The 3D meshing problem

Input:

- a PLC piecewise linear complex C
- a bounded domain Ω to be meshed.
Ω is bounded by facets in C

Output: a mesh of domain Ω
i. e. a 3D triangulation T such that

- vertices of C are vertices of T
- edges and facets C are union of faces in T
- the tetrahedra of T that are $\subset \Omega$ have controlled size and quality

The 3D meshing problem

Constraints and subconstraints
Edges and facets of the input PLC are split into subconstraints which are edges and facets of the mesh, called constrained edges and facets.

3D Delaunay refinement

Use a 3D Delaunay triangulation
(in fact a 3D constrained Delaunay triangulation)
Constraints
constrained edges are refined into Gabriel edges encroached edges $=$ edges which are not Gabriel edges
constrained facets are refined into Gabriel facets encroached facets $=$ facets which are not Gabriel facets

Tetrahedra
Bad tetrahedra are refined by circumcenter insertion.
edge

facet
Bad tetrahedra : radius-edge ratio $\rho=\frac{\text { circumradius }^{I_{\text {min }}}}{\frac{1}{}} B$

constrained facets

once contrained edges are refined into Gabriel edges constrained facets are known : they are 2D Delaunay facets A 2D Delaunay triangulation is maintained for each PLC facet

3D Delaunay refinement algorithm

- Initialization Delaunay triangulation of PLC vertices
- Refinement

Apply one the following rules, until no one applies.
Rule i has priority over rule j if $i<j$.
(1) if there is an encroached constrained edge e, refine-edge(e)
(2) if there is an encroached constrained facet f, conditionally-refine-facet (f) i.e.:
$c=$ circumcenter (f)
if c encroaches a constrained edge e, refine-edge (e). else insert(c)
(3) if there is a bad tetrahedra t, conditionally-refine-tet (t) i.e.:
$c=$ circumcenter (t)
if c encroaches a constrained edge e, refine-edge(e). else if c encroaches a constrained facet f, conditionally-refine-facet (f).
else insert(c)

Refinement of constrained facets

Lemma (Projection lemma)

When a point p encroaches a constrained subfacet f of PLC facet F without constrained edges encroachment :

- the projection p_{F} of p on the supporting hyperplan h_{F} of F, belongs to F
- p encroaches the mesh facet $g \subset F$ that contains p_{F}

Proof.

The algorithm always refine a constrained facet including the projection of the encroaching point

3D Delaunay refinement theorem

Theorem (3D Delaunay refinement)
The 3D Delaunay refinement algorithm ends provided that;

- the upper bound on radius-edge ratio of tetrahedra is

$$
B>2
$$

- all input PLC angles are $>90^{\circ}$ dihedral angles : two facets of the PLC sharing an edge edge-facet angles : a facet and an edge sharing a vertex edge angles: two edges of the PLC sharing a vertex

Proof.

As in 2D, use a volume argument
to bound the number of Steiner vertices

Proof of 3D Delaunay refinement theorem

Lemma (Lemma 1)
Any added (Steiner) vertex is inside or on the boundary of the domain Ω to be meshed

Proof.
as in 2D, because Steiner vertices are added when there is no encroached edge and no encroached facet.

Proof of 3D Delaunay refinement theorem

Local feature size lfs (p)
radius of the smallest disk centered in p and intersecting two disjoint elements of C.

Insertion radius r_{v} length of the smallest edge incident to v, right after insertion of v, if v is inserted.

Parent vertex p of vertex v

- if v is the circumcenter of a tet t p is the last inserted vertex of the smallest edge of t
- if v is inserted on a constrained facet or edge p is the encroaching vertex closest to v (p may be a mesh vertex or a rejected vertex)

Proof of 3D Delaunay refinement theorem

Insertion radius lemma
Lemma (Insertion radius lemma)
Let v be vertex of the mesh, with parent p, $r_{v} \geq \operatorname{lfs}(v)$ or $r_{v} \geq C r_{p}$, with :

- $C=B$ if v is a tetrahedra circumcenter
- $c=1 / \sqrt{2}$ if v is on a PLC edge or facet and p is rejected

Refinement of constrained facets

Refining the facet in F including the projection p_{F} of the encroaching point guarantees: $r_{v} \geq \frac{r_{p}}{\sqrt{2}}$
p encroaching point of a facet $f \subset F$
r_{p} insertion radius of p,
r_{v} insertion radius of the point $v, r_{v}=r$
$r_{p} \leq p a$ if $p a=\min \{p a, p b, p c\} \quad\|p a\|^{2}=\left\|p p_{F}\right\|^{2}+\left\|p_{F} a\right\|^{2} \leq 2 r^{2}$

Proof of 3D Delaunay refinement theorem

Flow diagram of vertices insertion

Proof of 3D Delaunay refinement theorem

weighted density
weighted density $d(v)=\frac{\mathrm{lfs}(v)}{r_{v}}$
Lemma (Weighted density lemma 1)
For any vertex v with parent p, if $r_{v} \geq C r_{p}, d(v) \leq 1+\frac{d(p)}{C}$
Lemma (Weighted density lemma 2)
There are constants $D_{e} \geq D_{f} \geq D_{t} \geq 1$ such that : for any tet circumcenter v, inserted or rejected, $\quad d(v) \leq D_{t}$ for any facet circumcenter v, inserted or rejected, for any vertex v inserted in a PLSG edge, $d(v) \leq D_{f}$. $d(v) \leq D_{e}$.
Thus, for any vertex of the mesh $r_{v} \geq \frac{\operatorname{lfs}(v)}{D_{e}}$

3D Delaunay refinement theorem

Proof of weighted density lemma

Proof of weighted density lemma
Assume wd lemma is true up to the insertion of vertex v, p parent of v

- v is a tet circumcenter

$$
\begin{equation*}
r_{v} \geq B r_{p} \Longrightarrow d(v) \leq 1+\frac{d_{p}}{B} \quad \text { assume } \quad 1+\frac{D_{e}}{B} \leq D_{t} \tag{1}
\end{equation*}
$$

- v is on a PLC facette f
- p is a PLC vertex or $p \in \operatorname{PLC}$ face s^{\prime} st $f \cap s^{\prime}=\emptyset$

$$
r_{v}=\operatorname{lfs}(v) \Longrightarrow d(v) \leq 1
$$

- p is a tet circumcenter

$$
\begin{equation*}
r_{v} \geq \frac{r_{p}}{\sqrt{2}} \Longrightarrow d(v) \leq 1+\sqrt{2} d_{p} \quad \text { assume } \quad 1+\sqrt{2} D_{t} \leq D_{f} \tag{2}
\end{equation*}
$$

- v is on a PLC edge e
- p is a PLC vertex or $p \in$ PLC face s^{\prime} st $e \cap s^{\prime}=\emptyset$

$$
r_{v}=\operatorname{lfs}(v) \Longrightarrow d(v) \leq 1
$$

- p is a tet or a facet circumcenter

$$
\begin{equation*}
r_{v} \geq \frac{r_{p}}{\sqrt{2}} \Longrightarrow d(v) \leq 1+\sqrt{2} d_{p} \quad \text { assume } \quad 1+\sqrt{2} D_{f} \leq D_{e} \tag{3}
\end{equation*}
$$

3D Delaunay refinement theorem

Proof of weighted density lemma (end)
There are $D_{e} \geq D_{f} \geq D_{t} \geq 1$ such that:
$1+\frac{D_{e}}{B} \leq D_{t}$
$1+\sqrt{2} D_{t} \leq D_{f}$ (2)
$1+\sqrt{2} D_{f} \leq D_{e}$ (3)

$$
\begin{aligned}
D_{e} & =(3+\sqrt{2}) \frac{B}{B-2} \\
D_{f} & =\frac{(1+\sqrt{2} B)+\sqrt{2}}{B-2} \\
D_{t} & =\frac{B+1+\sqrt{2}}{B-2}
\end{aligned}
$$

Proof of 3D Delaunay refinement theorem

Theorem (Relative bound on edge length)
Any edge of the mesh, incident to vertex v, has length I st :

$$
I \geq \frac{\operatorname{lfs}(v)}{D_{e}+1}
$$

Proof.
as in 2D
End of 3D Delaunay refinement theorem proof.
Using the above result on edge lengths, prove an upper bound on the number of mesh vertices as in 2D.

Delaunay refinement

meshing domain with small angles

Algorithm Terminator 3D : Delaunay refinement + additionnal rules
(1) Clusters of edges: refine edges in clusters along concentric spheres
(2) when a facet f in PLC facet F is encroached by p and circumcenter (f) encroaches no constrained edge refine f iff

- p is a PLC vertex or belongs to a PLC face s^{\prime} st $f \cap s^{\prime}=\emptyset$
- $r_{v}>r_{g}$, where g is the most recently inserted ancestor of v.
(3) when a constrained edge e is encroached by p e is refined iff
- p is a mesh vertex
- $\min _{w \in W} r_{w}>r_{g}$ where
g is the most recently inserted ancestor of v
W is the set of vertices that will be inserted if v is inserted.

Delaunay refinement

About terminator 3D

Remarks Notice that some constrained facets remain encroached

- using a constrained Delaunay triangulation is required to respect constrained facets.
Fortunately, this constrained Delaunay triangulation exists because constrained edges are Gabriel edges.
- the final mesh may be different from the Delaunay triangulation of its vertices

Nearly degenerated triangles

Radius-edge ratio $\rho=\frac{\text { circumradius }}{\text { shortest edge lentgh }}$ In both cases the radius-edge ratio is large

Nearly degenerated tetrahedra

Thin tetrahedra

Flat tetrahedra

Slivers: the only case in which radius-edge ratio ρ is not large

spire

wedge

spear

spade

spindle

cap
spike

splinter

sliver

Slivers

Definition (Slivers)

A tetrahedra is a sliver iff the radius-edge ratio is not too big $\rho=\frac{r}{l} \leq \rho_{0}$
yet, the volume is too small $\quad \sigma=\frac{V}{\beta^{3}} \leq \sigma_{0}$
$r=$ circumradius, $I=$ shortest edge length, $V=$ volume

Remark

Tetrahedra with bounded radius-edge ratio, that are not slivers have a bounded radius-radius ratio:
$\rho \leq \rho_{0}$ and $\sigma>\sigma_{0} \Longrightarrow \frac{\mathrm{r}_{\text {circ }}}{\mathrm{r}_{\text {insc }}} \leq \frac{\sqrt{3} \dot{\rho}_{0}^{3}}{\sigma_{0}}$
Proof. area of facets of $t: S_{i} \leq \frac{3 \sqrt{3}}{4} r_{\text {circ }}^{2}$
$\sqrt{3} r_{\text {circ }}^{2} r_{\text {insc }} \geq \sum_{i=1}^{4} \frac{1}{3} S_{i} r_{\text {insc }}=V \geq \sigma_{0} I^{3} \geq \sigma_{0}\left(\frac{r_{\text {circ }}}{\rho_{0}}\right)^{3}$

Delaunay meshes with bounded radius-edge ratio

Theorem (Delaunay meshes with bounded radius-edge ratio)
Any Delaunay mesh with bounded radius-edge ratio is such that:
(1) The ratio between the length of the longest edge and the length of shortest edge incident to a vertex v is bounded.
(2) The number of edges, facets or tetrahedra incident to a given vertex is bounded

Delaunay meshes

with bounded radius-edge ratio

Lemma
In a Delaunay mesh with bounded radius-edge ratio ($\rho \leq \rho_{0}$), edges ab, ap incident to the same vertex
and forming an angle less than $\eta_{0}=\arctan \left[2\left(\rho_{0}-\sqrt{\rho_{0}^{2}-1 / 4}\right)\right]$
are such that $\frac{\|a b\|}{2} \leq\|a p\| \leq 2\|a b\|$
Proof.
$\Sigma\left(y, r_{y}\right)=$ Intersection of the hyperplan spanned by ($a p, a b$) with the circumsphere of a tetrahedron incident to $a b$

$$
\begin{aligned}
& \|x v\|=r_{y}-\sqrt{r_{y}^{2}-\|a b\|^{2} / 4} \\
& \|x v\| \geq\left(\rho_{0}-\sqrt{\rho_{0}^{2}-1 / 4}\right)\|a b\| \\
& (\widehat{a b, a x})=\arctan \left(\frac{2\|x v\|}{\|a b\|}\right) \geq \eta_{0} \\
& (\widehat{a b, a p}) \leq \eta_{0} \Longrightarrow\|a p\| \geq\|a x\| \geq \frac{\|a b\|}{2}
\end{aligned}
$$

Delaunay meshes with bounded radius-edge ratio theorem

ρ_{0} radius-edge ratio bound
$m_{0}=\frac{2}{\left(1-\cos \left(\eta_{0} / 4\right)\right)}$

$$
\begin{aligned}
& \eta_{0}=\arctan \left[2\left(\rho_{0}-\sqrt{\rho_{0}^{2}-1 / 4}\right)\right] \\
& \nu_{0}=2^{2 m_{0}-1} \rho_{0}^{m_{0}-1}
\end{aligned}
$$

Two mesh edges $a b$ and $a p$ incident to a are such that :
$\frac{\|a b\|}{\nu_{0}} \leq\|a p\| \leq \nu_{0}\|a b\|$
Proof.
$\Sigma(a, 1)$ unit sphere around a
Max packing on Σ of spherical caps with angle $\eta_{0} / 4$
There is at most m_{0} spherical caps
Doubling the cap's angles form a covering of Σ.
Graph $G=$ traces on $\Sigma(a, 1)$ of edges and facets incident to a.
Path in G from $a b$ to $a p$, ignore detours when revisiting a cap.
The path visits at most m_{0} and crosses at most $m_{0}-1$ boundary.

Delaunay meshes with bounded radius-edge ratio th

The number of edges incident to a given vertex is bounded by $\delta_{0}=\left(2 \nu_{0}^{2}+1\right)^{3}$
Proof.
$a p$: shortest edge incident to a, let $\|a p\|=1$
$a b$: longest edge incident to $a, \quad\|a p\| \leq \nu_{0}$ for any vertex c adjacent to $a, \quad 1 \leq\|a c\| \leq \nu_{0}$ for any vertex d adjacent to $c, \quad\|c d\| \geq \frac{1}{\nu_{0}}$
Spheres $\Sigma_{c}\left(c, \frac{1}{2 \nu_{0}}\right)$ are empty of vertices except c, disjoint and included in $\left.\Sigma\left(a, \nu_{0}+\frac{1}{2 \nu_{0}}\right)\right)$

$$
V_{\Sigma}=\frac{4}{3} \pi\left(\nu_{0}+\frac{1}{2 \nu_{0}}\right)^{3}=\left(2 \nu_{0}^{2}+1\right)^{3} V_{\Sigma_{c}}
$$

Sliver elimination

Method of Li [2000]
Choose each Steiner vertices in a refinement region :
Refinement region
refining a tetrahedra t with circumsphere $\left(c_{t}, r_{t}\right)$: 3D ball $\left(c_{t}, \delta r_{t}\right)$ refining a facet f with circumcircle $\left(c_{f}, r_{f}\right)$: 2D ball $\left(c_{f}, \delta r_{f}\right)$ refining an edge $\left(c_{s}, r_{s}\right)$

1D ball $\left(c_{s}, \delta r_{s}\right)$

Sliver lemma

Definition (Slivers)

$r=$ circumradius, $I=$ shortest edge length, $V=$ volume
$\rho=\frac{r}{I} \leq \rho_{0} \quad \sigma=\frac{V}{\beta} \leq \sigma_{0}$
Lemma
If pqrs is a tet with $\sigma \leq \sigma_{0}, \frac{d}{r_{y}} \leq 12 \sigma_{0}$
d : distance from p to the hyperplan of qrs

r_{y} : circumradius of triangle qrs

$$
\begin{aligned}
& \text { Proof. } \\
& \sigma l^{3}=V=\frac{1}{3} S d \geq \frac{1}{3}\left(\frac{1}{2} l^{2} \frac{1}{2 r_{y}}\right) d=\frac{\beta^{3}}{12 r_{y}} d
\end{aligned}
$$

Sliver lemma

Lemma (Sliver lemma)

Let $\Sigma\left(y, r_{y}\right)$ be the circumcircle of triangle qrs. If the tet pqrs is a sliver, $d\left(p, \Sigma\left(y, r_{y}\right)\right) \leq \gamma_{2} r_{y}$ with $\gamma_{2}=48 \sigma_{0} \rho_{0}$.
r circumradius of pqrs
H hyperplane of pqr

$$
\begin{aligned}
d(p, H) & \leq 12 \sigma_{0} r_{y} \\
r & \leq \sqrt{3} \rho_{0} r_{y} \\
d\left(p, \Sigma\left(y, r_{y}\right)\right) & \leq \frac{d(p, H)}{\sin \theta} \\
\sin \theta & \approx \frac{r_{y}}{r} \\
d\left(p, \Sigma\left(y, r_{y}\right)\right) & \leq \approx 12 \sqrt{3} \sigma_{0} \rho_{0}
\end{aligned}
$$

Sliver elimination

Forbidden torus
For any triangle qrs,
p should not be in a torus of volume $V($ torus $(q r s))$:
$V($ torus $($ qrs $)) \leq \gamma_{3} r_{y}^{3}$
$\gamma_{3}=2 \pi^{2}\left(48 \sigma_{0} \rho_{0}\right)^{2}$

Forbidden area on any plane h
$S(\operatorname{torus}(q r s) \cap h) \leq \gamma_{4} r_{y}^{2} \quad \gamma_{4}=192\left(\pi \sigma_{0} \rho_{0}\right)$
$S(\operatorname{torus}(q r s) \cap h) \leq \pi\left(r_{y}+d\right)^{2}-\pi\left(r_{y}-d\right)^{2}=4 \pi d r_{y}$
$d=d\left(p, \Sigma\left(y, r_{y}\right)\right) \leq 48 \sigma_{0} \rho_{0} r_{y}$
Forbidden length on any line I
$L(\operatorname{torus}($ qrs $) \cap I) \leq \gamma_{5} r_{y} \quad \gamma_{5}=16 \sqrt{3 \sigma_{0} \rho_{0}}$
$L(\operatorname{torus}(q r s) \cap h) \leq 2 \sqrt{\left(r_{y}+d\right)^{2}-\left(r_{y}-d\right)^{2}}=4 \sqrt{r_{y} d}$

Sliver elimination

Main Idea

Start from a Delaunay mesh with bounded edge-radius ratio
Then refine bad tets ($\rho>\rho_{0}$) and slivers ($\rho \leq \rho_{0}, \sigma \leq \sigma_{0}$) choosing refinement point in the refinement regions avoiding forbidden volumes, areas and segments

When refining a mesh element τ (τ my be a tet, a facet or an edge) it is not always possible to avoid producing new slivers but it is possible to avoid producing small slivers,
i. e. slivers pqrs with circumradius circumradius(pqrs) $\leq C r_{\tau}$ where r_{τ} is the smallest circumradius of τ.
Lemma
For any refinement region $\left(c_{\tau}, \delta r_{\tau}\right)$
there is a finite number of facets (qrs)
such that, for a point $p \in\left(c_{\tau}, \delta r_{\tau}\right)$
tet pqrs is a sliver with circumradius $(p q r s) \leq C r_{\tau}$

Sliver elimination

Lemma

For any refinement region ($c_{\tau}, \delta r_{\tau}$)
there is a finite number of facets (prs)
such that, for a point $p \in\left(c_{\tau}, \delta r_{\tau}\right)$
tet pars is a sliver with circumcircle(pqrs) $\leq C r_{\tau}$
Proof.
circumradius $(p q r s) \leq C r_{\tau} \Longrightarrow\|p q\|,\|p r\|,\|p s\|<2 C_{\tau}$ $q, r, s \in$ ball $\Sigma\left(c_{\tau}, r_{1}\right), \quad r_{1}=(2 C+\delta) r_{\tau}$
$\|p q\|,\|p r\|,\|p s\| \geq(1-\delta) r_{\tau} \Longrightarrow$ circumradius $(p q r s) \geq \frac{(1-\delta) r_{\tau}}{2}$
$\rho($ prs $) \leq \rho_{0} \Longrightarrow\|q r\|,\|r s\|,\|s q\| \geq \frac{\text { circumradius }(p q r s)}{\rho(p q r s)} \geq \frac{(1-\delta) r_{\tau}}{2 \rho_{0}}$
When a sliver is refined, radius-edge ratios are bounded by ρ_{0}
hence, any edge incident to q has length $I>\frac{(1-\delta) r_{\tau}}{2 \rho_{0} \nu_{0}}=2 r_{2}$
number W of slivers to avoid when picking p in $\left(c_{\tau}, \delta r_{\tau}\right)$
$(1)+(2) \Longrightarrow W=\left(\frac{r_{1}+r_{2}}{r_{2}}\right)^{3}=\left(\frac{(2 C+\delta) 4 \rho_{0} \nu_{0}+(1-\delta)}{(1-\delta)}\right)^{3}$

Sliver elimination

- Initial phase

Build a bounded radius-edge ratio mesh
using usual Delaunay refinement

- Sliver elimination phase

Apply one of the following rules, until no one applies Rule i has priority over rule j if $i<j$.
(1) if there is an encroached constrained edge e, sliver-free-refine-edge(e)

2 if there is an encroached constrained facet f, sliver-free-conditionally-refine-facet (f)
(3) if there is a tet t with $\rho \geq \rho_{0}$, sliver-free-conditionally-refine-tet (t)
(4) if there is a sliver t, sliver-free-conditionally-refine-tet (t)

Sliver elimination

Sliver-free versions of refine functions sliver-free-refine-edge(e)
sliver-free-conditionally-refine-facet (f)
sliver-free-conditionally-refine-tet (t)

- pick q sliver free in refinement region
- if q encroaches a constrained edge e, sliver-free-refine-edge(e).
- else if q encroaches a constrained facet f, sliver-free-conditionally-refine-facet (f).
- else insert(q)
picking q sliver free in refinement region means:
- pick a random point q in refinement region
- while q form small slivers
pick another random point q in refinement region

Sliver elimination

Theorem

If the hypothesis of Delaunay refinement theorem are satisfied and if the constants δ, ρ_{0} and C are such that

$$
\frac{(1-\delta)^{3} \rho_{0}}{2} \geq 1 \text { and } \frac{(1-\delta)^{3} \mathrm{C}}{4} \geq 1
$$

the sliver elimination phase terminates yielding a sliver free bounded radius-edge ratio mesh
i.e. for any tetrahedron $\rho \leq \rho_{0}$ and $\sigma \geq \sigma_{0}$

Proof.
Two lemmas to show that if I_{1} is the shortest edge length before sliver elimination phase the shortest edge length after sliver elimination phase is $I_{2}=\frac{(1-\delta)^{3} l_{1}}{4}$

Sliver elimination

Proof of termination

Original mesh $=$ bounded radius-edge ratio mesh obtained in first phase original sliver $=$ sliver of the original mesh
Lemma
Any point q whose insertion is triggered by an original sliver, has an insertion radius $r_{q} \geq l_{2}$ with $I_{2}=\frac{(1-\delta)^{3} l_{1}}{4}$

Proof.
Assume an original sliver t with circumradius r_{t}
is eliminated by inserting a point q in a refinement region ($v, \delta r_{v}$) of either an original sliver, or a constrained facet, or a constrained edge.

$$
I_{2} \geq(1-\delta) r_{v} \geq \left\lvert\, \begin{aligned}
& (1-\delta) r_{t} \\
& (1-\delta)^{2} \frac{r_{t}}{\sqrt{2}} \\
& (1-\delta)^{3} \frac{r_{t}}{2}
\end{aligned} \quad r_{t} \geq \frac{l_{1}}{2}\right.
$$

Sliver elimination

Proof of termination

Insertion radius
Flow diagram

$$
r_{q} \geq(1-\delta) r_{v}
$$

$$
r_{p} \geq(1-\delta) r_{c}
$$

$$
r_{p} \leq \min (\|p a\|,\|p b\|,\|p d\|) \leq \sqrt{2} r_{v}
$$

$$
r_{q} \geq \frac{(1-\delta)^{2}}{2} r_{c}
$$

Sliver elimination

Proof od termination

Lemma
If $\frac{(1-\delta)^{3} \rho_{0}}{2} \geq 1$ and $\frac{(1-\delta)^{3} C}{4} \geq 1$
any vertex inserted during the sliver elimination phase
has an insertion radius at least $l_{2}=\frac{(1-\delta)^{3} l_{1}}{4}$.
Proof.
By induction, let t be the tetrahedron that triggers the insertion of p

- done if t is an original sliver
- otherwise

$$
I_{2} \geq(1-\delta) r_{v} \geq \left\lvert\, \begin{aligned}
& (1-\delta) r_{t} \\
& (1-\delta)^{2} \frac{r_{t}}{\sqrt{2}} \\
& (1-\delta)^{3} \frac{r_{t}}{2}
\end{aligned} \quad\right. \text { with } \begin{aligned}
& r_{t} \geq \rho_{0} l_{1} \\
& r_{t} \geq C r_{t}^{\prime} \geq C \frac{l_{1}}{2}
\end{aligned}
$$

Sliver elimination

condition for termination :
choose δ and C such that $\frac{(1-\delta)^{3} \rho_{0}}{2} \geq 1$
$\frac{(1-\delta)^{3} C}{4} \geq 1$
condition for possibility of sliver-free picking: choose σ_{0} such that :
$W \gamma_{3}\left(C r_{t}\right)^{3} \leq \frac{4}{3} \pi\left(\delta r_{t}\right)^{3} \quad \gamma_{3}=2 \pi^{2}\left(48 \sigma_{0} \rho_{0}\right)^{2}$
$W \gamma_{4}\left(C r_{t}\right)^{2} \leq \pi\left(\delta r_{t}\right)^{2} \quad \gamma_{4}=192\left(\pi \sigma_{0} \rho_{0}\right)$
$W \gamma_{5}\left(C r_{t}\right) \leq\left(\delta r_{t}\right) \quad \gamma_{5}=16 \sqrt{3 \sigma_{0} \rho_{0}}$
where $W=f\left(C, \rho_{0}, \delta\right)$ is the number of slivers to avoid

