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Strategic-form games

Strategic game (or normal form game)

I'= (N, {Si}z’ENa {Uz'}z'EN)-

N — the set of players,
S; — the set of strategies of player i € I,
u; S — R — the utility payoff mapping for player 2 € N.

Here
s=]]s
icl
the set of strategy profiles, i.e. all possible strategy combinations obtained
when each player chooses his strategy.



Intuitively, if each player fixes his strategy then their choices determine the
play outcome and then

u;(s) < ui(s’) fors,s' €S

means that player ¢ prefers the outcome resulting from the strategy profile
s’ to the outcome resulting from the profile s.

Another interpretation, wu;(s) is the payment received by player i if the
strategy profile is s € S. (If u;(s) < 0 then player i loses |u;(s)|.)

The aim of each player : maximise his gain.



Notation

S_; = (81,...,Si_1,8i_|_1,...,Sn) and S—z’ = H Sj

and for s € S;

(S—’i7 S;) — <817 ceey Si—1, 827 Si41y-- ) Sn)



The prisoner’s dilemma

| don’t confess confess
don’t corffess—2, -2 -10, -1
confess -1, -10 -5, -5

Two suspects are arrested for allegedly engaging in a serious crime and are
put into separate cells. They can either cooperate with the police or not.

The payoff represent the number of years they will spend in prison in each
case.

If both refuse to cooperate then they will be convicted of minor offence for
two years of prison. If one cooperates and the other not then the first can



be used as a witness against the other who will receive the sentence of ten
years. If both cooperate then they get five years each.

There is only one plausible outcome (cooperate,cooperate). This is because
cooperating is each player’s best strategy regardless of what the other player

does.



Dominant and Dominated Strategies

A strategy s; € S; is a strictly dominant strategy for player ¢ in game
I' = (N, {Si}iEN7 {uz-}z-eN) if for all Sf; # S;, WE have

wi(si, S—i) > wi(s;,5—:)

for all s_; € S_;.

A strategy s; € S; is a strictly dominated for player ¢ in game I' =
(N, {S;}ien, {u;}icn) if there exists another strategy sf € S; such that for
all s_; € S_;

ui(sg,s_q;) > u;(8;,5_;) -



A strategy s; € S5; is weakly dominated for player ¢ in game ' =
(N, {Si}ien, {u;i}icn) if there exists another strategy sf € S; such that for
all s_; € S_;

ui(sg, S_i) > ui(Si, 5-4)

with strict inequality for some s_;.

f

In this case we say that s} weakly dominates s;.

A strategy is weakly dominant for player ¢ if it weakly dominates every other
strategy in ;.



Iterated deletion of strictly dominated strategies

A variant of prisoner’s dilemma.

1l
| don’t confess confess

don’t conffessO, —2 -10, -1

confess -1, -10 -5, -5




Exercise

Show that the order of deletion does not matter for the set of strategies
surviving a process of iterated deletion of strictly dominated strategies.



Nash equilibrium

Definition. The strategy profile s* € S is a Nash equilibrium if for each
player © € I and each strategy s; € S;,
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Examples of games
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Battle of the Sexes

Julie

football shopping

Marc

football

shopping

Marc et Julie decide what to do on Saturday afternoon. Neither of them will
derive any pleasure from being without the other but Marc prefers football
match while Julie prefers to go to a shopping center.
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A coordination game

Julie

Mozart Mahler

Marc

Mozart

Mahler

Marc and Julie wish to go out together but now they have the same
preferences.. Both prefer Mozart but (Mahler,Mahler) is also a Nash
equilibrium! Nash equilibrium can be highly inefficient!
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Hawk and Dowe

| Dowe

Dowe

Hawk

Two animals fight over a prey.
(Dowe,Hawk).

Hawk

Nash equilibria (Hawk,Dowe) and
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Matching pennies

| head tail

Two players choose either head or tail.. If the choices differ then | pays to
[l 1 euro, otherwise |l pays to | 1 euro.

No Nash equilibrium if only deterministic (pure) strategies admitted.
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An auction

An object is to be attributed to one of n players: N ={1,... n}.

The object value for player 7 is v;, to simplify let us assume that v{ > vy >
o> v, > 0.

Players submit simultaneously their bids (nonnegative numbers). The object
is given to the player submitting the highest bid, if several players announce
the same highest bid the player with the greatest index receives the object.
The winner pays the amount of his bid (first price auction).

How to formulate this game as a strategic game?
Strategy of player ¢ = his bid.
If 7 obtains the object and pays p; then his gain is v; — p;.

If 2 does not get the object his gain is 0.
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Second price auction

The winner is determined as previously but he pays the highest bid among
those submitted by the players that do not win.
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A war of attrition

Two players dispute an object, the valuer of the object for player 7 is v; > 0.

Time is a continuous variable starting at 0 and going to infinity. At any
moment each player can decide to concede the object to his adversary 17
which gains in this way v;, this terminates the game (if both decide to
concede the object the same moment then the object is split and therefore
player ¢ receives v;/2).

Time is money, for each time unit until the end of the game each player
looses 1 euro.
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Exercise.
Formulate this game as a strategic game.
Show that in a Nash equilibrium one player concedes immediately the object.

19



A location game

n players choose if they will present themselves as candidates at the elections
and if so which political position to take (they are opportunists without real

political convictions, the only thing that counts for them is the result of the
election).

There is a continuum of citizens, each with his or her well-defined favorite
political opinion. The distribution of favorite opinions is given by a density
function f > 0, the opinions from left to right are represented by the
interval [0;1], if 0 < a < b <1 then

/abf(:c)d:r;

gives the number of citizens with opinions in the interval [a;].
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£(X)
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A candidate attracts all the votes that are closer to his position then to the
position of any other candidate. If k candidates choose the same position
then each receives the fraction 1/k of the votes that this position attracts.

Example: two candidates J and C with their respective positions.
b
f(X)

0 J (J+C)2 C 1

The candidate J receives all votes from 0 to (J + C)/2.
The candidate C receives all votes from (J + C')/2 to 1.
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The winner is the candidate who receives the majority of votes.

Each person prefers to be the unique winner than to tie for the first place,
prefers to tie for the first place than to stay out of the competition, prefers
to stay out of the competition than to enter and loose.

The utility mapping can give for example the gain % for each of k winners,

0 for a player that prefers to stay out and —1 for a players that enters the
competition but looses.

Exercise
Find Nash equilibria for n = 2.

Show that there is no Nash equilibrium for n = 3.
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Mixed strategies

Suppose that the set S; of strategies of player 7 is finite. We call strategies
from S; - pure strategies.

A mixed strategy for player ¢ is a probability distribution over S;, i.e. a
function

o; : S; — [0, 1]
such that
$; €S

If each player i € N uses some mixed strategy o; then the utility expectation
for player k in the game I' = (N, {S; }ien, {uitien) is

Z 01(81) ** On(Sn)uk(S1,. -, Sn) -

(817"'7STL)ES
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If mixed strategies are allowed then the utility expectation is interpreted as
the player’'s gain.

Let

D(5:)
be the set of all mixed strategies for player 7. Formally, we have replaced
here the game I' = (N, {S;}ien, {uitien) by a new game

¥ = (N, {D(S) }iens {ui}ien)

where for any mixed strategy profile o € | [, D(5;), the payoff for player
1 Is given by

ui(o) = > o1(s1) - on(sn)ur(s,. .. 8n) -
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Domination in mixed strategies

1 L R
U 10,1 0,4
M 4,2 4,3
D 0,5 10,2

The mixed strategy %U + %D strictly dominates M.

No pure strategy of player 1 is dominated by any other pure strategy.

Conclusion:
Mixed strategies allow to eliminate more pure strictly dominated strategies.
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Existence of Nash equilibria in mixed strategies

Theorem. [John Nash (1951)] /f, for all i € N, the set S; of pure
strategies for player i is finite then there exists a mixed strategy profile

o € [[,en D(S;) which is a Nash equilibrium.

Proof. For each s_; € S_; define B;(s;) to be the set of player's i best
strategies given the strategy profile s_; for the other players:

Bi(s_;) ={s; € S; | Vs, € Si,ui(s_4,8;) > ui(s_i,5;)}

i
We call the set-valued function the best-response function of player :.

A Nash equilibrium is a strategy profile s € S such that

s; € Bi(s_;) forallie N .
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Theorem. [Kakutani’s fixed point theorem] Let X be a compact
convex subset of R™ and let f : X — P(X) be a set valued function

such that

e for all x € X, the set f(x) is nonempty and convex,

e the graph of f is closed (i.e. for all sequences {x}, {yr} such that
yr € f(xk) for all k, if xi, — x and y, — y then y € f(x)).
Then there exists x* € X such that x* € f(x*).

Now take as X the set [],_ 5 D(S;) of all mixed strategy profiles and the
mapping f the mapping B = (B, ..., B,) where B; is the best response
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mapping for player i (best response in mixed strategies). Then check that
the conditions of Kakutani's fixed point theorem are satisfied.

[
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Calculating Nash equilibria in mixed strategies

If we have three or more players then it is possible to have a game such that

e cach player has a finite number of pure strategies,
e the payoff values for pure strategies profiles are all rational numbers,

e there exists Nash equilibria only in mixed strategies and all such equilibria
are non-rational (i.e. have non-rational probability distributions and non-
rational payoffs).

For two players (bimatrix games) if all entries in both matrices are rational
then there are Nash equilibria with rational payoffs for both players.
However, even in the case of bimatrix games best known algorithm of
calculating Nash equilibria has an exponential complexity.
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Open problem. Find an efficient algorithm calculating equilibria for
bimatrix games.

3-players games are PPAD complete (Daskalakis, Papadimitriou).
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Practical calculations of Nash equilibria

For any mixed strategy o; € D(S;) of player i the support of o; is the set

support(o;) = {s; € 5; | oi(s;) > 0}
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Theorem. Let 0 be a Nash equilibrium and i € N a player. Then

Vs; € support(o;), ui(0_4,8;) = ui(o_s,0%) (1)

Moreover for all pure strategies s; € S;,

ui(o—i, ;) < ui(o_i, 04) (2)
Proof. Eq. (2) follows immediately from the definition of a Nash equilibrium.

To prove (1) note that

UZ(O') — Ui(O'_Z',O'Z') — Z O'Z'(SZ')UZ'(O'_Z',SZ')

s;Esupport(o;)
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Since ). coupport(o;) Ti(si) =1 and
Vs; € support(o;),0 < o;(s;) <1

if (1) does not hold then we could eliminate from the support the pure
strategy s; for which

ui(o_iy8;) < ui(o—;,04)

and increment the probability of some other pure strategy from the support
by o;(s;). This would strictly increase the payoff of player i showing that o
is not a Nash equilibrium profile.

[
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Battle of the Sexes revisited

Julie

football shopping

Marc

football

shopping

Let us look at mixed strategies for Marc and Julie with the support
{football, shopping}. Note in the sequel

I' = football and S = shopping.

35



Let us take a mixed strategy o,; for Marc with and oy for Julie such that
support(oys) = {football, shopping}

and
support(o ) = {football, shopping}.

Then Marc wins
UM(O'M,O'J) ISO'M(F) O'J(F)—I—O'M(S) 'O'J(S)
while Julie wins

UJ(O'M,O'J):O'M(F)-O'J(F)—I—3°O'M(S)°O'J(S).
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By the preceding theorem

O'M(F)IUJ(O'M,F)ZUJ(O'M,S):3°O'M(S):3°(1—O'M(F)).

Solving this we get

oym(F) = Z and op(S) =

| =

Thus

W~ Qo

(0(F) +0,(5)) =

W~ Qo

1
’LLJ(O'M,O'J):—°O'J(F)—|—3'Z°O'J(S):
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In a similar way we get

and
3

UM(O'M,O'J) — Z

Exercise. Show that (o7, 07) is effectively a Nash equilibrium.
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exercise. Compute Nash equilibria for the following bimatrix game

|
| L M R

T 7,2 2,7 3,6
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Zero-sum two-person games
A two-person game I', N = {1, 2}, is a zero-sum game if for each strategy

profile s
usz(s) = —uq(s).

A zero-sum game can be noted as I' = (X, Y, u), where X and Y the set
of strategies for players 1 and 2 and wu is the payoff mapping of player 1.
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Matrix games

are zero-sum games where both players have a finite number of pure
strategies.
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Morra game

Each player hides either 1 or 2 euros and tries to guess the sum hidden by
the adversary.

The player guessing correctly wins the sum of money hidden by both players.
This amount is payed by his adversary.

Each player has 4 strategies: [i,j], i,7 = 1,2, where i is the amount of
money that he has hidden and j is his guess concerning the amount of
money hidden by his adversary.
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Julie
[1,1] [1,2] [2,1] [2,2]

Marc
1,1] 0 2 -3 0)
1,2] -2 0 0 3
[2,1] 3 0 0 -4
[2,2] o) -3 4 0)

Marc can assure for himself the payoff of —2. Julie can assure that her loss
does not exceed 2.
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In general in zero-sum games player 1 can always secure for himself the

payoff of

max min u(x,y)

while player 2 can assure that his loss will not be greater than

min max u(x,y)

(Replace min, max by inf, sup if X, Y are infinite).
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Always

val = max min u(x,y) < min max u(x,y) = val
reX yeyY yeY zeX

|f

val = val

then we say that the zero-sum game I' has a value

val = val = val.

val and val are called respectively the lower and the upper value of a
Zero-sum game.
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(x,y) € X XY is a saddle point if
w(z',y) <ulz,y) <u(z,y’) foreachaz’ € X andy' €Y

In this case we say that x and y are optimal strategies.

Exercise (Exchangeability of optimal strategies for zero-sum games)
If (x,y) and (x*,y*) are optimal strategies in a zero-sum game then (z,y™*)
and (x*,y) are also optimal and u(z,y) = u(z*, y*).
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Minimax theorem
Let U = [u4;]1<i<m,1<j<n @ Matrix game.

A mixed strategy of player 1 is then a row vector X of length m while a mixed
strategy of player 2 is given by a column vector of length n Y, all elements
of vectors X and Y are nonnegative and 1" X, =>" Y, =1.

Theorem. [minimax, John von Neumann 1928]

maxmin XUY = minmax XUY
X Y Y X

where X and Y are taken from the sets of mixed strategies of players 1 and
2.

Conclusion, matrix games have always optimal strategies if we admit mixed
strategies.
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Matrix games and linear programming

If player 1 uses a mixed strategy X then the best response of player 2 is to
use Y that minimizes XUY .

Now we should note that

min XUY = mjm;XiUij (3)

To prove formally (3), let j be the column for which the right hand side of
(3) is minimal and let us set

o = f: XzUzg
1=1

48



On the other hand if Y :=¢; is such that Y; =1 and Y, =0 for all & # j
then we get XUe; = a. This ends the proof of (3).
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Eq. (3) implies that finding the row player’s optimal strategy X reduces to
the following problem:

" - Ld m
maximize min,; > ._, X;U;;

subject to: S, X, =1 and
X; > 0 for all 2.
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The last problem is equivalent to the following linear programming problem:

maximize A

subject to:  z— >0 X;U;; <0,j=1,...,n
Z?ll Xz =1 et

X; > 0 for all .

To see that equivalence note that the first set of constraints can be
written as z < >, X,;U;;, for all j, and these are the only constraints
for z. Thus the optimal (i.e. maximal) value z* of z satisfies all these

inequalities and for at least one of them we get actually an equality. Thus
. m
2t =min; » ;g XiUs;.

In a similar way we can look for an optimal strategy for the column player.
It turns out that this problem reduces to the linear programming problem
dual to the one considered above.
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Thus let X* and Y* be the optimal solutions for both primal and dual
problems. The equivalence of primal and dual yields

min X*UY =max XUY "
Y X

which ends the proof of the minmax theorem.
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