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Games

Players: 1 and 2.

Arenas:

S1, S9 — states controlled by players 1 and 2,
A — actions,

F — rewards.

S = 57 USy — all states,
ACSxRxS.



action= (s r t

source€ S rewarde R targete S

A(s) ={a € A | source(a) = s}

actions available at s € S.



Arena

A= (517 SQ? A)
S, A(s),Vs € S — finite, nonempty.

A history h = ajas... € A°°,

Vi, target(a;) = source(a;i1).

A play p = ajas... — an infinite sequence of actions executed by the
players (play=infinite history).



Preference relation

For a play p = aqas. ..
reward(p) = reward(a) reward(as) ... € R

an infinite finitely generated sequence of rewards.

A preference relation C complete, transitive and reflexive relation over R«
r,r e R,

r C '
means that for player p the sequence r’ is at least as valuable as the
sequence 7.



Payoff mapping

Payoff mapping
u:RY — RU{—00, 0}

induces a preference relation C;:

rCyr’ iff w(r) <u(r’) .



Game

Game : arena A and preference relations C;, C5 of each player.
An antagonistic game: (zero-sum game) Co= (Cq) ™%
G=(A0),

A — an arena,
C — a preference relation for player 1.



Examples



Parity games

R = N, rewards = priorities.

For n = nins... € N¥ let

priority(n) = lim sup n;
1— 00

maximal priority occurring infinitely often in n.

m,n € N¥,

n Cm if priority(n) mod 2 < priority(m) mod 2



Mean-payoff games

=R, forr =ryry... € R¥,

mean(r) = lim sup — Z ri .



Exercise

In this exercise we assume that in mean-payoff games both players have
optimal positional strategies. (We shall prove it later.)

Show that parity games can be reduced to mean-payoff games.

In other words, suppose that you have an algorithm solving mean-payoff
games, i.e calculating the value of the mean-payoff game for each initial
state and optimal positional strategies for both players. Then show how
such an algorithm can be used to solve parity games.

Is your reduction parity=—>mean-payoff polynomial?



Discounted games

=R, forr =rgr;... € R%,
discg(r) = (1-5) ) B'ri |

B € (0,1) is a discount factor.



Strategies

A strategy for player 1
o : {h | h a finite history with target(h) € S} — A

where o(h) € A(target(h)).

Vs € 5, A\s empty history source(\s) = target(As) = s.



Histories consistent with a strategy

A history h = ajasy ... Is consistent with a strategy o of player 1 if for each
i < |h|, if h; < h is the prefix of h of length i such that target(h;) € S,
then

A;41 = O'(hz) .
Notation:

o and 7 — strategies for players 1 and 2 respectively.

pA(s,o,T)
unique play consistent with o and 7 with source s.



Optimal strategies

ot € Strategy,, 7% € Strategy, are optimal if

Vs € S, Vo € Strategy,, T € Strategy,,

reward(pa(s, o, 7%)) C reward(pa(s, o®, 7%)) C reward(pa(s, o®, 7)) .



Vs € S, Vo € Strategy,, T € Strategy,,

u(reward(pa(s, o, 7%))) <

u(reward(p(s, o, 7¥)))

< u(reward(p.a(s,o*, 7)))

Value of the game at s



General value definition

lower value = val(s) =

sup inf u(reward(p (s, ot Tﬁ))) < inf sup u(reward(p.(s, o?, Tu)))

o T T o

= val(s) = upper value

and



A positional or memoryless strategy for player 1
oc:5 — A

where o(s) € A(s), Vs € 51.



Basic questions of game theory

e Does there exist a value for a given game G?
e The existence of optimal strategies for both players.

e The existence of "simple” optimal strategies.

Have the players optimal positional strategies?



More examples



Simple Priority Games

a: N — R, a priority valuation.

Let n = nins ... € N¥. Then the payoff of simple priority games:

a(n) = a(priority(n)),



Exercise

Suppose that an arena A is colored with k different priorities. Show that
the simple priority game on A can be solved by solving several (at most
k — 1) parity games and that both players have optimal positional strategies
in simple priority games.

(This reduction will be valid also for infinite arenas.)



Mean-payoff Priority Games.

R=NxR, (n,r) € R, n — priority, r — reward.

r = (ny,r), (ng,ra),... € R

n = priority(nins ...) priority of x,

x(”) — (77,7;1, 7aii)v (7?,7;2, 7ai2>7 e

where n = n;, = n;, = ---

T _'_ « . _|_ T
mean(z) = lim sup — k-
k— o0 k




Gambling Games.

%:R, rro...

gr(rire...) = (1 — A) liminf r; + Alimsupr; .

1— 00 1— 00



Exercise

Show that parity games can be reduced to gabling gambling games with
A=1
2



For all previous examples if all states are controlled by one player then this
player has an optimal positional strategy.

o

Suppose that player 1 (maximizer) controls all states. For all games (except
discounted) his optimal strategy for one-player game is the following:

e find the simple cycle in the arena A with the maximal payoff,



e go to this cycle and next go forever along this cycle.



Exercise

Show that the strategy described above is really optimal for one-player
mean-payoff games.

Show the same for mean-payoff priority games and for gambling games.



From One-Player Games to Two-Player Games.

A = (51,52, A) is controlled by player i if Vs € S, j # 1, |A(s)| = 1.



Theorem. Fix

e R — a set of rewards,

e _ — a preference relation over t*.

Suppose that for each finite one-player arena A the player controlling A
has an optimal positional strategy in the game (A, C). Then for all two-
person games (A, C) on finite arenas A both players have optimal positional
strategies.



Proof |A| — |S| the rank of A.

Proof: induction over the rank value.

The pivot — a fixed state x € S; such that |A(x)| > 1.

A(x) = Ap(x) U Agr(x)

a non-trivial partition of A(x) onto Left (bLue) actions and Right (Red)
actions.



V]









By induction there exist optimal positional strategies on A and Ap



We show that one of the strategies 05:, alﬁq is optimal for player 1 in the
initial game on A.

Usually neither Ti nor ng is optimal on A but we show how to construct

an optimal strategy for player 2 on A using these two strategies. The
strategy for player 2 that we will construct will use one bit of memory to
choose between Tg nor Tf% depending on the last movement of player 1 at

the pivot state.



Aplry

Restrict the movements of player 2 by allowing only actions imposed by strategies Ti and T‘ﬂR



ArLr

aiR optimal positional strategy of player 1 on Apr



Optimal strategy of player 1 in A

(ai if aﬁLR(x) is a blue action

\0% if aﬁLR(x) is a red action




Our choice of the optimal strategy of player 1 in A

We assume that:

and



Optimal strategy for player 2 on A

h be a finite history in A with target(h) € S5.

)
Ti(target(h)) if either h does not contain any action with source x

or the last such action belongs to A (x),
Tg(target(h)) if h contains at least one action with source x

and the last such action belongs to Agr(x).




We should prove

reward(pa(s, o, 7%)) C reward(pa(s, o®, 7%)) C reward(p(s, o®, 7)) .



p.A(Sa O-ﬁa Tu) — pA(Sa 0-3;7 Tg) —

p.AL(87 0-5;7 Tg) L p.AL(Sa 0-5;7 7_) —

p.A(Sa 0-%7 7_) — p.A(Sa O-ﬁa 7_)



p.A(Sa g, Tﬁ) — p.ALR(SLa g, ) E pALR(8L7 05;37 ) — p.AL(S7 O R TL) E

f f

p.AL(87 Ug;a Tg) — p.A(Sa O-Ija Tﬂ)



Exchangeability property for optimal strategies

(%, 7%) and (o, 7F) pairs of optimal strategies.

Then (o*,7%) and (o#, 7%) are also optimal.

Moreover,

reward(pa (s, o¥, 7)) C reward(pa(s, o, 7%)) C reward(pa(s, ot, 7%)) .



