Network topology and the eficiency of equilibrium

January 15, 2007

Networks

Igal Milchtaich, Games and Economic Behavior 57 (2006), 321-346
$G=(V, E)$ a finite undirected graph.
s, t a couple of source - sink (destination) vertices (single commodity network).

Each edge $e \in E$ joins two distinct vertices $v, u \in V$ (loops are not allowed but multiple parallel edges are possible).

A path is a sequences

$$
p=v_{0} e_{1} v_{1} \ldots v_{n-1} e_{n} v_{n}
$$

alternating vertices and edges, beginning and ending with vertices and such that each edge e_{i} is incident with vertices v_{i-1} and v_{i} and all vertices v_{i} are different.

A route is a path starting in the source vertex s and ending in the sink vertex t.
\mathcal{R} is the set of all routes in the network.
\mathcal{P} is the set of all paths.
For a path p going through vertices u and w, where u precedes w on p,

$$
p_{u w}
$$

is the section of p starting at u and ending at w.

Flows

$f: \mathcal{R} \longrightarrow \mathbb{R}^{+}$the flow mapping.
f_{r} denotes the flow through a route $r \in \mathcal{R}$.
The total flow or traffic is defined as

$$
|f|=\sum_{r \in \mathcal{R}} f_{r}
$$

If p is a path then then flow through p is defined as

$$
f_{p}=\sum_{\substack{r \in \mathcal{R} \\ p \text { is s section of } r}} f_{r}
$$

An arc of a network G is a path of the form uev, i.e. a path containing one edge. (An arc $=$ oriented edge).

Cost function

Let f a flow and p a path.

$$
c_{p}(f)
$$

the cost of the path p as a function of the (entire) flow f.
We assume that c is monotone in the following sense:
for every path p and all flows f and f^{*}, if $f_{p} \geq f_{p}^{*}$ and $f_{-p} \geq f_{-p}^{*}$, where $-p$ is the path inverse to p, then $c_{p}(f) \geq c_{p}\left(f^{*}\right)$.

This implies, in particular, that the cost of each path depends only on the flow on each of its arcs in the direction of p and in the opposite direction.

The cost function is increasing if it satisfies the following condition:
for each route r and all flows f and f^{*} if $f_{p} \geq f^{*}(p)$ and $f_{-p} \geq f_{-p}^{*}$ for each arc p of r then $c_{r}(f) \geq c_{r}\left(f^{*}\right)$.

A cost function is additive if for each path p and each flow f

$$
c_{p_{u v}}(f)=c_{p_{u w}}(f)+c_{p_{w v}}(f)
$$

where u, w, v are vertices appearing in this order when we traverse p.
Additivity means that the cost of a path is the sum of the costs of its arcs.

Equilibrium

A flow f is in (Nash/Wardrop) equilibrium if the entire flow is on on routes of minimal cost, that is,
for all routes $r \in \mathcal{R}$ with $f_{r}>0$,

$$
c_{r}(f)=\min _{q \in \mathcal{R}} c_{q}(f)
$$

For an equilibrium f we denote

$$
c(f)=\min _{q \in \mathcal{R}} c_{q}(f)
$$

the equilibrium cost (for each user).

If the cost functions are continuous then for any traffic $a>0$ there exists and equilibrium flow f such that $|f|=a$.

Braess's paradox

Braess's paradox occurs in a network G if there exist two additive cost functions c and c^{*} such that for all routes $r \in \mathcal{R}$ and all flows f^{\sharp}, $c_{r}\left(f^{\sharp}\right) \geq c_{r}^{*}\left(f^{\sharp}\right)$ but for every equilibrium flow f with respect to c and every equilibrium flow f^{*} with respect to c^{*} such that $|f|=\left|f^{*}\right|$ the equilibrium costs satisfy

$$
C(f)<C^{*}\left(f^{*}\right)
$$

Theorem 1. Braess's paradox does not occur in a network G iff and only if G is series-parallel.

Series-parallel networks

A network G is series-parallel if either it contains only one edge or it is obtained by a composition in parallel or in series of two series-parallel networks.

Figure 1: Compositions in parallel and in series of two networks

Wheatstone network

Figure 2: Wheatstone network
$c_{e_{1}}(x)=c_{e_{4}}(x)=1+6 x, c_{e_{2}}(x)=c_{e_{3}}(x)=15+2 x, c_{e_{5}}(x)=1+6 x$.
Total traffic 1.
In equilibrium all the flow goes through $e_{1} e_{5} e_{4}$ with the cost $3(1+6 \cdot 1)=21$.
Increase the cost of the edge e_{5} to $c_{e_{5}}^{*}(x)=15+2 x$. Then in equilibrium
half of the traffic goes through $e_{1} e_{3}$ and the other half through $e_{2} e_{4}$ with the cost for each user $\left(1+6 \cdot \frac{1}{2}\right)+\left(15+2 \cdot \frac{1}{2}\right)=20$.

Embedding a network

A network G_{1} is embedded in a network G_{2} if either both networks are isomorphic or G_{2} can be obtained from G_{1} by applying any sequence of the following operations:
(1) the subdivision of an edge with a new vertex that divides the edge on two adjacent edges,
(2) an addition of an edge joining two existing vertices,
(3) a series composition with the one-edge network.

Proposition 1. For a network G the following conditions are equivalent:
(1) G is series-parallel,
(2) two routes never pass through any edge in opposite directions,
(3) for every pair of distinct vertices u and v, if u precedes v in some route r containing both vertices then u precedes v in all such routes.
(4) the Wheatstone network of Fig. 2 cannot be embedded in G,
(5) the vertices of G can be indexed by integers in such a way that, along each route, the indices are increasing.

Lemma 1. Let G be series parallel and f, f^{*} two flows in G such that $|f| \geq\left|f^{*}\right|>0$. Then there exists a route r such that for each arc p of r,

$$
f_{p} \geq f_{p}^{*} \quad \text { and } \quad f_{p}>0
$$

If $|f|>\left|f^{*}\right|>0$ then both inequalities above are strict.
Proof. Induction on the number of vertices of G, using compositions in series and in parallel.

Lemma 2. Let G a series-parallel network, c an additive cost function, and f an equilibrium flow for c. Then for every route the following conditions are equivalent:
(i) the route r is a minimal cost route (i.e. the cost of this route is equal to the cost of the flow f for the users, $C(f)=c_{r}(f)$),
(ii) every edge of r is in some minimal cost route.

Proof. (i) \Longrightarrow (ii) Obvious.
(ii) \Longrightarrow (i) Let r a route satisfying (ii).

We shall prove the following (stronger) claim.

Claim For every minimal-cost route q and every vertex v common to r and $q, c_{r_{s v}}(f)=c_{q_{s v}}(f)$.
By induction on the length of $r_{s v}$. Case $v=s$ trivial.
Suppose $s \neq v$ and w precedes v on r and e is the corresponding edge.

By (ii) there exists a minimal cost route p containing the edge e. By induction hypothesis

$$
c_{r_{s u}}(f)=c_{p_{s u}}(f)
$$

c additive thus

$$
c_{r_{s v}}(f)=c_{r_{s u}}(f)+c_{e}(f)=c_{p_{s u}}(f)+c_{e}(f)=c_{p_{s u}}(f)
$$

To complete the proof of the claim it remains to show that for every pair of minimal cost routes p and q with a common vertex v

$$
c_{p_{s v}}(f)=c_{q_{s v}}(f)
$$

From Proposition 1 (5) it follows that $p_{s v} q_{v t}$ is a route in G. Thus, since q is cost minimal under f

$$
c_{p_{s v}}(f)+c_{q_{v t}}(f)=c_{p_{s v} q_{v t}}(f) \geq c_{q}(f)=c_{q_{s v}}(f)+c_{q_{v t}}(f)
$$

implying

$$
c_{p_{s v}}(f) \geq c_{q_{s v}}(f)
$$

The inverse inequality $c_{q s v}(f) \geq c_{p s v}(f)$ follows by symmetry.

Lemma 3. Let G a series-parallel network, c^{\sharp} and c^{*} cost functions such that for each flow $f, c_{r}^{\sharp}(f) \geq c_{r}^{*}(f)$ for all routes r. Let f^{\sharp} and f^{*} equilibria for $\left(G, c^{\sharp}\right)$ and $\left(G, c^{*}\right)$ respectively such that $\left|f^{\sharp}\right| \geq\left|f^{*}\right|$. Then the equilibrium costs satisfy $C^{\sharp}(f) \geq C^{*}(f)$ (i.e. Breass paradox does not occur in the network G).

Proof. If $f^{\sharp}=f^{*}$ nothing to prove.
Suppose that $f^{\sharp} \neq f^{*}$, thus, in particular, $f^{\sharp} \neq 0$.
By Lemma 1 there exists a route r such that for each arc p of r,

$$
f_{p}^{\sharp} \geq f_{p}^{*} \quad \text { and } \quad f_{p}^{\sharp} \neq 0 .
$$

Since c^{\sharp} is additive the first inequality implies that $c_{r}^{\sharp}\left(f^{\sharp}\right) \geq c_{r}^{\sharp}\left(f^{*}\right)$ while the second implies that every edge p of is on some route q with $f_{q}^{\sharp}>0$. Te equilibrium condition and Lemma 2 imply that

$$
c_{r}^{\sharp}\left(f^{\sharp}\right)=C^{\sharp}\left(f^{\sharp}\right)
$$

Hence $C^{\sharp}\left(f^{\sharp}\right) \geq c_{r}^{\sharp}\left(f^{*}\right)$.

But by our assumption
and by definition of equilibrium
Thus

$$
\begin{aligned}
& c_{r}^{\sharp}\left(f^{*}\right) \geq c_{r}^{*}\left(f^{*}\right) \\
& c_{r}^{*}\left(f^{*}\right) \geq C^{*}\left(f^{*}\right) \\
& C^{\sharp}\left(f^{\sharp}\right) \geq C^{*}\left(f^{*}\right)
\end{aligned}
$$

The preceding lemma shows that Braess's paradox does not occur in series-parallel graphs. In series-parallel graphs Wheatstone network can be embedded and we can mimic the construction of the Braess's paradox for this network.

Pareto efficiency

Let G a network, c a cost function and f^{*} an equilibrium flow for (G, c). Then f^{*} is weakly Pareto efficient if, for every flow f such that $\left|f^{*}\right|=|f|$ there is some route r with $f_{r}>0$ such that $c_{r}(f) \geq C\left(f^{*}\right)$.

The equilibrium f^{*} is Pareto efficient if, for every flow f such that $|f|=\left|f^{*}\right|$, either $c_{r}(f)=C\left(f^{*}\right)$ for all routes r with $f_{r}>0$ or there is some route r with $f_{r}>0$ for which $c_{r}(f)>C\left(f^{*}\right)$.

Pareto inefficiency

Figure 3: Pareto inefficient networks
For e_{1} and e_{3} the cost is $2 x$, for e_{2} and e_{4} is is $2+x$. The total flow is 1 .
At equilibrium only e_{1} and e_{3} are used and the user cost is 4 . But splitting the flow, half through $e_{1} e_{4}$ half through $e_{2} e_{3}$ the user cost is 3,5 . The equilibrium is not Pareto efficient.

Theorem 2. For a network G the following conditions are equivalent:

1. for any cost function, all equilibria are weakly Pareto efficient,
2. for any increasing cost function, all equilibria are Pareto efficient,
3. G has linearly independent routes.

A network G has linearly independent routes if each route has at least one edge that does not belong to any other route.

This is a subclass of series-parallel networks.
Proposition 2. For each network G the following conditions are equivalent:
(i) G has linearly-independent routes,
(ii) for every pair of routes r and r^{\prime} with a common vertex v, either $r_{s v}=r_{s v}^{\prime}$ or $r_{v t}=r_{v t}^{\prime}$,
(iii) none of the networks of Figures 2 and 3 is embedded in G,
(iv) there is no bad configuration (no three routes r_{1}, r_{2}, r such that r_{1} contains an edge e_{1} not belonging to r_{2}, r_{2} contains an edge e_{2} not belonging to r_{1} and r contains e_{1} and e_{2}),
(v) G has only one edge or G is a result of

- connecting two networks with linearly independent routes in parallel,
- connecting in series a network with linearly independent routes with a single edge network.

Lemma 4. A series-parallel network has linearly independent routes iff for every pair of different flows f_{p}^{*} for all sections p of r.

Proof. In one direction: the networks of Fig 3 do not satisfy the property given in the lemma.

In the inverse direction by induction on the number of vertices using the composition operation for building networks with linearly independent routes.

