Triangulations and Meshes

Outline

- Triangulations, Delaunay triangulations
 Voronoi dagrams, the space of spheres
 Regular triangulations and power diagrams
- Constrained and Delaunay constrained triangulations
- Meshing using Delaunay refinement
- Meshing using other methods (octree based, advancing front)
- Quality of meshes for linear interpolation and finite elements computation

balanced tree

- Build the octree from the bounding box by recursive subdivision until each terminal cell has a connected intersection with constraints
- 2. Balance the octree
- 3. Add vertices at the intersections between octree subdivision and constraints
- 4. Filter added vertices
- 5. Triangulate terminal cells
- 6. Optimize the mesh

Triangulation of terminal cells

Advantages

- octree methods can generate size-optimal meshes with guaranteed quality elements

Drawbacks

- Too many mesh elements in practice
- Octree directions remain visible in the final mesh
- Constraints and boundaries are subdivided
- Poor quality of mesh simplices adjacent to constrained elements

Mesh generation : advancing front methods

- 1. Mesh of the domain boundary
 - = intial front
- 2. While front is not empty
 - choose a front facet F_i
 - compute an opposite vertex P_i
 - add simplex $conv(F_i, P_i)$ to the mesh and update the front
- 3. Optimize the mesh

Mesh generation : advancing front methods

Computation of vertex P_i opposite to facet F_i

- $conv(F_i, P_i)$ has a good shape
- P_i is not too close to an existing vertex otherwise this vertex is choosen as P_i
- $conv(F_i, P_i)$ intersect no existing mesh facet

Advantages

- the initial boundary mesh is preserved
- good quality of mesh cells incident to constrained elements Drawbacks
- complexity : intersection tests
- dead lock situations may be encountered no guarantee of termination

Quadtree

Advancing front

Delaunay refinement

Mesh generation : the unit march

Data : a boundary mesh + a sizing field field sizing field is often interpolated from an auxiliary background mesh

Start from a coarse mesh.

Refinement loop :

1. Compute edge lengths

isotropic metric
$$l_{ab} = d_{ab} \int_0^1 \frac{dt}{h(t)}$$

anisotropic metric $l_{ab} = \int_0^1 \sqrt{\overline{ab}^T \overline{\overline{M(a+bt)}} \overline{ab}} dt$

- 2. Compute candidate vertices to subdivide long edges.
- 3. Filter candidate vertices.
- 3. Insert remaining candidates in the mesh using constrained Delaunay algorithm.

Mesh generation : adaptative meshes

- 1. Build the initial mesh T_i
- 2. Compute the solution h_i of the PDE using T_i
- 3. Estimate the local error δ_i on h_i STOP if error bound is met
- 4. Otherwise build a new mesh T_{i+1} using a sizing field yield by error estimation δ_i
- 5. go back to step 2 with i = i + 1.

Linear interpolation

T a (2D or 3D) mesh f(p) continuous scalar function defined on the domain $\Omega(T)$ g(p) piecewise linear approximation of f(p) such that : g(v) = f(v) for any vertex v of T

Interpolation error on cell $t \in T$

$$\|f - g\|_{\infty} = \max_{p \in t} |f(p) - g(p)|$$

$$\|\nabla f - \nabla g\|_{\infty} = \max_{p \in t} \|\nabla f(p) - \nabla g(p)\|$$

f is assumed to have a bounded curvature on t $\forall \mathbf{d}$ with $||\mathbf{d}|| = 1$, $f''_{\mathbf{d}}(p) = \mathbf{d}^T H(p) \mathbf{d} \leq c_t$

Bounds on 2D interpolation errors

 $r_{\rm mc}$ radius of the smallest enclosing circle (min contaiment radius) $A = \frac{1}{2}r_{\rm in}(l_{\rm max} + l_{\rm med} + l_{\rm min}) = \frac{1}{2}l_{\rm med}l_{\rm min} \sin\theta_{\rm max} \Longrightarrow r_{\rm in} \le \frac{l_{\rm min}}{2}$ $\frac{l_{\rm max}l_{\rm med}l_{\rm min}}{4A} = \frac{l_{\rm max}}{2\sin\theta_{\rm max}} = r_{\rm circ}$

Linear interpolation

Large angles are harmfull for the gradient error $\|\nabla f - \nabla g\|$

Bounds on 3D interpolation errors

Bounds on 3D interpolation errors

Barycentric coordinates

 v_1, v_2, \dots, v_{d+1} vertices of a *d*-simplex *t* Barycentric coordinates de p $p = \sum_{i=1}^{d+1} \omega_i v_i, \qquad \sum_{i=1}^{d+1} \omega_i = 1$

 $\begin{array}{l} t_i \text{ simplex obtained when vertex } v_i \text{ of } t \\ \text{ is replaced by } p \\ V_i(p) \text{ volume of } t_i, \\ V \text{ volume of } t \qquad \omega_i(p) = \frac{V_i(p)}{V} \end{array}$

Linear interpolation of f on t $g(p) = \sum_{i=1}^{d+1} \omega_i(p) f(v_i)$

Gradient of barycentric coordinates

 a_i altitude of t from v_i $a_i(p)$ altitude of t_i from p

$$\omega_i(p) = \frac{V_i(p)}{V} = \frac{a_i(p)}{a_i}$$
$$|\nabla \omega_i(p)| = \frac{1}{a_i} |\nabla a_i(p)| = \frac{1}{a_i}$$

$$\sum_{i=1}^{d+1} \omega_i = 1 \implies \sum_{i=1}^{d+1} \nabla \omega_i = 0$$

 $\forall \text{ vector } \boldsymbol{d},$
 $\boldsymbol{d} \cdot p = \sum_{i=1}^{d+1} \omega_i(p)(v_i \cdot \boldsymbol{d}) \implies \boldsymbol{d} = \nabla(\boldsymbol{d} \cdot p) = \sum_{i=1}^{d+1} (v_i \cdot \boldsymbol{d}) \nabla \omega_i(p)$

Gradient of barycentric coordinates

For a triangle t

$$\nabla \omega_i \cdot \nabla \omega_j = \frac{1}{2} \left(|\nabla \omega_i + \nabla \omega_j|^2 - |\nabla \omega_i|^2 - |\nabla \omega_j|^2 \right)$$

$$= \frac{1}{2} \left(|-\nabla \omega_k|^2 - |\nabla \omega_i|^2 - |\nabla \omega_j|^2 \right)$$

$$= \frac{1}{2a_k^2} - \frac{1}{2a_i^2} - \frac{1}{2a_j^2}$$

$$= \frac{l_k^2 - l_i^2 - l_j^2}{8A^2}$$

Bounds on interpolation error

g linear interpolation of f on t

$$e(p) = f(p) - g(p)$$

 $e(q) = e(p) + \int_p^q \nabla e(u) \cdot du$
 $e(q) = e(p) + \int_0^1 \nabla e(u(j)) \cdot (q-p) \, dj$
 $u(j) = (1-j)p + jq$
 $= e(p) + \nabla e(p) \cdot (q-p) + \int_0^1 \int_0^j (q-p)^T H((u(k))) (q-p) \, dk \, dj$
 $= e(p) + \nabla e(p) \cdot (q-p) + \frac{1}{2}(q-p)^T \mathcal{H}(q-p)$

with $\mathcal{H} = 2 \int_0^1 \int_0^j H((u(k)) dk dj)$ and $||(q-p)^T \mathcal{H}(q-p)|| \le c_t ||q-p||^2$

Bounds on interpolation error $e(q) = e(p) + \nabla e(p) \cdot (q-p) + \frac{1}{2}(q-p)^T \mathcal{H}(q-p)$

At vertex $q = v_i$, the error vanishes $e(q) = e(v_i) = 0$

$$e(p) = e_i(p) = -\nabla e(p) \cdot (v_i - p) - \frac{1}{2}(v_i - p)^T \mathcal{H}_i(v_i - p)$$

$$e(p) = \sum_i \omega_i(p)e(p) = \sum_i \omega_i(p)e_i(p)$$

$$= -\frac{1}{2}\sum_i \omega_i(p)(v_i - p)^T \mathcal{H}_i(v_i - p)$$

$$|e(p)| \leq \frac{c_t}{2}\sum_i \omega_i(p)|v_i - p|^2$$

$$|e(p)| \leq \frac{c_t}{2}(r_{\text{circ}}^2 - |p - O_{\text{circ}}|^2)$$

$$|e(p)| \leq \frac{c_t}{2}r_{\text{mc}}^2 \square$$

$$e(p) = f(p) - g(p) \qquad |\nabla e(p)| = |\nabla f(p) - \nabla g(p)|$$

$$e(p) = e_i(p) = -\nabla e(p) \cdot (v_i - p) - \frac{1}{2}(v_i - p)^T \mathcal{H}_i(v_i - p)$$

$$0 = e(p) \sum_{i} \nabla \omega_{i} = \sum_{i} e_{i}(p) \nabla \omega_{i}$$

$$= -\sum_{i} \left[(v_{i} - p) \cdot \nabla e(p) \right] \nabla \omega_{i} - \frac{1}{2} \sum_{i} \left[(v_{i} - p)^{T} \mathcal{H}_{i} (v_{i} - p) \right] \nabla \omega_{i}$$

$$= \left[p \cdot \nabla e(p) \right] \sum_{i} \nabla \omega_{i} - \sum_{i} \left[v_{i} \cdot \nabla e(p) \right] \nabla \omega_{i} - \frac{1}{2} \sum_{i} \left[(v_{i} - p)^{T} \mathcal{H}_{i} (v_{i} - p) \right] \nabla \omega_{i}$$

$$= -\nabla e(p) - \frac{1}{2} \sum_{i} \left[(v_{i} - p)^{T} \mathcal{H}_{i} (v_{i} - p) \right] \nabla \omega_{i}$$

$$\nabla e(p) = -\frac{1}{2} \sum_{i} \left[(v_i - p)^T \mathcal{H}_i (v_i - p) \right] \nabla \omega_i$$
$$|\nabla e(p)| \leq \frac{c_t}{2} \sum_{i} |v_i - p|^2 |\nabla \omega_i| = \frac{c_t}{2} \sum_{i} \frac{|v_i - p|^2}{a_i}$$

$$|
abla e(p)| \leq rac{c_t}{2} \sum_i rac{|v_i - p|^2}{a_i}$$

Weak bound

$$|\nabla e(p)| \leq \frac{c_t}{2} l_{\max}^2 \sum_i \frac{1}{a_i} = \frac{c_t}{2} \frac{l_{\max}^2}{r_{\inf}}$$

$$V = \frac{1}{d} \sum_{i} r_{\text{in}} A_{i} = \frac{1}{d} A_{j} a_{j} \implies \frac{1}{a_{j}} = \frac{1}{r_{\text{in}}} \begin{pmatrix} A_{j} \\ \sum_{i} A_{i} \end{pmatrix}$$
$$\implies \sum_{j} \frac{1}{a_{j}} = \frac{1}{r_{\text{in}}}$$

$$|\nabla e(p)| \leq \frac{c_t}{2} \sum_i \frac{|v_i - p|^2}{a_i}$$

the bound is minimum for :

$$p = \frac{1}{\sum_{i} 1/a_{i}} \sum_{j} \frac{1}{a_{j}} v_{j}$$
$$= \frac{1}{\sum_{i} A_{i}} \sum_{j} A_{j} v_{j} \qquad (A_{i}a_{i} = dV)$$
$$= O_{in} \text{ center of inscribed sphere}$$

$$\begin{aligned} O_{in} &= \frac{1}{\sum_{i} A_{i}} \sum_{j} A_{j} v_{j} \\ |\nabla e(O_{in})| &\leq \frac{c_{t}}{2} \sum_{i} \frac{|v_{i} - O_{in}|^{2}}{a_{i}} = \frac{c_{t}}{2dV} \sum_{i} A_{i} \left(v_{i} - \frac{\sum_{j} A_{j} v_{j}}{\sum_{m} A_{m}} \right)^{2} \\ &= \frac{c_{t}}{2dV} \sum_{i} A_{i} \frac{\left(\sum_{j} A_{j} (v_{i} - v_{j}) \right)^{2}}{\left(\sum_{m} A_{m} \right)^{2}} \\ &= \frac{c_{t}}{2dV} \frac{\sum_{i,j,k} A_{i} A_{j} A_{k} (v_{i} - v_{j}) (v_{i} - v_{k})}{\left(\sum_{m} A_{m} \right)^{2}} \\ &= \frac{c_{t}}{2dV} \frac{1/2 \sum_{i,j,k} A_{i} A_{j} A_{k} (v_{i} - v_{j})^{2}}{\left(\sum_{m} A_{m} \right)^{2}} \\ &= \frac{c_{t}}{2dV} \frac{\sum_{i < j} A_{i} A_{j} l_{ij}^{2}}{\sum_{m} A_{m}} \end{aligned}$$

Erreur au point p

$$\begin{aligned} |\nabla e(p)| &\leq |\nabla e(O_{in})| + c_t | p - O_{in}| \\ &\leq \frac{c_t}{2dV} \frac{\sum_{i < j} A_i A_j l_{ij}^2}{\sum_m A_m} + c_t \max_i |v_i - O_{in}| \\ &\leq \frac{c_t}{2dV} \frac{\sum_{i < j} A_i A_j l_{ij}^2}{\sum_m A_m} + c_t \max_i \frac{|\sum_{j \neq i} A_j (v_i - v_j)|}{\sum_m A_m} \\ &\leq \frac{c_t}{2dV} \frac{\sum_{i < j} A_i A_j l_{ij}^2}{\sum_m A_m} + c_t \max_i \frac{\sum_{j \neq i} A_j l_{ij}}{\sum_m A_m} \end{aligned}$$

$$|\nabla e(p)| \leq \frac{c_t}{2dV} \frac{\sum_{i < j} A_i A_j l_{ij}^2}{\sum_m A_m} + c_t \max_i \frac{\sum_{j \neq i} A_j l_{ij}}{\sum_m A_m}$$

A weaker but simpler bound (use $dV \leq A_i l_{ij}$)

$$\begin{aligned} |\nabla e(p)| &\leq \frac{c_t}{2dV} \frac{\sum_{i < j} A_i A_j l_{ij}^2}{\sum_m A_m} + c_t \max_i \frac{\sum_{j \neq i} A_i A_j l_{ij}^2}{dV \sum_m A_m} \\ &\frac{3c_t}{2dV} \frac{\sum_{i < j} A_i A_j l_{ij}^2}{\sum_m A_m} \end{aligned}$$

$$|\nabla e(p)| \leq \frac{c_t}{2dV} \frac{\sum_{i < j} A_i A_j l_{ij}^2}{\sum_m A_m} + c_t \max_i \frac{\sum_{j \neq i} A_j l_{ij}}{\sum_m A_m}$$

2D case, $A_i = l_i$ et $l_{ij} = l_k \ k \neq i, j$

$$\begin{aligned} \nabla e(p) &| \leq \frac{c_t}{4A} \frac{\sum_{i < j} l_i l_j l_k^2}{\sum_m l_m} + c_t \max_i \frac{\sum_{j \neq i} l_j l_k}{\sum_m l_m} \\ &\leq \frac{c_t}{4A} l_{\text{max}} l_{\text{med}} l_{\text{min}} + 2c_t \frac{l_{\text{max}} l_{\text{med}}}{\sum_m l_m} \\ &\leq \frac{c_t}{4A} l_{\text{max}} l_{\text{med}} l_{\text{min}} + \frac{2c_t}{2A} l_{\text{max}} l_{\text{med}} r_{\text{in}} \\ &\leq \frac{c_t}{4A} l_{\text{max}} l_{\text{med}} (l_{\text{min}} + 4r_{\text{in}}) \end{aligned}$$

Finite element

Example 1 : Poisson equation

$$\begin{array}{rcl} -\nabla^2 f(p) = & \eta(p) & \forall p \in \text{domain } \Omega \\ f(p) = & 0 & \forall p \in \Gamma \text{ boundary of } \Omega \end{array}$$

Weak formulation : for any function v that vanishes on Γ $\int \int_{\Omega} \left[-\nabla^2 f(p) - \eta(p) \right] v(p) d^2 p = 0$ $\int \int_{\Omega} \left[\nabla f(p) \cdot \nabla v(p) - \eta(p) v(p) \right] d^2 p = 0$

integration per parts Divergence theorem

$$\begin{pmatrix} \nabla^2 f \end{pmatrix} v = \nabla \cdot (v \nabla f) - \nabla f \cdot \nabla v$$
$$\iint_{\Omega} \nabla \cdot \mathbf{u} = \int_{\Gamma} \mathbf{u} \cdot \mathbf{n}$$

Finite elements

Galerkin method

- 1. choose a finite space of function $E_n = \{u_1, u_2, \dots, u_n\}$
- 2. approximation of f(p) in E_n , $h(p) = \sum_j h_j u_j(p)$
- 3. weak formulation using test functions $v(p) \in E_n$

$$\iint_{\Omega} \left[\nabla f(p) \cdot \nabla v(p) - \eta(p)v(p) \right] d^2 p = 0$$

$$K_{ij}h_j = \eta_i$$

$$K_{ij} = \iint_{\Omega} \nabla u_i(p) \cdot \nabla u_j(p) d^2 p$$

$$\eta_i = \iint_{\Omega} \eta(p)u_i(p) d^2(p)$$

Finite elements

Example 2 :

$$-\nabla^2 f(p) = \eta(p) \quad \forall p \in \Omega \ \Omega$$
$$\nabla f(p) \cdot n(p) + \beta(p)f(p) = \gamma(p) \quad \forall p \in \Gamma \ \partial \Omega$$

Weak formulation

$$\iint_{\Omega} -\nabla^2 f(p) v(p) d^2 p = \iint_{\Omega} \eta(p) v(p) d^2 p$$
$$\iint_{\Omega} \nabla f \cdot \nabla v d^2 p - \int_{\Gamma} v \nabla f \cdot n dp = \iint_{\Omega} \eta v d^2 p$$
$$\iint_{\Omega} \nabla f \cdot \nabla v d^2 p + \int_{\Gamma} \beta f v dp = \iint_{\Omega} \eta v d^2 p + \int_{\Gamma} \gamma v dp$$

Finite elements - Example2

Galerkin method

- 1. choose a finite space of function $E_n = \{u_1, u_2, \dots, u_n\}$
- 2. approximation of f(p) in E_n , $h(p) = \sum_j h_j u_j(p)$
- 3. weak formulation using test functions $v(p) \in E_n$

$$\begin{split} \iint_{\Omega} \nabla f \cdot \nabla v \, d^2 p + \int_{\Gamma} \beta f v \, dp &= \iint_{\Omega} \eta v \, d^2 p + \int_{\Gamma} \gamma v \, dp \\ K_{ij}h_j &= \eta_i \\ K_{ij} &= \iint_{\Omega} \nabla u_i \cdot \nabla u_j \, d^2 p + \int_{\Gamma} \beta u_i u_j \, dp \\ \eta_i &= \iint_{\Omega} \eta u_i \, d^2 p + \int_{\Gamma} \gamma u_i \, dp \end{split}$$

Choosing $E_n = \{u_1, u_2, ..., u_n\}$

- h(p) has to accurately approximate f(p)
- K_{ij} and η_i should be easy to compute
- K must be a sparse, well conditioned matrix

Finite elements of type P1 Mesh $T(\Omega)$, u_i piecewise linear, $u_i(p_j) = \delta_{ij}$ $u_j(p) = w_j(p)$ if $p \in t \in \text{star}(p_j)$ = 0 otherwise

 $h(p) = \sum h_i u_i(p)$ is piecewise linear. For $p \in t(p_1 p_2 p_3)$, $h(p) = h_1 w_1(p) + h_2 w_2(p) + h_3 w_3(p)$

Finite elements

Othe types of finite elements

- Linear element in dimension 1

u(x) = 1 - |x| h(x) = a + bx

- Cubic element in dimension 1

$$u(x) = (x^{2} - 1)(2x + 1), (x - 1)^{2}x$$

$$h(x) = a + bx + cx^{2} + dx^{3}$$

- Type Q1 : Bilinear on a rectangle

$$u(x,y) = 1 - x - y + xy$$

 $h(x,y) = a + bx + cy + dxy$

- Type P2 : Quadratics on a triangle u(x,y) = (1 - x - y)(1 - 2x - 2y) $h(x,y) = a + bx + cy + dx^2 + exy + fy^2$

Finite element - Error analysis

- 1. Solving the linear system
 - iterative methods (Jacobi, conjugate gradient)
 - direct methods (Gauss elimination)

In any case, the error depends on conditioning κ

of the global stiffness matrix K_{ij}

$$\kappa = rac{\lambda_{\max}^K}{\lambda_{\min}^K}$$
 $\lambda_{\max}^K, \lambda_{\min}^K$ min and max of K eigenvalues

2. Discretization error

related to the search of a solution in the finite function space E_n

Finite elements - Stiffness matrix K_{ij}

Poisson eq.
$$K_{ij} = \iint_{\Omega} \nabla u_i(p) \nabla u_j(p) d^2 p$$

 $K_{ij} = 0$ except if p_i and $p_j \in$ the same cell of the mesh. Contribution of each mesh triangle du maillage to K_{ij} . $t = p_1 p_2 p_3$ contributes to $K_{11}, K_{22}, K_{33}, K_{12}, K_{13}, K_{23}$. For linear elements P1, the contribution K_t of $t = p_1 p_2 p_3$ is

$$K_{t} = A \begin{bmatrix} \nabla \omega_{1} \cdot \nabla \omega_{1} & \nabla \omega_{1} \cdot \nabla \omega_{2} & \nabla \omega_{1} \cdot \nabla \omega_{3} \\ \nabla \omega_{2} \cdot \nabla \omega_{1} & \nabla \omega_{2} \cdot \nabla \omega_{2} & \nabla \omega_{2} \cdot \nabla \omega_{3} \\ \nabla \omega_{3} \cdot \nabla \omega_{1} & \nabla \omega_{3} \cdot \nabla \omega_{2} & \nabla \omega_{3} \cdot \nabla \omega_{3} \end{bmatrix}$$

Finite elements - The stiffness matrix K_{ij}

$$K_{t} = \frac{1}{8A} \begin{bmatrix} 2l_{1}^{2} & l_{3}^{2} - l_{1}^{2} - l_{2}^{2} & l_{2}^{2} - l_{1}^{2} - l_{3}^{2} \\ l_{3}^{2} - l_{1}^{2} - l_{2}^{2} & 2l_{2}^{2} & l_{1}^{2} - l_{1}^{2} - l_{3}^{2} \\ l_{2}^{2} - l_{1}^{2} - l_{3}^{2} & l_{1}^{2} - l_{1}^{2} - l_{3}^{2} & 2l_{3}^{2} \end{bmatrix}$$

$$K_t = \frac{1}{2} \begin{bmatrix} \cot \theta_2 + \cot \theta_3 & -\cot \theta_3 & -\cot \theta_2 \\ -\cot \theta_3 & \cot \theta_3 + \cot \theta_1 & -\cot \theta_1 \\ -\cot \theta_2 & -\cot \theta_1 & \cot \theta_1 + \cot \theta_2 \end{bmatrix}$$

Finite elements - Conditioning of the stiffness matrix K_{ij}

$$\kappa = \frac{\lambda_{\max}^K}{\lambda_{\min}^K}$$

 λ_{\min}^{K} depends on the equation and on elements size lower bound proportional to the surface (volume) of the smallest element

 λ_{\max}^{K} can be made arbitrarily large by a single bad element m max number of cells incident to a vertex λ_{\max}^{t} max eigenvalue of K_{t}

$$\max_{t} \lambda_{\max}^{t} \leq \lambda_{\max}^{K} \leq m\max_{t} \lambda_{\max}^{t}$$

Finite elements - Conditioning of the stiffness matrix K_{ij}

Poisson equation

$$\lambda^{t} = \frac{l_{1}^{2} + l_{2}^{2} + l_{3}^{2} \pm \sqrt{(l_{1}^{2} + l_{2}^{2} + l_{3}^{2})^{2} - 48A^{2}}}{8A}$$
$$\frac{l_{1}^{2} + l_{2}^{2} + l_{3}^{2}}{8A} \le \lambda^{t}_{\max} \le \frac{l_{1}^{2} + l_{2}^{2} + l_{3}^{2}}{4A}$$

bad triangle : small area \iff large λ_{\max}^t small angles ruin the condition number of the stiffness matrix the upper bound for λ_{\max}^t is scale invariant If there is no small angles, the lower bound for λ_{\min}^K is $\propto A_{\min}$ uniform sizing mesh $\kappa \propto O(1/l^2) = n$ nb of mesh elements

Finite elements - Discretization error

Discretization error : related to interpolation error but depends on PDE f exact solution of PDE h solution obtained by finite elements g linear interpolation of h on the mesh, $h \neq g$

For some PDE, the finite elements solution minimizes an *energy function*. For Poisson equation, h minimizes

$$||f - h||_{H^1(\Omega)} = \left(\iint_{\Omega} \left((f - h)^2 + |\nabla f - \nabla h|^2) \right) d^2 p \right)^{1/2}$$

Finite elements - Discretization error

Because h is optimal for this energy,

$$\|f - h\|_{H^{1}(\Omega)} \leq \|f - g\|_{H^{1}(\Omega)}$$

$$\leq \left(\sum_{t \in T} V_{t} \left(\|f - g\|_{\infty(t)} + \|\nabla f - \nabla g\|_{\infty(t)}^{2} \right) \right)^{1/2}$$

Anisotropy

Interpolation : anisotropic curvature Finite elements : anisotropic PDE The optimal mesh is anisotropic

Anisotropic curvature tensor H(p) Hessian of f(p), $\forall d | d^T H(p) d | \leq d^T C_t d$

$$C_t = \xi_1 \boldsymbol{v_1} \boldsymbol{v_1}^T + \xi_2 \boldsymbol{v_2} \boldsymbol{v_2}^T + \xi_3 \boldsymbol{v_3} \boldsymbol{v_3}^T$$

Transformation $\hat{p} = Ep$

$$E = \sqrt{\xi_1 / \xi_{\text{max}}} \boldsymbol{v_1} \boldsymbol{v_1}^T + \sqrt{\xi_2 / \xi_{\text{max}}} \boldsymbol{v_2} \boldsymbol{v_2}^T + \sqrt{\xi_3 / \xi_{\text{max}}} \boldsymbol{v_3} \boldsymbol{v_3}^T$$
$$E^2 = \frac{1}{\xi_{\text{max}}} C_t$$

Anisotropie

$$\widehat{f}(q) = f(E^{-1}q) \qquad \widehat{f}(\widehat{q}) = f(q)$$
$$\widehat{g}(q) = g(E^{-1}q)$$

 \widehat{f} has an istopic curvature bound

$$\hat{f}_{\mathbf{d}}^{''} = \frac{d^2}{d\alpha_2} f(E^{-1}(q + \alpha \mathbf{d}))\Big|_{\alpha=0}$$

= $(E^{-1}\mathbf{d})^T H(q)(E^{-1}\mathbf{d})$
 $\leq \mathbf{d}^T E^{-1} C_t E^{-1}\mathbf{d} = c_t |\mathbf{d}|^2$

Bound on interpolation error $||f - g||_{\infty(t)} = ||\widehat{f} - \widehat{g}||_{\infty(\widehat{t})}$