
Triangulations and Meshes
Outline

• Triangulations, Delaunay triangulations
Voronoi diagrams, the space of spheres
Regular triangulations and power diagrams

• Constrained and constrained Delaunay triangulations

• Meshing using Delaunay refinement

• Meshing using other methods (octrees, advancing front)

• Quality of meshes

• Surface meshing

• Interpolation and reconstruction



Constrained Delaunay triangulations
Outline

• Constrained triangulations in 2D
existence

• Constrained Delaunay triangulations in 2D
existence and unicity

• Optimal triangulations
optimality of Delaunay triangulations
when Delaunay triangulation are not optimal

• Algorithmic of constrained Delaunay triangulations

• Constrained triangulations in 3D
existence problem
a sufficient existence condition



Constrained triangulations in 2D
Definition

Input : a PSLG (planar straight line graph)

• a set of points P

• a set of segments S

• (P,S) is a 1dim simplicial complex i.e.
- each endpoint of s ∈ S is in P
- two segments in S are disjoints

or share an endpoint

A constrained triangulation of (P,S)
is a triangulation T = T (P,S) such that :

• the set of vertices of T is P

• any segment s ∈ S is an edge of T



Constrained triangulations in 2D
Application : triangulation of a polygonal region

• Build a constrained triangulation

• Mark internal facets



Constrained triangulations in 2D
existence problem

Theorem
Any PSLG (P,S) admits a 2D constrained triangulation

Proof.
The set of edges of any = a maximal set of segments
triangulation of P with endpoints in P

without intersection except at endpoints.

a

b

c

d



Constrained Delaunay triangulation
Definition 1

Definition 1 : Let (P,S) be a PSLG.
The constrained triangulation T (P,S) is constrained Delaunay
iff the circumcircle of any triangle t of T encloses no vertex
visible from a point in the relative interior of t.

Visibility : p visible from q iff int(pq) ∩ S = ∅



Constrained Delaunay triangulation
Definition 2

Definition 2 : Let (P,S) be a PSLG.
The constrained triangulation T (P,S) is constrained Delaunay
iff any edge e of T is either a segment of S or is constrained Delaunay.

Simplex e is constrained Delaunay (cD for short)
with respect to the PSLG (P,S) iff :

• int(e) ∩ S = ∅

• ∃ a circumcircle of e that encloses no vertex
visible from a point in the relative interior of e.

e
t



Constrained Delaunay triangulation
Definition 1 ⇐⇒ Definition 2

ab, bc , ca ⇐⇒ circum(abc)
constrained or encloses no vertex
Delaunay constrained visible from int(abc)



Constrained Delaunay triangulation
Existence and unicity in 2D

Theorem
Any PSLG (P,S) has a constrained Delaunay triangulation.
If (P,S) has no degeneracy , this triangulation is unique.

Proof.
S∪ set of cD-segment = a maximal set of segments

with endpoints in P
without intersection except at endpoints.

1. no intersection
e′

e

x

a

b

2. maximal set



Constrained Delaunay and conform
triangulations

constrained Delaunay
all simplexes are
constrainded Delaunay

conform triangulation
Steiner vertices on edges
the triangulation is Delaunay



Locally Delaunay edges

Definition (Locally Delaunay edges (lD-edges))

Edge bc , incident to abc and abd , is locally Delaunay iff

a 6∈ int(circumcircle(bcd)) ⇐⇒ d 6∈ int(circumcircle(abc))



Local condition for constrained Delaunay
triangulation

Theorem
Any triangulation of the PSLG (P,S) whose edges are
either constrained edges or locally Delaunay edges
is the constrained Delaunay triangulation of (P,S).

Proof.
p vertex visible from q ∈ t
t0, t1, . . . tn = t triangles intersected by pq
Π(p, ti ) power of p wrt circumcircle(ti )
Π(p, t0) < Π(p, t1) . . . < Π(p, tn)

Π(p, t0) = 0 =⇒ Π(p, tn = t) > 0
=⇒ circumcircle(t) encloses no vertex
visible from q ∈ t



Delaunay flip and angular sequence

Angular sequence of a triangulation T : the sorted sequence of
angles of the triangles of T

Delaunay flip : a flip that replaces a non lD-edge by an lD-edge.

Theorem
Any Delaunay flip increases the angular sequence.



Algorithmic of 2D constrained
triangulations

• sweep line algorithm. O(n log n)

• triangulation of a polygon is Θ(n)

• incremental construction
insertion of an edge : O(n) for each edge
• insert vertices first
• insert interior of segment next



Insertion of a constrained edge

• scan the hole boundary inserting edges into a stack

• at each step do
while there is an ear pq, qr on top of the stack

pop pq and qr
form triangle pqr
push pr



A flip algorithm for constrained Delaunay
triangulations

1 Start with any constrained triangulation of
the PSLG (P,S)

2 Initialize a stack with edges that are
neither constrained edges
nor locally Delaunay edges

3 While stack is not empty
pop edge ad from stack
if ad is not locally Delaunay

flip ad and update the stack,
looking at the 4 wing edges ab, ac, db, dc

Theorem
The flip algorithm ends, and performs O(n2) flip.

Proof 1. Use the angular sequence.

Proof 2. Use the paraboloid lift.



Algorithmic of 2D constrained
Delaunay triangulations

Incremental construction

• insertion of a vertex

non Delaunay insertion of a constraint + Delaunay flips



Optimality of constrained Delaunay
triangulations

Theorem
Among all the constrained triangulation of a PSLG (P,S)
the constrained Delaunay triangulation optimizes:

• the MaxMin angle

• the MinMax circumradius

• the MinMax smallest enclosing circle radius

Proof.
The constrained Delaunay triangulation is optimal
for any measure improved by a Delaunay flip



Circumradius, angles and edge lengths

circumradius r

r =
la

2sinα
=

lb
2sinβ

=
lc

2sinγ



MinMax circumradius

Theorem
Delaunay flip decreases the maximum circumradius

Proof.

γ1 > δ1

β2 > α2

circumradius(abc) =
ab

2sinγ1
< circumradius(abd) =

ab

2sinδ1

circumradius(bcd) =
cd

2sinβ2
< circumradius(adc) =

cd

2sinα2



Smallest enclosing sphere

Theorem
xc the circumcenter of the simplex t,
xmin the center of the smallest enclosing sphere of t
is such that :
1. if xc ∈ t, xmin = xc

2. otherwisexmin = the point of t closest to xc

Proof.
case 1. xc is a minimum of the distance to farthest vertex
case 2. Let q ∈ t closest to xc

and f the face of t such that q ∈ int(f ).
The vertices of f are equidistant to q.
smallest enclosing sphere of t = smallest enclosing sphere of f .



The constrained Delaunay triangulation
achieves MinMax smallest enclosing sphere

Theorem
A Delaunay flip decreases the maximum smallest enclosing circle
radius.

Proof.

Theorem
In any dimension, the Delaunay triangulation of a set of points
minimizes the maximum smallest enclosing sphere radius.



The Delaunay triangulation
achieves MinMax smallest enclosing radius

Proof
t = (p0, p1, . . . pd) a d-simplex

Barycentric coordinates

∀x ∈ Rd , λi (x), i = 0 . . . p such that

x =
∑

i

λi (x)pi ,
∑

i

λi (x) = 1

Definition

F (t, x) =
∑

i

λi (x)(pi − x)2 =
∑

i

λi (x)p2
i − x2



The Delaunay triangulation
achieves MinMax smallest enclosing radius

(xc , rc) circumsphere of the simplex t.
(xmin, rmin) smallest enclosing sphere of t.

F (t, x) =
∑

i

λi (x)(pi − x)2

F (t, x) =
∑

i

λi (x)
(
(pi − xc)

2 + 2(pi − xc)(xc − x) + (xc − x)2
)

F (t, x) = r2
c − (x − xc)

2 = −power of x wrt (xc , rc)

max
x

F (t, x) = r2
c achieved for x = xc (1)

max
x∈t

F (t, x) = r2
min achieved for x = xmin (2)



The Delaunay triangulation
achieves MinMax smallest enclosing radius

Lift map on the paraboloid

pi −→ φ(pi ) = (pi , p
2
i )

x −→ φ(x) = (x , x2)

F (t, x) =
∑

i

λi (x)p2
i − x2

= vertical distance d(φ(t), φ(x))

SP set of all simplices with vertices in P
mint∈SP ,x∈t F (t, x) achieved for t ∈ Del(P)



The Delaunay triangulation
achieves MinMax smallest enclosing radius

P : a set of point
T : a triangulation of P
DT : the Delaunay triangulation of P

FT (x) = F (t, x) x ∈ t, t ∈ T

FDT (x) = F (t, x) x ∈ t, t ∈ DT

FT (xT ) = max
x

FT (t, x)

FDT (xDT ) = max
x

FDT (t, x)

max
t∈T

rmin(t)
2 = FT (xT ) ≥ FT (xDT ) ≥ FDT (xDT ) = max

t∈DT
rmin(t)

2



When Delaunay flip does not work

Delaunay triangulation does not optimize

• MinMax angle

• MaxMin elevation

• Total edge length

Using a flip to locally optimize a measure
which is not optimized by Delaunay triangulation
may leads to a lock.

example MinMax angle

ĉ > d̂ > ê = b̂ > â

optimal triangulation : ad, ac
blocked situation : eb,ec



When Delaunay flip does not work

Two solutions to get out from a local minimum

• simulated anealing : allow flips which do not improve the
triangulation measure

• Have more powerfull local optimization operations, e.g. edge
insertion



Edge insertion

Measure of the triangulation to be optimized :
f (T ) = mint∈T or maxt∈T f (t)
example : f (t) = max angle of t, f (T ) = maxt∈T f (t)

Anchored measure
Triangle abc has an anchor in a iff any triangulation T
such that f (T ) < f (abc) has an edge ad intersecting bc .
A measure is anchored iff any triangle has an anchor.

Basic operation : edge insertion
insertion of edge ad means :

• remove all edges intersecting ad

• retriangulated the two regions R1 and
R2 formed when adding edge ad



Edge insertion

Theorem
Any anchored measure can be optimized through edge insertion

Proof.
While T is not optimal, there is an edge insertion improving the measure.
Let t = abc such that f (T ) = f (t) and a be the anchor of t.
Let ad be the edge intersecting bc in the optimal triangulation T ∗

Inserting ad improves the measure.

When inserting ad , regions R1 and R2

can be triangulated so that :
f (T (R1)) < f (abc) and f (T (R2)) < f (abc)

There is always an ear t1 = pqr of R1

chopped by an edge of T ∗.
f (pqr) < f (abc) :
T ∗ does not break anchor q
T does not break anchor p and r



Optimal triangulation through
edge insertion

Algorithm
Initialize T = T (P,S) a constrained triangulation
While

there is a triangle t = abc with f (t) = f (T )
there is a free edge ad breaking the anchor of t

do
insertion of ad yields triangulation T ′

if f (T ′) < f (T ), T = T ′

otherwise eliminate ad

free edge = edge intersecting no constrained edge
not yet eliminated

Complexity : O(n3)
total nb of edges :O(n2)
complexity of an insertion O(n)



Optimal triangulation through
edge insertion

Triangulation of regions R1 and R2

While there is an ear t
such that f (t) < f (abc),
add t = abc to the triangulation.
(Use a stack as in Graham walk)

• If triangulation of R1 and R2 ends up yielding f (T ′) ≤ f (abc)
edge bc will never appear again

• Otherwise edge ad is eliminated.



MaxMin elevation

Elevations of a triangle t = abc
h(a) = ab sin β = ac sin γ
h(b) = bc sin γ = ba sin α
h(c) = ca sin α = cb sin β

sin α ≤ sin β ≤ sin γ =⇒ h(a) ≥ h(b) ≥ h(c)
The smallest elevation arises from the vertex with maximum angle



MaxMin elevation

Theorem
Min elevation is an anchored measure.

Proof.
Let t = abc be a triangle
with hmin(t) = h(a)

Any triangulation T such that

• t 6∈ T

• T does not break anchor of t in a

is such that hmin(t) < h(a)



Optimal triangulation of a polygon
through dynamic programming

Decomposable measure

• f (T (R)) = g (f (T (R1)), f (T (R2)), i .j)

• g can be computed in time O(1)

• g is monotonous wrt f (T (Ri )

• f (t) can be computed in time O(1)

Examples of decomposable measure:
min or max angle
min elevation
total edge lentgh



Optimal triangulation of a polygon
through dynamic programming

Rij polygon with vertices i , i + 1 . . . j

F (i , j) = +∞ if ij ∩ ∂R 6= ∅
F (i , j) = MinT f (T (Rij)) otherwise

= min
i<k<j

g (g(F (i , k), ijk, j , k),F (k, j), k, j )

MinTF (T (R)) = F (1, n)
Compute F (i , j) in increasing order of j and decreasing order of i

Complexity : O(n3)
can be improved to O(En) or even O(n2 + E 3/2)

where E = O(n2) is the nb of edges in the visibility graph



Constrained triangulation in 3D

Input : A piecewise linear complex (PLC) C , i.e.
a set of faces of dimension 0,1,2 (vertices, edges, facets) such that :

• the boundary of any face of C is the union of faces of C
• the intersection of two faces of C is either empty

or the union of faces of C

Ouptut : A 3D triangulation T (C ) such that :
• vertex set of C = vertex set of T (C )
• any edge of C is an edge of T (C )

• any facet of C is the union of faces of T (C )



Constrained triangulation in 3D

In 3D, constrained triangulations do not always exist.

Schönhardt polyedra
cannot be triangulated without adding extra (Steiner) vertices

Forbidden edges
aB,bC , cA

Types of tetrahedra
ABCa
ABAc
ABab



Triangulation of a polyhedra
Vertical decomposition

Vertical decomposition of a polyhedra
Complexity O(n2)



Triangulation of a polyhedra

Triangulation of a polyhedra

1 Elimination of convex vertices

2 Vertical decomposition

Yields a triangulation of size O(n + r2)
r nb of reflex edges



Triangulation of a polyhedra
Lower bound

Theorem
There are polyhedra with n vertices,
any triangulation of which is Θ(n2)

Proof.

n notches on the paraboloid z = xy
n notches on the paraboloid z = xy + ε
Any convex included in the polyhedra has a volume ≤ 1/n2



3D constrained triangulation
A sufficient condition for existence

A Delaunay edge : there is a circumsphere enclosing no vertex.
A strongly Delaunay edge: there is a circumsphere enclosing no
vertex and passing through no other vertex.

Theorem
Any PLC such that :

• the edges are stongly Delaunay

• there is no subset of five co-spherical vertices

has a constrained triangulation
(which is in fact a constrained Delaunay triangulation).

Remark : “strongly” is necessary.
think of Schonhart polyhedra.



Constrained facets and constrained
subfacets

Let C be a PLC whose edges are strongly Delaunay edges.
Let f be a facet of C and hf the supporting hyperplan of f .
Let Vf be the subset of vertices of C in hf ,
and let Del(Vf ) be the 2D Delaunay triangulation of Vf .
Being strongly Delaunay, any edge e of C included in hf ,
is an edge of Del(Vf ).
Constrained subfacets : the triangle t ∈ Del(Vf )

that are included in f .



3D constrained Delaunay triangulation
sketch of the proof of the existence condition.

Constrained Delaunay simplices. Let C be a PLC.
A simplex s with vertices in C is said to be constrained Delaunay if

• int(s) intersects no face f of C except if s ⊂ f .
• there is a circumsphere of s enclosing no vertex of C

visible from some point in int(s).
Obstacle to visibility are the (open) facets of C .

Proof of the existence condition.
We show that the set of constrained Delaunay (cD) tetrahedra
form a constrained triangulation of the PLC C .

1 Any point in conv(C ) is included in a cD tetrahedra.

2 cD tetrahedra form a simplicial complex.

3 Any constrained subfacets is a facet of a cD tetrahedra.

This triangulation is called the constrained Delaunay triangulation of C



Building constrained Delaunay tetrahedra

Let s be a k-cD simplex
S a circumsphere of s empty of visible vertex.
h a hyperplane including s
h+ halfspace bounded by h
Move S in the pencil sharing S ∩ h, growing S ∩ h+
until S encounters a vertex u of C visible from some point of int(s)
Growing sphere th. (below) =⇒ conv(s, u) is a (k + 1)-cD simplex.



1. Any p ∈ conv(C ) belongs to a cD tet

For any point p ∈ conv(C ), we build a cD tet including p.

1. build a first cD tet t
2. if p ∈ t, done

else let q ∈ t
3. repeat while p 6∈ t

t = cD tet
grown from the facet f of t
intersected by qp.

Carefull : growing a cD tet from a cD subfacet f
requires the existence of a vertex of C in h+

f
visible from some p ∈ f . (Visibility th. below)



Visibility theorem

Theorem (Visibility theorem)
Let C be a PLC with strongly Delaunay edges,
h be a hyperplan and p a point of h.
If there is a vertex of C in the halfspace h+,
there is a vertex of C in h+, visible from p

covering edges
s, t edges of C , s covers t from p if :
∃ps ∈ s and pt ∈ t with ps ∈ ppt

if there is no vertex in h+,
visible from p,
there is a cycle of covering edges.



End of the visibility theorem proof.

s and t strongly Delaunay edges
with empty circumspheres S(s) and S(t).
If s covers t from p,
power(p,S(s)) > power(p,S(t)),
=⇒ there is no cycle of covering edges.



Growing sphere theorem

Theorem (Growing sphere theorem)
Let C be a PLC with strongly Delaunay edges.
Let s be a cD simplex (edge or facet).
If u is a vertex visible from p ∈ int(s) such that
the circumsphere S(s, u) encloses no vertex of C
visible from some point of int(s),
conv(s, u) is a cD simplex.

Proof in two steps.

1 Any point r ∈ s is visible from u.

2 The sphere S(s, u) encloses no vertex of C
visible from some point of int(conv(s, u))



Proof of the growing sphere theorem
Step 1.

C be a PLC with strongly Delaunay edges.
s is a cD simplex (edge or facet).
u is a vertex visible from p ∈ int(s) such that

the circumsphere S(s, u) encloses no vertex of C
visible from some point of int(s).

Step 1. Any point r ∈ s is visible from u.

Proof.
Assume the reverse. Then, there are
an edge e ∈ C and a point q ∈ s st :
• e ∩ uq = a point m
• m visible from p.

Then,
- there is a vertex of e in S(s, u)

(by Lemma 1.1 below)
- there is a vertex of C in S(s, u)

visible from p (by Lemma 1.2 below)



Lemma 1.1
for the proof of the growing sphere theorem

Lemma (Lemma 1.1)
Let S be a sphere,
HS the convex hull of vertices of C in S
e a strongly Delaunay edge
intersecting int(HS).
Then, one of the vertices of e is in S

Proof.
Se empty circumsphere of e.
h radical hyperplan of S and Se ,
h+ halfspace with smaller power to S

than to Se

e is strongly Delaunay =⇒
- any vertex in HS is in h+

- e has at least one vertex in h+

hence in S



Lemma 1.2
for the proof of the growing sphere theorem

Lemma (Lemma 1.2)
Let C be a PLC with strongly Delaunay edges.
Let S be a sphere and p a point in S .
If there is an edge e of C
• with an endpoint ν in S
• and a point m ∈ e ∪ S visible from p,

then there is a vertex of C in S visible from p.

Proof.
If the endpoint of ν of e is not visible from p
we find an edge e′ covering e from p.
There is a point n ∈ e′ ∪ S visible from p
and e′ has an endpoint in S (by lemma 1.1)
Repeating, we find
- either a vertex visible from p
- or a cycle of covering edges from p.



Proof of the growing sphere theorem
Step 2

C be a PLC with strongly Delaunay edges.
s is a cD simplex (edge or facet).
u is a vertex visible from p ∈ int(s) such that

the circumsphere S(s, u) encloses no vertex
visible from some point of int(s).

Step 2. The sphere S(s, u) encloses no vertex
of C visible from some point in int(conv(s, u))

Proof.
Assume for contradiction
that S(s, u) encloses v visible from
r ∈ int(conv(s, u)).
We find an edge e ∈ C and a point m ∈ S ∩ e
visible from p as in Step 1.
Hence there is a vertex of C visible from p.



2. cD simplices form a simplicial complex

Two cD tet are
- either disjoint
- or share a lower dimensional

common face

Proof.
t1 cD tet with circumsphere S1

t2 cD tet with circumsphere S2

h radical hyperplan of S1 and S2

vertices of t1 are in halfspace h+

vertices of t2 are in halfspace h−



Any constrained subfacets is a facet of a
cD tetrahedra.

Growing a cD tetrahedra
from a constrained facet.



A 3D constrained Delaunay triangulation
algorithm

Input : A PLC C
Output : A triangulation T such that :
- any vertex of C is a vertex of T
- any edge or facet in C is a union of faces in T

1 Initialize T = Delaunay triangulation of vertices of C

2 While some edge e in C is not strongly Delaunay
split edge e

3 While some subfacet f in C is not in T

• delete tetrahedra in T intersected by f
• add f
• triangulate both part of the hole.
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