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Games

Players: 1 and 2.

Arenas:
S1, S2 — states controlled by players 1 and 2,
A – actions,
ℜ – rewards.

S = S1 ∪ S2 – all states,
A ⊂ S × ℜ× S.



source∈ S reward∈ ℜ target∈ S

action= (s r t)

r
ts

A(s) = {a ∈ A | source(a) = s}

actions available at s ∈ S.



Arena
A = (S1, S2, A)

S, A(s),∀s ∈ S – finite, nonempty.

A history h = a1a2 . . . ∈ A∞,

∀i, target(ai) = source(ai+1).

A play p = a1a2 . . . — an infinite sequence of actions executed by the
players (play=infinite history).



Preference relation

For a play p = a1a2 . . .

reward(p) = reward(a1) reward(a2) . . . ∈ ℜω

an infinite finitely generated sequence of rewards.

A preference relation ⊑ complete, transitive and reflexive relation over ℜω,
r, r′ ∈ ℜω,

r ⊑ r′

means that for player p the sequence r′ is at least as valuable as the
sequence r.



Payoff mapping

Payoff mapping
u : ℜω −→ R ∪ {−∞,∞}

induces a preference relation ⊑u:

r ⊑u r′ iff u(r) ≤ u(r′) .



Game

Game : arena A and preference relations ⊑1,⊑2 of each player.

An antagonistic game: (zero-sum game) ⊑2= (⊑1)
−1.

G = (A,⊑) ,

A — an arena,
⊑ — a preference relation for player 1.



Examples



Parity games

ℜ = N, rewards = priorities.

For n = n1n2 . . . ∈ N
ω let

priority(n) = lim sup
i→∞

ni

maximal priority occurring infinitely often in n.

m, n ∈ N
ω,

n ⊑ m if priority(n) mod 2 ≤ priority(m) mod 2



Mean-payoff games

ℜ = R, for r = r1r2 . . . ∈ R
ω,

mean(r) = lim sup
n→∞

1

n

n
∑

i=1

ri .



Exercise

In this exercise we assume that in mean-payoff games both players have
optimal positional strategies. (We shall prove it later.)

Show that parity games can be reduced to mean-payoff games.

In other words, suppose that you have an algorithm solving mean-payoff
games, i.e calculating the value of the mean-payoff game for each initial
state and optimal positional strategies for both players. Then show how
such an algorithm can be used to solve parity games.

Is your reduction parity=⇒mean-payoff polynomial?



Discounted games

ℜ = R, for r = r0r1 . . . ∈ R
ω,

discβ(r) = (1 − β)
∞
∑

i=0

βiri ,

β ∈ (0, 1) is a discount factor.



Strategies

A strategy for player 1

σ : {h | h a finite history with target(h) ∈ S1} −→ A

where σ(h) ∈ A(target(h)).

∀s ∈ S, λs empty history source(λs) = target(λs) = s.



Histories consistent with a strategy

A history h = a1a2 . . . is consistent with a strategy σ of player 1 if for each
i < |h|, if hi < h is the prefix of h of length i such that target(hi) ∈ S1

then
ai+1 = σ(hi) .

Notation:

σ and τ — strategies for players 1 and 2 respectively.

pA(s, σ, τ)

unique play consistent with σ and τ with source s.



Optimal strategies

σ♯ ∈ Strategy1, τ ♯ ∈ Strategy2 are optimal if

∀s ∈ S, ∀σ ∈ Strategy1, τ ∈ Strategy2,

reward(pA(s, σ, τ ♯)) ⊑ reward(pA(s, σ♯, τ ♯)) ⊑ reward(pA(s, σ♯, τ)) .



∀s ∈ S, ∀σ ∈ Strategy1, τ ∈ Strategy2,

u(reward(pA(s, σ♯, τ ♯)))

u(reward(pA(s, σ, τ ♯))) ≤

≤ u(reward(pA(s, σ♯, τ)))

Value of the game at s



General value definition

lower value = val(s) =

sup
σ

inf
τ

u(reward(pA(s, σ♯, τ ♯))) ≤ inf
τ

sup
σ

u(reward(pA(s, σ♯, τ ♯)))

= val(s) = upper value

and
value(s) := val(s) = val(s) .



A positional or memoryless strategy for player 1

σ : S1 → A

where σ(s) ∈ A(s), ∀s ∈ S1.



Basic questions of game theory

• Does there exist a value for a given game G?

• The existence of optimal strategies for both players.

• The existence of ”simple” optimal strategies.

Have the players optimal positional strategies?



More examples



Simple Priority Games

α : N → R, a priority valuation.

Let n = n1n2 . . . ∈ N
ω. Then the payoff of simple priority games:

uα(n) = α(priority(n)),



Exercise

Suppose that an arena A is colored with k different priorities. Show that
the simple priority game on A can be solved by solving several (at most
k−1) parity games and that both players have optimal positional strategies
in simple priority games.

(This reduction will be valid also for infinite arenas.)



Mean-payoff Priority Games.

ℜ = N × R, (n, r) ∈ ℜ, n — priority, r — reward.

x = (n1, r1), (n2, r2), . . . ∈ ℜω

n = priority(n1n2 . . .) priority of x,

x(n) = (ni1, ri1), (ni2, ri2), . . .

where n = ni1 = ni2 = · · · .

mean(x) = lim sup
k→∞

ri1 + · · · + rik

k
.



Gambling Games.

ℜ = R, r1r2 . . .

gλ(r1r2 . . .) = (1 − λ) lim inf
i→∞

ri + λ lim sup
i→∞

ri .



Exercise

Show that parity games can be reduced to gabling gambling games with
λ = 1

2
.



For all previous examples if all states are controlled by one player then this
player has an optimal positional strategy.

Suppose that player 1 (maximizer) controls all states. For all games (except
discounted) his optimal strategy for one-player game is the following:

• find the simple cycle in the arena A with the maximal payoff,



• go to this cycle and next go forever along this cycle.



Exercise

Show that the strategy described above is really optimal for one-player
mean-payoff games.

Show the same for mean-payoff priority games and for gambling games.



From One-Player Games to Two-Player Games.

A = (S1, S2, A) is controlled by player i if ∀s ∈ Sj, j 6= i, |A(s)| = 1.



Theorem. Fix

• ℜ — a set of rewards,

• ⊑ — a preference relation over ℜω.

Suppose that for each finite one-player arena A the player controlling A
has an optimal positional strategy in the game (A,⊑). Then for all two-

person games (A,⊑) on finite arenas A both players have optimal positional

strategies.



Proof |A| − |S| the rank of A.

Proof: induction over the rank value.

The pivot — a fixed state x ∈ S1 such that |A(x)| > 1.

A(x) = AL(x) ∪ AR(x)

a non-trivial partition of A(x) onto Left (bLue) actions and Right (Red)
actions.



x

A



A

x



AL
AR

x x



x x

σ
♯
R

, τ
♯
R

σ
♯
L

, τ
♯
L

By induction there exist optimal positional strategies on AL and AR



We show that one of the strategies σ
♯
L, σ

♯
R is optimal for player 1 in the

initial game on A.

Usually neither τ
♯
L nor τ

♯
R is optimal on A but we show how to construct

an optimal strategy for player 2 on A using these two strategies. The
strategy for player 2 that we will construct will use one bit of memory to
choose between τ

♯
L nor τ

♯
R depending on the last movement of player 1 at

the pivot state.



x x

Restrict the movements of player 2 by allowing only actions imposed by strategies τ
♯
L

and τ
♯
R

AL[τ
♯
L

] AR[τ
♯
R

]



x

ALR

σ
♯
LR

optimal positional strategy of player 1 on ALR



Optimal strategy of player 1 in A

σ♯ =















σ
♯
L if σ

♯
LR(x) is a blue action

σ
♯
R if σ

♯
LR(x) is a red action



Our choice of the optimal strategy of player 1 in A

We assume that:

σ
♯
LR(x) ∈ AL(x)

and
σ♯ := σ

♯
L .



Optimal strategy for player 2 on A

h be a finite history in A with target(h) ∈ S2.

τ ♯(h) =























τ
♯
L(target(h)) if either h does not contain any action with source x

or the last such action belongs to AL(x),

τ
♯
R(target(h)) if h contains at least one action with source x

and the last such action belongs to AR(x).



We should prove

reward(pA(s, σ, τ ♯)) ⊑ reward(pA(s, σ♯, τ ♯)) ⊑ reward(pA(s, σ♯, τ)) .



x

s

x

s
AL A

pA(s, σ♯, τ ♯) = pA(s, σ♯
L, τ

♯
L) =

pAL
(s, σ♯

L, τ
♯
L) ⊑ pAL

(s, σ♯
L, τ) =

pA(s, σ♯
L, τ) = pA(s, σ♯, τ)



x x

s
sL ALR

pA(s, σ, τ ♯) = pALR
(sL, σ, ·) ⊑ pALR

(sL, σ
♯
LR, ·) = pAL

(s, σ♯
LR, τ

♯
L) ⊑

pAL
(s, σ♯

L, τ
♯
L) = pA(s, σ♯, τ ♯)



Exchangeability property for optimal strategies

(σ♯, τ ♯) and (σ‡, τ‡) pairs of optimal strategies.

Then (σ‡, τ ♯) and (σ♯, τ‡) are also optimal.

Moreover,

reward(pA(s, σ‡, τ‡)) ⊑ reward(pA(s, σ♯, τ ♯)) ⊑ reward(pA(s, σ‡, τ‡)) .


