
The 3D meshing problem

Input :

• a PLC piecewise linear
complex C

• a bounded domain Ω to be
meshed.
Ω is bounded by facets in C

Output : a mesh of domain Ω
i. e. a 3D triangulation T such that

• vertices of C are vertices of T

• edges and facets C are union of faces in T

• the tetrahedra of T that are ⊂ Ω
have controlled size and quality



The 3D meshing problem
Constraints and subconstraints

Edges and facets of the input PLC are split into subconstraints
which are edges and facets of the mesh,
called constrained edges and facets.



3D Delaunay refinement

Use a 3D Delaunay triangulation
(in fact a 3D constrained Delaunay triangulation)

Constraints
constrained edges are refined into Gabriel edges
encroached edges = edges which are not

Gabriel edges

constrained facets are refined into Gabriel facets
encroached facets = facets which are not

Gabriel facets

Tetrahedra
Bad tetrahedra are refined
by circumcenter insertion.

Bad tetrahedra : radius-edge ratio
ρ = circumradius

lmin
≥ B

encroached

edge

encroached

facet



constrained facets

once contrained edges are refined into Gabriel edges
constrained facets are known : they are 2D Delaunay facets
A 2D Delaunay triangulation is maintained for each PLC facet



3D Delaunay refinement algorithm
- Initialization Delaunay triangulation of PLC vertices
- Refinement
Apply one the following rules, until no one applies.
Rule i has priority over rule j if i < j .

1 if there is an encroached constrained edge e, refine-edge(e)

2 if there is an encroached constrained facet f ,
conditionally-refine-facet(f ) i.e.:

c = circumcenter(f)
if c encroaches a constrained edge e, refine-edge(e).
else insert(c)

3 if there is a bad tetrahedra t,
conditionally-refine-tet(t) i.e.:

c = circumcenter(t)
if c encroaches a constrained edge e, refine-edge(e).
else if c encroaches a constrained facet f ,

conditionally-refine-facet(f ).
else insert(c)



Refinement of constrained facets

Lemma (Projection lemma)
When a point p encroaches a constrained subfacet f of PLC facet F
without constrained edges encroachment :

• the projection pF of p on the supporting hyperplan hF of F , belongs
to F

• p encroaches the mesh facet g ⊂ F that contains pF

Proof.

The algorithm always refine a constrained facet including the projection

of the encroaching point



3D Delaunay refinement theorem

Theorem (3D Delaunay refinement)

The 3D Delaunay refinement algorithm ends provided that ;

• the upper bound on radius-edge ratio of tetrahedra is

B > 2

• all input PLC angles are > 90o

dihedral angles : two facets of the PLC sharing an edge
edge-facet angles : a facet and an edge sharing a vertex
edge angles : two edges of the PLC sharing a vertex

Proof.
As in 2D, use a volume argument
to bound the number of Steiner vertices



Proof of 3D Delaunay refinement theorem

Lemma (Lemma 1)

Any added (Steiner) vertex is inside or on the boundary
of the domain Ω to be meshed

Proof.
as in 2D, because Steiner vertices are added when there is no
encroached edge and no encroached facet.



Proof of 3D Delaunay refinement theorem

Local feature size lfs(p)
radius of the smallest disk centered in p and intersecting two
disjoint elements of C .

Insertion radius rv
length of the smallest edge incident to v , right after insertion of v ,
if v is inserted.

Parent vertex p of vertex v

• if v is the circumcenter of a tet t
p is the last inserted vertex of the smallest edge of t

• if v is inserted on a constrained facet or edge
p is the encroaching vertex closest to v
(p may be a mesh vertex or a rejected vertex)



Proof of 3D Delaunay refinement theorem
Insertion radius lemma

Lemma (Insertion radius lemma)

Let v be vertex of the mesh, with parent p,
rv ≥ lfs(v) or rv ≥ Crp, with :

• C = B if v is a tetrahedra circumcenter

• c = 1/
√

2 if v is on a PLC edge or facet
and p is rejected



Refinement of constrained facets

Refining the facet in F including the projection pF of the encroaching
point guarantees : rv ≥ rp√

2

p encroaching point of a facet f ⊂ F
rp insertion radius of p,
rv insertion radius of the point v , rv = r
rp ≤ pa if pa = min{pa, pb, pc} ‖pa‖2 = ‖ppF‖2 + ‖pFa‖2 ≤ 2r2

a

b

cpF



Proof of 3D Delaunay refinement theorem
Flow diagram of vertices insertion



Proof of 3D Delaunay refinement theorem
weighted density

weighted density d(v) = lfs(v)
rv

Lemma (Weighted density lemma 1)

For any vertex v with parent p, if rv ≥ Crp, d(v) ≤ 1 + d(p)
C

Lemma (Weighted density lemma 2)

There are constants De ≥ Df ≥ Dt ≥ 1 such that :
for any tet circumcenter v , inserted or rejected, d(v) ≤ Dt

for any facet circumcenter v , inserted or rejected, d(v) ≤ Df .
for any vertex v inserted in a PLSG edge, d(v) ≤ De .

Thus, for any vertex of the mesh rv ≥ lfs(v)
De



3D Delaunay refinement theorem
Proof of weighted density lemma

Proof of weighted density lemma
Assume wd lemma is true up to the insertion of vertex v ,
p parent of v

• v is a tet circumcenter
rv ≥ Brp =⇒ d(v) ≤ 1 +

dp

B assume 1 + De

B ≤ Dt (1)

• v is on a PLC facette f

• p is a PLC vertex or p ∈ PLC face s ′ st f ∩ s ′ = ∅
rv = lfs(v) =⇒ d(v) ≤ 1

• p is a tet circumcenter
rv ≥ rp√

2
=⇒ d(v) ≤ 1 +

√
2dp assume 1 +

√
2Dt ≤ Df (2)

• v is on a PLC edge e

• p is a PLC vertex or p ∈ PLC face s ′ st e ∩ s ′ = ∅
rv = lfs(v) =⇒ d(v) ≤ 1

• p is a tet or a facet circumcenter
rv ≥ rp√

2
=⇒ d(v) ≤ 1 +

√
2dp assume 1 +

√
2Df ≤ De (3)



3D Delaunay refinement theorem
Proof of weighted density lemma (end)

There are De ≥ Df ≥ Dt ≥ 1 such that :
1 + De

B ≤ Dt (1)

1 +
√

2Dt ≤ Df (2)

1 +
√

2Df ≤ De (3)

De =
(
3 +

√
2
) B

B − 2

Df =
(1 +

√
2B) +

√
2

B − 2

Dt =
B + 1 +

√
2

B − 2



Proof of 3D Delaunay refinement theorem
(end)

Theorem ( Relative bound on edge length)

Any edge of the mesh, incident to vertex v , has length l st :

l ≥ lfs(v)

De + 1

Proof.
as in 2D

End of 3D Delaunay refinement theorem proof.

Using the above result on edge lengths,
prove an upper bound on the number of mesh vertices
as in 2D.



Delaunay refinement
meshing domain with small angles

Algorithm Terminator 3D : Delaunay refinement + additionnal rules

1 Clusters of edges : refine edges in clusters along concentric spheres

2 when a facet f in PLC facet F is encroached by p
and circumcenter(f ) encroaches no constrained edge
refine f iff

• p is a PLC vertex or belongs to a PLC face s ′ st f ∩ s ′ = ∅
• rv > rg , where g is the most recently inserted ancestor of v .

3 when a constrained edge e is encroached by p
e is refined iff

• p is a mesh vertex
• minw∈W rw > rg where

g is the most recently inserted ancestor of v
W is the set of vertices that will be inserted if v is inserted.



Delaunay refinement
About terminator 3D

Remarks Notice that some constrained facets remain encroached

• using a constrained Delaunay triangulation is required to respect
constrained facets.
Fortunately, this constrained Delaunay triangulation exists because
constrained edges are Gabriel edges.

• the final mesh may be different from the Delaunay triangulation of
its vertices



Nearly degenerated triangles

Radius-edge ratio ρ = circumradius
shortest edge lentgh

In both cases the radius-edge ratio is large



Nearly degenerated tetrahedra

Thin tetrahedra

Flat tetrahedra

Slivers : the only case
in which radius-edge ratio
ρ is not large



Slivers

Definition (Slivers)
A tetrahedra is a sliver iff
the radius-edge ratio is not too big ρ = r

l ≤ ρ0

yet, the volume is too small σ = V
l3 ≤ σ0

r = circumradius, l = shortest edge length, V = volume

Remark
Tetrahedra with bounded radius-edge ratio, that are not slivers
have a bounded radius-radius ratio :
ρ ≤ ρ0 and σ > σ0,=⇒ rcirc

rinsc
≤

√
3ρ3

0
σ0

Proof.
area of facets of t : Si ≤ 3

√
3

4 r2
circ

√
3r2

circ rinsc ≥
∑4

i=1
1
3Si rinsc = V ≥ σ0l

3 ≥ σ0

(
rcirc
ρ0

)3



Delaunay meshes
with bounded radius-edge ratio

Theorem ( Delaunay meshes with bounded radius-edge ratio)
Any Delaunay mesh with bounded radius-edge ratio is such that :

1 The ratio between the length of the longest edge and the length of
shortest edge incident to a vertex v is bounded.

2 The number of edges, facets or tetrahedra incident
to a given vertex is bounded



Delaunay meshes
with bounded radius-edge ratio

Lemma
In a Delaunay mesh with bounded radius-edge ratio (ρ ≤ ρ0),
edges ab, ap incident to the same vertex

and forming an angle less than η0 = arctan
[
2

(
ρ0 −

√
ρ2

0 − 1/4
)]

are such that ‖ab‖
2 ≤ ‖ap‖ ≤ 2‖ab‖

Proof.
Σ(y , ry ) = Intersection of the hyperplan spanned by (ap, ab)

with the circumsphere of a tetrahedron incident to ab

‖xv‖ = ry −
√

r2
y − ‖ab‖2/4

‖xv‖ ≥
(
ρ0 −

√
ρ2

0 − 1/4
)
‖ab‖

̂(ab, ax) = arctan
(

2‖xv‖
‖ab‖

)
≥ η0

̂(ab, ap) ≤ η0 =⇒ ‖ap‖ ≥ ‖ax‖ ≥ ‖ab‖
2



Delaunay meshes
with bounded radius-edge ratio theorem

proof of Part 1

ρ0 radius-edge ratio bound η0 = arctan
[
2

(
ρ0 −

√
ρ2

0 − 1/4
)]

m0 = 2
(1−cos(η0/4)) ν0 = 22m0−1ρm0−1

0

Two mesh edges ab and ap incident to a are such that :
‖ab‖
ν0

≤ ‖ap‖ ≤ ν0‖ab‖

Proof.
Σ(a, 1) unit sphere around a
Max packing on Σ of spherical caps with angle η0/4
There is at most m0 spherical caps
Doubling the cap’s angles form a covering of Σ.
Graph G = traces on Σ(a, 1) of edges and facets incident to a.
Path in G from ab to ap, ignore detours when revisiting a cap.
The path visits at most m0 and crosses at most m0 − 1 boundary.



Delaunay meshes
with bounded radius-edge ratio th

proof of Part 2

The number of edges incident to a given vertex is bounded by
δ0 = (2ν2

0 + 1)3

Proof.
ap : shortest edge incident to a, let ‖ap‖ = 1
ab : longest edge incident to a, ‖ap‖ ≤ ν0

for any vertex c adjacent to a, 1 ≤ ‖ac‖ ≤ ν0

for any vertex d adjacent to c , ‖cd‖ ≥ 1
ν0

Spheres Σc(c , 1
2ν0

) are empty of vertices except c , disjoint

and included in Σ(a, ν0 + 1
2ν0

))

VΣ =
4

3
π

(
ν0 +

1

2ν0

)3

=
(
2ν2

0 + 1
)3

VΣc



Sliver elimination

Method of Li [2000]
Choose each Steiner vertices in a refinement region :
Refinement region
refining a tetrahedra t with circumsphere (ct , rt) : 3D ball (ct , δrt)
refining a facet f with circumcircle (cf , rf ) : 2D ball (cf , δrf )
refining an edge (cs , rs) 1D ball (cs , δrs)



Sliver lemma

Definition (Slivers)
r = circumradius, l = shortest edge length, V = volume
ρ = r

l ≤ ρ0 σ = V
l3 ≤ σ0

Lemma
If pqrs is a tet with σ ≤ σ0,

d
ry
≤ 12σ0

d : distance from p to the hyperplan of qrs
ry : circumradius of triangle qrs

Proof.
σl3 = V = 1

3Sd ≥ 1
3

(
1
2 l2 l

2ry

)
d = l3

12ry
d



Sliver lemma

Lemma (Sliver lemma)
Let Σ(y , ry ) be the circumcircle of triangle qrs.
If the tet pqrs is a sliver, d(p,Σ(y , ry )) ≤ γ2ry
with γ2 = 48σ0ρ0.

r circumradius of pqrs
H hyperplane of pqr

d(p,H) ≤ 12σ0ry

r ≤
√

3ρ0ry

d(p,Σ(y , ry )) ≤ d(p,H)

sin θ

sin θ ≈ ry
r

d(p,Σ(y , ry )) ≤≈ 12
√

3σ0ρ0

r

ry d



Sliver elimination

Forbidden torus
For any triangle qrs,
p should not be in a torus
of volume V (torus(qrs)) :
V (torus(qrs)) ≤ γ3r

3
y

γ3 = 2π2 (48σ0ρ0)
2

Forbidden area on any plane h
S(torus(qrs) ∩ h) ≤ γ4r

2
y γ4 = 192 (πσ0ρ0)

S(torus(qrs) ∩ h) ≤ π(ry + d)2 − π(ry − d)2 = 4πdry
d = d(p,Σ(y , ry )) ≤ 48σ0ρ0ry

Forbidden length on any line l
L(torus(qrs) ∩ l) ≤ γ5ry γ5 = 16

√
3σ0ρ0

L(torus(qrs) ∩ h) ≤ 2
√

(ry + d)2 − (ry − d)2 = 4
√

ryd



Sliver elimination

Main Idea
Start from a Delaunay mesh with bounded edge-radius ratio
Then refine bad tets ( ρ > ρ0) and slivers ( ρ ≤ ρ0, σ ≤ σ0)

choosing refinement point in the refinement regions
avoiding forbidden volumes, areas and segments

When refining a mesh element τ (τ my be a tet, a facet or an edge)
it is not always possible to avoid producing new slivers
but it is possible to avoid producing small slivers,
i. e. slivers pqrs with circumradius circumradius(pqrs) ≤ Crτ
where rτ is the smallest circumradius of τ .

Lemma
For any refinement region (cτ , δrτ )
there is a finite number of facets (qrs)
such that, for a point p ∈ (cτ , δrτ )
tet pqrs is a sliver with circumradius(pqrs) ≤ Crτ



Sliver elimination

Lemma
For any refinement region (cτ , δrτ )
there is a finite number of facets (qrs)
such that, for a point p ∈ (cτ , δrτ )
tet pqrs is a sliver with circumcircle(pqrs) ≤ Crτ

Proof.
circumradius(pqrs) ≤ Crτ =⇒ ‖pq‖, ‖pr‖, ‖ps‖ < 2Crτ

q, r , s ∈ ball Σ (cτ , r1) , r1 = (2C + δ)rτ (1)

‖pq‖, ‖pr‖, ‖ps‖ ≥ (1− δ)rτ =⇒ circumradius(pqrs) ≥ (1−δ)rτ
2

ρ(pqrs) ≤ ρ0 =⇒ ‖qr‖, ‖rs‖, ‖sq‖ ≥ circumradius(pqrs)
ρ(pqrs) ≥ (1−δ)rτ

2ρ0

When a sliver is refined, radius-edge ratios are bounded by ρ0

hence, any edge incident to q has length l > (1−δ)rτ
2ρ0ν0

= 2r2 (2)

number W of slivers to avoid when picking p in (cτ , δrτ )

(1) + (2) =⇒ W =
(

r1+r2
r2

)3

=
(

(2C+δ)4ρ0ν0+(1−δ)
(1−δ)

)3



Sliver elimination

- Initial phase
Build a bounded radius-edge ratio mesh

using usual Delaunay refinement
- Sliver elimination phase
Apply one of the following rules, until no one applies
Rule i has priority over rule j if i < j .

1 if there is an encroached constrained edge e,
sliver-free-refine-edge(e)

2 if there is an encroached constrained facet f ,
sliver-free-conditionally-refine-facet(f )

3 if there is a tet t with ρ ≥ ρ0 ,
sliver-free-conditionally-refine-tet(t)

4 if there is a sliver t,
sliver-free-conditionally-refine-tet(t)



Sliver elimination
Sliver-free versions of refine functions
sliver-free-refine-edge(e)
sliver-free-conditionally-refine-facet(f )

sliver-free-conditionally-refine-tet(t)

• pick q sliver free in refinement region

• if q encroaches a constrained edge e,
sliver-free-refine-edge(e).

• else if q encroaches a constrained facet f ,
sliver-free-conditionally-refine-facet(f ).

• else insert(q)

picking q sliver free in refinement region means :

• pick a random point q in refinement region

• while q form small slivers
pick another random point q in refinement region



Sliver elimination

Theorem
If the hypothesis of Delaunay refinement theorem are satisfied
and if the constants δ, ρ0 and C are such that

(1− δ)3ρ0

2
≥ 1 and

(1− δ)3C
4

≥ 1

the sliver elimination phase terminates
yielding a sliver free bounded radius-edge ratio mesh
i.e. for any tetrahedron ρ ≤ ρ0 and σ ≥ σ0

Proof.
Two lemmas to show that
if l1 is the shortest edge length before sliver elimination phase

the shortest edge length after sliver elimination phase is l2 = (1−δ)3l1
4



Sliver elimination
Proof of termination

Original mesh = bounded radius-edge ratio mesh obtained in first phase
original sliver = sliver of the original mesh

Lemma
Any point q whose insertion is triggered by an original sliver,

has an insertion radius rq ≥ l2 with l2 = (1−δ)3l1
4

Proof.
Assume an original sliver t with circumradius rt
is eliminated by inserting a point q in a refinement region (v , δrv )
of either an original sliver, or a constrained facet, or a constrained edge.

l2 ≥ (1− δ)rv ≥

∣∣∣∣∣∣
(1− δ)rt
(1− δ)2 rt√

2

(1− δ)3 rt
2

rt ≥
l1
2



Sliver elimination
Proof of termination

Insertion radius

Flow diagram

rq ≥ (1− δ)rv
rp ≥ (1− δ)rc
rp ≤ min(‖pa‖, ‖pb‖, ‖pd‖) ≤

√
2rv

rq ≥ (1−δ)2

2 rc



Sliver elimination
Proof od termination

Lemma
If (1−δ)3ρ0

2 ≥ 1 and (1−δ)3C
4 ≥ 1

any vertex inserted during the sliver elimination phase

has an insertion radius at least l2 = (1−δ)3l1
4 .

Proof.
By induction, let t be the tetrahedron that triggers the insertion of p
- done if t is an original sliver
- otherwise

l2 ≥ (1− δ)rv ≥

∣∣∣∣∣∣
(1− δ)rt
(1− δ)2 rt√

2

(1− δ)3 rt
2

with
rt ≥ ρ0l1
rt ≥ Cr ′t ≥ C l1

2



Sliver elimination

condition for termination :
choose δ and C such that
(1−δ)3ρ0

2 ≥ 1
(1−δ)3C

4 ≥ 1

condition for possibility of sliver-free picking:
choose σ0 such that :
W γ3(Crt)

3 ≤ 4
3π(δrt)

3 γ3 = 2π2 (48σ0ρ0)
2

W γ4(Crt)
2 ≤ π(δrt)

2 γ4 = 192 (πσ0ρ0)
W γ5(Crt) ≤ (δrt) γ5 = 16

√
3σ0ρ0

where W = f (C , ρ0, δ) is the number of slivers to avoid


	Meshing using Delaunay refinement in 3D

