Network topology and the eficiency of equilibrium

January 15, 2007

Networks

Igal Milchtaich, Games and Economic Behavior 57 (2006), 321-346

G = (V, E) a finite undirected graph.

s,t a couple of source - sink (destination) vertices (single commodity network).

Each edge $e \in E$ joins two distinct vertices $v, u \in V$ (loops are not allowed but multiple parallel edges are possible).

A path is a sequences

$$p = v_0 e_1 v_1 \dots v_{n-1} e_n v_n$$

alternating vertices and edges, beginning and ending with vertices and such that each edge e_i is incident with vertices v_{i-1} and v_i and all vertices v_i are different.

A route is a path starting in the source vertex s and ending in the sink vertex t.

 $\ensuremath{\mathcal{R}}$ is the set of all routes in the network.

 ${\mathcal P}$ is the set of all paths.

For a path p going through vertices u and w, where u precedes w on p,

 p_{uw}

is the section of p starting at u and ending at w.

Flows

 $f: \mathcal{R} \longrightarrow \mathbb{R}^+$ the flow mapping.

 f_r denotes the flow through a route $r \in \mathcal{R}$.

The total flow or traffic is defined as

$$|f| = \sum_{r \in \mathcal{R}} f_r$$

If p is a path then then flow through p is defined as

$$f_p = \sum_{\substack{r \in \mathcal{R} \\ p \text{ is a section of } r}} f_r$$

An arc of a network G is a path of the form uev, i.e. a path containing one edge. (An arc = oriented edge).

Cost function

Let f a flow and p a path.

 $c_p(f)$

the cost of the path p as a function of the (entire) flow f.

We assume that c is monotone in the following sense:

for every path p and all flows f and f^* , if $f_p \ge f_p^*$ and $f_{-p} \ge f_{-p}^*$, where -p is the path inverse to p, then $c_p(f) \ge c_p(f^*)$.

This implies, in particular, that the cost of each path depends only on the flow on each of its arcs in the direction of p and in the opposite direction.

The cost function is increasing if it satisfies the following condition:

for each route r and all flows f and f^* if $f_p \ge f^*(p)$ and $f_{-p} \ge f^*_{-p}$ for each arc p of r then $c_r(f) \ge c_r(f^*)$.

A cost function is additive if for each path $p \mbox{ and each flow } f$

$$c_{puv}(f) = c_{puw}(f) + c_{pwv}(f)$$

where u, w, v are vertices appearing in this order when we traverse p.

Additivity means that the cost of a path is the sum of the costs of its arcs.

Equilibrium

A flow f is in (Nash/Wardrop) equilibrium if the entire flow is on on routes of minimal cost, that is,

for all routes $r \in \mathcal{R}$ with $f_r > 0$,

$$c_r(f) = \min_{q \in \mathcal{R}} c_q(f)$$

For an equilibrium f we denote

$$c(f) = \min_{q \in \mathcal{R}} c_q(f)$$

the equilibrium cost (for each user).

If the cost functions are continuous then for any traffic a > 0 there exists and equilibrium flow f such that |f| = a.

Braess's paradox

Braess's paradox occurs in a network G if there exist two additive cost functions c and c^* such that for all routes $r \in \mathcal{R}$ and all flows f^{\sharp} , $c_r(f^{\sharp}) \geq c_r^*(f^{\sharp})$ but for every equilibrium flow f with respect to c and every equilibrium flow f^* with respect to c^* such that $|f| = |f^*|$ the equilibrium costs satisfy

$$C(f) < C^*(f^*)$$

Theorem 1. Braess's paradox does not occur in a network G iff and only if G is series-parallel.

Series-parallel networks

A network G is series-parallel if either it contains only one edge or it is obtained by a composition in parallel or in series of two series-parallel networks.

Composition in series

Figure 1: Compositions in parallel and in series of two networks

Wheatstone network

Figure 2: Wheatstone network

 $c_{e_1}(x) = c_{e_4}(x) = 1 + 6x, \ c_{e_2}(x) = c_{e_3}(x) = 15 + 2x, \ c_{e_5}(x) = 1 + 6x.$ Total traffic 1.

In equilibrium all the flow goes through $e_1e_5e_4$ with the cost $3(1+6\cdot 1) = 21$. Increase the cost of the edge e_5 to $c_{e_5}^*(x) = 15 + 2x$. Then in equilibrium half of the traffic goes through e_1e_3 and the other half through e_2e_4 with the cost for each user $(1 + 6 \cdot \frac{1}{2}) + (15 + 2 \cdot \frac{1}{2}) = 20$.

Embedding a network

A network G_1 is embedded in a network G_2 if either both networks are isomorphic or G_2 can be obtained from G_1 by applying any sequence of the following operations:

- (1) the subdivision of an edge with a new vertex that divides the edge on two adjacent edges,
- (2) an addition of an edge joining two existing vertices,
- (3) a series composition with the one-edge network.

Proposition 1. For a network G the following conditions are equivalent:

(1) G is series-parallel,

(2) two routes never pass through any edge in opposite directions,

- (3) for every pair of distinct vertices u and v, if u precedes v in some route r containing both vertices then u precedes v in all such routes.
- (4) the Wheatstone network of Fig. 2 cannot be embedded in G,
- (5) the vertices of G can be indexed by integers in such a way that, along each route, the indices are increasing.

Lemma 1. Let G be series parallel and f, f^* two flows in G such that $|f| \ge |f^*| > 0$. Then there exists a route r such that for each arc p of r,

$$f_p \ge f_p^*$$
 and $f_p > 0$

If $|f| > |f^*| > 0$ then both inequalities above are strict.

Proof. Induction on the number of vertices of G, using compositions in series and in parallel. \Box

Lemma 2. Let G a series-parallel network, c an additive cost function, and f an equilibrium flow for c. Then for every route the following conditions are equivalent:

(i) the route r is a minimal cost route (i.e. the cost of this route is equal to the cost of the flow f for the users, $C(f) = c_r(f)$),

(ii) every edge of r is in some minimal cost route.

Proof. (i) \Longrightarrow (ii) Obvious.

(ii) \Longrightarrow (i) Let r a route satisfying (ii).

We shall prove the following (stronger) claim.

Claim For every minimal-cost route q and every vertex v common to r and q, $c_{r_{sv}}(f) = c_{q_{sv}}(f)$.

By induction on the length of r_{sv} . Case v = s trivial.

Suppose $s \neq v$ and w precedes v on r and e is the corresponding edge.

By (ii) there exists a minimal cost route p containing the edge e. By induction hypothesis

$$c_{rsu}(f) = c_{psu}(f)$$

 \boldsymbol{c} additive thus

$$c_{r_{sv}}(f) = c_{r_{su}}(f) + c_e(f) = c_{p_{su}}(f) + c_e(f) = c_{p_{su}}(f)$$

To complete the proof of the claim it remains to show that for every pair of minimal cost routes p and q with a common vertex v

$$c_{psv}(f) = c_{qsv}(f)$$

From Proposition 1 (5) it follows that $p_{sv}q_{vt}$ is a route in G. Thus, since q is cost minimal under f

$$c_{psv}(f) + c_{qvt}(f) = c_{psvqvt}(f) \ge c_q(f) = c_{qsv}(f) + c_{qvt}(f)$$

implying

$$c_{p_{sv}}(f) \geq c_{q_{sv}}(f)$$
 inverse inequality $c_{q_{sv}}(f) \geq c_{p_{sv}}(f)$ follows by symmetry.

The

Lemma 3. Let G a series-parallel network, c^{\ddagger} and c^{*} cost functions such that for each flow f, $c_{r}^{\ddagger}(f) \geq c_{r}^{*}(f)$ for all routes r. Let f^{\ddagger} and f^{*} equilibria for (G, c^{\ddagger}) and (G, c^{*}) respectively such that $|f^{\ddagger}| \geq |f^{*}|$. Then the equilibrium costs satisfy $C^{\ddagger}(f) \geq C^{*}(f)$ (i.e. Breass paradox does not occur in the network G).

Proof. If $f^{\sharp} = f^*$ nothing to prove.

Suppose that $f^{\sharp} \neq f^*$, thus, in particular, $f^{\sharp} \neq 0$.

By Lemma 1 there exists a route r such that for each arc p of r,

$$f_p^{\sharp} \ge f_p^*$$
 and $f_p^{\sharp}
eq 0.$

Since c^{\sharp} is additive the first inequality implies that $c_r^{\sharp}(f^{\sharp}) \ge c_r^{\sharp}(f^*)$ while the second implies that every edge p of is on some route q with $f_q^{\sharp} > 0$. Te equilibrium condition and Lemma 2 imply that

$$c_r^{\sharp}(f^{\sharp}) = C^{\sharp}(f^{\sharp})$$

Hence $C^{\sharp}(f^{\sharp}) \ge c_r^{\sharp}(f^*)$.

But by our assumption

and by definition of equilibrium

Thus

 $c_r^{\sharp}(f^*) \ge c_r^*(f^*)$ $c_r^*(f^*) \ge C^*(f^*)$ $C^{\sharp}(f^{\sharp}) \ge C^*(f^*)$

The preceding lemma shows that Braess's paradox does not occur in series-parallel graphs. In series-parallel graphs Wheatstone network can be embedded and we can mimic the construction of the Braess's paradox for this network.

Pareto efficiency

Let G a network, c a cost function and f^* an equilibrium flow for (G, c). Then f^* is weakly Pareto efficient if, for every flow f such that $|f^*| = |f|$ there is some route r with $f_r > 0$ such that $c_r(f) \ge C(f^*)$.

The equilibrium f^* is Pareto efficient if, for every flow f such that $|f| = |f^*|$, either $c_r(f) = C(f^*)$ for all routes r with $f_r > 0$ or there is some route r with $f_r > 0$ for which $c_r(f) > C(f^*)$.

Pareto inefficiency

Figure 3: Pareto inefficient networks

For e_1 and e_3 the cost is 2x, for e_2 and e_4 is is 2 + x. The total flow is 1.

At equilibrium only e_1 and e_3 are used and the user cost is 4. But splitting the flow, half through e_1e_4 half through e_2e_3 the user cost is 3,5. The equilibrium is not Pareto efficient.

Theorem 2. For a network G the following conditions are equivalent:

- 1. for any cost function, all equilibria are weakly Pareto efficient,
- 2. for any increasing cost function, all equilibria are Pareto efficient,
- 3. G has linearly independent routes.

A network G has linearly independent routes if each route has at least one edge that does not belong to any other route.

This is a subclass of series-parallel networks.

Proposition 2. For each network G the following conditions are equivalent:

(i) G has linearly-independent routes,

(ii) for every pair of routes r and r' with a common vertex v, either $r_{sv} = r'_{sv}$ or $r_{vt} = r'_{vt}$,

(iii) none of the networks of Figures 2 and 3 is embedded in G,

(iv) there is no bad configuration (no three routes r_1, r_2, r such that r_1 contains an edge e_1 not belonging to r_2 , r_2 contains an edge e_2 not belonging to r_1 and r contains e_1 and e_2),

(v) G has only one edge or G is a result of

- connecting two networks with linearly independent routes in parallel,
- connecting in series a network with linearly independent routes with a single edge network.

Lemma 4. A series-parallel network has linearly independent routes iff for every pair of different flows f_p^* for all sections p of r.

Proof. In one direction: the networks of Fig 3 do not satisfy the property given in the lemma.

In the inverse direction by induction on the number of vertices using the composition operation for building networks with linearly independent routes. \Box