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Full abstraction

Let F1(P) = lfp(TX
P ) = TX

P ↑ ω = ...TX
P (TX

P (∅))...

Theorem ([JL87])

F1(P) = Ogs(P).

F1(P) ⊆ Ogs(P) is proved by induction on the powers n of TX
P . n = 0 is

trivial. Let Aρ ∈ TX
P ↑ n, there exists a rule (A← c |A1, ...,An) ∈ P,

s.t. {A1ρ, ...,Anρ} ⊆ TX
P ↑ n − 1 and X |= cρ. By induction

{A1ρ, ...,Anρ} ⊆ Ogs(P). By definition of Ogs we get Aρ ∈ Ogs(P).

Ogs(P) ⊆ F1(P) is proved by induction on the length of derivations.

Successes with derivation of length 0 are ground facts in TX
P ↑ 1. Let

Aρ ∈ Ogs(P) with a derivation of length n. By definition of Ogs there

exists (A← c |A1, ...,An) ∈ P s.t. {A1ρ, ...,Anρ} ⊆ Ogs(P) and X |= cρ.

By induction {A1ρ, ...,Anρ} ⊆ F1(P). Hence by definition of TX
P we get

Aρ ∈ F1(P).
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Program Analysis

Fixpoint Semantics of Successes
Fixpoint Semantics of Computed Answers

TXP and X models

Proposition

I is a X -model of P iff I is a post-fixed point of TX
P , TX

P (I ) ⊆ I .

Proof.

I is a X -model of P,
iff for each clause A← c |A1, ...,An ∈ P and for each X -valuation
ρ, if X |= cρ and {A1ρ, ...,Anρ} ⊆ I then Aρ ∈ I ,
iff TX

P (I ) ⊆ I .
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Fixpoint Semantics of Successes
Fixpoint Semantics of Computed Answers

Relating SXP and TXP operators

Theorem ([JL87])

For every ordinal α, TX
P ↑ α = [SXP ↑ α]X .

Proof.

The base case α = 0 is trivial. For a successor ordinal, we have
[SXP ↑ α]X = [SXP (SXP ↑ α− 1)]X

= TX
P ([SXP ↑ α− 1]X )

= TX
P (TX

P ↑ α− 1) by induction
= TX

P ↑ α.
For a limit ordinal, we have
[SXP ↑ α]X = [

⋃
β<α SXP ↑ β]X

=
⋃

β<α[SXP ↑ β]X
=

⋃
β<α TX

P ↑ β by induction

= TX
P ↑ α
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Fixpoint Semantics of Successes
Fixpoint Semantics of Computed Answers

Full abstraction w.r.t. computed constraints

Theorem (Theorem of full abstraction [GL91])

Oca(P) = F2(P).

F2(P) ⊆ Oca(P) is proved by induction on the powers n of SXP . n = 0 is
trivial. Let c |A ∈ SXP ↑ n, there exists a rule (A← d |A1, ...,An) ∈ P,
s.t. {c1|A1, ..., cn|An} ⊆ SXP ↑ n − 1, c = d ∧

∧n
i=1 ci and X |= ∃c . By

induction {c1|A1, ..., cn|An} ⊆ Oca(P). By definition of Oca we get
c |A ∈ Oca(P).

Oca(P) ⊆ F2(P) is proved by induction on the length of derivations.

Successes with derivation of length 0 are facts in SXP ↑ 1. Let

c |A ∈ Oca(P) with a derivation of length n. By definition of Oca there

exists (A← d |A1, ...,An) ∈ P s.t. {c1|A1, ..., cn|An} ⊆ Oca(P),

c = d ∧
∧n

i=1 ci and X |= ∃c . By induction {c1|A1, ..., cn|An} ⊆ F2(P).

Hence by definition of SXP we get c |A ∈ F2(P).
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Logical Semantics of CLP(X )
Automated Deduction

CLP(λ)
Negation as Failure

Soundness
Completeness

Logical Semantics of CLP(X ) Programs

Proper logical semantics

(1) P, T |= ∃(G ) (4) P, T |= c ⊃ G ,

Logical semantics in a fixed pre-interpretation

(2) P |=X ∃(G ) (5) P |=X c ⊃ G ,

Algebraic semantics

(3) MX
P |= ∃(G ) (6) MX

P |= c ⊃ G .

We show (1)⇔ (2)⇔ (3) and (4)⇒ (5)⇔ (6).
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Logical Semantics of CLP(X )
Automated Deduction

CLP(λ)
Negation as Failure

Soundness
Completeness

Soundness of CSLD Resolution

Theorem ([JL87])

If c is a computed answer for the goal G then MX
P |= c ⊃ G,

P |=X c ⊃ G and P, T |= c ⊃ G.

If G = (d |A1, ...,An), we deduce from the ∧-compositionality lemma,
that there exist computed answers c1, ..., cn for the goals A1, ...,An such
that c = d ∧

∧n
i=1 ci is satisfiable. For every 1 ≤ i ≤ n

ci |Ai ∈ SXP ↑ ω, by the full abstraction Thm, 4,
[ci |Ai ]X ⊆ MX

P , by Thm. 3, and Prop. 2, hence MX
P |= ∀(ci ⊃ Ai ),

P |=X ∀(ci ⊃ Ai ) as MX
P is the least X -model of P,

P |=X ∀(c ⊃ Ai ) as X |= ∀(c ⊃ ci ) for all i , 1 ≤ i ≤ n.
Therefore we have P |=X ∀(c ⊃ (d ∧ A1 ∧ ... ∧ An)),

and as the same reasoning applies to any model X of T ,

P, T |= ∀(c ⊃ (d ∧ A1 ∧ ... ∧ An))
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Soundness
Completeness

Completeness of CSLD resolution

Theorem ([Mah87])

If MX
P |=X c ⊃ G then there exists a set {ci}i≥0 of computed

answers for G, such that: X |= ∀(c ⊃
∨

i≥0 ∃Yici ).

Proof.

For every solution ρ of c , for every atom Aj in G ,
MX

P |= Ajρ iff Ajρ ∈ TX
P ↑ ω, by Thm. 1, iff Ajρ ∈ [SXP ↑ ω]X , by

Thm. 3,
iff cj,ρ|Aj ∈ SXP ↑ ω, for some constraint cj,ρ s.t. ρ is solution of ∃Yj,ρcj,ρ,
where Yj,ρ = V (cj,ρ) \ V (Aj),
iff cj,ρ is a computed answer for Aj (by 4) and X |= ∃Yj,ρcj,ρρ.
Let cρ be the conjunction of cj,ρ for all j . cρ is a computed answer for G .

By taking the collection of cρ for all ρ we get X |= ∀(c ⊃
∨

cρ
∃Yρcρ)
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Completeness w.r.t. the theory of the structure

Theorem ([Mah87])

If P, T |= c ⊃ G then there exists a finite set {c1, ..., cn} of
computed answers to G, such that:
T |= ∀(c ⊃ ∃Y1c1 ∨ ... ∨ ∃Yncn).

Proof.

If P, T |= c ⊃ G then for every model X of T , for every X -solution ρ of
c , there exists a computed constraint cX ,ρ for G s.t. X |= cX ,ρρ. Let
{ci}i≥0 be the set of these computed answers. Then for every model X
and for every X -valuation ρ, X |= c ⊃

∨
i≥1 ∃Yici , therefore

T |= c ⊃
∨

i≥1 ∃Yici ,

As T ∪ {∃(c ∧ ¬∃Yici )}i is unsatisfiable, by applying the compactness

theorem of first-order logic there exists a finite part {ci}1≤i≤n,

s.t. T |= c ⊃
∨n

i=1 ∃Yici .
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Proofs in Group Theory

First-order theorem proving in CLP(H)

Prolog can be used to find proofs by refutation of Horn clauses
(with a complete search meta-interpreter).
P,∀(¬A) is unsatisfiable iff P |= ∃(A) iff A −→∗ �.

Groups can be axiomatized with Horn clauses with a ternary
predicate p(x , y , z) meaning x ∗ y = z .

clause(p(e,X,X)).
clause(p(i(X),X,e)).
clause((p(U,Z,W) :- p(X,Y,U), p(Y,Z,V), p(X,V,W))).
clause((p(X,V,W) :- p(X,Y,U), p(Y,Z,V), p(U,Z,W))).
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CLP(λ)
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Proofs in Group Theory

Theorem proving in groups

To show i(i(x)) = x by refutation,
we show that the formula ¬∀x p(i(i(X )), e,X ) is unsatisfiable
By Skolemization we get the goal clause ¬p(i(i(a)), e, a)

| ?- solve(p(i(i(a)),e,a)).
depth 2
yes
| ?- solve(p(a,e,a)).
depth 4
yes
| ?- solve(p(a,i(a),e)).
depth 3
yes
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Proofs in Group Theory

Theorem proving in groups (cont.)

To show that any non empty subset of a group, stable by division,
is a subgroup we add two clauses

clause(s(a)).
clause((s(Z) :- s(X), s(Y), p(X,i(Y),Z))).

and prove that s contains e and i(a).

| ?- solve(s(e)).
depth 4
yes
| ?- solve(s(i(a))).
depth 5
yes
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λ-calculus
Proofs in λ-calculus

Higher-order theorem proving in CLP(λ)

Church’s simply typed λ-calculus
t ::= v | t1 → t2
e : t ::= x : t | (λx : t1.e : t2) : t1 → t2 | (e1 : t1 → t2(e2 : t1)) : t2

Theory of functionality
λx .e1 =α λy .e1[y/x ] if y 6∈ V (e1),
(λx .e1)e2 →β e1[e2/x ]
=α .→β is terminating and confluent

e1 =α,β e2 iff ↓β e1 =α ↓β e2.

Equality is decidable, but not unification...
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λ-calculus
Proofs in λ-calculus

Theorem proving in CLP(λ)

Theorem (Cantor’s Theorem)

NN is not countable.

Proof.

By two steps of CSLD resolution!
Let us suppose ∃h : N→ (N→ N) ∀f : N→ N ∃n : N h(n) = f
After Skolemisation we get ∀F h(n(F )) = F , i.e. ∀F ¬h(n(F )) 6= F .
Let us consider the following program G 6= H ← G (N) 6= H(N).

N 6= s(N).
We have h(n F ) 6= F −→σ1 (h(n F ))(I ) 6= F (I ) −→σ2 �
where the unifier σ2 = {G = h I I , I = n(F ), F = λi .s(h i i), H = F}
is Cantor’s diagonal argument!
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Finite Failure
Clark’s Completion
Soundness w.r.t. Clark’s Completion
Completeness w.r.t. Clark’s Completion

Negation as Failure

A derivation CSLD is fair if every atom which appears in a goal of
the derivation is selected after a finite number of resolution steps.
A fair CSLD tree for a goal G is a CSLD derivation tree for G in
which all derivations are fair.
A goal G is finitely failed if G has a fair CSLD derivation tree to
G , which is finite and which contains no success.

p :- p.

| ?- member(a,[b,c,d]).
no

| ?- p, member(a,[b,c,d]).
...
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Finite Failure
Clark’s Completion
Soundness w.r.t. Clark’s Completion
Completeness w.r.t. Clark’s Completion

Logical semantics of finite failure?

Horn clauses entail no negative information: the Herbrand’s base
BX is a model.

On the other hand, the complement of the least X -model MX
P is

not recursively enumerable.

Indeed let us suppose the opposite. We could define in Prolog the
predicates:

success(P,B) which succeeds iff MP |= ∃B, i.e. if the goal B
has a successful SLD derivation with the program P

fail(P,B) which succeeds iff MP |= ¬∃B
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Soundness w.r.t. Clark’s Completion
Completeness w.r.t. Clark’s Completion

Undecidability of MXP

loop:- loop.
contr(P):- success(P,P), loop.
contr(P):- fail(P,P).

If contr(contr) has a success,
then success(contr,contr) succeeds,
and fail(contr,contr) doesn’t succeed,
hence contr(contr) doesn’t succeed: contradiction.

If contr(contr) doesn’t succeed,
then fail(contr,contr) succeeds,
hence contr(contr) succeeds: contradiction.

Therefore programs success and fail cannot exist.
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Clark’s completion

The Clark’s completion of P is the set P∗ of formulas of the form
∀X p(X )↔ (∃Y1c1 ∧A1

1 ∧ ...∧A1
n1

)∨ ...∨ (∃Ykck ∧Ak
1 ∧ ...∧Ak

nk
)

where the p(X )← ci |Ai
1, ...,A

i
ni

are the rules in P and Yi ’s the
local variables,
∀X¬p(X ) if p is not defined in P.

Example

CLP(H) program p(s(X)):- p(X).
Clark’s completion P∗ = {∀x p(x)↔ ∃y x = s(y) ∧ p(y)}.
The goal p(0) finitely fails, we have P∗,CET |= ¬p(0).
The goal p(X) doesn’t finitely fail,
we have P∗,CET 6|= ¬∃X p(X ) although P∗ |=H ¬∃X p(X )
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Supported X -models

Proposition

i) I is a supported X -model of P iff ii) I is a X -model of P∗ iff iii)
I is a fixed point of TX

P .

Proof.

I is a X -model of P∗

iff I is a X -model of ∀X p(X )← φ1 ∨ ... ∨ φk for every formula
∀X p(X )↔ φ1 ∨ ... ∨ φk in P∗,
iff I is a post-fixed point of TX

P , i.e. .TX
P (I ) ⊆ I .

I is a supported X -interpretation of P,
iff I is a X -model of ∀X p(X )→ φ1 ∨ ... ∨ φk for every formula
∀X p(X )↔ φ1 ∨ ... ∨ φk in P∗,
iff I is a pre-fixed point of TX

P , i.e. I ⊆ TX
P (I ).

Thus i) I is a supported X -model of P iff ii) I is a X -model of P∗ iff iii)

I is a fixed point of TX
P .
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Models of the Clark’s completion

Theorem

i) P∗ has the same least X -model than P, MX
P = MX

P∗

ii) P |=X c ⊃ A iff P∗ |=X c ⊃ A, for all c and A,
iii) P, T |= c ⊃ A iff P∗, T |= c ⊃ A.

Proof.

i) is an immediate corollary of full abstraction and least X -model
theorems.
For iii) we clearly have (P, T |= c ⊃ A)⇒ (P∗, T |= c ⊃ A). We show
the contrapositive of the opposite, (P, T 6|= c ⊃ A)⇒ (P∗, T 6|= c ⊃ A).
Let I be a model of P and T , based on a structure X , let ρ be a
valuation such that I |= ¬Aρ and X |= cρ.
We have MX

P |= ¬Aρ, thus MX
P∗ |= ¬Aρ, and as T |= cρ, we conclude

that P∗, T 6|= c ⊃ A.
The proof of ii) is identical, the structure X being fixed.
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Soundness of Negation as Finite Failure

Theorem

If G is finitely failed then P∗, T |= ¬G.

Proof.

By induction on the height h of the tree in finite failure for G = c |A, α
where A is the selected atom at the root of the tree.
In the base case h = 1, the constrained atom c |A has no CSLD transition,
we can deduce that P∗, T |= ¬(c ∧ A) hence that P∗, T |= ¬G .

For the induction step, let us suppose h > 1. Let G1, ...,Gn be the sons

of the root and Y1, ...,Yn be the respective sets of introduced variables.

We have P∗, T |= G ↔ ∃Y1 G1 ∨ ... ∨ ∃n Gn. By induction hypothesis,

P∗, T |= ¬Gi for every 1 ≤ i ≤ n, therefore P∗, T |= ¬G .
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Completeness of Negation as Failure

Theorem ([JL87])

If P∗, T |= ¬G then G is finitely failed.

We show that if G is not finitely failed then P∗, T ,∃(G ) is satisfiable. If
G has a success then by the soundness of CSLD resolution, P∗, T |= ∃G .
Else G has a fair infinite derivation G = c0|G0 −→ c1|G1 −→ ...

For every i ≥ 0, ci is T -satisfiable, thus by the compactness theorem,

cω =
⋃

i≥0 ci is T -satisfiable. Let X be a model of T s.t. X |= ∃(cω).

Let I0 = {Aρ | A ∈ Gi for some i ≥ 0 and X |= cωρ}. As the derivation

is fair, every atom A in I0 is selected, thus cω|A −→ cω|A1, ...,An with

[cω|A] ∪ ... ∪ [cω|An] ⊆ I0. We deduce that I0 ⊆ TX
P (I0). By

Knaster-Tarski’s theorem, the iterated application up to ordinal ω of the

operator TX
P from I0 leads to a fixed point I s.t. I0 ⊆ I , thus [cω|G0] ∈ I .

Hence P∗,∃(G ) is X -satisfiable, and P∗, T ,∃(G ) is satisfiable.
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Introduction
Operational Semantics

Examples

Syntax
CC vs. CLP

The Paradigm of Constraint Programming

memory of values
programming variables

memory of constraints
mathematical variables

Xi ∈ [3, 15]

ΣaiXi ≥ b

card(1, [X ≥ Y + 5,
Y ≥ X + 3])

Xi = Xj + 2
add

Xi ≥ 5?

test

V1

Vi

Vj

Vi := Vj + 1

rea
d

write
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Examples

Syntax
CC vs. CLP

Concurrent Constraint Programs

Class of programming languages CC(X ) introduced by Saraswat
[Sar93] as a merge of Constraint and Concurrent Logic
Programming.

Processes P ::= D.A
Declarations D ::= p(~x) = A,D | ε
Agents A ::= tell(c) | ∀~x(c → A) | A ‖ A | A + A | ∃xA | p(~x)

Constraint Store

CC agent CC agent

tellask

+

+ +
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Examples

Syntax
CC vs. CLP

Translating CLP(X ) into CC(X ) Declarations

CLP(X ) program:

A← c |B,C
A← d |D,E
B ← e

equivalent CC(X ) declaration:

A = tell(c)||B||C + tell(d)||D||E
B = tell(e)

This is just a process calculus syntax for CLP programs. . .
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Syntax
CC vs. CLP

Translating CC(X ) without ask into CLP(X )

(CC agent)† = CLP goal

(tell(c))† = c
(A || B)† = A†,B†

(A + B)† = p(~x) where ~x = fv(A) ∪ fv(B) and
p(~x)← A†

p(~x)← B†

(∃x A)† = q(~y) where ~y = fv(A) \ {x} and
q(~y)← A†

(p(~x))† = p(~x)

The ask operation c → A has no CLP equivalent.

It is a new synchronization primitive between agents.
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Transitions
Properties
Observables

CC Computations

Concurrency = communication (shared variables)
+ synchronization (ask)

Communication channels, i.e. variables, are transmissible by agents
(like in π-calculus, unlike CCS, CSP, Occam,...)

Communication is additive (a constraint will never be removed),
monotonic accumulation of information in the store (as in CLP, as
in Scott’s information systems)

Synchronization makes computation both data-driven and
goal-directed.

No private communication, all agents sharing a variable will see a
constraint posted on that variable,

Not a parallel implementation model.
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CC(X ) Configurations

Configuration (~x ; c ; Γ): store c of constraints, multiset Γ of agents,
modulo ≡ the smallest congruence s.t.:

X -equivalence
ca`Xd

c ≡ d

α-Conversion
z 6∈ fv(A)

∃yA ≡ ∃zA[z/y ]

Parallel (~x ; c ;A ‖ B, Γ) ≡ (~x ; c ;A,B, Γ)

Hiding
y 6∈ fv(c , Γ)

(~x ; c ;∃yA, Γ) ≡ (~x , y ; c ;A, Γ)

y 6∈ fv(c , Γ)

(~x , y ; c ; Γ) ≡ (~x ; c ; Γ)
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CC(X ) Transitions

Interleaving semantics

Procedure call
(p(~y) = A) ∈ D

(~x ; c ; p(~y), Γ) −→ (~x ; c ;A, Γ)

Tell (~x ; c ; tell(d), Γ) −→ (~x ; c ∧ d ; Γ)

Ask
c `X d [~t/~y ]

(~x ; c ;∀~y(d → A), Γ) −→ (~x ; c ;A[~t/~y ], Γ)

Blind choice (~x ; c ;A + B, Γ) −→ (~x ; c ;A, Γ)
(local/internal) (~x ; c ;A + B, Γ) −→ (~x ; c ;B, Γ)
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CC(X ) extra rules

Guarded choice
c `X cj

(~x ; c ; Σici → Ai , Γ) −→ (~x ; c ;Aj , Γ)
(global/external)

AskNot
c `X ¬d

(~x ; c ;∀~y(d → A), Γ) −→ (~x ; c ; Γ)

Sequentiality
(~x ; c ; Γ) −→ (~x ; d ; Γ′)

(~x ; c ; (Γ;∆),Φ) −→ (~x ; d ; (Γ′;∆),Φ)

(~x ; c ; (∅; Γ),∆) −→ (~x ; d ; Γ,∆)
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Properties of CC Transitions (1)

Theorem (Monotonicity)

If (~x ; c ; Γ)→ (~y ; d ;∆) then (~x ; c ∧ e; Γ,Σ)→ (~y ; d ∧ e;∆,Σ) for
every constraint e and agents ∆.

Proof.

tell and ask are monotonic (monotonic conditions in guards).

Corollary

Strong fairness and weak fairness are equivalent.
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Properties of CC Transitions (2)

A configuration without + is called deterministic.

Theorem (Confluence)

For any deterministic configuration κ with deterministic
declarations,
if κ→ κ1 and κ→ κ2 then κ1 → κ′ and κ2 → κ′ for some κ′.

Corollary

Independence of the scheduling of the execution of parallel agents.
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Properties of CC Transitions (3)

Theorem (Extensivity)

If (~x ; c ; Γ)→ (~y ; d ;∆) then ∃~yd `X ∃~xc.

Proof.

For any constraint e, c ∧ e `X c .

Theorem (Restartability)

If (~x ; c ; Γ)→∗ (~y ; d ;∆) then (~x ;∃~yd ; Γ)→∗ (~y ; d ;∆).

Proof.

By extensivity and monotonicity.
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CC(X ) Operational Semanticssss

observing the set of success stores,

Oss(D.A; c) = {∃~xd ∈ X |(∅; c ;A) −→∗ (~x ; d ; ε)}

observing the set of terminal stores (successes and
suspensions),

Ots(D.A; c) = {∃~xd ∈ X |(∅; c ;A) −→∗ (~x ; d ; Γ) Y−→}

observing the set of accessible stores,

Oas(D.A; c) = {∃~xd ∈ X |(∅; c ;A) −→∗ (~x ; d ;B)}

observing the set of limit stores?

O∞(D.A; c0) = {t?{∃~xici}i≥0|(∅; c0;A) −→ (~x1; c1; Γ1) −→ ...}
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CC(H) ’append’ Program(s)

Undirectional CLP style

append(A,B,C ) = tell(A = [])||tell(C = B)
+tell(A = [X |L])||tell(C = [X |R])||append(L,B,R)

Directional CC success store style

append(A,B,C ) = (A = []→ tell(C = B))
+∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))

Directional CC terminal store style

append(A,B,C ) = A = []→ tell(C = B)
||∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))
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CC(H) ’merge’ Program

Merging streams

merge(A,B,C ) = (A = []→ tell(C = B))
+(B = []→ tell(C = A))
+∀X , L(A = [X |L]→ tell(C = [X |R])||merge(L,B,R))
+∀X , L(B = [X |L]→ tell(C = [X |R])||merge(A, L,R))

Good for the

Oss

observable(s?)

Many-to-one communication:
client(C1, ...)
...
client(Cn, ...)
server([C1, ...,Cn], ...) =∑n

i=1 ∀X , L(Ci = [X |L]→ ...||server([C1, ..., L, ...,Cn], ...)
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...
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CC(FD) Finite Domain Constraints

Approximating ask condition with the Elimination condition

EL: c ∧ Γ −→ Γ
if FD |= cσ for every valuation σ of the variables in c by values of
their domain.

ask(X ≥ Y + k) = min(X ) ≥ max(Y ) + k

asknot(X ≥ Y + k) = max(X ) < min(Y ) + k

ask(X 6= Y ) = max(X ) < min(Y ) ∨min(X ) > max(Y )
a better approximation:
= (dom(X ) ∩ dom(Y ) = ∅)
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CC(FD) Constraints

Basic constraints
(X ≥ Y + k) = X in min(Y ) + k .. ∞ || Y in 0 .. max(X )− k

Reified constraints
(B ⇔ X = A) = B in 0..1 ||

X = A→ B = 1 || X 6= A→ B = 0 ||
B = 1→ X = A || B = 0→ X 6= A

Higher-order constraints
card(N, L) = L = []→ N = 0 ||

L = [C |S ]→
∃B,M (B ⇔ C || N = B + M || card(M,S))
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Andora Principle

“Always execute deterministic computation first”.

Disjunctive scheduling:

deterministic propagation of the disjunctive constraints for which
one of the alternatives is dis-entailed:

card(1, [x ≥ y + dy , y ≥ x + dx ])

before creating choice points:

(x ≥ y + dy ) + (y ≥ x + dx)
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Constructive Disjunction in CC(FD) (1)

∨L
c `X e d `X e

c ∨ d `X e

Intuitionistic logic tells us we can infer the common information to
both branches of a disjunction without creating choice points!

max(X ,Y ,Z ) = (X > Y ||Z = X ) + (X <= Y ||Z = Y )
or
max(X ,Y ,Z ) = X > Y → Z = X + X <= Y → Z = Y .
or
max(X ,Y ,Z ) = X > Y → Z = X || X <= Y → Z = Y .
better?

max(X ,Y ,Z ) = Z in min(X )..∞ || Z in min(Y )..∞
|| Z in dom(X ) ∪ dom(Y )
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Constructive Disjunction in CC(FD) (2)

Disjunctive precedence constraints

disjunctive(T1,D1,T2,D2) =
(T1 >= T2 + D2)+
(T2 >= T1 + D1)

Using constructive disjunction

disjunctive(T1,D1,T2,D2) =
T1 in (0..max(T2)− D1) ∪ (min(T2) + D2..∞) ||
T2 in (0..max(T1)− D2) ∪ (min(T1) + D1..∞)
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