
Functional programming languages
Part II: abstract machines

Xavier Leroy

INRIA Rocquencourt

MPRI 2-4-2, 2006

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 1 / 116

Execution models for a programming language

1 Interpretation:
control (sequencing of computations) is expressed by a term of the
source language, represented by a tree-shaped data structure. The
interpreter traverses this tree during execution.

2 Compilation to native code:
control is compiled to a sequence of machine instructions, before
execution. These instructions are those of a real microprocessor and
are executed in hardware.

3 Compilation to abstract machine code:
control is compiled to a sequence of instructions. These instructions
are those of an abstract machine. They do not correspond to that of
an existing hardware processor, but are chosen close to the basic
operations of the source language.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 2 / 116

Execution models for a programming language

1 Interpretation:
control (sequencing of computations) is expressed by a term of the
source language, represented by a tree-shaped data structure. The
interpreter traverses this tree during execution.

2 Compilation to native code:
control is compiled to a sequence of machine instructions, before
execution. These instructions are those of a real microprocessor and
are executed in hardware.

3 Compilation to abstract machine code:
control is compiled to a sequence of instructions. These instructions
are those of an abstract machine. They do not correspond to that of
an existing hardware processor, but are chosen close to the basic
operations of the source language.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 2 / 116

Execution models for a programming language

1 Interpretation:
control (sequencing of computations) is expressed by a term of the
source language, represented by a tree-shaped data structure. The
interpreter traverses this tree during execution.

2 Compilation to native code:
control is compiled to a sequence of machine instructions, before
execution. These instructions are those of a real microprocessor and
are executed in hardware.

3 Compilation to abstract machine code:
control is compiled to a sequence of instructions. These instructions
are those of an abstract machine. They do not correspond to that of
an existing hardware processor, but are chosen close to the basic
operations of the source language.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 2 / 116

Outline

1 Warm-up exercise: abstract machine for arithmetic expressions

2 Examples of abstract machines for functional languages
The Modern SECD
Tail call elimination
Krivine’s machine
The ZAM

3 Correctness proofs for abstract machines
Total correctness for Krivine’s machine
Partial correctness for the Modern SECD
Total correctness for the Modern SECD

4 Natural semantics for divergence
Definition and properties
Application to proofs of abstract machines

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 3 / 116

Arithmetic expressions

An abstract machine for arithmetic expressions
(Warm-up exercise)

Arithmetic expressions:

a ::= N | a1 + a2 | a1 − a2 | . . .

The machine uses a stack to store intermediate results during expression
evaluation. (Cf. Hewlett-Packard pocket calculators.)

Instruction set:

CONST(N) push integer N on stack

ADD pop two integers, push their sum

SUB pop two integers, push their difference

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 5 / 116

Arithmetic expressions

Compilation scheme

Compilation (translation of expressions to sequences of instructions) is just
translation to “reverse Polish notation”:

C(N) = CONST(N)

C(a1 + a2) = C(a1); C(a2); ADD

C(a1 − a2) = C(a1); C(a2); SUB

Example 1

C(5− (1 + 2)) = CONST(5); CONST(1); CONST(2); ADD; SUB

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 7 / 116

Arithmetic expressions

Transitions of the abstract machine

The machine has two components:

a code pointer c (the instructions yet to be executed)

a stack s (holding intermediate results).

Machine state before Machine state after

Code Stack Code Stack

CONST(N); c s c N.s

ADD; c n2.n1.s c (n1 + n2).s

SUB; c n2.n1.s c (n1 − n2).s

Notations for stacks: top of stack is to the left.

push v on s: s −→ v .s pop v off s: v .s −→ s

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 9 / 116

Arithmetic expressions

Evaluating expressions with the abstract machine

Initial state: code = C(a) and stack = ε.

Final state: code = ε and stack = n.ε.
The result of the computation is the integer n (top of stack at end of
execution).

Example 2

Code Stack

CONST(5); CONST(1); CONST(2); ADD; SUB ε

CONST(1); CONST(2); ADD; SUB 5.ε

CONST(2); ADD; SUB 1.5.ε

ADD; SUB 2.1.5.ε

SUB 3.5.ε

ε 2.ε

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 11 / 116

Arithmetic expressions

Executing abstract machine code: by interpretation

The interpreter is typically written in a low-level language such as C and
executes 5 times faster than a term interpreter (typically).

int interpreter(int * code)

{

int * s = bottom_of_stack;

while (1) {

switch (*code++) {

case CONST: *s++ = *code++; break;

case ADD: s[-2] = s[-2] + s[-1]; s--; break;

case SUB: s[-2] = s[-2] - s[-1]; s--; break;

case EPSILON: return s[-1];

}

}

}

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 13 / 116

Arithmetic expressions

Executing abstract machine code: by expansion

Alternatively, abstract instructions can be expanded into canned sequences
for a real processor, giving an additional speedup by a factor of 5
(typically).

CONST(i) ---> pushl $i

ADD ---> popl %eax

addl 0(%esp), %eax

SUB ---> popl %eax

subl 0(%esp), %eax

EPSILON ---> popl %eax

ret

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 15 / 116

Examples of abstract machines

Outline

1 Warm-up exercise: abstract machine for arithmetic expressions

2 Examples of abstract machines for functional languages
The Modern SECD
Tail call elimination
Krivine’s machine
The ZAM

3 Correctness proofs for abstract machines
Total correctness for Krivine’s machine
Partial correctness for the Modern SECD
Total correctness for the Modern SECD

4 Natural semantics for divergence
Definition and properties
Application to proofs of abstract machines

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 16 / 116

Examples of abstract machines The Modern SECD

The Modern SECD: An abstract machine for call-by-value

Three components in this machine:

a code pointer c (the instructions yet to be executed)

an environment e (giving values to variables)

a stack s (holding intermediate results and return addresses).

Instruction set (+ arithmetic operations as before):

ACCESS(n) push n-th field of the environment

CLOSURE(c) push closure of code c with current environment

LET pop value and add it to environment

ENDLET discard first entry of environment

APPLY pop function closure and argument, perform application

RETURN terminate current function, jump back to caller

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 18 / 116

Examples of abstract machines The Modern SECD

Compilation scheme

Compilation scheme:

C(n) = ACCESS(n)

C(λa) = CLOSURE(C(a); RETURN)

C(let a in b) = C(a); LET; C(b); ENDLET

C(a b) = C(a); C(b); APPLY

Constants and arithmetic: as before.

Example 3

Source term: (λx . x + 1) 2.
Code: CLOSURE(ACCESS(1); CONST(1); ADD; RETURN); CONST(2); APPLY.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 20 / 116

Examples of abstract machines The Modern SECD

Machine transitions

Machine state before Machine state after

Code Env Stack Code Env Stack

ACCESS(n); c e s c e e(n).s

LET; c e v .s c v .e s

ENDLET; c v .e s c e s

CLOSURE(c ′); c e s c e c ′[e].s

APPLY; c e v .c ′[e ′].s c ′ v .e ′ c .e.s

RETURN; c e v .c ′.e ′.s c ′ e ′ v .s

c[e] denotes the closure of code c with environment e.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 22 / 116

Examples of abstract machines The Modern SECD

Example of evaluation

Initial code CLOSURE(c); CONST(2); APPLY
where c = ACCESS(1); CONST(1); ADD; RETURN.

Code Env Stack

CLOSURE(c); CONST(2); APPLY e s

CONST(2); APPLY e c[e].s

APPLY e 2.c[e].s

c 2.e ε.e.s

CONST(1); ADD; RETURN 2.e 2.ε.e.s

ADD; RETURN 2.e 1.2.ε.e.s

RETURN 2.e 3.ε.e.s

ε e 3.s

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 24 / 116

Examples of abstract machines Tail call elimination

An optimization: tail call elimination

Consider:

f = λ. ... g 1 ...

g = λ. h(...)

h = λ. ...

The call from g to h is a tail call: when h returns, g has nothing more to
do except return immediately to f.

At the machine level, the code of g is of the form . . . ; APPLY; RETURN
When g calls h, it pushes a return frame on the stack containing the code
RETURN. When h returns, it jumps to this RETURN in g, which jumps to the
continuation in f.

Tail-call elimination consists in avoiding this extra return frame and this
extra RETURN instruction, enabling h to return directly to f, and saving
stack space.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 26 / 116

Examples of abstract machines Tail call elimination

The importance of tail call elimination

Tail call elimination is important for recursive functions of the following
form — the functional equivalent to loops in imperative languages:

let rec fact n accu =

if n = 0 then accu else fact (n-1) (accu*n)

in fact 42 1

The recursive call to fact is in tail position. With tail call elimination, this
code runs in constant stack space. Without, it consumes O(n) stack space
and risks stack overflow.

Compare with the standard definition of fact, which is not tail recursive
and runs in O(n) stack space:

let rec fact n = if n = 0 then 1 else n * fact (n-1)

in fact 42

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 28 / 116

Examples of abstract machines Tail call elimination

Tail call elimination in the Modern SECD

Split the compilation scheme in two functions: T for expressions in tail
call position, C for other expressions.

T (let a in b) = C(a); LET; T (b)

T (a b) = C(a); C(b); TAILAPPLY

T (a) = C(a); RETURN (otherwise)

C(n) = ACCESS(n)

C(λa) = CLOSURE(T (a))

C(let a in b) = C(a); LET; C(b); ENDLET

C(a b) = C(a); C(b); APPLY

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 30 / 116

Examples of abstract machines Tail call elimination

Tail call elimination in the Modern SECD

The TAILAPPLY instruction behaves like APPLY, but does not bother
pushing a return frame to the current function.

Machine state before Machine state after

Code Env Stack Code Env Stack

TAILAPPLY; c e v .c ′[e ′].s c ′ v .e ′ s

APPLY; c e v .c ′[e ′].s c ′ v .e ′ c .e.s

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 32 / 116

Examples of abstract machines Krivine’s machine

Krivine’s machine: An abstract machine for call-by-name

As for the Modern SECD, three components in this machine:

Code c

Environment e

Stack s

However, stack and environment no longer contain values, but thunks:
closures c[e] representing expressions (function arguments) whose
evaluations are delayed until their value is needed.

Consistent with the β-reduction rule for call by name:

(λ.a)[e] b[e ′]→ a[b[e ′].e]

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 34 / 116

Examples of abstract machines Krivine’s machine

Compilation scheme

C(n) = ACCESS(n)

C(λa) = GRAB; C(a)

C(a b) = PUSH(C(b)); C(a)

Instruction set:

ACCESS(N) start evaluating the N-th thunk found in the environment

PUSH(c) push a thunk for code c

GRAB pop one argument and add it to the environment

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 36 / 116

Examples of abstract machines Krivine’s machine

Transitions of Krivine’s machine

Machine state before Machine state after

Code Env Stack Code Env Stack

ACCESS(n); c e s c ′ e ′ s if e(n) = c ′[e ′]

GRAB; c e c ′[e ′].s c c ′[e ′].e s

PUSH(c ′); c e s c e c ′[e].s

Initial state: code = C(a), stack = ε.
Final state: code = GRAB; c , stack = ε.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 38 / 116

Examples of abstract machines Krivine’s machine

How does it work?

The stack encodes the spine of applications in progress.
The code and environment encode the term at the bottom left of the
spine.

@

@ a2[e2]

n[e] a1[e1]

StackCode

@

@ a2[e2]

(λa)[e ′] a1[e1]

@

a[a1[e1].e
′] a2[e2]

ACCESS GRAB

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 40 / 116

Examples of abstract machines Krivine’s machine

Call-by-name in practice

Realistic abstract machines for call-by-name are more complex than
Krivine’s machine in two respects:

Constants and primitive operations:
Operations such as addition are strict: they must evaluate fully their
arguments before reducing. Extra mechanisms are needed to force
evaluation of sub-expressions to values.

Lazy evaluation, i.e. sharing of computations:
Call-by-name evaluates an expression every time its value is needed.
Lazy evaluation performs the evaluation the first time, then caches
the result for later uses.

See: Implementing lazy functional languages on stock hardware: the Spineless Tagless

G-machine, S.L. Peyton Jones, Journal of Functional Programming 2(2), Apr 1992.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 41 / 116

Examples of abstract machines Krivine’s machine

Eval-apply vs. push-enter

The SECD and Krivine’s machine illustrate two subtly different ways to
evaluate function applications f a:

Eval-apply: (e.g. SECD)
Evaluate f to a closure c[e], evaluate a, extend environment e ′, jump
to c .
The β-reduction is performed by the caller.

Push-enter: (e.g. Krivine but also Postscript, Forth)
Push a on stack, evaluate f to a closure c[e], jump to c , pop
argument, extend environment e with it.
The β-reduction is performed by the callee.

The difference becomes significant for curried function applications

f a1 a2 . . . an = . . . ((f a1) a2) . . . an where f = λ . . . λb

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 42 / 116

Examples of abstract machines Krivine’s machine

Eval-apply vs. push-enter for curried applications

Consider f a1 a2 where f = λ.λ.b.

Eval-apply Push-enter

eval f push a2

eval a1 push a1

APPLY find & enter f
ց ց

CLOSURE(λ.b) GRAB

RETURN GRAB

ւ eval b
eval a2

APPLY

ց
eval b

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 44 / 116

Examples of abstract machines Krivine’s machine

Eval-apply vs. push-enter for curried applications

Compared with push-enter, eval-apply of a n-argument curried application
performs extra work:

Jumps n − 1 times from caller to callee and back
(the sequences APPLY; CLOSURE; RETURN).

Builds n − 1 short-lived intermediate closures.

Can we combine push-enter and call-by-value? Yes, see the ZAM.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 45 / 116

Examples of abstract machines The ZAM

The ZAM (Zinc abstract machine)

(The model underlying the bytecode interpretors of Caml Light and Objective Caml.)

A call-by-value, push-enter model where the caller pushes one or several
arguments on the stack and the callee pops them and put them in its
environment.
Since this is call-by-value, need special handling for

partial applications: (λx .λy .b) a

over-applications: (λx .x) (λx .x) a

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 46 / 116

Examples of abstract machines The ZAM

Compilation scheme

T for expressions in tail call position, C for other expressions.

T (λ.a) = GRAB; T (a)

T (let a in b) = C(a); GRAB; T (b)

T (a a1 . . . an) = C(an); . . . ; C(a1); T (a)

T (a) = C(a); RETURN (otherwise)

C(n) = ACCESS(n)

C(λ.a) = CLOSURE(T (a))

C(let a in b) = C(a); GRAB; C(b); ENDLET; k

C(a a1 . . . an) = PUSHRETADDR(k); C(an); . . . ; C(a1); C(a); APPLY

where k is the code that follows the APPLY

Note right-to-left evaluation of applications.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 48 / 116

Examples of abstract machines The ZAM

ZAM transitions

� is a special value (“marker”) delimitating applications in the stack.

Machine state before Machine state after

Code Env Stack Code Env Stack

GRAB; c e v .s c v .e s

GRAB; c e �.c ′.e ′.s c ′ e ′ (GRAB; c)[e].s

RETURN; c e v .�.c ′.e ′.s c ′ e ′ v .s

RETURN; c e c ′[e ′].s c ′ e ′ s

PUSHRETADDR(c ′); c e s c e �.c ′.e.s

APPLY; c e c ′[e ′].s c ′ e ′ s

ACCESS, CLOSURE, ENDLET: like in the Modern SECD.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 50 / 116

Examples of abstract machines The ZAM

Handling of applications

Consider the code for λ.λ.λ.a:

GRAB; GRAB; GRAB; C(a); RETURN

Total application to 3 arguments:
stack on entry is v1.v2.v3.�.c ′.e ′.
The three GRAB succeed → environment v3.v2.v1.e.
RETURN sees the stack v .�.c ′.e ′ and returns v to caller.

Partial application to 2 arguments:
stack on entry is v1.v2.�.c ′.e ′.
The third GRAB fails and returns (GRAB; C(a); RETURN)[v2.v1.e],
representing the result of the partial application.

Over-application to 4 arguments:
stack on entry is v1.v2.v3.v4.�.c ′.e ′.
RETURN sees the stack v .v4.�.c ′.e ′ and tail-applies v (which better
has be a closure) to v4.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 52 / 116

Correctness proofs

Outline

1 Warm-up exercise: abstract machine for arithmetic expressions

2 Examples of abstract machines for functional languages
The Modern SECD
Tail call elimination
Krivine’s machine
The ZAM

3 Correctness proofs for abstract machines
Total correctness for Krivine’s machine
Partial correctness for the Modern SECD
Total correctness for the Modern SECD

4 Natural semantics for divergence
Definition and properties
Application to proofs of abstract machines

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 53 / 116

Correctness proofs

Correctness proofs for abstract machines

At this point of the lecture, we have two ways to execute a given source
term:

1 Evaluate directly the term: a
∗
→ v or ε ⊢ a⇒ v .

2 Compile it, then execute the resulting code using the abstract
machine:

code = C(a)
env = ε

stack = ε

∗
→

code = ε

env = e
stack = v .ε

Do these two execution paths agree? Does the abstract machine compute
the correct result, as predicted by the semantics of the source term?

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 54 / 116

Correctness proofs Total correctness for Krivine’s machine

Total correctness for Krivine’s machine

We start with Krivine’s machine because it enjoys a very nice property:

Every transition of Krivine’s machine simulates one reduction
step in the call-by-name λ-calculus with explicit substitutions.

To make the simulation explicit, we first extend the compilation scheme C
as follows:

C(a[e]) = C(a)[C(e)]

(a term a viewed under substitution e compiles down to a machine thunk)

C(e) = C(a1[e1]) . . . C(an[en]) if e = a1[e1] . . . an[en]

(a substitution e of thunks for de Bruijn variables compiles down to a
machine environment)

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 55 / 116

Correctness proofs Total correctness for Krivine’s machine

Decompiling states of Krivine’s machine

A state of the machine of the following form

code = C(a)

env = C(e)

stack = C(a1)[C(e1)] . . . C(an)[C(en)]

decompiles to the following source-level term:

@

@

@

an[en]

a2[e2]

a1[e1]a[e]

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 56 / 116

Correctness proofs Total correctness for Krivine’s machine

Decompilation and simulation

initial
state

state 1 state 2

term a term a1 term a2

transition transition

reduction reduction

compilation decompilation decompilation decompilation

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 57 / 116

Correctness proofs Total correctness for Krivine’s machine

The simulation lemma

Lemma 4 (Simulation)

If the machine state (c , e, s) decompiles to the source term a, and if the
machine makes a transition (c , e, s)→ (c ′, e ′, s ′), then there exists a term
a′ such that

1 a→ a′ (reduction in the CBN λ-calculus with explicit substitutions)

2 (c ′, e ′, s ′) decompiles to a′.

Proof.

By case analysis on the machine transition. (Next 3 slides).

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 58 / 116

Correctness proofs Total correctness for Krivine’s machine

The simulation lemma - GRAB case

The transition is:

(GRAB; C(a), C(e), C(a1)[C(e1)] . . . C(an)[C(en)])
↓

(C(a), C(a1[e1].e), C(a2)[C(e2)] . . . C(an)[C(en)])

It corresponds to a β-reduction (λ.a)[e] a1[e1]→ a[a1[e1].e]:

@

@

@

an[en]

a2[e2]

a1[e1](λ.a)[e]

@

@ an[en]

a2[e2]a[a1[e1].e]

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 60 / 116

Correctness proofs Total correctness for Krivine’s machine

The simulation lemma - PUSH case

The transition is:

(PUSH(C(b)); C(a), C(e), C(a1)[C(e1)] . . . C(an)[C(en)])
↓

(C(a), C(e), C(b)[C(e)].C(a1)[C(e1)] . . . C(an)[C(en)])

It corresponds to a reduction (a b)[e]→ a[e] b[e]:

@

@

@

an[en]

a2[e2]

a1[e1](a b)[e]

@

@

@

@

an[en]

a2[e2]

a1[e1]

b[e]a[e]

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 62 / 116

Correctness proofs Total correctness for Krivine’s machine

The simulation lemma - ACCESS case

The transition is:

(ACCESS(n), C(e), C(a1)[C(e1)] . . . C(an)[C(en)])
↓

(C(a′), C(e ′), C(a1)[C(e1)] . . . C(an)[C(en)])

if e(n) = a′[e ′]. It corresponds to a reduction n[e]→ e(n):

@

@

@

an[en]

a2[e2]

a1[e1]n[e]

@

@

@

an[en]

a2[e2]

a1[e1]a′[e ′]

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 64 / 116

Correctness proofs Total correctness for Krivine’s machine

Other lemmas

Lemma 5 (Progress)

If the state (c , e, s) decompiles to the term a, and a can reduce, then the
machine can make one transition from (c , e, s).

Lemma 6 (Initial states)

The initial state (C(a), ε, ε) decompiles to the term a.

Lemma 7 (Final state)

A final state of the form (GRAB; C(a), C(e), ε) decompiles to the value
(λ.a)[e].

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 65 / 116

Correctness proofs Total correctness for Krivine’s machine

The correctness theorem

Theorem 8 (Total correctness of Krivine’s machine)

If we start the machine in initial state (C(a), ε, ε),

1 the machine terminates on a final state (c , e, s) if and only if a
∗
→ v

and the final state (c , e, s) decompiles to the value v;

2 the machine performs an infinite number of transitions if and only if
a reduces infinitely.

Proof.

By the initial state and simulation lemmas, all intermediate machine states
correspond to reducts of a. If the machine never stops, we are in case 2. If
the machine stops, by the progress lemma, it must be because the
corresponding term is irreducible. The final state lemma shows that we are
in case 1.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 66 / 116

Correctness proofs Partial correctness for the Modern SECD

Partial correctness for the Modern SECD

Total correctness for the Modern SECD is significantly harder to prove
than for Krivine’s machine. It is however straightforward to prove partial
correctness, i.e. restrict ourselves to terminating source programs:

Theorem 9 (Partial correctness of the Modern SECD)

If a
∗
→ v under call-by-value, then the machine started in state (C(a), ε, ε)

terminates in state (ε, ε, v ′.ε), and the machine value v ′ corresponds with
the source value v. In particular, if v is an integer N, then v ′ = N.

The key to a simple proof is to use natural semantics e ⊢ a⇒ v instead of
the reduction semantics a[e]

∗
→ v .

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 67 / 116

Correctness proofs Partial correctness for the Modern SECD

Compositionality and natural semantics

The compilation scheme is compositional: every sub-term a′ of the
program a is compiled to a code sequence that evaluates a and leaves its
value on the top of the stack.

This follows exactly an evaluation derivation of e ⊢ a⇒ v in natural
semantics. This derivation contains sub-derivations e ′ ⊢ a′ ⇒ v ′ for each
sub-term a′.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 68 / 116

Correctness proofs Partial correctness for the Modern SECD

Partial correctness using natural semantics

Theorem 10 (Partial correctness of the Modern SECD)

If e ⊢ a⇒ v, then

C(a); k
C(e)
s

+
→

k
C(e)
C(v).s

The compilation scheme C is extended to values and environments as
follows:

C(N) = N

C((λa)[e]) = (C(a); RETURN)[C(e)]

C(v1 . . . vn.ε) = C(v1) . . . C(vn).ε

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 70 / 116

Correctness proofs Partial correctness for the Modern SECD

Partial correctness using natural semantics

The proof of the partial correctness theorem proceeds by induction over
the derivation of e ⊢ a⇒ v and case analysis on the last rule used.

The cases a = N, a = n and a = λ.b are straightforward: the machine
performs exactly one CONST, ACCESS or CLOSURE transition in these cases.

The interesting case is that of function application:

e ⊢ a⇒ (λc)[e ′] e ⊢ b ⇒ v ′ v ′.e ′ ⊢ c ⇒ v

e ⊢ a b ⇒ v

(The let rule is similar.)

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 72 / 116

Correctness proofs Partial correctness for the Modern SECD

(C(a); C(b); APPLY; k | C(e) | s)

↓ + (induction hypothesis on first premise)

(C(b); APPLY; k | C(e) | (C(c); RETURN)[C(e ′)].s)

↓ + (induction hypothesis on second premise)

(APPLY; k | C(e) | C(v ′).(C(c); RETURN)[C(e ′)].s)

↓ (APPLY transition)

(C(c); RETURN | C(v ′.e ′) | k .C(e).s)

↓ + (induction hypothesis on third premise)

(RETURN | C(v ′.e ′) | C(v).k .C(e).s)

↓ (RETURN transition)

(k | C(e) | C(v).s)

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 74 / 116

Correctness proofs Total correctness for the Modern SECD

Total correctness for the Modern SECD

The partial correctness theorem applies only to terminating source terms.
But for terms a that diverge or get stuck, e ⊢ a⇒ v does not hold for any
e, v and the theorem does not apply.

We do not know what the machine is going to do when started on such
terms.

(The machine could loop, could get stuck, but could as well stop and
answer “42”.)

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 75 / 116

Correctness proofs Total correctness for the Modern SECD

Total correctness for the Modern SECD

To obtain a stronger correctness result, we can try to show a simulation
result similar to that for Krivine’s machine. However, decompilation of
Modern SECD machine states is significantly complicated by the following
fact:

There are intermediate states of the Modern SECD where the
code component is not the compilation of any source term, e.g.

code = APPLY; k 6= C(a) for all a

⇒ Define decompilation by symbolic execution

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 76 / 116

Correctness proofs Total correctness for the Modern SECD

Warm-up: symbolic execution for the HP calculator

Consider the following alternate semantics for the abstract machine:

Machine state before Machine state after

Code Stack Code Stack

CONST(N); c s c N.s

ADD; c a2.a1.s c +
ւ ց

a1 a2

.s

SUB; c a2.a1.s c −
ւ ց

a1 a2

.s

The stack contains arithmetic expressions instead of integers.
The instruction ADD, SUB construct arithmetic expressions instead of
performing integer computations.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 78 / 116

Correctness proofs Total correctness for the Modern SECD

Warm-up: symbolic execution for the HP calculator

To decompile the machine state (c , s), we execute the code c with the
symbolic machine, starting in the stack s (viewed as a stack of expressions
rather than a stack of integers).
If the symbolic machine stops with code = ε and stack = a.ε, the
decompilation is the expression a.

Example 11

Code Stack

CONST(3); SUB; ADD 2.1.ε

SUB; ADD 3.2.1.ε

ADD (2− 3).1.ε

ε 1 + (2− 3).ε

The decompilation is 1 + (2− 3).

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 80 / 116

Correctness proofs Total correctness for the Modern SECD

Decompilation by symbolic execution of the Modern SECD

Same idea: use a symbolic variant of the Modern SECD that operates over
expressions rather than machine values.
Decompilation of machine values:

D(N) = N D(c[e]) = (λa)[D(e)] if c = C(a); RETURN

Decompilation of environments and stacks:

D(v1 . . . vn.ε) = D(v1) . . .D(vn).ε

D(. . . v . . . c .e . . .) = . . .D(v) . . . c .D(e) . . .

Decompilation of machine states: D(c , e, s) = a if the symbolic machine,
started in state (c ,D(e),D(s)), stops in state (ε, e ′, a.ε).

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 82 / 116

Correctness proofs Total correctness for the Modern SECD

Transitions for symbolic execution of the Modern SECD

Machine state before Machine state after

Code Env Stack Code Env Stack

ACCESS(n); c e s c e e(n).s

LET; c e a.s c a.e s

ENDLET; c a.e b.s c e (let a in b).s

CLOSURE(c ′); c e s c e D(c)[e].s

APPLY; c e b.a.s c ′ v .e ′ (a b).s

RETURN; c e a.c ′.e ′.s c ′ e ′ a.s

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 84 / 116

Correctness proofs Total correctness for the Modern SECD

Simulation for the Modern SECD

Lemma 12 (Simulation)

If the machine state (c , e, s) decompiles to the source term a, and if the
machine makes a transition (c , e, s)→ (c ′, e ′, s ′), then there exists a term
a′ such that

1 a
∗
→ a′

2 (c ′, e ′, s ′) decompiles to a′.

Note that we conclude a
∗
→ a′ instead of a→ a′ as in Krivine’s machine.

This is because many transitions of the Modern SECD correspond to no
reductions: they move data around without changing the decompiled
source term. Only the APPLY and LET transitions simulates one reduction
step.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 86 / 116

Correctness proofs Total correctness for the Modern SECD

The stuttering problem

This makes it possible that the machine could “stutter”: perform infinitely
many transitions that correspond to zero reductions of the source term.

state 1 state 2 state 3 state 4

term a

transition transition transition

decompilation

In this case, the machine could diverge even though the source term
terminates (normally or on an error).

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 88 / 116

Correctness proofs Total correctness for the Modern SECD

Simulation without stuttering

We can show that the stuttering problem does not occur by proving a
stronger version of the simulation lemma:

Lemma 13 (Simulation without stuttering)

If the machine state (c , e, s) decompiles to the source term a, and if the
machine makes a transition (c , e, s)→ (c ′, e ′, s ′), then there exists a term
a′ such that

1 Either a→ a′, or a = a′ and M(c ′, e ′, s ′) < M(c , e, s)

2 (c ′, e ′, s ′) decompiles to a′.

Here, M is a measure associating nonnegative integers to machine states.
A suitable definition of M is:

M(c , e, s) = length(c) +
∑

c
′∈s

length(c ′)

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 90 / 116

Correctness proofs Total correctness for the Modern SECD

Total correctness for the Modern SECD

We can finish the proof by showing the Progress, Initial state and Final
state lemmas with respect to CBV reduction semantics.
⇒ The Modern SECD is totally correct, after all.

But:

The proofs are heavy.

The definition of decompilation is complicated, hard to reason about,
and hard to extend to more optimized compilation scheme.

Is there a better way?

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 91 / 116

Natural semantics for divergence Definition and properties

Outline

1 Warm-up exercise: abstract machine for arithmetic expressions

2 Examples of abstract machines for functional languages
The Modern SECD
Tail call elimination
Krivine’s machine
The ZAM

3 Correctness proofs for abstract machines
Total correctness for Krivine’s machine
Partial correctness for the Modern SECD
Total correctness for the Modern SECD

4 Natural semantics for divergence
Definition and properties
Application to proofs of abstract machines

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 92 / 116

Natural semantics for divergence Definition and properties

Reduction semantics versus natural semantics

Pros and cons of reduction semantics:

+ Accounts for all possible outcomes of evaluation:
Termination: a

∗
→ v

Divergence: a
∗
→ a′ → . . . (infinite sequence)

Error: a
∗
→ a′ 6→

− Compiler correctness proofs are painful.

Pros and cons of natural semantics:

− Describes only terminating evaluations a⇒ v .
If a 6⇒ v for all v , we do not know whether a diverges or causes an
error.

+ Convenient for compiler correctness proofs

Idea: try to describe either divergence or errors using natural semantics.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 93 / 116

Natural semantics for divergence Definition and properties

Natural semantics for erroneous terms

Describing erroneous evaluations in natural semantics is easy but not very
interesting.

x ⇒ err
a⇒ err

a b ⇒ err

a⇒ v b ⇒ err

a b ⇒ err

a⇒ v b ⇒ v ′ v is not a λ

a b ⇒ err

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 95 / 116

Natural semantics for divergence Definition and properties

Natural semantics for divergence

More challenging but more interesting is the description of divergence in
natural semantics.
Idea: what are terms that diverge in reduction semantics?

They must be applications a b — other terms do not reduce.

An infinite reduction sequence for a b is necessarily of one of the following
three forms:

1 a b → a1 b → a2 b → a3 b → . . .

i.e. a reduces infinitely.

2 a b
∗
→ v b → v b1 → v b2 → v b3 → . . .

i.e. a terminates, but b reduces infinitely.

3 a b
∗
→ (λx .c) b

∗
→ (λx .c) v → c[x ← v]→ . . .

i.e. a and b terminate, but the term after β-reduction reduces
infinitely.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 97 / 116

Natural semantics for divergence Definition and properties

Natural semantics for divergence

Transcribing these three cases of divergence as inference rules in the style
of natural semantics, we get the following rules for a⇒∞
(read: “the term a diverges”).

a⇒∞

a b ⇒∞

a⇒ v b ⇒∞

a b ⇒∞

a⇒ λx .c b ⇒ v c[x ← v]⇒∞

a b ⇒∞

To make sense, these rules must be interpreted coinductively.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 99 / 116

Natural semantics for divergence Definition and properties

Inductive and coinductive interpretations

A set of axioms and inference rules define not one but two logical
predicates of interest:

Inductive interpretation / smallest fixpoint:
the predicate holds iff it is the conclusion of a finite derivation tree.

Coinductive interpretation / greatest fixpoint:
the predicate holds iff it is the conclusion of a finite or infinite
derivation tree.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 100 / 116

Natural semantics for divergence Definition and properties

Example of coinductive interpretation

Consider the following inference rules for the predicate even(n)

even(0)
even(n)

even(n + 2)

Assume that n ranges over N ∪ {∞}, with ∞+ 2 =∞.

With the inductive interpretation of the rules, the even predicate holds on
the following numbers: 0, 2, 4, . . . , but even(∞) does not hold.

With the coinductive interpretation, even holds on 0, 2, 4, . . . , and also
on ∞. This is because we have an infinite derivation tree T that
concludes even(∞):

T =
T

even(∞)

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 102 / 116

Natural semantics for divergence Definition and properties

Example of diverging evaluation

The inductive interpretation of a⇒∞ is always false: there are no
axioms, hence no finite derivations.

The coinductive interpretation captures classic examples of divergence.
Taking e.g. δ = λx . x x , we have the following infinite derivation:

δ ⇒ λx . x x δ ⇒ δ

δ ⇒ λx . x x δ ⇒ δ

δ ⇒ λx. x x δ ⇒ δ

δ ⇒ λx. x x δ ⇒ δ

.

.

.

δ δ ⇒ ∞

δ δ ⇒ ∞

δ δ ⇒ ∞

δ δ ⇒∞

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 104 / 116

Natural semantics for divergence Definition and properties

Equivalence between ⇒∞ and infinite reductions

Theorem 14

If a⇒∞, then a reduces infinitely.

Proof.

We show that for all n and a, if a⇒∞, then there exists a reduction
sequence of length n starting with a. The proof is by induction over n,
then induction over a, then case analysis on the rule used to conclude
a⇒∞. (Exercise.)

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 106 / 116

Natural semantics for divergence Definition and properties

Equivalence between ⇒∞ and infinite reductions

Theorem 15

If a reduces infinitely, then a⇒∞.

Proof.

The coinduction principle applied to the rules defining ⇒∞ tells us that:
If T is a set of terms such that for all a ∈ T ,

either a = b c and b ∈ T ;

or a = b c and b ⇒ v and c ∈ T ;

or a = b c and b ⇒ λx .d and c ⇒ v and d [x ← v] ∈ T .

Then, for all a ∈ T , we have a⇒∞.
The expected result follows from this coinduction theorem applied to the
set T = {a | a reduces infinitely}.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 108 / 116

Natural semantics for divergence Definition and properties

Divergence rules with environments and closures

We can follow the same approach for evaluations using environments and
closures, obtaining the following rules for e ⊢ a⇒∞
(read: “in environment e, the term a diverges”).

e ⊢ a⇒∞

e ⊢ a b ⇒∞

e ⊢ a⇒ v e ⊢ b ⇒∞

e ⊢ a b ⇒∞

e ⊢ a⇒ (λ.c)[e ′] e ⊢ b ⇒ v v .e ′ ⊢ c ⇒∞

e ⊢ a b ⇒∞

(Again: coinductive interpretation.)

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 110 / 116

Natural semantics for divergence Application to proofs of abstract machines

Back to the total correctness of the Modern SECD

We can now use the e ⊢ a⇒∞ predicate to obtain a simpler proof that
the Modern SECD executes correctly terms that diverge:

Theorem 16

If e ⊢ a⇒∞, then for all k and s, the Modern SECD performs infinitely
many transitions starting from the state

C(a); k
C(e)
s

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 111 / 116

Natural semantics for divergence Application to proofs of abstract machines

Proof principle

Lemma 17

Let X be a set of machine states such that

∀S ∈ X , ∃S ′ ∈ X , S
+
→ S ′

Then, the machine, started in a state S ∈ X, performs infinitely many
transitions.

Proof.

Assume the lemma is false and consider a minimal counterexample, that
is, S ∈ X

∗
→ S ′ 6→ and the number of transitions from S to S ′ is minimal

among all such counterexamples.
By hypothesis over X and determinism of the machine, there exists a state

S1 such that S
+
→ S1 ∈ X

∗
→ S ′ 6→. But then S1 is a counterexample

smaller than S . Contradiction.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 112 / 116

Natural semantics for divergence Application to proofs of abstract machines

Application to the theorem

Consider

X =

C(a); k
C(e)
s

∣

∣

∣

∣

∣

e ⊢ a⇒∞

It suffices to show ∀S ∈ X , ∃S ′ ∈ X , S
+
→ S ′ to establish the theorem.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 113 / 116

Natural semantics for divergence Application to proofs of abstract machines

The proof

Take S ∈ X , that is, S =

C(a); k
C(e)
s

 with e ⊢ a⇒∞.

We show ∃S ′ ∈ X , S
+
→ S ′ by induction over a.

First case: a = a1 a2 and e ⊢ a1 ⇒∞.
C(a); k = C(a1); (C(a2); APPLY; k). The result follows by induction
hypothesis

Second case: a = a1 a2 and e ⊢ a1 ⇒ v and e ⊢ a2 ⇒∞.

S =

C(a1); C(a2); APPLY; k
C(e)
s

+
→

C(a2); APPLY; k
C(e)
C(v).s

 = S ′

and we have S ′ ∈ X .

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 114 / 116

Natural semantics for divergence Application to proofs of abstract machines

The proof

Third case: a = a1 a2 and e ⊢ a1 ⇒ (λc)[e ′] and e ⊢ a2 ⇒ v and
v .e ′ ⊢ c ⇒∞

S =

C(a); k
C(e)
s

+
→

C(a2); APPLY; k
C(e)
C(λc[e ′]).s

+
→

APPLY; k
C(e)
C(v).C(λc[e ′]).s

→

C(c); RETURN
C(v .e ′)
k .C(e).s

 = S ′

and we have S ′ ∈ X , as expected.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 115 / 116

Natural semantics for divergence Application to proofs of abstract machines

Summary

Combining theorems 10 and 16, we obtain the following total correctness
theorem for the Modern SECD:

Theorem 18

Let a be a closed program. Starting the Modern SECD in state
(C(a), ε, ε),

If ε ⊢ a⇒ v, the machine executes a finite number of transitions and
stops on the final state (ε, ε, C(v).ε).

If ε ⊢ a⇒∞, the machine executes an infinite number of transitions.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2006 116 / 116

	Warm-up exercise: abstract machine for arithmetic expressions
	Examples of abstract machines for functional languages
	The Modern SECD
	Tail call elimination
	Krivine's machine
	The ZAM

	Correctness proofs for abstract machines
	Total correctness for Krivine's machine
	Partial correctness for the Modern SECD
	Total correctness for the Modern SECD

	Natural semantics for divergence
	Definition and properties
	Application to proofs of abstract machines

