
Selfish routing - infinitely divisible flow model

December 19, 2006



Networks

Model: Tim Roughgarden and Eva Tardos

G = (V,E) a finite directed graph.

si, ti, (i = 1, . . . , k) couples of source - sink (destination) vertices
(commodities).

Pi the set of all (simple) paths from si to ti.

P = ∪k
i=1Pi - the set of all paths between a source and a corresponding

destination.
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Flows

f : P −→ R
+ the flow mapping.

fP denotes the flow through a path P ∈ P.

fe =
∑

{P |e∈P} fP - the flow through an edge e

ri - a finite and positive traffic rate from si to ti, i = 1, ..., k.

A flow f is feasible if ∑

P∈Pi

fP = ri

for all i.

In the sequel we are mostly (only?) interested in feasible flows.
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Latency (cost) mappings

A latency or cost mapping for an edge e:

ℓe : R
+ −→ R

+

We assume that such a mapping ℓe is continuous and non-decreasing.

Intuitively, ℓe(fe) gives the delay over the edge e if the flow going through
e is equal to fe. Thus latency depends on congestion.

ℓP (f) =
∑

e∈P

ℓe(fe)

- the latency/cost of a path P with respect to a flow f .
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An instance:
(G, r, ℓ).
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The cost of the flow f :

C(f) =
∑

P∈P

ℓP (f) · fP =
∑

e∈E

ℓe(fe) · fe

∑

P∈P

ℓP (f)fP =
∑

P∈P

(
∑

e∈P

ℓe(fe))fP =

∑

e∈E

(
∑

{P∈P|e∈P}

fP )ℓe(fe) =
∑

e∈E

ℓe(fe) · fe
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Definition. Given an instance (G, r, ℓ) the flow minimizing C(f) is called
optimal.

The optimal flow always exists: the space of feasible flows is compact and
the cost function is continuous.
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Flows at Nash equilibrium

Definition. A feasible flow f in (G, r, ℓ) is at Nash equilibrium (is a Nash
flow) if for all commodities i ∈ {1, . . . , k} and for all paths P1, P2 ∈ Pi with
fP1

> 0, for all amounts δ ∈ (0; fP1
] of traffic on P1

ℓP1
(f) ≤ ℓP2

(f)

where

fP =





fP − δ if P = P1

fP + δ if P = P2

fP otherwise
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Intuitively, if a player controls the amount δ of the flow going through the
path P1 then his flow suffers the latency ℓP1

(f). If he redirects this flow to
the path P2 then f will be the new flow and he will suffer the latency of
ℓP2

(f) on P2.

Thus at a Nash equilibrium there is no incentive to redirect any part of the
flow.
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Lemma. A flow f feasible for the instance (G, r, ℓ) is at Nash equilibrium
if for every commodity i and all P1, P2 ∈ Pi with fP1

> 0

ℓP1
(f) ≤ ℓP2

(f)

Proof. By continuity and monotonicity of ℓe. 2
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Pigou’s example
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Figure 1: The latency of upper edge is ℓ(x) = 1, the latency of lower edge
is ℓ(x) = x. The traffic rate between s and t is 1.

In this example the Nash equilibrium f is attained only if all flow goes
through the upper edge, the cost is C(f) = 1.

If the flow a goes through the the lower edge and 1 − a through the upper
one then the cost is C(fa) = a2 + 1 − a and the minimum is attained for
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a = 1

2
, thus the cost of the optimal flow f∗ is C(f∗) = 3

4
.
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Braess’s paradox
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Figure 2: The traffic rate is 1. Latency functions are the same as in the
previous example. In (b) the latency on (u,w) edge is 0.

On figure (a) both Nash and optimal flow pass 1

2
of the traffic by each path.

The cost is then 3

2
.
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On (b) the new edge (u,w) has latency 0. Now the Nash flow routes all
the traffic by s → u → w → t with the cost 2. Adding a new low latency
edge results in higher cost of Nash equilibrium! What is the cost of the
optimal flow in (b)?
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The price of anarchy

Fix an instance (G, r, ℓ). Suppose that f is the worst Nash equilibrium flow
(worst case equilibria – Papadimitriou), i.e. the Nash equilibrium with the
highest cost C(f). Suppose that f∗ is an optimal flow.

The price of anarchy of (G, r, ℓ) is defined as

ρ(G, r, ℓ) =
C(f)

C(f∗)

where f∗ is an optimal flow and f a flow at Nash equilibrium.

If C(f∗) = 0 then f∗ is also a Nash equilibrium and we set ρ(G, r, ℓ) = 1.
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Figure 3: The price of anarchy can be arbitrarily high. Traffic rate is 1. The
figure shows latency mappings for both edges. In Nash equilibrium all flow
goes through the upper edge. Calculate the optimal flow.
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Convex optimization problem

It turns out that the problem of finding the optimal flow and the problem
of finding a Nash flow are related to the same non-linear programming
problem:

minimize
∑

e∈E

he(f)

subject to:
∑

P∈Pi

fP = ri, ∀i ∈ {1, . . . , k}

fe =
∑

{P∈Pi|e∈P}

fP , ∀e ∈ E

fP ≥ 0, ∀P ∈ P,

(1)
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We can solve this problem if he are convex functions.

ri are constants fixed by the instance (G, r, ℓ), fe and fP are variables
variables.

A feasible solution of (1) is any flow f satisfying all the constraints of (1).

A solution of (1) is any feasible solution f minimizing the objective function.
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Convex functions

A subset A of R
n is convex if for all x, y ∈ A and 0 ≤ α ≤ 1,

αx + (1 − α)y ∈ A.

A function g : R
n −→ R is convex if for all x1, x2 ∈ R

n

g(αx1 + βx2) ≤ αg(x1) + βg(x2)

whenever α, β ≥ 0 and α + β = 1.

If ge are convex functions then
∑

e∈E ge(f) is convex.

If g is a convex function and α > 0 then αg is a convex function.
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Lemma 1. Let f be convex differentiable function. Then (x−a) ·f ′(a) ≤
f(x) − f(a).

Proof.

y = f(x)

a

y − f(a) = f ′(a)(x − a)

f(a)
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The tangent line to f at the point (a, f(a)) : y − f(a) = f ′(a) · (x − a)
lies below the graph of f . This yields the thesis. 2

Lemma. If f is a convex function over a convex domain A ⊂ R
n and

a ∈ A is a local minimum of f then a is also a global minimum.

If f is strictly convex then there is only one global minimum.
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Notation: h′
e(x) = d

dx
he(x) and h′

P (x) =
∑

e∈P h′
e(x).

Theorem. Let f∗ be a feasible solution to (1), where all functions he are
continuously differentiable and convex. Then the following are equivalent:

(a) f∗ is an optimal solution of (1),

(b) for every i, 1 ≤ i ≤ k, and P1, P2 ∈ Pi with f∗
P1

> 0,

h′
P1

(f∗) ≤ h′
P2

(f∗)

(c) for every feasible flow f

∑

P∈P

h′
P (f∗)f∗

P ≤
∑

P∈P

h′
P (f∗)fP
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(d) for every feasible flow f ,

∑

e∈E

h′
e(f

∗
e )f∗

e ≤
∑

e∈E

h′
e(f

∗
e )fe
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Remark In the preceding theorem

1. setting for all e ∈ E

he(fe) = ℓe(fe)fe

in (a) we obtain the optimal flow problem.

2. taking he(fe) such that
h′

e(fe) = ℓe(fe)

then in (b) w obtain the condition of a Nash equilibrium.

Corollary. Finding an optimal flow for an instance (G, r, ℓ) is equivalent
to finding a Nash flow for an instance (G, r, ℓ∗) where

ℓ∗e(fe) =
d

dx
(ℓe(x)x) = ℓe(x) + xℓ′e(x)
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Optimal equilibria

Latency functions ℓe are semiconvex if ℓe are differentiable and ℓ∗e(x) =
xℓe(x) are convex on [0;∞).
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Existence and uniqueness of a Nash equilibrium

If ℓe(x) are continuous and nondecreasing then he(x) =
∫ x

0
ℓe(t)dt is

convex and there exists a Nash equilibrium (convex programming problem
on bounded convex domain has a solution).

Unicity
If f and f̃ are Nash flows for (G, r, ℓ) then ℓe(fe) = ℓe(f̃e) for each edge e.

(Since f and f̃ are solutions for a convex programming problem all linear

combinations αf + (1 − α)f̃ are also optimal and the objective function is
therefore constant for all these combinations. This is only possible if all
he(x) are linear between fe and f̃e. Thus ℓe(x) = d

dx
he(x) are constant.)

If f and f̃ are Nash flows for (G, r, ℓ) and ℓe(x) is strictly increasing then

fe = f̃e.
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