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Networks

Igal Milchtaich, Games and Economic Behavior 57 (2006), 321-346

G = (V,E) a finite undirected graph.

s, t a couple of source - sink (destination) vertices (single commodity
network).

Each edge e ∈ E joins two distinct vertices v, u ∈ V (loops are not allowed
but multiple parallel edges are possible).

A path is a sequences

p = v0e1v1 . . . vn−1envn

alternating vertices and edges, beginning and ending with vertices and such
that each edge ei is incident with vertices vi−1 and vi and all vertices vi are
different.
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A route is a path starting in the source vertex s and ending in the sink
vertex t.

R is the set of all routes in the network.

P is the set of all paths.

For a path p going through vertices u and w, where u precedes w on p,

puw

is the section of p starting at u and ending at w.
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Flows

f : R −→ R
+ the flow mapping.

fr denotes the flow through a route r ∈ R.

The total flow or traffic is defined as

|f | =
∑

r∈R

fr

If p is a path then then flow through p is defined as

fp =
∑

r∈R
p is a section of r

fr
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An arc of a network G is a path of the form uev, i.e. a path containing one
edge. (An arc = oriented edge).

4



Cost function

Let f a flow and p a path.

cp(f)

the cost of the path p as a function of the (entire) flow f .

We assume that c is monotone in the following sense:

for every path p and all flows f and f∗, if fp ≥ f∗
p and f−p ≥ f∗

−p, where
−p is the path inverse to p, then cp(f) ≥ cp(f

∗).

This implies, in particular, that the cost of each path depends only on the
flow on each of its arcs in the direction of p and in the opposite direction.
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The cost function is increasing if it satisfies the following condition:

for each route r and all flows f and f∗ if fp ≥ f∗(p) and f−p ≥ f∗
−p for

each arc p of r then cr(f) ≥ cr(f
∗).

A cost function is additive if for each path p and each flow f

cpuv(f) = cpuw(f) + cpwv(f)

where u,w, v are vertices appearing in this order when we traverse p.

Additivity means that the cost of a path is the sum of the costs of its arcs.
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Equilibrium

A flow f is in (Nash/Wardrop) equilibrium if the entire flow is on on routes
of minimal cost, that is,

for all routes r ∈ R with fr > 0,

cr(f) = min
q∈R

cq(f)

For an equilibrium f we denote

c(f) = min
q∈R

cq(f)

the equilibrium cost (for each user).
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If the cost functions are continuous then for any traffic a > 0 there exists
and equilibrium flow f such that |f | = a.
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Braess’s paradox

Braess’s paradox occurs in a network G if there exist two additive cost
functions c and c∗ such that for all routes r ∈ R and all flows f ♯,
cr(f

♯) ≥ c∗r(f
♯) but for every equilibrium flow f with respect to c and every

equilibrium flow f∗ with respect to c∗ such that |f | = |f∗| the equilibrium
costs satisfy

C(f) < C∗(f∗)
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Theorem 1. Braess’s paradox does not occur in a network G iff and only
if G is series-parallel.
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Series-parallel networks

A network G is series-parallel if either it contains only one edge or it
is obtained by a composition in parallel or in series of two series-parallel
networks.
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s1

t1

s2

t2

t

s s1

t2

x x = t1 = s2

G1 G2

composition of G1 and G2 in parallel

Composition in series

Figure 1: Compositions in parallel and in series of two networks
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Wheatstone network

ts

u

w

e1

e2

e3

e4

e5

Figure 2: Wheatstone network

ce1(x) = ce4(x) = 1 + 6x, ce2(x) = ce3(x) = 15 + 2x, ce5(x) = 1 + 6x.

Total traffic 1.

In equilibrium all the flow goes through e1e5e4 with the cost 3(1+6·1) = 21.

Increase the cost of the edge e5 to c∗e5
(x) = 15 + 2x. Then in equilibrium
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half of the traffic goes through e1e3 and the other half through e2e4 with
the cost for each user (1 + 6 · 1

2) + (15 + 2 · 1
2) = 20.
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Embedding a network

A network G1 is embedded in a network G2 if either both networks are
isomorphic or G2 can be obtained from G1 by applying any sequence of the
following operations:

(1) the subdivision of an edge with a new vertex that divides the edge on
two adjacent edges,

(2) an addition of an edge joining two existing vertices,

(3) a series composition with the one-edge network.
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Proposition 1. For a network G the following conditions are equivalent:

(1) G is series-parallel,

(2) two routes never pass through any edge in opposite directions,

(3) for every pair of distinct vertices u and v, if u precedes v in some route
r containing both vertices then u precedes v in all such routes.

(4) the Wheatstone network of Fig. 2 cannot be embedded in G,

(5) the vertices of G can be indexed by integers in such a way that, along
each route, the indices are increasing.
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Lemma 1. Let G be series parallel and f , f∗ two flows in G such that
|f | ≥ |f∗| > 0. Then there exists a route r such that for each arc p of r,

fp ≥ f∗
p and fp > 0

If |f | > |f∗| > 0 then both inequalities above are strict.

Proof. Induction on the number of vertices of G, using compositions in
series and in parallel. 2
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Lemma 2. Let G a series-parallel network, c an additive cost function, and
f an equilibrium flow for c. Then for every route the following conditions
are equivalent:

(i) the route r is a minimal cost route (i.e. the cost of this route is equal
to the cost of the flow f for the users, C(f) = cr(f)),

(ii) every edge of r is in some minimal cost route.

Proof. (i)=⇒(ii) Obvious.

(ii)=⇒(i) Let r a route satisfying (ii).

We shall prove the following (stronger) claim.
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Claim For every minimal-cost route q and every vertex v common to r and q, crsv(f) = cqsv(f).

By induction on the length of rsv. Case v = s trivial.

Suppose s 6= v and w precedes v on r and e is the corresponding edge.

s w v t
r

q

p

e

By (ii) there exists a minimal cost route p containing the edge e. By induction hypothesis

crsu(f) = cpsu(f)

c additive thus

crsv(f) = crsu(f) + ce(f) = cpsu(f) + ce(f) = cpsu(f)

To complete the proof of the claim it remains to show that for every pair of minimal cost routes p and q

with a common vertex v

cpsv(f) = cqsv(f)
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From Proposition 1 (5) it follows that psvqvt is a route in G. Thus, since q is cost minimal under f

cpsv(f) + cqvt(f) = cpsvqvt(f) ≥ cq(f) = cqsv(f) + cqvt(f)

implying
cpsv(f) ≥ cqsv(f)

The inverse inequality cqsv(f) ≥ cpsv(f) follows by symmetry.

2
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Lemma 3. Let G a series-parallel network, c♯ and c∗ cost functions such
that for each flow f , c♯

r(f) ≥ c∗r(f) for all routes r. Let f ♯ and f∗

equilibria for (G, c♯) and (G, c∗) respectively such that |f ♯| ≥ |f∗|. Then
the equilibrium costs satisfy C♯(f) ≥ C∗(f) (i.e. Breass paradox does not
occur in the network G).

Proof. If f♯ = f∗ nothing to prove.

Suppose that f♯ 6= f∗, thus, in particular, f♯ 6= 0.

By Lemma 1 there exists a route r such that for each arc p of r,

f
♯
p ≥ f

∗
p and f

♯
p 6= 0.

Since c♯ is additive the first inequality implies that c♯
r(f

♯) ≥ c♯
r(f

∗) while the second implies that every

edge p of is on some route q with f♯
q > 0. Te equilibrium condition and Lemma 2 imply that

c
♯
r(f

♯) = C
♯(f♯)

Hence C♯(f♯) ≥ c♯
r(f

∗).
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But by our assumption

c
♯
r(f

∗
) ≥ c

∗
r(f

∗
)

and by definition of equilibrium
c
∗
r(f

∗) ≥ C
∗(f∗)

Thus
C

♯(f♯) ≥ C
∗(f∗)

2
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The preceding lemma shows that Braess’s paradox does not occur in
series-parallel graphs. In series-parallel graphs Wheatstone network can be
embedded and we can mimic the construction of the Braess’s paradox for
this network.
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Pareto efficiency

Let G a network, c a cost function and f∗ an equilibrium flow for (G, c).
Then f∗ is weakly Pareto efficient if, for every flow f such that |f∗| = |f |
there is some route r with fr > 0 such that cr(f) ≥ C(f∗).

The equilibrium f∗ is Pareto efficient if, for every flow f such that |f | = |f∗|,
either cr(f) = C(f∗) for all routes r with fr > 0 or there is some route r

with fr > 0 for which cr(f) > C(f∗).
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Pareto inefficiency

s

t

e2e1

e3 e4

s

t

Figure 3: Pareto inefficient networks

For e1 and e3 the cost is 2x, for e2 and e4 is is 2 + x. The total flow is 1.

At equilibrium only e1 and e3 are used and the user cost is 4. But splitting
the flow, half through e1e4 half through e2e3 the user cost is 3, 5. The
equilibrium is not Pareto efficient.
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Theorem 2. For a network G the following conditions are equivalent:

1. for any cost function, all equilibria are weakly Pareto efficient,

2. for any increasing cost function, all equilibria are Pareto efficient,

3. G has linearly independent routes.
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A network G has linearly independent routes if each route has at least one
edge that does not belong to any other route.

This is a subclass of series-parallel networks.

Proposition 2. For each network G the following conditions are
equivalent:

(i) G has linearly-independent routes,

(ii) for every pair of routes r and r′ with a common vertex v, either
rsv = r′sv or rvt = r′vt,

(iii) none of the networks of Figures 2 and 3 is embedded in G,
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(iv) there is no bad configuration (no three routes r1, r2, r such that r1

contains an edge e1 not belonging to r2, r2 contains an edge e2 not
belonging to r1 and r contains e1 and e2),

(v) G has only one edge or G is a result of

• connecting two networks with linearly independent routes in parallel,
• connecting in series a network with linearly independent routes with

a single edge network.
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Lemma 4. A series-parallel network has linearly independent routes iff for
every pair of different flows f∗

p for all sections p of r.

Proof. In one direction: the networks of Fig 3 do not satisfy the property
given in the lemma.

In the inverse direction by induction on the number of vertices using
the composition operation for building networks with linearly independent
routes. 2
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