MPRI course 2-4-2
“Functional programming languages”
Programming project

Xavier Leroy and Francois Pottier

December 11, 2006

1 Summary

The purpose of this programming project is to implement an interpreter, a typechecker, and a com-
piler (down to a simple abstract machine) for a small functional programming language equipped
with (possibly parameterized) algebraic data types. The following parts of the program are pro-
vided: a lexer and parser, a constraint solver for first-order unification constraints, an abstract
machine, and its execution engine.

The project can be implemented in any language of your choice, but we strongly recommend
using Caml, as the sources we provide are written in Caml.

2 Required software

To use the sources we provide, you will need:

Objective Caml Any version > 3.0 should do, but in doubt install version 3.09.3 from http:
//caml.inria.fr/ocaml/release.en.html or from the packages available in your Linux
distribution.

The Menhir parser generator Available at http://gallium.inria.fr/~fpottier/menhir/.
This tool is required in order to produce parser.mli and parser.ml out of parser.mly.
(For those who don’t want to install Menhir, we do provide parser.mli and parser.ml,
but you will need to modify the Makefile in order to let make know that these files are not
generated and should not be destroyed.)

Linux, FreeBSD, MacOSX, or some other Unix-like system The Makefile that we dis-
tribute has not been tested under Microsoft Windows. You are on your own if you insist
on using Windows.

3 Overview of the provided sources

In the src/ directory, you will find the following files:



abstractSyntax.mli Defines the abstract syntax for the language.
type.{ml, mli} A small number of utility functions over the abstract syntax of types.

parser.mly, lexer.mll, error.{ml, mli} Parsing and error reporting. Together, the lexer and
parser define the concrete syntax for the language.

stringMap.{ml, mli} Maps whose keys are strings. Useful for implementing various kinds of
environments.

option.{ml, mli} Various utility functions for values of type ’a option.
print.{ml, mli} Various utility functions for pretty-printing.
wf.{ml, mli} Check that a program is well-formed (no unbound variables, etc.).

unionFind.{ml, mli} Implements Tarjan’s data structure for the union-find problem. This mod-
ule underlies our implementation of first-order unification.

unification.{ml, mli} Implements first-order unification. This module defines the syntax of uni-
fication problems, which the constraint generator must produce.

generator.{ml, mli} Specifies the constraint generator. The implementation is missing; to be
completed in task 3.

interpreter.{ml, mli} The skeleton of the interpreter. To be completed in task 1.

machine.{ml, mli} Definition of the abstract machine: instruction set and execution engine for
abstract machine code.

compiler.{ml, mli} The skeleton of the compiler. To be completed in task 2.
settings.{ml, mli} Parses the command line.

front.{ml, mli} The top-level file of the program. Calls and combines the parser, the type-
checker, the interpreter, the compiler and the execution engine of the abstract machine.

Makefile, Makefile.auto, Makefile.shared, ocamldep.wrapper Build instructions. Issue the
command “make” in order to generate the executable.

joujou The executable for the program. Type “./joujou filename” to type-check, execute and
compile the program in filename.

In the test/ directory are small programs written in our functional language, which you can
give as arguments to joujou to see how they execute.



4 Tasks

Task 1 Implement an interpreter for the source language. The file to modify is interpreter.ml.

Task 2 Implement a compiler from the source language to the abstract machine. The file to
modify is compiler.ml.

Task 3 Study the specification that the constraint generator must meet, which is found in
generator.mli, and implement the generator. The file to modify is generator.ml.

At the moment, the generator is incomplete and always produces an empty unification problem,
which means that the inferred type is always “Va.a”. It is up to you to construct a unification
problem that is necessary and sufficient for the code to be well-typed.

Note that, for simplicity, we only implement simple (that is, monomorphic) type inference: no
generalization will be performed at let constructs. Only the data constructors can have (closed)
polymorphic type schemes, which are given by the dcenv parameter.

In order to better understand the entire type inference process, it is recommended, although
not strictly necessary, to have a look at the modules UnionFind and Unification, which perform
constraint solving.

For extra credit Extend the program in any direction you're interested in: additional language
features, polymorphic type inference, understandable type error messages, compiler optimizations,

5 What to turn in

When you are done, please e-mail Xavier.Leroy@inria.fr and Francois Pottier@inria.fr a
.tar.gz archive containing;:

e All your source files.
e Additional test files written in the small programming language, if you wrote any.

e If you implemented “extra credit” features, a README file (written in French or English)
describing these additional features, how you implemented them, and where we should look
in the source code to see how they are implemented.

6 Deadline

Please turn in your assignment on or before Sunday, 25 February 2007.



