic, we have pn = pn+1 and hence pq = ppnqrn = pnqrn = q and,
in the same way, qr = q.

The second property leads to a decomposition of each subset of an aperiodic
monoid as a Boolean combination of right ideals, left ideals, or ideals.

Lemma 2.6 Let M be an aperiodic monoid and let m ∈ M . Then {m} =
(mM ∩Mm) \ Jm, with Jm = {s ∈M | m /∈MsM}.

Proof. It is clear that m ∈ (mM ∩ Mm) \ Jm. Conversely, if s ∈ (mM ∩
Mm) \ Jm, there exist p, r ∈M such that s = pm = mr. Moreover, as s /∈ Jm,
m ∈MsM . It follows by Theorem V.1.8 that m H s and hence m = s since M
is aperiodic.

We now need proving that if ϕ : A∗ → M is a morphism from A∗ into an
aperiodic monoid M , the set ϕ−1(P ) is star-free for every subset P of M . The
formula

ϕ−1(P ) =
∑

m∈P

ϕ−1(m)

allows one to assume that P = {m}. We shall show that ϕ−1(m) is star-free by
induction on the integer r(m) = Card(M \MmM). The intial step is treated
in the next lemma.

Lemma 2.7 If r(m) = 0, then m = 1 and ϕ−1(m) is star-free

Proof. If r(m) = 0, then M = MmM and there exist u, v ∈ M such that
umv = 1. The Simplification Lemma applied to (um)1(v) = 1 and to (u)1(mv) =
1 gives u = v = 1 and hence also m = 1. Let us show that ϕ−1(1) = B∗, where
B = {a ∈ A | ϕ(a) = 1}. If u ∈ B∗, we have of course ϕ(u) = 1. Conversely,
if ϕ(u) = 1, the Simplification Lemma shows that ϕ(a) = 1 for each letter a
occurring in u, and hence u ∈ B∗. Now, as was shown in example 1.1, (2), B∗

is a star-free set.

Assume now that r(m) > 0 and that the property has been established for
each element s such that r(s) < r(m). We shall now prove the formula

ϕ−1(m) = (UA∗ ∩A∗V ) \ (A∗CA∗ ∪A∗WA∗) (2.1)
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where

U =
∑

(n,a)∈E

ϕ−1(n)a V =
∑

(a,n)∈F

aϕ−1(n)

C = {a ∈ A | m /∈Mϕ(a)M} W =
∑

(a,n,b)∈G

aϕ−1(n)b

with

E = {(n, a) ∈M ×A | nϕ(a) R m but n /∈ mM}

F = {(a, n) ∈ A×M | ϕ(a)n L m but n /∈Mm}

G = {(a, n, b) ∈ (A×M ×A | m ∈ (Mϕ(a)nM ∩Mnϕ(b)M) \Mϕ(a)nϕ(b)M}

Denote by L the right hand side of (2.1). We first prove the inclusion ϕ−1(m) ⊆
L. Let u ∈ ϕ−1(m) and let p be the shortest prefix of u such that ϕ(p) R m.
The word p cannot be empty, since otherwise m R 1, whence m = 1 by the
Simplification Lemma. Put p = ra with r ∈ A∗ and a ∈ A and let n =
ϕ(r). By construction, (n, a) ∈ E and u ∈ ϕ−1(n)aA∗. Therefore u ∈ UA∗

and a symmetric argument would show that u ∈ A∗V . If u ∈ A∗CA∗, there
exists a letter a of C such that m = ϕ(u) ∈ Mϕ(a)M , a contradiction with
the definition of C. Similarly, if u ∈ A∗WA∗, there exist (a, n, b) ∈ G such
that m ∈ Mϕ(a)nϕ(b)M , a contradiction this time with the definition of G.
Therefore u ∈ L.

Conversely, let u ∈ L and let s = ϕ(u). Since u ∈ UA∗ ∩ A∗V , we have
s ∈ mM ∩Mm. By Lemma 2.6, in order to prove that s = m, and hence that
u ∈ ϕ−1(m), it suffices to prove that s /∈ Jm, that is, m ∈MsM . Supposing the
contrary, consider a factor f of u of minimal length such that m /∈ Mϕ(f)M .
The word f is necessarily nonempty. If f is a letter, this letter is in C and
u ∈ A∗CA∗, which is impossible. We may thus set f = agb, with a, b ∈ A.
Set n = ϕ(g). Since f is of minimal length, we have m ∈ Mϕ(a)nM and
m ∈Mnϕ(b)M . Consequently n ∈ G and f ∈ W , which is impossible again.

Formula (2.1) is thus established and it suffices now to show that U , V
and W are star-free, since we have already seen in Example 1.1 that A∗CA∗

is star-free. Let (n, a) ∈ E. Since nϕ(a)M = mM , we have MmM ⊆ MnM
and hence r(n) 6 r(m). Moreover, as m 6R n, Theorem V.1.8 shows that
if MmM = MnM , we have n R m, which is not possible since n /∈ mM .
Therefore r(n) < r(m) and U is star-free by the induction hypothesis.

A symmetric argument would work for V . There remains to treat the case
W . Let (a, n, b) ∈ G. One has r(n) 6 r(m) since m ∈ MnM . Suppose
that MmM = MnM . Then in particular n ∈ MmM and as m ∈ Mϕ(a)nM
and m ∈ Mnϕ(b)M , it follows n ∈ Mϕ(a)nM and n ∈ Mnϕ(b)M , whence
n L ϕ(a)n and n R nϕ(b). By Proposition V.1.9, nϕ(b) L ϕ(a)nϕ(b), and
hence m J ϕ(a)nϕ(b), a contradiction with the definition of G. Consequently
r(n) < r(m) and W is star-free by the induction hypothesis.

Example 2.1 Let A = {a, b} and let L = (ab)∗. The minimal automaton of L
is represented in Figure 2.1.
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1 2

a

b

Figure 2.1. The minimal automaton of (ab)∗.

The syntactic monoid M of L is the monoid consisting of the six matrices

I =

(
1 0
0 1

)
a =

(
0 1
0 0

)
b =

(
0 0
1 0

)

aa =

(
0 0
0 0

)
ab =

(
1 0
0 0

)
ba =

(
0 0
0 1

)

and it is defined by the relations a2 = b2 = 0, aba = a and bab = b. Its D-class
structure is given in Figure 2.2:

∗
1

∗
ab a

b
∗
ba

∗
0

Figure 2.2. The D-class structure of M .

This monoid is aperiodic, since x2 = x3 for each x ∈M , and hence L is star-free.

Example 2.2 Let A = {a, b} and let L′ = (aa)∗. The minimal automaton of
L′ is represented in Figure 2.3:

1 2

a

a

Figure 2.3. The minimal automaton of (aa)∗.

The syntactic monoid M ′ of L′ is the monoid consisting of the three matrices

I =

(
1 0
0 1

)
a =

(
0 1
1 0

)
b =

(
0 0
0 0

)
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and it is defined by the relations a2 = 1 and b = 0. Its D-class structure is given
in Figure 2.4:

∗
1, a

∗
0

Figure 2.4. The D-class structure of M ′.

This monoid is not aperiodic, since, for each n > 0, an 6= an+1 and hence L′ is
not star-free.



Chapter VIII

Piecewise testable

languages

Simon’s theorem shows that the languages recognized by J -trivial monoids are
exactly the shuffle ideals. This result has far reaching consequences, both in
semigroup theory and in automata theory. We shall present two of the seven
published proofs of Simon’s theorem: the first one, due to Imre Simon, is based
on a careful analysis of the subword ordering and has a strong combinatorial
flavour. The second one, due to Straubing and Thérien, is more algebraic in
nature.

As a preliminary step, we shall explore the properties of the subword ordering
and give an algebraic characterization of the shuffle ideals.

1 Subword ordering

Let A be a finite alphabet. Recall that a word u = a1 . . . ak ∈ A∗ (where
a1, . . . , ak are letters) is a subword of a word v ∈ A∗ it there exist words
v0, v1, . . . , vk ∈ A∗ such that v = v0a1v1 · · ·akvk. One also says that v is a
superword of u. For instance, ardab is a subword of abracadabra.

The subword ordering is a partial ordering on A∗, which is compatible with
the concatenation product. Here is another important property of the subword
ordering:

Theorem 1.1 A set of words of A∗ that are pairwise incomparable for the sub-
word ordering is necessarily finite.

Proof. A sequence of words (un)n>0 is said to be subword-free if, for all i < j,
ui is not a subword of uj. We claim there exist no infinite subword-free sequence.
Otherwise, one would be able to find an “earliest” subword-free sequence, in the
following sense:

(1) u0 is a shortest word beginning a subword-free sequence of words,

(2) u1 is a shortest word such that u0, u1 is the beginning a subword-free
sequence of words,

(3) u2 is a shortest word such that u0, u1, u2 is the beginning a subword-free
sequence of words, and so on.

95
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Since A is finite, there exist infinitely many ui that begin with the same let-
ter a, say ui0 = avi0 , ui1 = avi1 , . . . , with i0 < i1 < . . . Now the sequence
u0, u1, . . . , ui0−1, vi0 , vi1 , . . . is “earlier” that our original sequence, a contradic-
tion. This proves the claim and the theorem follows.

For each n > 0, we define an equivalence relation ∼n on A∗ by u ∼n v if and
only if u and v have the same subword of length 6 n. For instance, abbac ∼1 cab,
since these two words have the same letters a, b and c, and ababab ∼3 bababa
since any word of length 6 3 is a subword of both words.

Proposition 1.2 The relation ∼n is a congruence of finite index on A∗.

Proof. Suppose that u ∼n v and let x, y be two words of A∗. Let w be a
subword of xuy of length less 6 n. The word w can be factorized as w0w1w2

where w0, w1 and w2 are subwords of x, u and y, respectively. Since w1 is
shorter that w, |w1| 6 n and thus w1 is also a subword of v. It follows that
w0w1w2 is a subword of xvy. Dually, every subword of xvy of length 6 n is a
subword of xuy. Thus xuy ∼n xvy, showing that ∼n is a congruence.

The ∼n-class of u is entirely determined by the set of subwords of u of length
6 n. Since there are finitely many such words, the congruence ∼n has finite
index.

We shall now establish some useful properties of this congruence.

Proposition 1.3 Let u, v ∈ A∗ and a ∈ A. If uav ∼2n−1 uv, then either
ua ∼n u or av ∼n v.

Proof. Suppose that ua 6∼n u and av 6∼n v. Then there exists a word x of
length 6 n which is a subword of ua but not of u. Likewise there exists a word
y of length 6 n which is a subword of av but not of v. Necessarily one has
x = x′a and y = ay′ and x′ay′ is a word of length 6 2n− 1 which is a subword
of uav but not of uv. Therefore uav 6∼2n−1 uv.

If u is a word, we denote by c(u) the content of u, that is, the set of letters
of A occurring in u. For instance, c(babaa) = {a, b}.

Proposition 1.4 Let u, v ∈ A∗ and let n > 0. Then u ∼n vu if and only if there
exist u1, . . . , un ∈ A∗ such that u = u1 · · ·un and c(v) ⊆ c(u1) ⊆ . . . ⊆ c(un).

Proof. First of all, the result is trivial if u = 1. We shall suppose from now on
that u is nonempty.

Let us show that the condition is necessary by induction on n. If n = 1,
u ∼1 vu implies that u and vu have the same content and hence c(v) ⊆ c(u).
Suppose that u ∼n+1 vu and let un+1 be the shortest suffix of u such that
c(un+1) = c(u). Since u is nonempty, so is un+1. Put un+1 = au′ with a ∈ A.
By definition of un+1, c(u

′) is strictly contained in c(u) and thus a is not a letter
of u′. We claim that w ∼n vw, where w is the prefix of u such that u = wau′.
Let x be a subword of vw of length 6 n. Then xa is a subword of length 6 n+1
of vwa and therefore of vu. Since u ∼n+1 vu, xa is a subword of u = wau′ and,
since a is not a letter of u′, xa is a subword of wa. Therefore x is a subword
of w. Conversely, it is clear that every subword of w is a subword of vw, which
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proves the claim. By the induction hypothesis, there exist u1, . . . , un ∈ A∗ such
that w = u1 · · ·un and c(v) ⊆ c(u1) ⊆ . . . ⊆ c(un). Now u = wun+1 and
c(un) ⊆ c(u) = c(un+1), which concludes the induction step.

We now show that the condition is sufficient, again by induction on n. For
n = 1, u1 = u and c(v) ⊆ c(u) implies c(u) = c(vu), that is, u ∼1 vu. Suppose
that u = u1 · · ·un+1 with c(v) ⊆ c(u1) ⊆ . . . ⊆ c(un+1). Then c(vu) = c(u) =
c(un+1) and u1 · · ·un ∼n vu1 · · ·un by the induction hypothesis. Let x be a
nonempty subword of length 6 n + 1 of vu. Let x′ be the longest suffix of x
such that x′ is a subword of un+1 and put x = x′′x′.

v u1 u2 un+1

x′′ x′

vu

x

Since c(vu) = c(un+1), the factor un+1 contains each letter of vu, and hence of
x, at least once. In particular, x′ is nonempty. Further, by the definition of x′,
x′′ is a subword of length 6 n of vu1 · · ·un. Since u1 · · ·un ∼n vu1 · · ·un, x′′ is
a subword of u1 · · ·un and therefore x is a subword of u. Consequently, every
subword of u is a subword of vu and therefore u ∼n+1 vu, which completes the
proof.

Corollary 1.5 For every u, v ∈ A∗, one has (uv)nu ∼n (uv)n ∼n v(uv)
n.

Proof. The formula (uv)n ∼n v(uv)
n follows from Proposition 1.3. The other

part of the formula is dual.

We conclude this section with a remarkable combinatorial property of the
congruence ∼n.

Proposition 1.6 If f ∼n g, there exists h such that f and g are subwords of h
and f ∼n h ∼n g.

Proof. The proof is achieved by induction on k = |f |+ |g|−2|f∧g| where f ∧g
is the largest common prefix of f and g. If k = 0, then f = g and it suffices to
take h = f = g. The result is also trivial if f is a subword of g (or g is a subword
of f). These cases are excluded from now on. Thus one has f = uav, g = ubw
with a, b ∈ A and a 6= b. We claim that either ubw ∼n ubav or uav ∼n uabw.
Suppose that none of these assertions is true. Since ubw = g ∼n f and f is a
subword of ubav, there exists a word r of length 6 n which is a subword of ubav
but not of ubw. Likewise, there exists a word of length 6 n which is a subword
of uabw but not of uaw.
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g u b w f u a v

r r1 b r2 s s1 a s2

u b a v u a b w

Necessarily r = r1br2 where r1 is a subword of u and r2 is a subword of av,
and s = s1as2 where s1 is a subword of u and s2 is a subword of bw. It follows
that r1b is not a subword of u (for otherwise r = r1br2 would be a subword of
uav = f and therefore of g). Likewise s1a is not a subword of u.

Since r2 is a subword of av, one has r2 = r′′2 r
′
2 where r′′2 = 1 or a and r′2 is

a subword of v. Likewise, since s2 is a subword of bw; one has s2 = s′′2s
′
2 where

s′′2 = 1 or b and s′2 is a subword of w. Finally

|r1bs
′
2| + |s1ar

′
2| 6 |r1as2| + |s1br2| 6 |r| + |s| 6 2n

and therefore one of the words r1bs
′
2 or s1ar

′
2 is of length 6 n. Suppose for

example that this is r1bs
′
2. Then r1bs

′
2 is a subword of ubw = g and therefore

also of f = uav. However, r1b is not a subword of u. Thus bs′2 is a subword of
v, and a fortiori s2 is a subword of v.

u a v

r1 b s′2

Thus s = s1as2 is a subword of uab = f , a contradiction. This proves the claim.
Suppose, for example, that f = uav ∼n uabw. Then

|uav| + |uabw| − 2|uav ∧ uabw| 6 |f | + |g| + 1 − 2|ua|

6 |f | + |g| + 1 − (2|f ∧ g| + 2)

< k

By the induction hypothesis, there exists h such that f = uav is a subword of
h, uabw is a subword of h and f ∼n h ∼n uabw. The proposition follows from
this, since g is a subword of uabw.

Example 1.1 Let f = a3b3a3b3 and g = a2b4a4b2. We have f ∼4 g since all
words of length 4 except baba are subwords of f and g. Applying the algorithm
described in the proof of Proposition 1.6, we obtain successively

f = (aa)a(b3a3b3) ∼4 (aa)b(b3a4b2) = g

whence

(aa)a(b3a3b3) ∼4 (aa)ab(b3a4b2) or (aa)b(b3a4b2) ∼4 (aa)ba(b3a3b3)
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The second possibility can be ruled out, for baba is a subword of a2bab3a3b3.
Therefore

(a3b3)a(a2b3) ∼4 (a3b3)b(a4b2)

and consequently

(a3b3)a(a2b3) ∼4 (a3b3)ab(a4b2) or (a3b3)b(a4b2) ∼4 (a3b3)ba(a2b3)

The first possibility can be ruled out, for baba is a subword of a3b3aba4b2. Then

(a3b4a3)a(b2) ∼4 (a3b4a3)b(b2)

and consequently

(a3b4a3)a(b2) ∼4 (a3b4a3)ab(b2) or (a3b4a3)b(b2) ∼4 (a3b4a3)ba(b2)

The second possibility can be ruled out, for baba is a subword of a3b4a3bab2.
Therefore

a3b4a4b2 ∼4 a
3b4a4b3

It follows from this that f and g are subwords of h = a3b4a4b3 and that f ∼4

h ∼4 g.

2 Simple languages and shuffle ideals

The shuffle of two languages L1 and L2 of A∗ is the language L1 X L2 of A∗

defined by:

L1 X L2 = {w ∈ A∗ | w = u1v1 · · ·unvn for some n > 0 such that

u1 · · ·un ∈ L1, v1 · · · vn ∈ L2}

In particular, if L is a language of A∗, a language of the form L X A∗ is called
a shuffle ideal. Thus a language L of A∗ is a shuffle ideal if every superword of
a word of L is also in L.

A simple language is a shuffle ideal of the form

A∗
X a1 . . . ak = A∗a1A

∗a2A
∗ · · ·A∗akA

∗

where a1, . . . , ak. Thus A∗a1A
∗a2A

∗ · · ·A∗akA
∗ is the set of superwords of the

word a1 · · · ak. We can now state our first characterization of shuffle ideals:

Theorem 2.1 A language is a shuffle ideal if and only if it is a finite union of
simple languages.

Proof. Clearly, every finite union of simple languages is a shuffle ideal. Con-
versely, let L be a shuffle ideal and let F be the set of all minimal words of
L for the subword ordering. Thus L is the set of all superwords of L, that is
L = F X A∗. Furthermore, since the elements of F are pairwise incomparable
for the subword ordering, Higman’s theorem (Theorem 1.1) shows that F is
finite. Therefore L is the finite union of the simple languages A∗

X u, where
the union runs over all words u ∈ F .

One can give a constructive proof which does not rely on Higman’s theorem.
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Proposition 2.2 Let L be recognizable language such that L X A∗ = L. Then
one can effectively find a finite set of words F such that L = F X A∗.

Proof. Let n be the number of states of the minimal automaton A of L. Set

F = {u ∈ L | |u| 6 n} and K = F X A∗

We claim that L = K. Since F ⊆ L, one has F X A∗ ⊆ L X A∗ = L
and hence K ⊆ L. If the inclusion is strict, consider a word u of minimal
length in L \ K. Necessarily, |u| > n, for otherwise u ∈ F . Let u = a1 · · · ar

and let q1
a1−→ q2

a2−→ q3 · · · qr−1
ar−1

−→ qr be a successful path of label u in
A. As r > n, there exist two indices i < j such that qi = qj . Thus the
word v = a1 · · · aiaj+1 · · · ar is also accepted by A and therefore belongs to
L. Furthermore, since v is shorter than u, v belongs to K and u belongs to
K X A∗. Now, since

K X A∗ = (F X A∗) X A∗ = F X (A∗
X A∗) = F X A∗ = K

one has u ∈ K, a contradiction. This proves the claim and the proposition.

Corollary 2.3 Every shuffle ideal is a recognizable language.

We now come to the algebraic characterization of shuffle ideals.

Theorem 2.4 A language is a shuffle ideal if and only if its ordered syntactic
monoid satisfies the identity x 6 1.

Proof. Let L be a language and let η : A∗ → (M,6) be its ordered syntactic
morphism. Suppose that L is a shuffle ideal. If uv ∈ L, then uxv ∈ L for each
x ∈ A∗. Therefore x 6L 1 and thus M satisfies the identity x 6 1.

Conversely, if M satisfies the identity x 6 1, then, for every x ∈ A∗, x 6L 1,
that is, the condition uv ∈ L implies uxv ∈ L. Therefore L is a shuffle ideal.

3 Piecewise testable languages and Simon’s the-

orem

A language is called piecewise testable if and only if it is a union of ∼n-classes
for some positive integer n.

The terminilogy chosen can be explained as follows: a language L is piecewise
testable if there exists an integer n > 0 such that one can test whether or not a
word belongs to L by simple inspection of its subwords of length 6 n. Here is
a first description of these languages.

Proposition 3.1 A language of A∗ is piecewise testable if and only if it belongs
to the Boolean algebra generated by the simple languages on A∗.
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Proof. Let L = A∗a1A
∗ · · · anA

∗ be a simple language of A∗. If u ∈ L, then
a1 · · · an is a subword of u. Therefore, if u ∼n v, a1 · · · an is also a subword of v
and v ∈ L. This shows that L is saturated by ∼n and therefore is a finite union
of ∼n-classes.

Let u be a word of A∗. A moment’s reflexion should suffice to verify the
following formula:

{v ∈ A∗ | v ∼n u} =
( ⋂

a1···ak∈E

A∗a1A
∗ · · ·akA

∗
)
\

( ⋃

a1···ak∈F

A∗a1A
∗ · · · akA

∗
)

where E is the set of subwords of u of length 6 n and F is the set of words
of length 6 n which are not subwords of u. It follows from this formula that
if L is a union of ∼n-classes for some positive integer n, then L belongs to the
Boolean algebra generated by the simple languages on A∗.

The syntactic characterization of piecewise testable languages is the main
result of this chapter. It relies on two results of semigroup theory of independent
interest.

Proposition 3.2 Any finite ordered monoid satisfying the identity x 6 1 is
J -trivial.

Proof. Let x and y be two elements of M such that x J y. Then x = rys
and y = uxv for some r, s, u, v ∈ M . Since r 6 1 and s 6 1, it follows that
x = rys 6 y and similarly, y 6 x. Thus x = y.

Theorem 3.3 (Simon) Let M be a finite J -trivial monoid and let n is the
maximal length of strict <J -chains in M . If ϕ : A∗ → M is a surjective
morphism, then M is a quotient of the monoid A∗/∼2n−1.

Proof. By Proposition II.2.11, it suffices to show that if f ∼2n−1 g, then ϕ(f) =
ϕ(g). By Proposition 1.6, we may assume that f is a subword of g. We note
furthermore that if f is a subword of h and h is a subword of g, then we also have
f ∼2n−1 h. This enables us to assume that f = uv and g = uav for some a ∈ A.
In this case, Proposition 1.3 shows that either ua ∼n u or av ∼n v. Assuming
the latter, there exists by Proposition 1.4 a factorisation v = v1v2 · · · vn such
that {a} ⊆ c(v1) ⊆ . . . ⊆ c(vn). Consider the 6J -chain of length n+ 1

ϕ(v1 · · · vn) 6J ϕ(v2 · · · vn) 6J · · · 6J ϕ(v1) 6J 1

By the choice of n, this chain is not strict and there exist two indices i < j such
that ϕ(vi · · · vn) J ϕ(vj · · · vn). Since M is J -trivial, one has ϕ(vi · · · vn) =
ϕ(vj · · · vn) = s. Let b ∈ c(vi). Then v = v′ibv

′′
i for some v′i, v

′′
i ∈ A∗ and thus s =

ϕ(vi · · · vn) J ϕ(bv′′i vi+1 · · · vj · · · vn) J ϕ(v′′i vi+1 · · · vj · · · vn) J ϕ(vj · · · vn) =
s. Consequently, ϕ(b)s = s for each b ∈ c(vi) and therefore ϕ(v) = ϕ(v1 · · · vn) =
s = ϕ(a)s = ϕ(av). It follows that ϕ(f) = ϕ(uav) = ϕ(uv) = ϕ(g), which
concludes the proof.

Theorem 3.3 has a very important consequence.
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Corollary 3.4 Every finite monoid is the quotient of a finite ordered monoid
satisfying the identity x 6 1.

Proof. Indeed, the subword ordering induces a stable partial order onA∗/∼2n−1.
Furthermore, since the empty word is a subword of every word, the identity
1 6 x holds in this ordered monoid.

We now return to the announced characterization of piecewise testable lan-
guages.

Theorem 3.5 (Simon) A language is piecewise testable if and only if its syn-
tactic monoid is finite and J -trivial.

Proof. Let L be a simple language. Then by Theorem 2.4, the ordered syntactic
monoid of L satisfies the identity x 6 1. By Proposition 3.2, this monoid
is J -trivial. Now if L is piecewise testable, it is by Proposition 3.1 a Boolean
combination of simple languages, its syntactic monoid divides a product of finite
J -trivial monoids and hence is itself finite and J -trivial.

Conversely, if the syntactic monoid of L is finite and J -trivial, then by
Theorem 3.3, L is a union of ∼2n−1-classes, where n is the maximal length of
strict <J -chains in M . Thus L is piecewise testable.

4 Some consequences of Simon’s theorem

Simon’s theorem has unexpected consequences in semigroup theory. We start
by defining, for each integer n > 0, three monoids Cn, Rn and Un which will
serve us as examples of J -trivial monoids.

The monoid Cn is the submonoid of Tn consisting of all order preserving and
extensive functions from {1, . . . , n} into itself. Recall that a transformation a
on {1, . . . , n} is order preserving if p 6 q implies p· a 6 q · a and extensive if for
all p, p 6 p· a.

The monoid Rn is the monoid of all reflexive relations on {1, . . . , n}. It
is convenient to consider Rn as the monoid of Boolean matrices of size n × n
having only one entries on the diagonal. For example

R2 = {( 1 0
0 1 ) , ( 1 1

0 1 ) , ( 1 0
1 1 ) , ( 1 1

1 1 )}

Finally, Un is the submonoid of Cn consisting of the upper triangular matrices
of Cn. The matrices of Un are called unitriangular. For example,

U3 =
{(

1 ε1 ε2

0 1 ε3

0 0 1

)
| ε1, ε2, ε3 ∈ {0, 1}

}

Proposition 4.1 For each n > 0, the monoids Cn, Rn and Un are J -trivial.

Proof. Let us show that Cn is J -trivial. If f, g ∈ Cn and f J g, then g = afb
and f = cgd for some a, b, c, d ∈ Cn. Let p ∈ {1, . . . , n}. Since a is extensive,
one has p 6 p· a and since a is order-preserving, one has p· f 6 p· af . It follows,
since b is extensive, that p· af 6 p· afb and finally p· f 6 p· afb = p· g. Similar
reasoning would show that p· g 6 p· f . It follows that f = g and thus Cn is
J -trivial.
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Since Un is a submonoid of Rn, it is sufficient to establish that Rn is J -
trivial. But Rn is naturally ordered by the order defined by m 6 n if and only
if, for all i, j, mi,j 6 ni,j and this order is stable under product. Since all entries
on the diagonal are equal to 1, the identity 1 6 x holds in Rn and thus Rn is
J -trivial by Proposition 3.2.

The next proposition is another elementary property of the monoids Cn, Rn

and Un.

Proposition 4.2 For each n,m > 0, the monoids Cn × Cm, Rn × Rm and
Un × Um is isomorphic to a submonoid Cn+m, Rn+m and Un+m the monoids,
respectively.

Proof. Let ϕ : Cn × Cm → Cn+m be the function defined by ϕ(f, g) = h where

p·h =

{
p· f if 1 6 p 6 n,

(p− n)· g + n if n+ 1 6 p 6 n+m

Then ϕ is clearly an injective morphism and therefore Cn ×Cm is isomorphic to
a submonoid of Cn+m.

Let now ψ : Rn×Rm → Rn+m be the function defined by ψ(R,S) = T where
T is the relation defined by (i, j) ∈ T if and only if (i, j) ∈ R or (i−n, j−n) ∈ S.
Then ψ is an injective morphism and therefore Rn × Rm is isomorphic to a
submonoid of Rn+m. The proof is similar for Un.

The next result shows that the monoids Cn, Rn and Un generate the vareity
of J -trivial monoids.

Theorem 4.3 Let M be a finite monoid. the following conditions are equiva-
lent:

(1) M is J -trivial,

(2) there exists an integer n > 0 such that M divides Cn,

(3) there exists an integer n > 0 such that M divides Rn,

(4) there exists an integer n > 0 such that M divides Un.

Proof. By Proposition 4.1, the monoids Cn, Rn and Un are J -trivial. Therefore
one of the conditions (2), (3) or (4) implies (1). Moreover (4) implies (3) since
Un is a submonoid of Rn. It remains to prove that (1) implies (2) and (4).

Let M be a J -trivial monoid. TO DO.

Theorem 4.4 Every finite J -trivial monoid is a quotient of a finite ordered
monoid satisfying the identity x 6 1.

Proof. TO DO.
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Chapter IX

The variety theorem

A class of recognizable subsets is a correspondence that associates with each
finite alphabet A, a set C(A∗) of recognizable languages of A∗. We use here the
terms class and correspondence instead of set and function to avoid any paradox
of set theory, since it is known, for instance, that the finite sets do not form a
set. However, we shall use the term “bijection” instead of “one-to-one and onto
correspondence”.

One can associate with each variety of monoids V the class V of languages
recognized by a monoid of V. Such a class V is called a variety of languages and
admits an abstract characterization: it is a class of recognizable languages closed
under Boolean operations, inverse morphisms between free monoids, and right
and left quotients. Eilenberg’s variety theorem asserts that the correspondence
V → V between varieties of finite monoids and varieties of languages is bijective.
For instance, the variety of rational languages corresponds to the variety of
finite monoids, the variety of star-free languages corresponds to the variety of
aperiodic monoids, and that of piecewise testable languages corresponds to the
variety of J -trivial monoids.

1 Varieties of languages

Let E be a set. A class of subsets of E forms a positive Boolean algebra if it
is closed under finite union and finite intersection. It contains in particular the
empty subset (obtained as the union of the empty family) and the full subset
E (obtained as the intersection of the empty family). A Boolean algebra is
a positive Boolean algebra which is also closed under complementation. The
smallest positive Boolean algebra containing a set E of subsets of E is called
the positive Boolean algebra generated by E . Its elements are obtained from the
elements of E by using the operations of finite union and finite intersection: they
are the positive Boolean combinations of elements of E . The notion of generated
Boolean algebra can be defined in the same way by adding the complement to
the basic operations.

Recall that if X is a subset of A∗ and if u ∈ A∗, the left (resp. right) quotient
of X by u is the set

u−1X = {v ∈ A∗ | uv ∈ X} (resp. Xu−1 = {v ∈ A∗ | vu ∈ X})

105
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A positive variety is a class of recognizable subsets such that

(1) for each alphabet A, V(A∗) is a positive Boolean algebra,

(2) for each morphism of semigroups ϕ : A∗ → B∗, X ∈ V(B∗) implies
ϕ−1(X) ∈ V(A∗),

(3) If X ∈ V(A∗) and u ∈ A∗, u−1X ∈ V(A∗) and Xu−1 ∈ V(A∗).

A variety is a positive variety closed under complementation. This amounts
replacing (1) by (1’) in the previous definition

(1′) for each alphabet A, V(A∗) is a Boolean algebra,

We are now ready to state the variety theorem.

Theorem 1.1 The correspondence V → V defines a bijection between the vari-
eties of ordered semigroups and the +-positive varieties on one hand and between
the varieties of semigroups and the +-varieties on the other hand.

Boldface letters are usually used to denote varieties of finite semigroups and
the corresponding +-varieties are denoted with cursive letters.

One can obtain a parallel theory by considering the recognizable subsets of
the free semigroup A+. It suffices to define successively the notions of sub-
set recognized by an (ordered) semigroup, of (ordered) syntactic semigroup, of
variety of (ordered) semigroups. The main difference with the corresponding
notions for monoids concerns the identities. Consider for instance the identity
xωyxω = xω. This identity is actually equivalent, in the monoid case, to the
identity y = 1. To see this, it suffices to substitute x by 1, to obtain y = 1. The
only monoid satisfying the identity xωyxω = xω is therefore the trivial monoid.

Continuing the parallelism, one next defines positive +-varieties as follows:
a +-positive variety is a class of recognizable subsets such that

(1) for each alphabet A, V(A+) is a positive Boolean algebra,

(2) for each morphism of semigroups ϕ : A+ → B+, X ∈ V(B+) implies
ϕ−1(X) ∈ V(A+),

(3) If X ∈ V(A+) and u ∈ A∗, u−1X ∈ V(A+) and Xu−1 ∈ V(A+).

Similarly, a +-variety is a +-variety closed under complementation. Then we
have a semigroup version of Theorem 1.1.

Theorem 1.2 The correspondence V → V defines a bijection between the va-
rieties of ordered semigroups and the positive +-varieties on the one hand and
between the varieties of semigroups and the +-varieties on the other hand.

The variety theorem allows one to associate a variety (resp. +-variety) with
each variety of monoids (resp. semigroups). The most interesting case are of
course those for which a combinatorial description of the corresponding variety
of languages is known. We shall present several such examples in the next
section.

2 Some examples of varieties.

The description of the +-variety associated with the trivial variety of semigroups
1 is immediate.
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Proposition 2.1 For each alphabet A, I(A∗) consists of the empty and the full
subsets.

We pursue with the varieties Nil, Nil+ and Nil−. Recall that a subset F
of a set E is cofinite if the complement of F in E is finite.

Proposition 2.2 For each alphabet A,

(1) N il+(A+) consists of the empty subset and of the cofinite subsets of A+,

(2) N il−(A+) consists of A+ and of the finite subsets of A+,

(3) N il(A+) is the set of finite or cofinite subsets of A+.

Proof. (1). Denote by ϕ : A+ → S the syntactic morphism of L. If L is empty,
S is trivial, and hence in Nil+. If L is a cofinite subset of A+, there exists
an integer n such that L contains all the words of length > n. If u is such a
word, we have xuy ∈ L for each x, y ∈ A∗, thereby showing that all the words
of A+ of length > n are syntactically equivalent and thus have the same image
e under ϕ. By Proposition VI.4.1, S is thus nilpotent. There remains to prove
that e 6 s for every s ∈ S. Let v ∈ ϕ−1(s). Then the formal implication

(xvy ∈ L⇒ xuy ∈ L)

shows that u 6L v, whence e 6 s in S. Therefore S ∈ Nil+.
Conversely, let (S,6) ∈ Nil+, I be an order ideal of S and let ϕ : A+ → S

be a morphism of semigroups. If I is empty, ϕ−1(I) is empty also. Otherwise,
I contains necessarily 0, since 0 is minimal for 6. Let u be a word of length
greater than or equal to Card(S). By Proposition VI.4.1, ϕ(u) = 0 and hence
ϕ(u) ∈ I. Therefore ϕ−1(I) is cofinite.

(2) follows from (1) by taking the complement.
(3) What precedes shows that the syntactic semigroup of a finite or cofinite

subset is a nilpotent semigroup. To prove the converse, consider a nilpotent
nonempty semigroup S. Let P be a subset of S and let ϕ : A+ → S be a
morphism of semigroups. Then 0 belongs either to P , or to S \ P and the
argument above shows that ϕ−1(P ) is either finite or cofinite.

If a variety is generated by a single [ordered] monoid, the corresponding
[positive] variety of languages is easy to describe.

Proposition 2.3 Let V be a variety of ordered monoids generated by a single
ordered monoid M and let V be the corresponding positive variety. Then, for
every alphabet A, V(A∗) is the positive Boolean algebra generated by the sets of
the form ϕ−1(↓m), where ϕ : A∗ →M is an arbitrary morphism and m ∈M .

Proof. It is clear that ϕ−1(↓ m) ∈ V(A∗) and thus V(A∗) also contains the
positive Boolean algebra generated by these sets. Conversely, let L ∈ V(A∗).
Then there exists an integer n > 0, a morphism ϕ : A∗ → Mn and an order
ideal I of M such that L = ϕ−1(I). Since ϕ−1(I) =

⋃
m∈P ϕ

−1(↓ m), it is
sufficient to establish the result when L = ϕ−1(↓m) where m ∈ Mn. Denote
by πi the i-th projection from Mn onto M . Setting m = (m1, . . . ,mn), we have
m =

⋂
16i6n π

−1
i (mi), whence

ϕ−1(↓m) =
⋂

16i6n

(πi ◦ ϕ)−1(↓mi)



108 CHAPTER IX. THE VARIETY THEOREM

Since mi ∈M and πi ◦ ϕ is a morphism from A∗ into M , the result follows.

There is of course a similar result for varieties of monoids, the proof of which
is similar.

Proposition 2.4 Let V be a variety of monoids generated by a single monoid
M and let V be the corresponding variety of languages. Then, for every alphabet
A, V(A∗) is the Boolean algebra generated by the sets of the form ϕ−1(m), where
ϕ : A∗ → M is an arbitrary morphism and m ∈M .

It follows in particular that if a variety V is generated by a single [ordered]
monoid, then, for each alphabet A, the set V(A∗) is finite. For this reason, the
variety V is called locally finite.

Let J1 be the variety J1 of idempotent and commutative monoids, defined
by the identities xy = yx and x2 = x. By Proposition XII.3.1, J1 is generated
by its cyclic monoids. But there is only one nontrivial cyclic monoid in J1, and
this is the monoid U1 = {0, 1} considered in Section II.1.5. The corresponding
variety is described as follows.

Proposition 2.5 For each alphabet A, J1(A
∗) is the Boolean algebra generated

by the subsets of the form A∗aA∗ where a is a letter. Equivalently, J1(A
∗) is

the Boolean algebra generated by the subsets of the form B∗ where B is a subset
of A.

Proof. The equality of the two Boolean algebras considered in the statement
results from the formulas

B∗ = A∗ \
⋃

a∈A\B

A∗aA∗ and A∗aA∗ = A∗ \ (A \ {a})∗

Since J1 is generated by U1, one can use Proposition 2.4 to describe J1. Let ϕ :
A∗ → U1 be a morphism, and let B = {a ∈ A | ϕ(a) = 1}. Then ϕ−1(1) = B∗

and ϕ−1(0) = A∗ \B∗, which establishes the proposition.

This result can be divided into two parts. Denote by J+
1

(resp. J−
1

) the
positive variety of idempotent and commutative monoids satisfying the identity
x 6 1. If B is a subset of A, denote by F (B) the set of words of A+ containing
at least one occurrence of each letter of B. Thus

F (B) =
⋂

a∈B

A∗aA∗

The next proposition is thus a variant of Proposition 2.5 and its proof is left as
an exercise to the reader.

Proposition 2.6 For each alphabet A, J +
1 (A∗) is the set of finite unions of

subsets of the form F (B) where B ⊂ A. Similarly, J−
1 (A∗) is the set of finite

unions of subsets of the form B+ where B ⊂ A.

Another interesting example of locally finite variety is the variety R1 of
idempotent and R-trivial monoids.
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Proposition 2.7 Let L be a recognizable subset of A∗ and let M be its syntactic
monoid. The following conditions are equivalent:

(1) M divides Ũn
2 for some n > 0,

(2) M belongs to R1,

(3) M satisfies the identity xyx = xy,

(4) L is a disjoint union of sets of the form

a1{a1}
∗a2{a1, a2}

∗a3{a1, a2, a3}
∗ · · · an{a1, a2, . . . , an}

∗

where the ai’s are distinct letters of A.

(5) L is a Boolean combination of sets of the form B∗aA∗, where a ∈ A and
B ⊂ A,

Proof. (1) implies (2) since Ũ2 ∈ R1.
(2) implies (3). Let x, y ∈ M . Since M is idempotent, xy = xyxy and thus
xy R xyx. But M is R-trivial and therefore xy = xyx.
(3) implies (4). Let ρ : A∗ → A∗ be the function which associates with any
word u the sequence of all distinct letters of u in the order in which they first
appear when u is read from left to right. For example, if u = caabacb, then
ρ(u) = cab. In fact ρ is sequential function, realized by the sequential transducer
T = (P(A), A, ∅, ., ∗), where the transition and the output functions are defined
by

B · a = B ∪ {a}

B ∗ a =

{
1 if a ∈ B

0 otherwise

Define an equivalence ∼ on A∗ by setting u ∼ v if ρ(u) = ρ(v). It is easy to see
that the equivalence classes of ∼ are the disjoint sets

L(a1,...,an) = a1{a1}
∗a2{a1, a2}

∗a3{a1, a2, a3}
∗ · · · an{a1, a2, . . . , an}

∗

where (a1, . . . , an) is a sequence of distinct letters of A. We claim that ∼ is
a congruence. If u ∼ v, then u and v belong to some set L(a1,...,an). Let
a be a letter. If a = ai for some i, then ua, va ∈ L(a1,...,an), and au, av ∈
L(a,a1,...,ai−1,ai+1,...,an

. Thus ua ∼ va and au ∼ av. If a /∈ {a1, . . . , an}, then
ua, va ∈ L(a1,...,an,a) and au, av ∈ L(a,a1,...,an) and thus again ua ∼ va and
au ∼ av, which proves the claim.

Let η : A∗ → M be the syntactic morphism of L. If u ∈ L(a1,...,an), then
u = a1u1a2u2 · · ·anun where ui ∈ {a1, . . . , ai}∗ for 1 6 i 6 n and thus by (3),
η(u) = η(a1 · · · an). It follows that u ∼ v implies η(u) = η(v) and therefore L is
a disjoint union of equivalence classes of ∼, that is of sets of the form L(a1,...,an).
(4) implies (5). First observe that

L(a1,...,an) = A∗
n ∩

⋂

16i6n

A∗
i−1aiA

∗
i where Ai = {a1, . . . , ai} and A0 = ∅

Condition (5) is now a consequence of the following equalities:

A∗
i = A∗ \

⋃

a/∈Ai

A∗aA∗ A∗
i−1aiA

∗
i = A∗

i−1aiA
∗ ∩A∗

i
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(5) implies (1). By the variety theorem (Theorem 1.1), it is sufficient to show
that, for B ⊂ A and a ∈ A, B∗aA∗ is recognized by Ũ2. Let Ũ2 = {1, a1, a2}
and let ϕ : A∗ → Ũ2 be the morphism defined by

ϕ(a) = a1

ϕ(b) =

{
1 if b ∈ B \ {a}

a2 for b ∈ A \ (B ∪ {a})

Then ϕ−1(a1) = B∗aA∗, which concludes the proof.

We shall conclude this section with a description of the ∗-variety correspond-
ing to the variety Acom of aperiodic and commutative monoids.

If a is a letter of an alphabet A, let us denote by L(a, k) the set of words of
A∗ which contain exactly k occurrences of a

L(a, k) = {u ∈ A+ | |u|a = k}

Then the following result holds.

Proposition 2.8 For each alphabet A, Acom(A∗) is the Boolean algebra gen-
erated by the sets of the form L(a, k) where a ∈ A and k > 0.

Proof. First, every set of the form L(a, k) is recognized by an aperiodic com-
mutative monoid. Indeed, let N = {1, x, x2, . . . , xk, xk+1 be the cyclic monoid
defined by the relation xk+2 = xk+1, and let ϕ : A∗ → N be the morphism
defined by ϕ(a) = x and ϕ(b) = 1 if b 6= a. Then clearly L(a, k) = ϕ−1(xk).

By Proposition XII.3.1, Acom is generated by its cyclic monoids, and Propo-
sition 2.4 can be used to describe Acom. Let M = {1, x, x2, . . . , xn} be a cyclic
monoid, defined by the relation xn+1 = xn, and let ϕ : A∗ →M be a morphism.
Then for each a ∈ A there exists an integer na such that ϕ(a) = xna . Let k be
an integer such that 0 6 k < n. Then

ϕ−1(xk) = {u ∈ A∗ |
∑

a∈A

na|u|a = k}

=
⋃ ⋂

a∈A

L(a, ka)

where the union is taken over the set of families (ka)a∈A such that
∑

a∈A naka =
k. Finally, for k = n, we have

ϕ−1(xn) = A∗ \
⋃

06k<n

ϕ−1(xk)

which concludes the proof.

The original version of the variety theorem dealt only with semigroup vari-
eties. Its extension to ordered semigroups is due to Pin [24].



Chapter X

Relational morphisms

Relational morphisms form a powerful tool in semigroup theory. Although
the study of relational morphisms can be reduced in theory to the study of
morphisms, their systematic use leads to concise proofs of nontrivial results.
Furthermore, they provide a natural definition of the Mal’cev product and its
variants, an important tool for decomposing semigroups into simpler pieces.

1 Relational morphisms

A relational morphism between two semigroups S and T is a relation τ : S → T
which satisfies

(1) for every s ∈ S, τ(s) 6= ∅,

(2) for every s1, s2 ∈ S, τ(s1)τ(s2) ⊆ τ(s1s2)

For a relational morphism between two monoids S and T , a third condition is
required

(3) 1 ∈ τ(1)

The proof of the next result is immediate.

Proposition 1.1 The composition of two relational morphisms is a relational
morphism.

Examples of relational morphisms include two standard classes:

(1) morphisms,

(2) inverses of surjective morphisms.

Indeed if α : S → T is a surjective morphism, then the relation α−1 : T → S
is a relational morphism. These two classes generate all relational morphisms.
More precisely, every relational morphism is the composition of a morphism and
the inverse of a surjective morphism.

Proposition 1.2 Let τ : S → T be a relational morphism. Then the graph R
of τ is a subsemigroup of S × T and the projections from S × T onto S and
T induce morphisms α : R → S and β : R → T such that α is surjective and
τ = β ◦ α−1.

111
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Proof. The factorization of τ as β ◦ α−1 is an immediate consequence of the
definition. The surjectivity of α stems from the fact that, for all s ∈ S, τ(s) is
nonempty.

The factorization τ = β ◦ α−1, pictured in Figure 1.1 is called the canonical
factorization of τ .

S T

R ⊆ S × T

α

τ = β ◦ α−1

β

Figure 1.1. The canonical factorization of a relational morphism.

We shall see that in most cases the properties of τ are bounded to that of β (see
in particular Propositions 2.1 and 3.3).

The next result extends Proposition to II.2.1 to relational morphisms. We
remind the reader that if τ is a relation from S into T and T ′ is a subset of T ,
then τ−1(T ′) = {s ∈ S | τ(s) ∩ T 6= ∅}.

Proposition 1.3 Let τ : S → T be a relational morphism. If S′ is a subsemi-
group of S, then τ(S) is a subsemigroup of T . If T ′ is a subsemigroup of T ,
then τ−1(T ′) is a subsemigroup of S.

Proof. Let t1, t2 ∈ τ(S′). Then t1 ∈ τ(s1) and t2 ∈ τ(s2) for some s1, s2 ∈ S′.
It follows that t1t2 ∈ τ(s1)τ(s2) ⊆ τ(s1s2) ⊆ τ(S′) and therefore τ(S′) is a
subsemigroup of T .

Let s1, s2 ∈ τ−1(T ′). Then by definition there exist t1, t2 ∈ T ′ such that
t1 ∈ τ(s1) and t2 ∈ τ(s2). Thus t1t2 ∈ τ(s1)τ(s2) ⊆ τ(s1s2), whence s1s2 ∈
τ−1(t1t2). Therefore s1s2 ∈ τ−1(T ′) and hence τ−1(T ′) is a subsemigroup of
S.

Example 1.1 Let E be the set of all injective partial functions from {1, 2, 3, 4}
into itself and let F be the set of all bijections on {1, 2, 3, 4}. Let τ be the
relation that associates to each injective function f the set of all possible bijective
extensions of f . For instance, if f is the partial function defined by f(1) = 3
and f(3) = 2, then τ(f) = {h1, h2} were h1 and h2 are the bijections given in
the following table

1 2 3 4

h1 3 1 2 4

h2 3 4 2 1

Let Id be the identity map on {1, 2, 3, 4}. Then τ−1(Id) is the set of partial
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identities on E, listed in the table below:

1 2 3 4

- - - -

- - - 4

- - 3 -

- - 3 4

- 2 - -

- 2 - 4

- 2 3 -

- 2 3 4

1 2 3 4

1 - - -

1 - - 4

1 - 3 -

1 - 3 4

1 2 - -

1 2 - 4

1 2 3 -

1 2 3 4

2 Injective relational morphisms

According to the definition of an injective relation given in Chapter I, a relational
morphism τ : S → T is injective if, for every s1, s2 ∈ S, the condition s1 6= s2
implies that τ(s1) and τ(s2) are disjoint, or equivalently, if τ(s1) ∩ τ(s2) 6= ∅
implies s1 = s2. Note in particular that if α : R → T is a surjective morphism,
then α−1 : T → R is an injective relational morphism.

Proposition 2.1 Let S
α−1

−→ R
β

−→ T be the canonical factorization of a re-
lational morphism τ : S → T . Then τ is injective (resp. surjective) if and only
if β is injective (resp. surjective).

Proof. By Proposition I.1.8, α−1 is an injective relational morphism. It is also
surjective, since (s, t) ∈ α−1(s) for every (s, t) ∈ R. Thus if β is injective (resp.
surjective), then τ = β ◦ α−1 is also injective (resp. surjective).

Suppose now that τ is injective. Let r1 and r2 be two elements of R such that
β(r1) = β(r2) = t. Since α is surjective, r1 ∈ α−1(α(r1)) and r2 ∈ α−1(α(r2)).
It follows that t ∈ β

(
α−1 (α(r1))

)
∩ β

(
α−1 (α(r2))

)
= τ (α(r1)) ∩ τ (α(r2)),

whence α(r1) = α(r2) since τ is injective. Therefore r1 = (α(r1), β(r1)) is equal
to r2 = (α(r2), β(r2)).

Finally, if τ is surjective, then β is surjective by Proposition I.1.14.

Proposition 2.1 has two interesting consequences.

Corollary 2.2 A semigroup S divides a semigroup T if and only if there exists
an injective relational morphism from S into T .

Proof. If S divides T , there exists a semigroup R, a surjective morphism α :
R → S and an injective morphism β : R → T . Then α−1 is an injective
relational morphism and thus τ = β ◦ α−1 is an injective relational morphism
from S into T .

Conversely, if τ is an injective relational morphism from S into T and if

S
α−1

−→ R
β

−→ T is the canonical factorization of τ . Proposition 2.1 shows that
β is injective. Since α is surjective, S divides T .



114 CHAPTER X. RELATIONAL MORPHISMS

Corollary 2.3 Let τ : S → T be an injective relational morphism. Then for
any subsemigroup T ′ of T , τ−1(T ′) divides T ′. Furthermore τ−1(E(T )) ⊆ E(S).

Proof. Let S
α−1

−→ R
β

−→ T be the canonical factorization of τ . Then β is
injective by Proposition 2.1 and thus β−1(T ′) is isomorphic to a subsemigroup
of T ′. Finally, τ−1(T ′) is equal to α(β−1(T ′)) and thus divides T ′.

Let s ∈ τ−1(E(T )). Then τ(s) contains some idempotent f of T . As
τ(s)τ(s) ⊆ τ(s2), τ(s2) also contains f . Thus e ∈ τ(s) ∩ τ(s2) whence s = s2

since τ is injective. Thus s is idempotent and τ−1(E(T )) ⊆ E(S).

If T is finite, Corollary 2.3 can be improved as follows.

Proposition 2.4 Let T be a finite semigroup and let τ : S → T be an injective
relational morphism. Then τ−1(E(T )) = E(S).

Proof. Let e ∈ E(S). By Proposition 1.3, τ(e) is a subsemigroup of T , which,
by Corollary II.5.2, contains an idempotent. Thus e ∈ τ−1(E(T )), showing
that E(S) ⊆ τ−1(E(T )). The opposite inclusion follows from Corollary 2.3.

3 Relational V-morphisms

All semigroups considered in this section are finite.
Let V be a variety of finite semigroups. A relational morphism τ : S → T

is said to be a relational V-morphism if, for every subsemigroup T ′ of T which
belongs to V, the semigroup τ−1(T ′) also belongs to V.

The definition can be readily adapted to the case of varieties of ordered
semigroups. Let V be a variety of finite ordered semigroups and let S and T
be two ordered semigroups. Then a relational morphism τ : S → T is said to
be a relational V-morphism if, for every ordered subsemigroup T ′ of T which
belongs to V, the ordered semigroup τ−1(T ′) also belongs to V.

In practice, V is often one the following varieties:

(1) A, the variety of aperiodic semigroups,

(2) LI = [[ese = e]], the variety of locally trivial semigroups,

(3) LJ+ = [[ese 6 e]], the variety of ordered semigroups S, such that, for all
e ∈ E(S), the ordered submonoid eSe satisfies the identity x 6 1.

A relational A-morphism is also called an aperiodic relational morphism and a
relational LI-morphism is also called a locally trivial relational morphism.

The definition of relational V-morphism is formally reminiscent of that of
a continuous function. This analogy is confirmed by the following proposition,
whose proof is immediate.

Proposition 3.1 Relational V-morphisms are closed under composition.

Let us mention another elementary result.

Proposition 3.2 Injective relational morphisms are relational V-morphisms
for every variety V.
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Proof. This follows directly from Corollary 2.3.

Note that the converse to Proposition 3.2 does not hold. Let N2 = {0, a}
and N3 = {0, a, b} be the nilpotent semigroups with two and three elements,
respectively and let ϕ : N3 → N2 be the morphism defined by ϕ(a) = ϕ(b) = a
and ϕ(0) = 0. Then the only subsemigroups of N2 are 0 and N2. It follows
that ϕ is a relational V-morphism for every variety V since ϕ−1(0) = 0 and
ϕ−1(N2) = N3, which divides N2 ×N2. However, ϕ is not injective.

We can now state our announced result on canonical factorizations.

Proposition 3.3 Let S
α−1

−→ R
β

−→ T be the canonical factorization of a re-
lational morphism τ : S → T . Then τ is a relational V-morphism if and only
if β is a V-morphism.

Proof. First, α−1 is an injective relational morphism and thus a relational V-
morphism by Proposition 3.2. Thus if β is a relational V-morphism, then τ is
a relational V-morphism by Proposition 3.1.

Conversely, suppose that τ is a relational V-morphism. Let γ : S × T →
T × T be the relational morphism defined by γ(s, t) = τ(s) × {t}. Let T ′ be a
subsemigroup of T belonging to V. Setting D = {(t, t) | t ∈ T ′}, one gets

γ−1(D) = {(s, t) ∈ S × T | t ∈ τ(s) ∩ T ′} = β−1(T ′)

It follows that β−1(T ′) is a subsemigroup of τ−1(T ′)×T ′ and thus is in V. Thus
β is a relational V-morphism.

Relational morphisms can be restricted to subsemigroups.

Proposition 3.4 Let τ : S → T be a relational morphism and let T ′ be a
subsemigroup of T . Then the relation τ̂ : τ−1(T ′) → T ′, defined by τ̂(s) =
τ(s) ∩ T ′, is a relational morphism. Furthermore, if τ is injective (resp. a
relational V-morphism), so is τ̂ .

Proof. Let s ∈ τ−1(T ′). Then by definition τ(s) ∩ T ′ 6= ∅ and thus τ̂ (s) 6= ∅.
Let s1, s2 ∈ τ−1(T ′). One gets

τ̂ (s1)τ̂ (s2) = (τ(s1) ∩ T
′)(τ(s2) ∩ T

′)

⊆ τ(s1)τ(s2) ∩ T
′) ⊆ τ(s1s2) ∩ T

′ ⊆ τ̂ (s1s2)

and thus τ̂ is a relational morphism. The second part of the statement is
obvious.

We now turn to more specific properties of relational V-morphisms.

3.1 Aperiodic relational morphisms

Theorem 3.5 Let S
α−1

−→ R
β

−→ T be the canonical factorization of a rela-
tional morphism τ : S → T . The following conditions are equivalent:

(1) τ is aperiodic,

(2) for every idempotent e ∈ T , τ−1(e) is aperiodic,
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(3) the restriction of τ to each group in S is injective,

(4) the restriction of τ to each H-class in a regular D-class of S is injective.

Moreover, one obtains four equivalent conditions (1’)–(4’) by replacing τ by β
and S by R in (1)–(4).

Proof. The equivalence of (1) and (1’) follows from Proposition 3.3. Further-
more, (1) implies (2) and (4) implies (3) are obvious.

(3) implies (1). Let T ′ be an aperiodic subsemigroup of T , S′ = τ−1(T ′) and
let H be a group in S′. Since S, T and R are finite, there exists by Proposition
V.7.8 a group H ′ in R such that α(H ′) = H . Now β(H ′) is a group in T ′,
but since T ′ is aperiodic, this group is a singleton {e}. Let h1, h2 ∈ H and
h′1, h

′
2 ∈ H ′ be such that α(h1) = h′1 and α(h′2) = h2. Then e = β(h′1) =

β(h′2) ∈ τ(h1)∩ τ(h2). It follows from Condition (3) that h1 = h2, which shows
that H is trivial. Therefore S′ is aperiodic.

(2) implies (4). Given a regular H-class H , there exists an element a ∈ S
such that the function h→ ha is a bijection from H onto a group G of the same
D-class. Let e be the identity of G and let h1 and h2 be elements of H such
that τ(h1) ∩ τ(h2) 6= ∅. Then we have

∅ 6= (τ(h1) ∩ τ(h2))τ(a) ⊆ τ(h1)τ(a) ∩ τ(h2)τ(a) ⊆ τ(h1a) ∩ τ(h2a)

Setting g1 = h1a, g2 = h2a and g = g2g
−1
1 , we obtain in the same way

∅ 6= (τ(g1) ∩ τ(g2))τ(g
−1
1 ) ⊆ τ(e) ∩ τ(g)

Furthermore, we have

(τ(e) ∩ τ(g))(τ(e) ∩ τ(g)) ⊆ (τ(e) ∩ τ(g))τ(e)

⊆ τ(e)τ(e) ∩ τ(g)τ(e) ⊆ τ(ee) ∩ τ(ge) = τ(e) ∩ τ(g)

which proves that τ(e)∩τ(g) is a nonempty semigroup. Let f be an idempotent
of this semigroup. Then e, g ∈ τ−1(f), whence e = g since τ−1(f) is aperiodic.
It follows that g1 = g2 and hence h1 = h2, which proves (4).

The equivalence of the statements (1)–(4) results from this. Applying this
first theorem to β gives the equivalence of (1’)–(4’).

3.2 Locally trivial relational morphisms

Theorem 3.6 Let S
α−1

−→ R
β

−→ T be the canonical factorization of a rela-
tional morphism τ : S → T . The following conditions are equivalent:

(1) τ is locally trivial,

(2) for every idempotent e ∈ T , τ−1(e) is locally trivial,

Moreover, one obtains two equivalent conditions (1’)–(2’) by replacing τ by β
and S by R in (1)–(2).

Proof. The equivalence of (1) and (1’) follows from Proposition 3.3. Further-
more, (1) implies (2) is obvious.

(2) implies (1). Up to replacing τ by the relational morphism τ̂ : S → τ(S)
defined in Proposition 3.4, we may assume that τ is surjective. Further, it
follows from Theorem 3.5 that τ is an aperiodic relational morphism.
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Let T ′ be a locally trivial subsemigroup of T and let S′ = τ−1(T ′). Since
T ′ is an aperiodic semigroup and τ is an aperiodic relational morphism, S′ is
aperiodic. Let e, f be idempotents of S′. Since τ(e) and τ(f) are nonempty
subsemigroups of T ′, there exist idempotents e′, f ′ ∈ T ′ such that e′ ∈ τ(e) and
f ′ ∈ τ(f). Now since T ′ is locally trivial, e′ J f ′ and thus e′ = a′f ′b′ for some
a′, b′ ∈ T ′. Choose a, b ∈ S′ such that a′ ∈ τ−1(a) and b′ ∈ τ−1(b). Then we
have

e′ = a′f ′b′ ∈ τ(a)τ(f)τ(b) ⊆ τ(afb)

and therefore e, afb ∈ τ−1(e′). Since τ−1(e′) is locally trivial by (2), e is in the
minimal ideal of τ−1(e′) and hence e 6J afb 6J f . A dual argument would
show that f 6J e and hence e{. Thus all the idempotents of S′ belong to its
minimal ideal and S′ is aperiodic. These two properties show that S′ is locally
trivial.

The equivalence of the statements (1)–(2) results from this. Applying this
first theorem to β gives the equivalence of (1’)–(2’).

Proposition 3.7 Let π : S → T a surjective, locally trivial, morphism. Then
S and T have the same number of regular J -classes.

Proof. It suffices to show that if x, y are two regular elements of S, x J y if
and only if π(x) J π(y). One direction is easy, since π maps a regular D-class
onto a regular J -class.

Suppose now that π(x) J π(y) and let e and f respectively be idempotents
of the D-classes of x and y. Since e J x and f J y, we also have

π(e) J π(x) J π(y) J π(f)

In particular, π(f) = xπ(e)y for some x, y ∈ T . Since π is surjective, one has
x = π(c) and y = π(d) for some c, d ∈ S. It follows that π(e) = π(cfd).
Now since π(e) is idempotent, the semigroup π−1(π(e)) is locally trivial and
since e, cfd are both in π−1(e), one has ecfde = e. Thus e 6J f and a
similar reasoning would show that f 6J e. Therefore e J f , which shows that
x J y.

3.3 Relational [[ese 6 e]]-morphisms

Recall that if S is an ordered semigroup, the order ideal generated by an element
x ∈ S is the set ↓x of all y ∈ E such that y 6 x.

Proposition 3.8 Let S be an ordered semigroup and let e ∈ E(S). Then the
ordered semigroup e(↓e)e belongs to the variety [[ese 6 e]].

Proof. Let R = e(↓e)e. Let r ∈ R and f ∈ E(R). Then f = ege with g 6 e and
r = ese with s 6 e. It follows ef = f = fe and frf = fesef = fsf 6 fef = f .
Thus R ∈ [[ese 6 e]].

Proposition 3.9 Let τ : S → T be a relational morphism. The following
conditions are equivalent:
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(1) τ is a relational [[ese 6 e]]-morphism,

(2) for any e ∈ E(T ), τ−1(e(↓e)e) is an ordered semigroup of [[ese 6 e]],

(3) for any e ∈ E(T ), f ∈ E(τ−1(e)) and s ∈ τ−1(e(↓e)e), fsf 6 f .

Proof. Proposition 3.8 shows that (1) implies (2) and (2) implies (3) is trivial.
Let us show that (3) implies (1). Assuming (3), let R be an ordered subsemi-
group of T such that R ∈ [[ese 6 e]]. Let U = τ−1(R), s ∈ U , r ∈ τ(s) ∩ R
and f ∈ E(U). Since τ(f) ∩ R is a non empty subsemigroup of T , it contains
an idempotent e. Now ere 6 e since R ∈ [[ese 6 e]] and thus e, ere ∈ e(↓
e)e. Furthermore f ∈ τ−1(e), and since ere ∈ τ(f)τ(s)τ(f) ⊆ τ(fsf), fsf ∈
τ−1(ere). It follows by (3) that fsf 6 f and thus U ∈ [[ese 6 e]]. Therefore, τ
is a relational [[ese 6 e]]-morphism.

4 Three examples of relational morphisms

In this section, we give three examples from the theory of automata and rec-
ognizable languages. Our first example describes an important property of the
concatenation product. The second one deals with purity, a property of the
star of a language. The third one gives a nice syntactic properties of the flower
automata.

4.1 Concatenation product

Let, for 0 6 i 6 n, let Li be a recognizable language of A∗, let ηi : A∗ →M(Li)
be its syntactic morphism and let

η : A∗ → M(L0) ×M(L1) × · · · ×M(Ln)

be the morphism defined by

η(u) = (η0(u), η1(u), . . . , ηn(u))

Let a1, a2, . . . , an be letters of A and let L = L0a1L1 · · ·anLn. Let µ :
A∗ → M(L) be the syntactic morphism of L. The properties of the relational
morphism

τ = η ◦ µ−1 : M(L) →M(L0) ×M(L1) × · · · ×M(Ln)

were first studied by Straubing [35] and later in [22, 29, 26].

M(L) M(L0) ×M(L1) × · · · ×M(Ln)

A∗

µ

τ = η ◦ µ−1

η

Theorem 4.1 The relational morphism τ : M(L) → M(L0) ×M(L1) × · · · ×
M(Ln) is a relational [[ese 6 e]]-morphism.
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Proof. Let R be an ordered subsemigroup of M(L0) ×M(L1) × · · · ×M(Ln)
satisfying the identity xωyxω 6 xω, and let x, y ∈ η−1(R). Let k be an integer
such that µ(xk) and η(xk) are idempotent. It suffices to show that for every
u, v ∈ A∗, uxkv ∈ L implies uxkyxkv ∈ L. Let r = 3n+1. Then η(xrk) = η(xk),
and since uxkv ∈ L, uxrkv ∈ L. Consequently, there is a factorization of the
form uxrkv = u0a1 · · · anun, where ui ∈ Li for 0 6 i 6 n. We claim that one of
the factors uh contains x2k as a factor. Otherwise the length of each uh would
be at most 3k|x| − 2 and the following sequence of inequalities, which follows
from the choice of r,

rk|x| 6 |uxrkv| = |u0a1 · · ·anun| 6 (3k|x| − 2)(n+ 1) + n < rk|x|

would give a contradiction. Therefore, there exist 1 6 h 6 n and 0 6 j 6 r − 2
such that uh = u′hx

2ku′′h for some u′h, u
′′
h ∈ A∗, uxjk = u0a1 · · · ah−1u

′
h and

x(r−j−2)kv = u′′hah · · · anun. Now since η(x) and η(y) belong to R,

η(xk)η(y)η(xk) 6 η(xk)

and by projection onto M(Lh), ηh(xk)ηh(y)ηh(xk) 6 ηh(xk) = ηh(x2k). In
particular, the condition u′hx

2ku′′h ∈ Lh implies u′hx
kyxku′′h ∈ Lh. It fol-

lows ux(j+1)kyx(r−j−1)kv ∈ L, and hence uxkyxkv ∈ L, which concludes the
proof.

Theorem 4.1 is often used in the following weaker form.

Corollary 4.2 The relational morphism τ : M(L) → M(L0) ×M(L1) × · · · ×
M(Ln) is an aperiodic relational morphism.

Proof. By theorem 4.1, τ is a relational [[ese 6 e]]-morphism. In particular,
for each idempotent e, τ−1(e) is a semigroup satisfying the identity ese 6 e.
In particular, it satisfies the identity xωxxω 6 xω, that is xω+1 6 xω and is
aperiodic by Proposition VII.2.2. Thus τ is aperiodic.

Let L0, L1, . . . , Ln be languages of A∗ and let a1, . . . , an be letters of A. The
(marked) product

L = L0a1L1 · · ·anLn

is said to be unambiguous if every word of L admits a unique decomposition of
the form u = u0a1u1 · · · anun with u0 ∈ L0, . . . , un ∈ Ln.

Example 4.1 Let A = {a, b, c}. The marked product {a, c}∗a{1}b{b, c}∗ is
unambiguous.

Theorem 4.3 If the product L0a1L1 · · · anLn is unambiguous, the relational
morphism τ : M(L) → M(L0) × M(L1) × · · · × M(Ln) is a locally trivial
relational morphism.

Proof. By Theorem 3.6, it suffices to show that if e is an idempotent ofM(L0)×
M(L1) × · · · ×M(Ln), then the semigroup τ−1(e) is locally trivial. It follows
from Theorem 4.1 that R satisfies the identity xωyxω 6 xω and it just remains
to prove the opposite identity xω 6 xωyxω. Let x, y ∈ η−1(e) and let k be an
integer such that µ(xk) is idempotent. It suffices to show that uxkyxkv ∈ L
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implies uxkv ∈ L. Let r =. Then η(xrk) = η(xk), and if uxkyxkv ∈ L, then
uxrkyxrkv ∈ L. Consequently, there is a factorization of the form uxrkyxrkv =
u0a1 · · · anun, where ui ∈ Li for 0 6 i 6 n.

First assume that one of the words ui contains xyx as a factor, that is,
ui = u′ixyxu

′′
i with u0a1 · · ·aiu

′
i = uxrk−1 and u′′i ai+1 · · ·anun = xrk−1v. Since

η(x) = η(y) = e, one has ηi(xyx) = ηi(x) = ηi(x
2) and hence, u′ixyxu

′′
i ∈ Li

implies u′ix
2u′′i ∈ Li. Consequently, one has

ux2rkv = uxrk−1x2xrk−1v = u0a1 · · · ai(u
′
ix

2u′′i )ai+1 · · · anun

which shows that ux2rkv belongs to L. Since η(x2rk) = η(xk), it follows that
uxkv is also in L, as required.

Suppose now that none of the words ui contains xyx as a factor.

4.2 Pure languages

A submonoid L∗ of A∗ is pure if for all u ∈ A∗ and n > 0, the condition un ∈ L∗

implies u ∈ L∗.

Let η : A∗ → M(L) be the syntactic morphism of L and µ : A∗ → M(L∗)
be the syntactic morphism of L∗. Then τ = η ◦ µ−1 is a relational morphism
from M(L∗) to M(L).

M(L∗) M(L)

A∗

µ

τ = η ◦ µ−1

η

The following result is due to Straubing [35].

Theorem 4.4 If L is pure, the relational morphism τ : M(L∗) → M(L) is
aperiodic.

Proof. Let e be an idempotent of M(L) and let x ∈ η−1(e). Let k be an integer
such that k > |x| and η(xk) is idempotent. By Proposition VII.2.2, it suffices
to show that for every u, v ∈ A∗,

uxkv ∈ L∗ implies uxk+1v ∈ L∗ (4.1)

Suppose that uxkv ∈ L∗. Then uxkv = u1 · · ·un, where each ui belongs to
L ⊆ {1}. Let us say that the r-th occurrence of x is cut if, for some j, uxr−1 is
a prefix of u1 · · ·uj and u1 · · ·uj is a proper prefix of uxr.

uxr−1 x xk−rv

u1 · · ·uj uj+1 · · ·un
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There are two cases to consider. First assume that for some r ∈ {1, . . . , n},
the r-th occurrence of x is not cut. Then uxr−1 = u1 · · ·uj−1f , uj = fxtg and
xqv = guj+1 · · ·un for some s, t ∈ A∗ and t > 0 such that r+ t+q−1 = k. Since
x ∼L x2 and since t > 0, one gets fxtg ∼L fxt+1g and thus fxt+1g ∈ L. It
follows that uxk+1v = u1 · · ·uj−1fx

t+1guj+1 · · ·un ∈ L∗, proving (4.1) in this
case.

Suppose now that every occurrence of x is cut. Then for 1 6 r 6 k, there
exists jr ∈ {1, . . . , n} and fr ∈ A∗, gr ∈ A+ such that

uxr−1fr = u1 · · ·uj, x = frgr and grx
k−rv = ujr+1

· · ·un

Since there are |x| factorizations of x of the form fg, and since |x| < k, there exist
two indices r 6= r′ such that fr = fr′ and gr = gr′ . Thus, for some indices i < j
and some factorization x = fg, one has uxr−1f = u1 · · ·ui, gx

sf = ui+1 · · ·uj

and gxtv = uj+1 · · ·un. It follows that gxsf = g(fg)sf = (gf)s+1. Since
gxsf ∈ L∗ and since L is pure, gf ∈ L∗. Therefore, uxk+1v = uxr−1xxsxxxtv =
(ur−1f)(gxsf)(gf)(gxtv) ∈ L∗, proving (4.1) in this case as well.

Corollary 4.5 If L is star-free and pure, then L∗ is star-free.

Proof. By Theorem VII.2.3, L is star-free if and only if M(L) is aperiodic.
Now, if L is pure, the relational morphism τ is aperiodic and hence M(L∗) is
aperiodic. It follows that L∗ is star-free.

4.3 Flower automata

Let L be a finite language if A∗. The flower automaton of L∗ is the finite
nodeterministic automaton A = (Q,A,E, I, F ), where Q = {1, 1} ∪ {(u, v) ∈
A+ ×A+ | uv ∈ L}, I = F = {(1, 1)}. There are four types of transitions:

{
((u, av)

a
−→ (ua, v)) | uav ∈ L, (u, v) 6= (1, 1)

}
{
((u, a)

a
−→ (1, 1)) | ua ∈ L, u 6= 1

}
{
((1, 1)

a
−→ (a, v)) | av ∈ L, v 6= 1

}
{
((1, 1)

a
−→ (1, 1)) | a ∈ L

}

It is easy to see that this automaton recognizes L∗.

Example 4.2 Let A = {a, b} and L = {a, ba, aab, aba}.
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(1, 1)

(a, ba)

(ab, a)(a, ab)

(aa, b)

(b, a)

a

a

b

aa

a

b

ba

Figure 4.1. A flower automaton.

The transition monoid of the flower automaton of L∗ is called the flower monoid
of L∗. Since it recognizes L∗, the syntactic monoid of L∗ is a quotient of it.

Recall that a subset X of the free monoid A∗ is a code over A if for all
n,m > 0 and x1, . . . , xn, x

′
1, . . . , x

′
m ∈ X , the condition

x0x1 · · ·xn = x′1x
′
2 · · ·x

′
m

implies n = m and xi = x′i for 1 6 i 6 n. In other words, a set X is a code if
any word in X+ can be written uniquely as a product of words in X .

Theorem 4.6 Let X be a finite code. The natural morphism from the flower
monoid of X∗ onto its syntactic monoid is a locally trivial morphism.

Proof. TO DO



Chapter XI

Languages associated with

DA

We denote by DA the class of finite semigroups in which every regular D-class
is an aperiodic semigroup (or idempotent semigroup, which is equivalent in this
case).

1 Algebraic characterizations of DA

2 Unambiguous star-free languages

Let A be a finite alphabet. The set of unambiguous star-free subsets of A∗ is
the smallest set of languages of A∗ containing the languages of the form B∗, for
B ⊆ A, which is closed under finite union and unambiguous marked product.

Let us start by an elementary observation.
a,

Proposition 2.1 Every finite language is unambiguous star-free.

Proof. If a1, . . . , ak are letters of A, the marked product {1}a1{1}a2 · · · ak{1} is
unambiguous. It follows that for any word u, the language {u} is unambiguous
star-free. Further, any finite language is the disjoint union of the languages {u},
for u ∈ F . Thus every finite language is unambiguous star-free.

Example 2.1 The language {a, c}∗a{1}b{b, c}∗ is unambiguous star-free (see
Example X.4.1).

The aim of this section is to prove the following theorem

Theorem 2.2 A language is unambiguous star-free if and only if its syntactic
monoid is finite and belongs to DA.

Proof. The easiest part of the proof relies on Theorem X.4.3. Let L = L0a1L1 · · · akLk

be unambiguous marked product. Let M0, . . . , Mk and M be the respective
syntactic monoids of L0, . . . , LK and L.

123
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Lemma 2.3 If M0, . . . , Mk belong to DA, so is M .

Proof. TO DO



Chapter XII

Semidirect product and

wreath product

1 Semidirect product

Let S and T be semigroups. We write the product in S additively to provide a
more transparent notation, but it is not meant to suggest that S is commutative.
A left action of T on S is a map (t, s) 7→ t· s from T 1 × S into S such that, for
all s, s1, s2 ∈ S and t, t1, t2 ∈ T ,

(1) (t1t2)· s = t1(t2 · s)

(2) t· (s1 + s2) = t· s1 + t· s2
(3) 1· s = s

If S is a monoid with identity 0, the action is unitary if it satisfies, for all t ∈ T ,

(4) t· 0 = 0

The semidirect product of S and T (with respect to the given action) is the
semigroup S ∗ T defined on S × T by the multiplication

(s, t)(s′, t′) = (s+ t· s′, tt′)

2 Wreath product

Let X = (P, S) and Y = (Q, T ) be two transformation semigroups. To make
the notation more readable, we shall denote the semigroup S and its action on
P additively and the semigroup T and its action on Q multiplicatively. The
wreath product of X and Y , denoted X ◦ Y , is the transformation semigroup
(P ×Q,W ) where W consists of all pairs (f, t), with f is a function from Q into
S and t ∈ T . Since we are thinking of f as acting on the right on Q, we will use
the more suitable notation q · f in place of f(q). The action of W on P ×Q is
given by

(p, q)· (f, t) = (p+ q · f, q · t) (2.1)

We claim that this action is faithful. Indeed, if (p, q)· (f, t) = (p, q)· (f ′, t′) for all
(p, q) ∈ P×Q, then q · t = q · t′ for all q ∈ Q and thus t = t′ since T acts faithfully
on Q. On the other hand, p+ q · f = p+ q · f ′ for all p ∈ P and thus q · f = q · f ′

125



126 CHAPTER XII. SEMIDIRECT PRODUCT AND WREATH PRODUCT

since S acts faithfully on P . Thus f = f ′, proving the claim. In particular W
can be considered as a subset of the semigroup of all transformations on P ×Q.
We leave it to the reader to verify that W is closed under composition and that
the product on W is defined by

(f, t)(f ′, t′) = (g, tt′)

where g is defined, for each q ∈ Q by

q · g = q · f + (q · t)· f ′

Let us now verify that Formula (2.1) really defines an action of W on P ×Q. If
(p, q) ∈ P ×Q and (f, t), (f ′, t′) ∈ W , we have

(
(p, q)· (f, t)

)
· (f ′, t′) = (p+ q · f, q · t)· (f ′, t′) = (p+ q · f + (q · t)· f ′, q · tt′)

= (p, q)
(
(f, t)(f ′, t′)

)

Given two semigroups S and T , consider the wreath product (S1, S)◦ (T 1, T ) =
(S1 × T 1,W ). The semigroup W is called the wreath product of S and T and is
denoted S ◦ T . The connections with the semidirect product and the product
are given in the next propositions.

Proposition 2.1 Let S and T be semigroups. Then every semidirect product of
S and T is a subsemigroup of S ◦T . Furthermore, S ◦T is a semidirect product
of ST 1

and T .

Proof. Let S ∗T be a semidirect product of S and T . Let ϕ : S ∗T → S ◦T be
the function defined by ϕ(s, t) = (f, t) where f : T 1 → S is given by t· f = t· s
for every t ∈ T 1. It is easy to verify that ϕ is a semigroup morphism.

For the second part of the statement, define an action (t, f) 7→ t· f of ST 1

on T by setting t′ · (t· f) = (t′t)· f . Then the semidirect product defined by this
action is isomorphic to S ◦ T .

Proposition 2.2 Let X and Y be transformation semigroups. Then X × Y
divides X ◦ Y .

Proof. Let X = (P, S) and Y = (Q, T ). Since the transformation semigroups
X × Y and X ◦ Y have the same set of states, P × Q, it suffices to show that
S × T can be embedded into SQ × T . With each pair (s, t), associate the pair
(f, t), where f is the constant map onto s. Then, for every pair (p, q) ∈ P ×Q,
(p, q)· (s, t) = (p + s, q · t) = (p + q · f, q · t) = (p, q)· (f, t), which concludes the
proof.

A routine computation shows that the wreath product on transformation
semigroups is associative. The wreath product also preserves division.

Proposition 2.3 If (P1, S1) divides (Q1, T1) and (P2, S2) divides (Q2, T2), then
(P1, S1) ◦ (P2, S2) divides (Q1, T1) ◦ (Q2, T2).
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Proof. Let π1 : Q1 → P1 and π2 : Q2 → P2 be the surjective mappings defining
the divisions. Let π = π1 × π2 : Q1 × Q2 → P1 × P2. For (f, s2) ∈ (P1, S1) ◦

(P2, S2), define (̂f, s2) = (g, ŝ2) by choosing a cover ŝ2 of s2 and, for each
q2 ∈ Q2, a cover g(q2) of f(π2(q2)). Now, for each (q1, q2) ∈ Q1 ×Q2,

π(q1, q2)· (f, s2) = (π1(q1), π2(q2))· (f, s2) = (π1(q1)· f(π2(q2)), π2(q2)· s2)

= (π1(q1 · g(q2)), π2(q2 · ŝ2)) = π(q1 · g(q2), q2 · ŝ2)

= π((q1, q2)· (g, ŝ2))

and this computation concludes the proof.

In view of Proposition 2.3, we have the following corollary.

Corollary 2.4 If S1 divides T1 and S2 divides T2, then S1 ◦S2 divides T1 ◦T2.

If X = (P, S) is a transformation semigroup, then X1 denotes the transfor-
mation semigroup obtained by adjoining to S the identity map 1P on P . If p is
a state, we denote by cp the constant map defined, for all q ∈ P , by cp(q) = p.
The transformation semigroup obtained by adjoining to S all the constant maps
cp is denoted by X.

Proposition 2.5 Let X and Y be transformation semigroups. Then (X ◦ Y )1

divides X1 ◦ Y 1 and X ◦ Y divides X ◦ Y .

Proof. Let X = (P, S) and Y = (Q, T ). First note that the four transformation
semigroups X ◦ Y , X ◦ Y , (X ◦ Y )1 and X1 ◦ Y 1 have the same set of states,
P×Q. Next, 1P×Q has the same action as (f, 1Q) ∈ (S1)Q×T , where f(q) = 1P

for all q ∈ Q. Thus (X ◦ Y )1 embeds into X1 ◦ Y 1.
Finally, if (p, q) ∈ P ×Q, the constant map c(p,q) has exactly the same action

as the pair (g, cq) ∈ S
Q
× T where g(x) = cp for all x ∈ Q. Thus X ◦ Y embeds

into X ◦ Y .

3 Basic decomposition results

In this section, we give some useful decomposition results. Let us start with
commutative monoids.

Proposition 3.1 Every commutative monoid divides the product of its mono-
genic submonoids.

Proof. Let M be a commutative monoid and let N be the product of its mono-
genic submonoids. Let ϕ : N → M be the morphism which transform each
element on N into the product of its coordinates. Then ϕ is clearly surjective
and thus M is a quotient of N .

We now study decompositions involving Ũn and Un.

Proposition 3.2 For every n > 0, Un divides Un
2 and Ũn divides Ũn

2 .
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Proof. Arguing by induction on n, it suffices to verify that Un divides Un−1 ×
U2. But a simple computation shows that Un is isomorphic to the submonoid
N of Un−1 × U2 defined as follows:

N = {(1, 1)} ∪ {(ai, a1) | 0 6 i 6 n− 1} ∪ {(a1, a2)}

A dual proof works for Ũn.

A more precise result follows from Proposition ??: a monoid is idempotent
and R-trivial if and only if it divides Ũn

2 for some n > 0. Dually, a monoid is
idempotent and L-trivial if and only if it divides Un

2 for some n > 0.

Proposition 3.3 For every n > 0, Ũn divides Un ◦ U2.

Proof. Let π : Un×U2 → Ũn be the surjective partial map defined by π(1, a1) =
1 and, for 1 6 i 6 n, π(ai, a2) = ai.

For 1 6 j 6 n, we set âj = (fj , a2) where fj : U2 → Un is defined by
1· fj = a2 · fj = 1 and a1 · fj = aj . We also set 1̂ = (f, 1) where f : U2 → Un is
defined by 1· f = a1 · f = a2 · f = 1. Now a simple verification shows that π is
indeed a cover:

π(ai, a2)· 1 = π(ai, a2) = π(ai + a2 · f, a2 · 1) = π((ai, a2)· 1̂)

π(1, a1)· 1 = π(1, a1) = π(1 + a1 · f, a1 · 1) = π((1, a1)(f, 1)) = π((1, a1)· 1̂)

π(ai, a2)· aj = ai = π(ai, a2) = π(ai + a2 · fj , a2 · a2) = π((ai, a2)· âj)

π(1, a1)· aj = aj = π(aj , a2) = π(1 + a1 · fj, a1 · a2) = π((1, a1)· âj)

Thus Ũn divides Un ◦ U2.

It follows now immediately from Propositions 3.3 and 3.2:

Corollary 3.4 For every n > 0, Ũn divides U2 ◦ · · · ◦ U2︸ ︷︷ ︸
n+1 times

.

For each n > 0, let Dn be the class of finite semigroups S such that, for
all s0, s1, . . . , sn in S, s0s1 · · · sn = s1 · · · sn. In such a semigroup, a product
of more than n elements is determined by the last n elements. By Proposition
??, these semigroups are left locally trivial. We shall now give a decomposition
result for the semigroups in Dn. As a first step, we decompose n̄ as a product
of copies of 2̄.

Lemma 3.5 If 2k > n, then n̄ divides 2̄k.

Proof. The result is trivial, since if T is any subset of size n of 2̄k, (T, T ) is a
sub-transformation semigroup of 2̄k isomorphic to n̄.

We now decompose the semigroups of Dn as an iterated wreath product of
transformation semigroups of the form (T, T ).

Proposition 3.6 Let S be a semigroup of Dn and let T = S ∪ {t}, where t is
a new element. Then (S1, S) divides (T, T ) ◦ · · · ◦ (T, T )︸ ︷︷ ︸

n times

.
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Proof. Let ϕ : T n → S1 be the partial function defined on sequences of the
form (t, . . . , t, xi, . . . , x1), where x1, . . . , xi ∈ S, by

ϕ(t, . . . , t, xi, . . . , x1) =

{
xi · · ·x1 if i > 0

1 if i = 0

Clearly ϕ is surjective. If s ∈ S, we set ŝ = (fn−1, . . . , f1, s), where, for 1 6 i 6

n− 1, fi : T i → T is defined by (ti, . . . , t1)· fi = ti. Thus

(tn, . . . , t1)ŝ = (tn−1, . . . , t1, s)

It follows that if p = (t, . . . , t, xi, . . . , x1) is in the domain of ϕ, then p· ŝ is
also in the domain of ϕ and ϕ(p· ŝ) = ϕ(p)· s. This proves the proposition.

Proposition 3.6 and Lemma 3.5 now give immediately.

Corollary 3.7 Every semigroup of Dn divides a wreath product of copies of 2̄.

The R-trivial monoids admit also a simple decomposition.

Theorem 3.8 A monoid is R-trivial if and only if it divides a wreath product
of the form U1 ◦ · · · ◦ U1.

Proof. We first show that every monoid of the form U1 ◦ · · · ◦ U1 is R-trivial.
Since U1 itself is R-trivial, and since, by Proposition 2.1, a wreath product is a
special case of semidirect product, it suffices to show that the semidirect product
S ∗T of two R-trivial monoids S and T is again R-trivial. Indeed, consider two
R equivalent elements (s, t) and (s′, t′) of S ∗ T . Then, (s, t)(x, y) = (s′, t′) and
(s′, t′)(x, y) = (s, t) for some elements (x, y) and (x′, y′) of S ∗ T . Therefore,
on one hand s + tx = s′ and s′ + t′x = s and on the other hand, ty = t′ and
t′y′ = t. It follows that s R s′ and t R t′. Therefore s = s′ and t = t′, and S ∗T
is R-trivial.

Let M = {s1, . . . , sn} be an R-trivial monoid of size n. We may assume
that si 6R sj implies j 6 i. Let us identify the elements of Un

1 with words of
length n on the alphabet {0, 1}. Let ϕ : U1 × · · · ×U1 →M be the onto partial
function defined by

ϕ(1n−j0j) = sj (0 6 j 6 n)

Thus ϕ(u) is not defined if u /∈ 1∗0∗. For each s ∈M , let

ŝ = (fn−1, . . . , f2, a1)

with

a1 =

{
1 if s = 1

0 if s 6= 1

where fi+1 : U1 × · · · × U1︸ ︷︷ ︸
i times

→ U1 is defined by

fi+1(1
i−j0j) =

{
1 if sjs = sk and k 6 i

0 if sjs = sk and k > i
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If u /∈ 1∗0∗, the value of fi+1(u) can be chosen arbitrarily.
Let p = 1n−j0j and s ∈ M . Let k be such that sk = sjs. Since sk 6R sj ,

k > j. Then

pŝ = (fn−1, . . . , f2, a1)(1
n−j0j)

= 1n−k0k

whence ϕ(pŝ) = sk = sjs = ϕ(p)s. Therefore, M divides U1 ◦ · · · ◦ U1.

As a preparation to the next theorem, we prove another decomposition re-
sult, which is important in its own right.

Proposition 3.9 Let M be a finite aperiodic monoid and let π : A∗ →M be a
surjective morphism. Then one of the following cases occur:

(1) M is a monogenic monoid,

(2) M is isomorphic to Ũn for some n > 0,

(3) there is a proper partition A = B ∪C such that π((B∗C)∗) and π(B∗) are
proper submonoids of M .

Proof. Let S = M \ {1}. Since M is aperiodic, S is a subsemigroup of M . Let
L be an L-class of S, maximal for the order 6J . First assume that S is the
semigroup generated by L. If |L| = 1, S is monogenic and so is M . Otherwise,
|L| > 1 and by Proposition V.2.5, L is regular and thus consists of L-equivalent
idempotents. Now, Proposition V.1.2 shows that if e and f are L-equivalent
idempotents, then ef = e and fe = f . It follows that L is a semigroup and
hence S = L. In particular, we are in the second case.

Now assume that the semigroup generated by L is strictly contained in S
and put

B = {a ∈ A | π(a) ∈ L} and C = A \B

As π(A) generates S and π(B) does not, B is a strict subset of A, so that C
is nonempty. We claim that π(B+) and π(B∗C)+ are proper subsemigroups
of S. For the first part of the claim, we observe that π(B) is contained in L
and thus π(B+) is contained in the subsemigroup of S generated by L, which
is a proper subsemigroup of S. For the second part, we observe that every
element of π(B∗C)+ is <J -below L and thus π(B∗C)+ is contained in S \L. It
follows now from the claim that we are in the third case of the proposition.

Proposition 3.10 Let M be a monoid. Suppose that M = L∪N where L is a
left ideal and N is a submonoid of M . Then M divides L1 ◦ N̄ .

Proof. Let ϕ : L1 × N → M be the map defined by ϕ(l, n) = ln. Since
M = L ∪N and L ∪N ⊆ L1N , M = L1N , and ϕ is onto.

Let m ∈ M . If m ∈ L, we set m̂ = (g, c1), where g : N → L1 is defined
by g(n) = nm for all n ∈ N . Otherwise, if m /∈ L, we set m̂ = (f,m), where
f(n) = 1 for all n ∈ N .

Let (l, n) ∈ L1 ×N . Then

ϕ(l, n)·m = (ln)·m = lnm
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Now, if m ∈ L,

(l, n)· m̂ = (l, n)(g, c1) = (l· g(n), 1) = (lnm, 1)

and since L is a left ideal, lnm ∈ L. On the other hand, if m ∈ N ,

(l, n)· m̂ = (l, n)(f,m) = (l· f(n), nm) = (l, nm)

and since N is a monoid, nm ∈ N . In both cases, ϕ((l, n)· m̂) = lnm. It follows
that ϕ is a covering and thus M divides L1 ◦N .

Theorem 3.11 A monoid is aperiodic if and only if it divides a wreath product
of the form U2 ◦ · · · ◦ U2.

Proof. Let M be an aperiodic monoid. Consider the three cases given by
Proposition 3.9. If M is monogenic, then it is R-trivial, and the result follows
from Theorem 3.8. If M is isomorphic to Ũn for some n > 0, the result follows
from Corollary 3.4. Finally, suppose there is a proper partition A = B ∪C such
that L = π((B∗C)∗) and M = π(B∗) are proper submonoids of M . Then L is a
left ideal of M , and since A∗ = (B∗C)∗ ∪B∗, M = L∪N . Thus by Proposition
3.10, M divides L1 ◦N . Arguing by induction on |M |, we may assume that L
and N divide wreath products of copies of U2. It follows, by Proposition 2.5,
that L1 and N also divide wreath products of copies of U2, since U2 = U1

2 = U2.
Finally, M itself divides a wreath product of copies of U2.

Proposition 3.12 Let X = (P, S) be a transformation semigroup such that
P ·S = P . Then 2̄ ◦X divides X ◦ (R,R), where R is the set {1, 2}P × S.

Proof. Define ϕ : P ×R→ {1, 2}×P by setting ϕ(p, f, s) = (p· f, p· s) for each
p ∈ P , f ∈ {1, 2}p and s ∈ S. Given a transformation v = (g, t) of 2̄ ◦X , with
g ∈ {1, 2}P and t ∈ S, define the transformation v̂ of X ◦ (R,R) by setting

(p, f, s)· v̂ = (p· s, g, t)

then we have

ϕ(p, f, s)· v = (p· f, p· s)(g, t) = (p· f + (p· s)· g, p· st)

((p· s)· g, p· st) = ϕ(p· s, g, t) = ϕ((p, f, s)· v̂)

Thus 2̄ ◦X divides X ◦ (R,R).

Given a property P , we say that a semigroup S is locally in a variety V if
the local semigroup of each idempotent is in V. For instance, a semigroup S is
locally trivial if, for each s ∈ S and e ∈ E(S), ese = e.

We shall admit without proof our last decomposition result (see the Notes
section).

Proposition 3.13 A semigroup is locally R-trivial if and only if it divides a
wreath product of the form U1 ◦ · · · ◦ U1 ◦ 2̄ ◦ · · · ◦ 2̄.
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Proof. TO DO.

We now turn to groups

Proposition 3.14 Let π : G → H be a surjective morphism and let K =
π−1(1). Then G is isomorphic to a subgroup of K ◦H.

Proof. TO DO.

4 Exercises.

4.1 Semidirect product and wreath product

Exercice 1 Show that any finite inverse monoid divides a semidirect product
of the form S ∗G, where S an idempotent and commutative monoid and G is
a finite group. Actually, a stronger result holds: a finite monoid divides the
semidirect product of an idempotent and commutative monoid by a group if
and only if its idempotents commute.
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preorder, 12
reflexive, 12
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surjective, 8
symmetric, 12
thinner, 12
transitive, 12
universal, 12

relational morphism, 111
aperiodic, 114
locally trivial, 114

sandwich matrix, 62
semigroup, 15

0-simple, 24
aperiodic, 59
Brandt, 63

aperiodic, 63
commutative, 15
dual, 15, 18
free, 29
free pro-V, 83
free profinite, 83
generated by, 21
left 0-simple, 24
left simple, 24
left zero, 18
metric, 82
n̄, 27
ordered, 18
Rees

with zero, 62
Rees matrix, 62
right 0-simple, 24
right simple, 24
separates, 82
simple, 24
transformation, 27

semilinear, 40
Simplification lemma, 16
singleton, 5
size, 5
star, 34
star-free, 89
state

final, 36, 42
initial, 36, 42

states, 36, 42
subgroup, 21
submonoid, 21
subsemigroup, 21
subword, 95
sum, 15

superword, 95
supremum, 82
syntactic order, 47

transformation, 26
transformation semigroup

fixpoint-free, 27
full, 27

transitions, 36, 42
consecutive, 37, 42

unambiguous star-free, 123
unit, 15
unitriangular, 102
universal counterexample, 18

V-free semigroup, 79
variety, 106

+-, 106
Birkhoff, 79
generated, 82
of finite semigroups, 81

word, 28
empty, 28

zero, 16
left, 16
right, 16


