Affine and Curved Voronoi Diagrams

Jean-Daniel Boissonnat

Lectures at MPRI

Affine and curved Voronoi diagrams Affine and Curved Voronoi Diagrams

・ロト ・四ト ・ヨト ・ヨト

2

An artistic view of a Voronoi diagram

Affine and curved Voronoi diagrams

Affine and Curved Voronoi Diagrams

A gallery of Voronoi diagrams

< 172 ▶

★ E → ★ E →

A gallery of Voronoi diagrams

・ロ・ ・ 四・ ・ 回・ ・ 回・

-2

Affine and curved Voronoi diagrams Affine and Curved Voronoi Diagrams

A gallery of Voronoi diagrams

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

-2

Affine and curved Voronoi diagrams Affine and Curved Voronoi Diagrams

A gallery of Voronoi diagrams

Affine and curved Voronoi diagrams

Affine and Curved Voronoi Diagrams

æ

Outline

Introduction

Affine Voronoi Diagrams

Power Diagrams Order *k* Voronoi Diagrams

Curved Voronoi Diagrams

Moebius Diagrams Apollonius Diagrams Anisotropic Diagrams

Conclusion

▲御▶ ▲理▶ ▲理▶

Power Diagrams Order k Voronoi Diagrams

Power diagrams of spheres

Power of a point to a sphere

$$\sigma(\mathbf{x}) = (\mathbf{x} - t)^2 = (\mathbf{x} - c)^2 - r^2$$

$$\sigma(\mathbf{x}) < \mathbf{0} \Longleftrightarrow \mathbf{x} \in \operatorname{int}(\sigma)$$

▲御▶ ▲理▶ ▲理▶

Power Diagrams Order k Voronoi Diagrams

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

-20

Bisector of two sites = hyperplane

$$\sigma_i(\mathbf{x}) = \sigma_j(\mathbf{x}) \iff \mathbf{x}^2 - 2\mathbf{c}_i \cdot \mathbf{x} + \mathbf{s}_i = \mathbf{x}^2 - 2\mathbf{c}_j \cdot \mathbf{x} + \mathbf{s}_j$$

Power Diagrams Order k Voronoi Diagrams

Power diagram

Sites : *n* spheres $\sigma_1, \dots, \sigma_n$ Distance of a point *x* to σ_i $\sigma_i(x) = (x - c_i)^2 - r_i^2$

 $\operatorname{Pow}(\sigma_i) = \{ \boldsymbol{x} : \sigma_i(\boldsymbol{x}) \leq \sigma_j(\boldsymbol{x}), \forall j \}$

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

-2

 $Pow(\sigma_i)$ may be empty

Power Diagrams Order k Voronoi Diagrams

- $\sigma \rightarrow$ the polar hyperplane h_{σ} of \mathbb{R}^{d+1} : $x_{d+1} = 2c \cdot x s$
- **1.** If $\sigma_i = p_i$, h_{σ_i} is the hyperplane h_{p_i} tangent to the paraboloid \mathcal{P}
- **2.** The vertical projection of $h_{\sigma_i} \cap \mathcal{P}$ onto $x_{d+1} = 0$ is σ_i

3.
$$\sigma_i(\mathbf{x}) < \sigma_j(\mathbf{x}) \iff 2\mathbf{c}_i \cdot \mathbf{x} - \mathbf{s}_i > 2\mathbf{c}_j \cdot \mathbf{x} - \mathbf{s}_j \iff \text{at point } \mathbf{x}, \ h_{\sigma_i} \text{ is above } h_{\sigma_i}$$

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

3

Power Diagrams Order k Voronoi Diagrams

Space of spheres

the faces of the power diagram are the vertical projections of the faces of $\mathcal{P}(S) = \bigcap_{i} h_{\sigma_{i}}^{+}$

The vertical projection of the dual complex $\mathcal{R}(\mathcal{S})$ of $\mathcal{P}(\mathcal{S})$ is called the regular triangulation of \mathcal{S}

$$\mathcal{P}(\mathcal{S}) = h_{\sigma_1}^+ \cap \ldots \cap h_{\sigma_n}^+ \quad \longleftrightarrow \quad \mathcal{R}(\mathcal{S}) = \operatorname{conv}^-(\{\phi(\sigma_1), \ldots, \phi(\sigma_n)\})$$

$$\uparrow \qquad \qquad \uparrow$$
power diagram of $\mathcal{S} \quad \longleftrightarrow \quad \text{Regular triangulation of } \mathcal{S}$

(日)

Power Diagrams Order k Voronoi Diagrams

Complexity and algorithm

nb of faces = $\Theta\left(n^{\lfloor \frac{d+1}{2} \rfloor}\right)$ (Upper Bound Th.) can be computed in time $\Theta\left(n\log n + n^{\lfloor \frac{d+1}{2} \rfloor}\right)$

< 日 > < 回 > < 回 > < 回 > < 回 > <

Power Diagrams Order k Voronoi Diagrams

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

-2

Complexity and algorithm

nb of faces = $\Theta\left(n^{\lfloor \frac{d+1}{2} \rfloor}\right)$ (Upper Bound Th.) can be computed in time $\Theta\left(n \log n + n^{\lfloor \frac{d+1}{2} \rfloor}\right)$

Main predicate

power_test
$$(\sigma_0, \dots, \sigma_{d+1}) = \text{sign} \begin{vmatrix} 1 & \dots & 1 \\ c_0 & \dots & c_{d+1} \\ c_0^2 - r_0^2 & \dots & c_{d+1}^2 - r_{d+1}^2 \end{vmatrix}$$

Power Diagrams Order k Voronoi Diagrams

Affine Voronoi diagrams

Definition

Diagrams defined for objects and a distance function

s.t. bisectors are hyperplanes

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Power Diagrams Order k Voronoi Diagrams

・ 戸 ト ・ 三 ト ・ 三 ト

Affine Voronoi diagrams

Definition

Diagrams defined for objects and a distance function

s.t. bisectors are hyperplanes

Theorem [Aurenhammer]

Any affine Voronoi diagram of \mathbb{R}^d is the power diagram of a set of spheres of \mathbb{R}^d .

Power Diagrams Order k Voronoi Diagrams

 P_1 : any non vertical hyperplane of \mathbb{R}^{d+1}

 P_2 : any non vertical hyperplane such that proj $(P_1 \cap P_2) = h_{12}$

(日) (圖) (E) (E) (E)

for $k \geq 3$

 P_k : the hyperplane such that proj $(P_1 \cap P_k) = h_{1k}$ proj $(P_2 \cap P_k) = h_{2k}$

$$proj(P_i \cap P_j) = h_{ij} \leftarrow proj(P_1 \cap P_i \cap P_j) = h_{1i} \cap h_{1j} = l_{1ij}$$

$$proj(P_2 \cap P_i \cap P_j) = h_{2i} \cap h_{2j} = l_{2ij}$$

$$proj (aff (P_1 \cap P_i \cap P_j, P_2 \cap P_i \cap P_j)) = aff(l_{1ij}, l_{2ij}) = h_{ij}$$

we define $\sigma_i = \text{proj}(P_i \cap P) \Rightarrow h_{\sigma_i} = P_i$ $h_{ij} = \text{radical hyperplane of } \sigma_i \text{ et } \sigma_j$

Power Diagrams Order k Voronoi Diagrams

Examples of affine diagrams

1. The vertical projection of the faces of any polyhedron that is the intersection of upper half-spaces of \mathbb{R}^{d+1}

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Power Diagrams Order k Voronoi Diagrams

Examples of affine diagrams

- The vertical projection of the faces of any polyhedron that is the intersection of upper half-spaces of ℝ^{d+1}
- 2. The intersection of a power diagram with an affine subspace

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Power Diagrams Order k Voronoi Diagrams

Examples of affine diagrams

- The vertical projection of the faces of any polyhedron that is the intersection of upper half-spaces of ℝ^{d+1}
- 2. The intersection of a power diagram with an affine subspace
- 3. A Voronoi diagram with the following quadratic distance function

$$\|x-a\|_Q = (x-a)^t Q(x-a) \qquad Q = Q^t$$

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

3

Power Diagrams Order k Voronoi Diagrams

Examples of affine diagrams

- The vertical projection of the faces of any polyhedron that is the intersection of upper half-spaces of ℝ^{d+1}
- 2. The intersection of a power diagram with an affine subspace
- 3. A Voronoi diagram with the following quadratic distance function

$$\|\boldsymbol{x} - \boldsymbol{a}\|_{Q} = (\boldsymbol{x} - \boldsymbol{a})^{t} Q(\boldsymbol{x} - \boldsymbol{a}) \qquad Q = Q^{t}$$

(日本) (日本) (日本)

3

4. k-order Voronoi diagrams

Power Diagrams Order k Voronoi Diagrams

2

Order k Voronoi Diagrams

Power Diagrams Order k Voronoi Diagrams

A k-order Voronoi diagram is a power diagram

Let E_1, E_2, \ldots denote the subsets of k points of E

$$\sigma_i(x) = \frac{1}{k} \sum_{j \in E_i} (x - p_j)^2 = x^2 - \frac{2}{k} \sum_{j \in E_i} p_j \cdot x + \frac{1}{k} \sum_{j \in E_i} p_j^2$$

The k nearest neighbors of x are the points of E_i iff

$$\forall j, \sigma_i(\mathbf{x}) \leq \sigma_j(\mathbf{x})$$

 σ_i is the sphere centered at $\frac{1}{k} \sum_{j=1}^{k} p_{i_j}$ $\sigma_k(0) = \frac{1}{k} \sum_{j=1}^{k} p_{j_j}^2$

Power Diagrams Order k Voronoi Diagrams

In the space of spheres

The cells of the *k*-Voronoi diagram are the projections of the cells of the *k*-th level in the arrangement of the polar hyperplanes h_{p_i}

Power Diagrams Order k Voronoi Diagrams

Number of faces of levels $\leq k$ in an arrangement of hyperplanes

H set of *n* hyperplanes of \mathbb{R}^d , *A* the associated arrangement It is sufficient to count the number of vertices of level $\leq k$

Objects : hyperplanes of H

Configurations : *d*-uplets of hyperplanes (\equiv a vertex of A

Conflict : $h \in H$, s vertex of \mathcal{A} , s $\in h^-$

The number of vertices of level $\leq k$ is equal to $|\mathcal{C}_{\leq k}^{d}(H)|$

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Power Diagrams Order k Voronoi Diagrams

Random sampling theorem

[Clarkson & Shor]

< 日 > < 回 > < 回 > < 回 > < 回 > <

-20

If S is a set of n objects k an integer, $2 \le k \le n/(d+1)$ $\mathcal{R}_{\lfloor n/k \rfloor}$ a random subset of S of size $\lfloor n/k \rfloor$

 $|\mathcal{C}^d_{\leq k}(\mathcal{S})| \leq 4 \; (d+1)^d \; k^d \; E(|\mathcal{C}^d_0(\mathcal{R}_{\lfloor n/k \rfloor})|)$

Power Diagrams Order k Voronoi Diagrams

Proof :
$$E(|\mathcal{C}_0^d(\mathcal{R}_r)|) = \sum_{C \in \mathcal{C}^d(S)} \operatorname{Proba}(C \in \mathcal{C}_0(\mathcal{R}))$$

$$= \sum_j |\mathcal{C}_j^d(S)| \frac{\binom{n-d-j}{r-d}}{\binom{n}{r}}$$
$$\geq |\mathcal{C}_{\leq k}^d(S)| \frac{\binom{n-d-k}{r-d}}{\binom{n}{r}}$$

Affine and curved Voronoi diagrams Affine and Curved Voronoi Diagrams

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 里 ○ の Q @

Power Diagrams Order k Voronoi Diagrams

Proof :
$$E(|\mathcal{C}_{0}^{d}(\mathcal{R}_{r})|) = \sum_{C \in \mathcal{C}^{d}(S)} \operatorname{Proba}(C \in \mathcal{C}_{0}(\mathcal{R}))$$

$$= \sum_{j} |\mathcal{C}_{j}^{d}(S)| \frac{\binom{n-d-j}{r-d}}{\binom{n}{r}}$$
$$\geq |\mathcal{C}_{\leq k}^{d}(S)| \frac{\binom{n-d-k}{r-d}}{\binom{n}{r}}$$

for
$$2 \le k \le \frac{n}{d+1}$$
 and $r = \lfloor n/k \rfloor$: $\frac{\begin{pmatrix} n-d-k \\ r-d \end{pmatrix}}{\begin{pmatrix} n \\ r \end{pmatrix}} \ge \frac{1}{4(d+1)^d k^d}$

Power Diagrams Order k Voronoi Diagrams

By the random sampling theorem

$$|\mathcal{C}_{\leq k}(H)| = O\left(k^d E\left(|\mathcal{C}_0(\mathcal{R}_{\lfloor n/k \rfloor})|\right)\right)$$

(日)

Power Diagrams Order k Voronoi Diagrams

By the random sampling theorem

$$|\mathcal{C}_{\leq k}(H)| = O\left(k^{d} E\left(|\mathcal{C}_{0}(\mathcal{R}_{\lfloor n/k \rfloor})|\right)\right)$$

By the upper bound theorem

$$|\mathcal{C}_0(\mathcal{R}_{\lfloor n/k \rfloor})| = O\left(\lfloor n/k \rfloor^{\lfloor \frac{d}{2} \rfloor}\right)$$

< 日 > < 回 > < 回 > < 回 > < 回 > <

Power Diagrams Order k Voronoi Diagrams

By the random sampling theorem

$$|\mathcal{C}_{\leq k}(H)| = O\left(k^{d} E\left(|\mathcal{C}_{0}(\mathcal{R}_{\lfloor n/k \rfloor})|\right)\right)$$

By the upper bound theorem

$$|\mathcal{C}_0(\mathcal{R}_{\lfloor n/k \rfloor})| = O\left(\lfloor n/k \rfloor^{\lfloor \frac{d}{2} \rfloor}\right)$$

• The number of vertices of level $\leq k$ is

$$O\left(k^{\left\lceil \frac{d}{2} \right\rceil} n^{\left\lfloor \frac{d}{2} \right\rfloor}
ight)$$

・ロト ・四ト ・ヨト ・ヨト

(

Power Diagrams Order k Voronoi Diagrams

Bounds on \leq *k*-levels, \leq *k*-sets and \leq *k*-order VD

Theorem

The total number of faces (of all dimensions) of the *k* first levels of A is

$$O\left(k^{\left\lceil \frac{d}{2} \right\rceil} n^{\left\lfloor \frac{d}{2} \right\rfloor}\right)$$

For all orders : $\Theta(n^d)$

(日)

Power Diagrams Order k Voronoi Diagrams

Bounds on \leq *k*-levels, \leq *k*-sets and \leq *k*-order VD

Theorem

The total number of faces (of all dimensions) of the *k* first levels of A is

$$\mathsf{O}\left(\mathbf{k}^{\lceil \frac{d}{2} \rceil} \ \mathbf{n}^{\lfloor \frac{d}{2} \rfloor}\right)$$

For all orders : $\Theta(n^d)$

Corollary

By duality, the same bounds apply for the number of $\leq k$ -sets of a set of *n* points of \mathbb{R}^d

・ロト ・四ト ・ヨト ・ヨト

Power Diagrams Order k Voronoi Diagrams

Bounds on \leq *k*-levels, \leq *k*-sets and \leq *k*-order VD

Theorem

The total number of faces (of all dimensions) of the *k* first levels of A is

$$O\left(k^{\left\lceil \frac{d}{2} \right\rceil} n^{\left\lfloor \frac{d}{2} \right\rfloor}\right)$$

For all orders : $\Theta(n^d)$

Corollary

By duality, the same bounds apply for the number of $\leq k$ -sets of a set of *n* points of \mathbb{R}^d

Corollary

The number of vertices and faces of the k first Voronoi diagrams is

$$O\left(k^{\left\lceil \frac{d+1}{2} \right\rceil} n^{\left\lfloor \frac{d+1}{2} \right\rfloor}\right)$$

< 日 > < 回 > < 回 > < 回 > < 回 > <

3

Moebius Diagrams Apollonius Diagrams Anisotropic Diagrams

Möbius Diagrams

- ▶ Weighted points : $W_i = (p_i, \lambda_i, \mu_i), p_i \in \mathbb{R}^d, \lambda_i \in \mathbb{R} \setminus \{0\}, \mu_i \in \mathbb{R}$
- Distance function :

$$\delta_M(\mathbf{x}, \mathbf{W}_i) = \lambda_i \|\mathbf{x} - \mathbf{p}_i\|^2 - \mu_i$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Moebius Diagrams Apollonius Diagrams Anisotropic Diagrams

Möbius Diagrams

- ▶ Weighted points : $W_i = (p_i, \lambda_i, \mu_i), p_i \in \mathbb{R}^d, \lambda_i \in \mathbb{R} \setminus \{0\}, \mu_i \in \mathbb{R}$
- Distance function :

$$\delta_M(\mathbf{x}, \mathbf{W}_i) = \lambda_i \|\mathbf{x} - \mathbf{p}_i\|^2 - \mu_i$$

Generalization of

- ► Voronoï diagrams ($\lambda_i = \lambda > 0$ et $\mu_i = 0$)
- Power diagrams ($\lambda_i = \lambda > 0$)
- multiplicatively weighted Voronoi diagrams ($\mu_i = 0$)

(日) (圖) (E) (E) (E)

Moebius Diagrams Apollonius Diagrams Anisotropic Diagrams

Bisectors are *hyperspheres*, hyperplanes or Ø

$$\begin{split} \lambda_i (\mathbf{x} - \mathbf{p}_i)^2 - \mu_i &= \lambda_j (\mathbf{x} - \mathbf{p}_j)^2 - \mu_j \\ \iff & (\lambda_i - \lambda_j) \mathbf{x}^2 - 2(\lambda_i \mathbf{p}_i - \lambda_j \mathbf{p}_j) \cdot \mathbf{x} + \lambda_i \mathbf{p}_i^2 - \mu_i - \lambda_j \mathbf{p}_j^2 + \mu_j = \mathbf{0} \end{split}$$

Moebius Diagrams Apollonius Diagrams Anisotropic Diagrams

Bisectors are *hyperspheres*, hyperplanes or Ø

$$\lambda_{i}(\mathbf{x} - \mathbf{p}_{i})^{2} - \mu_{i} = \lambda_{j}(\mathbf{x} - \mathbf{p}_{j})^{2} - \mu_{j}$$

$$\iff (\lambda_{i} - \lambda_{j})\mathbf{x}^{2} - 2(\lambda_{i}\mathbf{p}_{i} - \lambda_{j}\mathbf{p}_{j}) \cdot \mathbf{x} + \lambda_{i}\mathbf{p}_{i}^{2} - \mu_{i} - \lambda_{j}\mathbf{p}_{j}^{2} + \mu_{j} = 0$$

Moebius Diagrams Apollonius Diagrams Anisotropic Diagrams

Linearization Lemma

We can associate to each weighted point W_i a hypersphere Σ_i of \mathbb{R}^{d+1} so that

the faces of the Möbius diagram of the W_i are obtained by projecting vertically the faces of the restriction of the Power Diagram of the Σ_i to the paraboloid $\mathcal{P} : x_{d+1} = x^2$

・ロト ・四ト ・ヨト ・ヨト

Moebius Diagrams Apollonius Diagrams Anisotropic Diagrams

Proof

$$\lambda_i (\mathbf{x} - \mathbf{p}_i)^2 - \mu_i \leq \lambda_j (\mathbf{x} - \mathbf{p}_j)^2 - \mu_j$$

$$\iff (\mathbf{x} - \lambda_i \mathbf{p}_i)^2 + (\mathbf{x}^2 + \frac{\lambda_i}{2})^2 - \lambda_i^2 \mathbf{p}_i^2 - \frac{\lambda_i^2}{4} + \lambda_i \mathbf{p}_i^2 - \mu_i$$

$$\leq (\mathbf{x} - \lambda_j \mathbf{p}_j)^2 + (\mathbf{x}^2 + \frac{\lambda_j}{2})^2 - \lambda_j^2 \mathbf{p}_j^2 - \frac{\lambda_j^2}{4} + \lambda_j \mathbf{p}_j^2 - \mu_j$$

$$\iff (\mathbf{X} - \mathbf{C}_i)^2 - \rho_i^2 \leq (\mathbf{X} - \mathbf{C}_j)^2 - \rho_j^2$$

where
$$X = (x, x^2) \in \mathbb{R}^{d+1}$$
,
 $C_i = (\lambda_i p_i, -\frac{\lambda_i}{2}) \in \mathbb{R}^{d+1}$ and $\rho_i^2 = \lambda_i^2 p_i^2 + \frac{\lambda_i^2}{4} - \lambda_i p_i^2 + \mu_i$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Moebius Diagrams Apollonius Diagrams Anisotropic Diagrams

Corollaries

1. Inversion and Möbius transforms map a spherical diagram to another spherical diagram

(日) (圖) (E) (E) (E)

Moebius Diagrams Apollonius Diagrams Anisotropic Diagrams

Corollaries

- 1. Inversion and Möbius transforms map a spherical diagram to another spherical diagram
- 2. The intersection of a spherical diagram with an affine subspace is a a spherical diagram

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Moebius Diagrams Apollonius Diagrams Anisotropic Diagrams

Corollaries

- 1. Inversion and Möbius transforms map a spherical diagram to another spherical diagram
- 2. The intersection of a spherical diagram with an affine subspace is a a spherical diagram
- Using stereographic projection, one can define spherical diagrams on S^d

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Moebius Diagrams Apollonius Diagrams Anisotropic Diagrams

Corollaries

- 1. Inversion and Möbius transforms map a spherical diagram to another spherical diagram
- 2. The intersection of a spherical diagram with an affine subspace is a a spherical diagram
- Using stereographic projection, one can define spherical diagrams on S^d
- The class of Möbius diagrams is identical to the class of spherical diagrams, i.e.diagrams whose bisectors are hyperspheres

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Moebius Diagrams Apollonius Diagrams Anisotropic Diagrams

Constructing Möbius diagrams

The complexity of the Möbius diagram of *n* doubly weighted points in \mathbb{R}^d is $\Theta(n^{\lfloor \frac{d}{2} \rfloor + 1})$ It can be constructed in time $\Theta(n \log n + n^{\lfloor \frac{d}{2} \rfloor + 1})$

(日)

Moebius Diagrams Apollonius Diagrams Anisotropic Diagrams

Constructing Möbius diagrams

The complexity of the Möbius diagram of *n* doubly weighted points in \mathbb{R}^d is $\Theta(n^{\lfloor \frac{d}{2} \rfloor + 1})$

It can be constructed in time $\Theta(n \log n + n^{\lfloor \frac{d}{2} \rfloor + 1})$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

Moebius Diagrams Apollonius Diagrams Anisotropic Diagrams

Constructing Möbius diagrams

The complexity of the Möbius diagram of *n* doubly weighted points in \mathbb{R}^d is $\Theta(n^{\lfloor \frac{d}{2} \rfloor + 1})$

It can be constructed in time $\Theta(n \log n + n^{\lfloor \frac{d}{2} \rfloor + 1})$

Predicates :

power_test decide whether a face of Power($\{\Sigma_i\}_{i=1}^n$) intersects \mathcal{P}

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Moebius Diagrams Apollonius Diagrams Anisotropic Diagrams

An Euclidean model

 σ_0 a hyperplane of \mathbb{R}^d ($x_d = 0$) a finite set of hyperspheres { $\sigma_i = (p_i, \omega_i)$ } $_{i=1}^n$ $V(\sigma_0) = {x \in \mathbb{R}^d : d(x, \sigma_0) \le d(x, \sigma_i), \forall i}$

3

Moebius Diagrams Apollonius Diagrams Anisotropic Diagrams

An Euclidean model

 σ_0 a hyperplane of \mathbb{R}^d ($x_d = 0$) a finite set of hyperspheres { $\sigma_i = (p_i, \omega_i)$ } $_{i=1}^n$ $V(\sigma_0) = {x \in \mathbb{R}^d : d(x, \sigma_0) \le d(x, \sigma_i), \forall i}$

▲御▶ ▲理▶ ▲理▶

Projection Lemma The vertical projection of $\partial V(\sigma_0)$ on σ_0 is a Möbius diagram

Moebius Diagrams Apollonius Diagrams Anisotropic Diagrams

Apollonius diagrams of spheres

$$\sigma_i = (\mathbf{p}_i, \mathbf{r}_i)$$

$$\delta(\mathbf{x}, \sigma_i) = \|\mathbf{x} - \mathbf{p}_i\| - \mathbf{r}_i$$

$$\mathsf{Apo}(\sigma_i) = \{\mathbf{x}, \delta(\mathbf{x}, \sigma_i) \le \delta(\mathbf{x}, \sigma_j)\}$$

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Moebius Diagrams Apollonius Diagrams Anisotropic Diagrams

The Projection Lemma extends to any set of spheres

Affine and curved Voronoi diagrams Affine and Curved Voronoi Diagrams

Moebius Diagrams Apollonius Diagrams Anisotropic Diagrams

The Projection Lemma extends to any set of spheres

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Moebius Diagrams Apollonius Diagrams Anisotropic Diagrams

The Projection Lemma extends to any set of spheres

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

2

Moebius Diagrams Apollonius Diagrams Anisotropic Diagrams

The Projection Lemma extends to any set of spheres

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Moebius Diagrams Apollonius Diagrams Anisotropic Diagrams

The Projection Lemma extends to any set of spheres

Theorem: The combinatorial complexity of a single cell in the Apollonius diagram of n spheres of \mathbb{R}^d is $\Theta(n^{\lfloor \frac{d+1}{2} \rfloor})$

Moebius Diagrams Apollonius Diagrams Anisotropic Diagrams

CGAL implementations

CGAL planar Apollonius diagrams [M. Karavelas] 100k circles : 40s (Pentium III, 1 GHz)

・ロ・ ・ 四・ ・ 回・ ・ 回・

Moebius Diagrams Apollonius Diagrams Anisotropic Diagrams

CGAL implementations

- CGAL planar Apollonius diagrams [M. Karavelas] 100k circles : 40s (Pentium III, 1 GHz)
- A prototype implementation [C. Delage]

Affine and curved Voronoi diagrams Affine and Curved Voronoi Diagrams

Moebius Diagrams Apollonius Diagrams Anisotropic Diagrams

Anisotropic Voronoi diagrams

Labelle & Shewchuk

(日)

Weighted point : (p_i, M_i, r_i) where $p_i \in \mathbb{R}^d$, M_i is a $d \times d$ symmetric positive definite matrix and $r_i \in \mathbb{R}$

Distance to a weighted point : $d_i(x) = (x - p_i)^t M_i (x - p_i) - r_i$

Moebius Diagrams Apollonius Diagrams Anisotropic Diagrams

Anisotropic Voronoi diagrams

Labelle & Shewchuk

Weighted point : (p_i, M_i, r_i) where $p_i \in \mathbb{R}^d$, M_i is a $d \times d$ symmetric positive definite matrix and $r_i \in \mathbb{R}$

Distance to a weighted point : $d_i(x) = (x - p_i)^t M_i (x - p_i) - r_i$

Standard diagram

Affine and curved Voronoi diagrams

Affine and Curved Voronoi Diagrams

4

Moebius Diagrams Apollonius Diagrams Anisotropic Diagrams

Linearization Lemma

In $\mathbb{R}^{\frac{d(d+3)}{2}}$, one can define a set Σ of *n* hyperspheres so that the anisotropic Voronoi diagram of the *n* given weighted sites is the projection of the restriction of Pow(Σ) to a *d*-manifold

・ 戸 ト ・ 三 ト ・ 三 ト

3

Moebius Diagrams Apollonius Diagrams Anisotropic Diagrams

Linearization Lemma

In $\mathbb{R}^{\frac{d(d+3)}{2}}$, one can define a set Σ of *n* hyperspheres so that the anisotropic Voronoi diagram of the *n* given weighted sites is the projection of the restriction of Pow(Σ) to a *d*-manifold

Universality Lemma

Any quadratic Voronoi diagram (i.e. with quadratic bisectors) is an anisotropic diagram

(日本) (日本) (日本)

Conclusion

Affine and curved Voronoi diagrams Affine and Curved Voronoi Diagrams

Affine and curved Voronoi diagrams Affine and Curved Voronoi Diagrams

The linearization approach

- Provides a framework for many Voronoi diagrams
- Leads to rather simple data structures and algorithms
- Robust and efficient implementations exist for simple cases

・ 戸 ト ・ 三 ト ・ 三 ト

The linearization approach

- Provides a framework for many Voronoi diagrams
- Leads to rather simple data structures and algorithms
- Robust and efficient implementations exist for simple cases

Further questions

- Does not directly provide good combinatorial bounds
- How to compute the restriction of an affine diagram to a manifold efficiently ?
- Approximation algorithms ?

▲□ → ▲ □ → ▲ □ →

Acknowledgments

Menelaos Karavelas Christophe Delage Camille Wormser Mariette Yvinec