Triangulations and Meshes

Outline

- Triangulations, Delaunay triangulations Voronoi diagrams, the space of spheres Regular triangulations and power diagrams
- Constrained and constrained Delaunay triangulations
- Meshing using Delaunay refinement
- Meshing using other methods (octrees, advancing front)
- Quality of meshes
- Surface meshing
- Interpolation and reconstruction

Constrained Delaunay triangulations

Outline

- Constrained triangulations in 2D existence
- Constrained Delaunay triangulations in 2D existence and unicity
- Optimal triangulations
optimality of Delaunay triangulations when Delaunay triangulation are not optimal
- Algorithmic of constrained Delaunay triangulations
- Constrained triangulations in 3D
existence problem
a sufficient existence condition

Constrained triangulations in 2D

Definition
Input: a PSLG (planar straight line graph)

- a set of points P
- a set of segments S
- (P, S) is a 1 dim simplicial complex i.e.
- each endpoint of $s \in S$ is in P
- two segments in S are disjoints or share an endpoint

A constrained triangulation of (P, S)

is a triangulation $T=T(P, S)$ such that :

- the set of vertices of T is P
- any segment $s \in S$ is an edge of T

Constrained triangulations in 2D

Application : triangulation of a polygonal region

- Build a constrained triangulation
- Mark internal facets

Constrained triangulations in 2D

existence problem

Theorem
Any PSLG (P, S) admits a $2 D$ constrained triangulation
Proof.
The set of edges of any $=$ a maximal set of segments triangulation of $P \quad$ with endpoints in P without intersection except at endpoints.

Constrained Delaunay triangulation

Definition 1

Definition 1 : Let (P, S) be a PSLG.
The constrained triangulation $T(P, S)$ is constrained Delaunay iff the circumcircle of any triangle t of T encloses no vertex visible from a point in the relative interior of t.

Visibility : p visible from $q \operatorname{iff} \operatorname{int}(p q) \cap S=\emptyset$

Constrained Delaunay triangulation

Definition 2

Definition 2 : Let (P, S) be a PSLG.
The constrained triangulation $T(P, S)$ is constrained Delaunay iff any edge e of T is either a segment of S or is constrained Delaunay.

Simplex e is constrained Delaunay (cD for short) with respect to the $\operatorname{PSLG}(P, S)$ iff :

- $\operatorname{int}(e) \cap S=\emptyset$
- \exists a circumcircle of e that encloses no vertex visible from a point in the relative interior of e.

Constrained Delaunay triangulation

 Definition $1 \Longleftrightarrow$ Definition 2
$a b, b c, c a$ constrained or
$\Longleftrightarrow \operatorname{circum}(a b c)$ encloses no vertex
Delaunay constrained

Constrained Delaunay triangulation

Existence and unicity in 2D

Theorem
Any PSLG (P, S) has a constrained Delaunay triangulation.
If (P, S) has no degeneracy, this triangulation is unique.
Proof.
$S \cup$ set of $c D$-segment $=$ a maximal set of segments with endpoints in P without intersection except at endpoints.

1. no intersection

2. maximal set

Constrained Delaunay and conform triangulations

constrained Delaunay all simplexes are constrainded Delaunay

conform triangulation Steiner vertices on edges the triangulation is Delaunay

Locally Delaunay edges

Definition (Locally Delaunay edges (ID-edges))

Edge $b c$, incident to $a b c$ and $a b d$, is locally Delaunay iff $a \notin \operatorname{int}(\operatorname{circumcircle}(b c d)) \Longleftrightarrow d \notin \operatorname{int}(\operatorname{circumcircle}(a b c))$

Local condition for constrained Delaunay
 triangulation

Theorem
Any triangulation of the PSLG (P, S) whose edges are either constrained edges or locally Delaunay edges is the constrained Delaunay triangulation of (P, S).

Proof.

p vertex visible from $q \in t$
$t_{0}, t_{1}, \ldots t_{n}=t$ triangles intersected by $p q$ $\Pi\left(p, t_{i}\right)$ power of p wrt circumcircle $\left(t_{i}\right)$ $\Pi\left(p, t_{0}\right)<\Pi\left(p, t_{1}\right) \ldots<\Pi\left(p, t_{n}\right)$
$\Pi\left(p, t_{0}\right)=0 \Longrightarrow \Pi\left(p, t_{n}=t\right)>0$
\Longrightarrow circumcircle (t) encloses no vertex visible from $q \in t$

Delaunay flip and angular sequence

$$
\begin{aligned}
\beta 1 & >\delta 2 \\
\gamma 1 & >\delta 1 \\
\alpha 1+\alpha 2 & >\alpha 1
\end{aligned}
$$

$$
\begin{aligned}
\beta 2 & >\alpha 2 \\
\gamma 2 & >\alpha 1 \\
\delta 1+\delta 2 & >\delta 1
\end{aligned}
$$

Angular sequence of a triangulation T : the sorted sequence of angles of the triangles of T
Delaunay flip : a flip that replaces a non ID-edge by an ID-edge.
Theorem
Any Delaunay flip increases the angular sequence.

Algorithmic of 2D constrained triangulations

- sweep line algorithm. $O(n \log n)$
- triangulation of a polygon is $\Theta(n)$
- incremental construction insertion of an edge: $O(n)$ for each edge
- insert vertices first
- insert interior of segment next

Insertion of a constrained edge

- scan the hole boundary inserting edges into a stack
- at each step do while there is an ear $p q$, $q r$ on top of the stack pop $p q$ and $q r$ form triangle pqr push pr

A flip algorithm for constrained Delaunay triangulations

(1) Start with any constrained triangulation of the PSLG (P, S)
2 Initialize a stack with edges that are neither constrained edges
nor locally Delaunay edges
(3) While stack is not empty pop edge ad from stack

if ad is not locally Delaunay
flip ad and update the stack, looking at the 4 wing edges $a b, a c, d b, d c$
Theorem
The flip algorithm ends, and performs $O\left(n^{2}\right)$ flip.
Proof 1. Use the angular sequence.
Proof 2. Use the paraboloid lift.

Algorithmic of 2D constrained Delaunay triangulations

Incremental construction

- insertion of a vertex

non Delaunay insertion of a constraint + Delaunay flips

Optimality of constrained Delaunay triangulations

Theorem
Among all the constrained triangulation of a PSLG (P, S) the constrained Delaunay triangulation optimizes:

- the MaxMin angle
- the MinMax circumradius
- the MinMax smallest enclosing circle radius

Proof.
The constrained Delaunay triangulation is optimal for any measure improved by a Delaunay flip

Circumradius, angles and edge lengths

circumradius r

$$
r=\frac{I_{a}}{2 \sin \alpha}=\frac{I_{b}}{2 \sin \beta}=\frac{I_{c}}{2 \sin \gamma}
$$

MinMax circumradius

Theorem
Delaunay flip decreases the maximum circumradius
Proof.

$$
\begin{aligned}
& \gamma_{1}>\delta_{1} \\
& \beta_{2}>\alpha_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { circumradius }(a b c)=\frac{a b}{2 \sin \gamma_{1}}<\operatorname{circumradius}(a b d)=\frac{a b}{2 \sin \delta_{1}} \\
& \text { circumradius }(b c d)=\frac{c d}{2 \sin \beta_{2}}<\operatorname{circumradius}(a d c)=\frac{c d}{2 \sin \alpha_{2}}
\end{aligned}
$$

Smallest enclosing sphere

Theorem

x_{c} the circumcenter of the simplex t,
$x_{\text {min }}$ the center of the smallest enclosing sphere of t is such that :

1. if $x_{c} \in t, x_{\text {min }}=x_{c}$
2. otherwise $x_{\text {min }}=$ the point of t closest to x_{c}

Proof.

case 1. x_{c} is a minimum of the distance to farthest vertex
case 2. Let $q \in t$ closest to x_{c} and f the face of t such that $q \in \operatorname{int}(f)$.
The vertices of f are equidistant to q. smallest enclosing sphere of $t=$ smallest enclosing sphere of f.

The constrained Delaunay triangulation achieves MinMax smallest enclosing sphere

Theorem
A Delaunay flip decreases the maximum smallest enclosing circle radius.

Proof.
Theorem
In any dimension, the Delaunay triangulation of a set of points minimizes the maximum smallest enclosing sphere radius.

The Delaunay triangulation achieves MinMax smallest enclosing radius

Proof
$t=\left(p_{0}, p_{1}, \ldots p_{d}\right)$ a d-simplex
Barycentric coordinates
$\forall x \in R^{d}, \quad \lambda_{i}(x), i=0 \ldots p$ such that

$$
x=\sum_{i} \lambda_{i}(x) p_{i}, \quad \sum_{i} \lambda_{i}(x)=1
$$

Definition

$$
F(t, x)=\sum_{i} \lambda_{i}(x)\left(p_{i}-x\right)^{2}=\sum_{i} \lambda_{i}(x) p_{i}^{2}-x^{2}
$$

The Delaunay triangulation

 achieves MinMax smallest enclosing radius$\left(x_{c}, r_{c}\right) \quad$ circumsphere of the simplex t. $\left(x_{\text {min }}, r_{\text {min }}\right)$ smallest enclosing sphere of t.

$$
\begin{aligned}
F(t, x) & =\sum_{i} \lambda_{i}(x)\left(p_{i}-x\right)^{2} \\
F(t, x) & =\sum_{i} \lambda_{i}(x)\left(\left(p_{i}-x_{c}\right)^{2}+2\left(p_{i}-x_{c}\right)\left(x_{c}-x\right)+\left(x_{c}-x\right)^{2}\right) \\
F(t, x) & =r_{c}^{2}-\left(x-x_{c}\right)^{2}=- \text { power of } x \text { wrt }\left(x_{c}, r_{c}\right)
\end{aligned}
$$

$$
\begin{align*}
\max _{x} F(t, x) & =r_{c}^{2} \text { achieved for } \mathrm{x}=\mathrm{x}_{\mathrm{c}} \tag{1}\\
\max _{x \in t} F(t, x) & =r_{\text {min }}^{2} \text { achieved for } \mathrm{x}=\mathrm{x}_{\text {min }} \tag{2}
\end{align*}
$$

The Delaunay triangulation achieves MinMax smallest enclosing radius

Lift map on the paraboloid

$$
\begin{aligned}
p_{i} & \longrightarrow \phi\left(p_{i}\right)=\left(p_{i}, p_{i}^{2}\right) \\
x & \longrightarrow \phi(x)=\left(x, x^{2}\right) \\
F(t, x) & =\sum_{i} \lambda_{i}(x) p_{i}^{2}-x^{2} \\
= & \text { vertical distance } \mathrm{d}(\phi(\mathrm{t}), \phi(\mathrm{x}))
\end{aligned}
$$

S_{P} set of all simplices with vertices in P $\min _{t \in S_{P}, x \in t} F(t, x)$ achieved for $t \in \operatorname{Del}(P)$

The Delaunay triangulation achieves MinMax smallest enclosing radius

$P \quad:$ a set of point
$T \quad$: a triangulation of P
$D T$: the Delaunay triangulation of P

$$
\begin{aligned}
F_{T}(x) & =F(t, x) x \in t, t \in T \quad F_{T}\left(x_{T}\right) & =\max _{x} F_{T}(t, x) \\
F_{D T}(x) & =F(t, x) x \in t, t \in D T \quad F_{D T}\left(x_{D T}\right) & =\max _{x} F_{D T}(t, x)
\end{aligned}
$$

$$
\max _{t \in T} r_{\min }(t)^{2}=F_{T}\left(x_{T}\right) \geq F_{T}\left(x_{D T}\right) \geq F_{D T}\left(x_{D T}\right)=\max _{t \in D T} r_{\min }(t)^{2}
$$

When Delaunay flip does not work

Delaunay triangulation does not optimize

- MinMax angle
- MaxMin elevation
- Total edge length

Using a flip to locally optimize a measure which is not optimized by Delaunay triangulation may leads to a lock.

example MinMax angle

$$
\hat{c}>\hat{d}>\hat{e}=\hat{b}>\hat{a}
$$

optimal triangulation: ad, ac blocked situation: eb,ec

When Delaunay flip does not work

Two solutions to get out from a local minimum

- simulated anealing : allow flips which do not improve the triangulation measure
- Have more powerfull local optimization operations, e.g. edge insertion

Edge insertion

Measure of the triangulation to be optimized :
$f(T)=\min _{t \in T}$ or $\max _{t \in T} f(t)$
example : $f(t)=\max$ angle of $t, f(T)=\max _{t \in T} f(t)$
Anchored measure
Triangle $a b c$ has an anchor in a iff any triangulation T such that $f(T)<f(a b c)$ has an edge ad intersecting $b c$.
A measure is anchored iff any triangle has an anchor.
Basic operation: edge insertion insertion of edge ad means :

- remove all edges intersecting ad
- retriangulated the two regions R_{1} and R_{2} formed when adding edge ad

Edge insertion

Theorem
Any anchored measure can be optimized through edge insertion

Proof.

While T is not optimal, there is an edge insertion improving the measure.
Let $t=a b c$ such that $f(T)=f(t)$ and a be the anchor of t.
Let $a d$ be the edge intersecting $b c$ in the optimal triangulation T^{*} Inserting ad improves the measure.

When inserting ad, regions R_{1} and R_{2} can be triangulated so that :
$f\left(T\left(R_{1}\right)\right)<f(a b c)$ and $f\left(T\left(R_{2}\right)\right)<f(a b c)$
There is always an ear $t_{1}=p q r$ of R_{1} chopped by an edge of T^{*}.
$f(p q r)<f(a b c)$:
T^{*} does not break anchor q

T does not break anchor p and r

Optimal triangulation through edge insertion

Algorithm

Initialize $T=T(P, S)$ a constrained triangulation While
there is a triangle $t=a b c$ with $f(t)=f(T)$ there is a free edge ad breaking the anchor of t
do
insertion of ad yields triangulation T^{\prime}
if $f\left(T^{\prime}\right)<f(T), T=T^{\prime}$
otherwise eliminate ad
free edge $=$ edge intersecting no constrained edge not yet eliminated

Complexity: $O\left(n^{3}\right)$
total nb of edges $\quad: O\left(n^{2}\right)$
complexity of an insertion $O(n)$

Optimal triangulation through edge insertion

Triangulation of regions R_{1} and R_{2}
While there is an ear t
such that $f(t)<f(a b c)$, add $t=a b c$ to the triangulation. (Use a stack as in Graham walk)

- If triangulation of R_{1} and R_{2} ends up yielding $f\left(T^{\prime}\right) \leq f(a b c)$ edge $b c$ will never appear again
- Otherwise edge ad is eliminated.

MaxMin elevation

Elevations of a triangle $t=a b c$ $h(a)=a b \sin \beta=a c \sin \gamma$ $h(b)=b c \sin \gamma=b a \sin \alpha$ $h(c)=c a \sin \alpha=c b \sin \beta$

$\sin \alpha \leq \sin \beta \leq \sin \gamma \Longrightarrow h(a) \geq h(b) \geq h(c)$
The smallest elevation arises from the vertex with maximum angle

MaxMin elevation

Theorem
Min elevation is an anchored measure.
Proof.
Let $t=a b c$ be a triangle
with $h_{\text {min }}(t)=h(a)$
Any triangulation T such that

- $t \notin T$
- T does not break anchor of t in a is such that $h_{\min }(t)<h(a)$

Optimal triangulation of a polygon through dynamic programming

Decomposable measure

- $f(T(R))=g\left(f\left(T\left(R_{1}\right)\right), f\left(T\left(R_{2}\right)\right), i . j\right)$
- g can be computed in time $O(1)$
- g is monotonous wrt $f\left(T\left(R_{i}\right)\right.$
- $f(t)$ can be computed in time $O(1)$

Examples of decomposable measure: min or max angle min elevation total edge lentgh

Optimal triangulation of a polygon through dynamic programming

$R_{i j}$ polygon with vertices $i, i+1 \ldots j$

$$
\begin{aligned}
F(i, j) & =+\infty \text { if } \mathrm{ij} \cap \partial \mathrm{R} \neq \emptyset \\
F(i, j) & =\operatorname{Min}_{T} f\left(T\left(R_{i j}\right)\right) \text { otherwise } \\
& =\min _{i<k<j} g(g(F(i, k), i j k, j, k), F(k, j), k, j)
\end{aligned}
$$

$\operatorname{Min}_{T} F(T(R))=F(1, n)$
Compute $F(i, j)$ in increasing order of j and decreasing order of i
Complexity: $O\left(n^{3}\right)$
can be improved to $O(E n)$ or even $O\left(n^{2}+E^{3 / 2}\right)$
where $E=O\left(n^{2}\right)$ is the $n b$ of edges in the visibility graph

Constrained triangulation in 3D

Input: A piecewise linear complex (PLC) C, i.e.
a set of faces of dimension $0,1,2$ (vertices, edges, facets) such that :

- the boundary of any face of C is the union of faces of C
- the intersection of two faces of C is either empty or the union of faces of C

Ouptut: A 3D triangulation $T(C)$ such that :

- vertex set of $C=$ vertex set of $T(C)$
- any edge of C is an edge of $T(C)$
- any facet of C is the union of faces of $T(C)$

Constrained triangulation in 3D

In 3D, constrained triangulations do not always exist.
Schönhardt polyedra
cannot be triangulated without adding extra (Steiner) vertices

Forbidden edges
$a B, b C, c A$
Types of tetrahedra ABCa
$A B A c$
$A B a b$

Triangulation of a polyhedra
 Vertical decomposition

Vertical decomposition of a polyhedra
Complexity $O\left(n^{2}\right)$

Triangulation of a polyhedra

Triangulation of a polyhedra
(1) Elimination of convex vertices
(2) Vertical decomposition

Yields a triangulation of size $O\left(n+r^{2}\right)$
r nb of reflex edges

Triangulation of a polyhedra

Lower bound
Theorem
There are polyhedra with n vertices, any triangulation of which is $\Theta\left(n^{2}\right)$

Proof.

n notches on the paraboloid $z=x y$
n notches on the paraboloid $z=x y+\epsilon$
Any convex included in the polyhedra has a volume $\leq 1 / n^{2}$

3D constrained triangulation

A sufficient condition for existence

A Delaunay edge: there is a circumsphere enclosing no vertex. A strongly Delaunay edge: there is a circumsphere enclosing no vertex and passing through no other vertex.

Theorem
Any PLC such that :

- the edges are stongly Delaunay
- there is no subset of five co-spherical vertices
has a constrained triangulation
(which is in fact a constrained Delaunay triangulation).

Remark: "strongly" is necessary. think of Schonhart polyhedra.

Constrained facets and constrained subfacets

Let C be a PLC whose edges are strongly Delaunay edges. Let f be a facet of C and h_{f} the supporting hyperplan of f. Let V_{f} be the subset of vertices of C in h_{f}, and let $\operatorname{Del}\left(V_{f}\right)$ be the 2D Delaunay triangulation of V_{f}. Being strongly Delaunay, any edge e of C included in h_{f}, is an edge of $\operatorname{Del}\left(V_{f}\right)$.
Constrained subfacets : the triangle $t \in \operatorname{Del}\left(V_{f}\right)$ that are included in f.

3D constrained Delaunay triangulation

sketch of the proof of the existence condition.
Constrained Delaunay simplices. Let C be a PLC.
A simplex s with vertices in C is said to be constrained Delaunay if

- $\operatorname{int}(s)$ intersects no face f of C except if $s \subset f$.
- there is a circumsphere of s enclosing no vertex of C
visible from some point in int(s).
Obstacle to visibility are the (open) facets of C.
Proof of the existence condition.
We show that the set of constrained Delaunay (cD) tetrahedra form a constrained triangulation of the PLC C.
(1) Any point in $\operatorname{conv}(C)$ is included in a $C D$ tetrahedra.
(2) cD tetrahedra form a simplicial complex.
(3) Any constrained subfacets is a facet of a cD tetrahedra.

This triangulation is called the constrained Delaunay triangulation of C

Building constrained Delaunay tetrahedra

Let s be a $k-c D$ simplex
S a circumsphere of s empty of visible vertex.
h a hyperplane including s
h^{+}halfspace bounded by h
Move S in the pencil sharing $S \cap h$, growing $S \cap h+$ until S encounters a vertex u of C visible from some point of int (s) Growing sphere th. (below) $\Longrightarrow \operatorname{conv}(s, u)$ is a $(k+1)$-cD simplex.

1. Any $p \in \operatorname{conv}(C)$ belongs to a cD tet

For any point $p \in \operatorname{conv}(C)$, we build a cD tet including p.

1. build a first cD tet t
2. if $p \in t$, done
else let $q \in t$
3. repeat while $p \notin t$

$$
t=\mathrm{cD} \text { tet }
$$

grown from the facet f of t intersected by $q p$.

Carefull : growing a cD tet from a cD subfacet f requires the existence of a vertex of C in h_{f}^{+} visible from some $p \in f$. (Visibility th. below)

Visibility theorem

Theorem (Visibility theorem)
Let C be a PLC with strongly Delaunay edges, h be a hyperplan and p a point of h. If there is a vertex of C in the halfspace h^{+}, there is a vertex of C in h^{+}, visible from p

covering edges

s, t edges of C, s covers t from p if :
$\exists p_{s} \in s$ and $p_{t} \in t$ with $p_{s} \in p p_{t}$
if there is no vertex in h^{+},
visible from p, there is a cycle of covering edges.

End of the visibility theorem proof.

s and t strongly Delaunay edges
with empty circumspheres $S(s)$ and $S(t)$.
If s covers t from p,
$\operatorname{power}(p, S(s))>\operatorname{power}(p, S(t))$,
\Longrightarrow there is no cycle of covering edges.

Growing sphere theorem

Theorem (Growing sphere theorem)
Let C be a PLC with strongly Delaunay edges. Let s be a cD simplex (edge or facet). If u is a vertex visible from $p \in \operatorname{int}(s)$ such that the circumsphere $S(s, u)$ encloses no vertex of C visible from some point of int(s), $\operatorname{conv}(s, u)$ is a $c D$ simplex.

Proof in two steps.

(1) Any point $r \in s$ is visible from u.

(2) The sphere $S(s, u)$ encloses no vertex of C visible from some point of $\operatorname{int}(\operatorname{conv}(s, u))$

Proof of the growing sphere theorem

C be a PLC with strongly Delaunay edges.
s is a cD simplex (edge or facet).
u is a vertex visible from $p \in \operatorname{int}(s)$ such that the circumsphere $S(s, u)$ encloses no vertex of C visible from some point of int(s).
Step 1. Any point $r \in s$ is visible from u.

Proof.

Assume the reverse. Then, there are an edge $e \in C$ and a point $q \in s$ st :

- $e \cap u q=$ a point m
- m visible from p.

Then,

- there is a vertex of e in $S(s, u)$ (by Lemma 1.1 below)
- there is a vertex of C in $S(s, u)$
visible from p (by Lemma 1.2 below)
for the proof of the growing sphere theorem
Lemma (Lemma 1.1)
Let S be a sphere,
H_{S} the convex hull of vertices of C in S
e a strongly Delaunay edge
intersecting $\operatorname{int}\left(H_{s}\right)$.
Then, one of the vertices of e is in S

Proof.

S_{e} empty circumsphere of e.
h radical hyperplan of S and S_{e},
h^{+}halfspace with smaller power to S than to S_{e}
e is strongly Delaunay \Longrightarrow

- any vertex in H_{S} is in h^{+}
- e has at least one vertex in h^{+} hence in S

Lemma 1.2

for the proof of the growing sphere theorem

Lemma (Lemma 1.2)

Let C be a PLC with strongly Delaunay edges.
Let S be a sphere and p a point in S.
If there is an edge e of C

- with an endpoint ν in S
- and a point $m \in e \cup S$ visible from p, then there is a vertex of C in S visible from p.

Proof.

If the endpoint of ν of e is not visible from p we find an edge e^{\prime} covering e from p.
There is a point $n \in e^{\prime} \cup S$ visible from p and e^{\prime} has an endpoint in S (by lemma 1.1)
Repeating, we find

- either a vertex visible from p
- or a cycle of covering edges from p.

Proof of the growing sphere theorem

C be a PLC with strongly Delaunay edges.
s is a cD simplex (edge or facet).
u is a vertex visible from $p \in \operatorname{int}(s)$ such that the circumsphere $S(s, u)$ encloses no vertex visible from some point of $\operatorname{int}(s)$.
Step 2. The sphere $S(s, u)$ encloses no vertex of C visible from some point in $\operatorname{int}(\operatorname{conv}(s, u))$ Proof.
Assume for contradiction
that $S(s, u)$ encloses v visible from
$r \in \operatorname{int}(\operatorname{conv}(s, u))$.

We find an edge $e \in C$ and a point $m \in S \cap e$ visible from p as in Step 1.
Hence there is a vertex of C visible from $p . \quad \square$

2. cD simplices form a simplicial complex

Two cD tet are

- either disjoint
- or share a lower dimensional common face

Proof.
$t_{1} \mathrm{cD}$ tet with circumsphere S_{1}
t_{2} cD tet with circumsphere S_{2}
h radical hyperplan of S_{1} and S_{2} vertices of t_{1} are in halfspace h^{+} vertices of t_{2} are in halfspace h^{-}

Any constrained subfacets is a facet of a cD tetrahedra.

Growing a cD tetrahedra from a constrained facet.

A 3D constrained Delaunay triangulation algorithm

Input: A PLC C
Output: A triangulation T such that:

- any vertex of C is a vertex of T
- any edge or facet in C is a union of faces in T
(1) Initialize $T=$ Delaunay triangulation of vertices of C
(2) While some edge e in C is not strongly Delaunay split edge e
(3) While some subfacet f in C is not in T
- delete tetrahedra in T intersected by f
- add f
- triangulate both part of the hole.

