
Constraint Logic Programming

Sylvain Soliman, François Fages and Nicolas Beldiceanu
{Sylvain.Soliman,Francois.Fages}@inria.fr

INRIA – Projet CONTRAINTES

MPRI C-2-4-1 Course – September-November, 2006

Sylvain.Soliman@inria.fr CLP

The Constraint Programming paradigm
Examples and Applications

First Order Logic
Models

Logical Theories

Part I: CLP - Introduction and Logical Background

1 The Constraint Programming paradigm

2 Examples and Applications

3 First Order Logic

4 Models

5 Logical Theories

Sylvain.Soliman@inria.fr CLP

Constraint Languages
CLP(X)
CLP(H)

CLP(R,FD,B)

Part II: Constraint Logic Programs

6 Constraint Languages
Decidability in Complete Theories

7 CLP(X)
Definition
Operational Semantics

8 CLP(H)
Prolog
Examples

9 CLP(R,FD,B)
CLP(R)
CLP(FD)
CLP(B)

Sylvain.Soliman@inria.fr CLP

Operational Semantics
Fixpoint Semantics

Program Analysis

Part III: Operational and Fixpoint Semantics

10 Operational Semantics

11 Fixpoint Semantics
Fixpoint Preliminaries
Fixpoint Semantics of Successes
Fixpoint Semantics of Computed Answers

12 Program Analysis
Abstract Interpretation
Constraint-based Model Checking

Sylvain.Soliman@inria.fr CLP

Operational Semantics
Fixpoint Semantics

Program Analysis

Fixpoint Semantics of Successes
Fixpoint Semantics of Computed Answers

Full abstraction

Let F1(P) = lfp(TX
P) = TX

P ↑ ω = ...TX
P (TX

P (∅))...

Theorem ([JL87])

F1(P) = Ogs(P).

F1(P) ⊆ Ogs(P) is proved by induction on the powers n of TX
P . n = 0 is

trivial. Let Aρ ∈ TX
P ↑ n, there exists a rule (A← c |A1, ...,An) ∈ P,

s.t. {A1ρ, ...,Anρ} ⊆ TX
P ↑ n − 1 and X |= cρ. By induction

{A1ρ, ...,Anρ} ⊆ Ogs(P). By definition of Ogs we get Aρ ∈ Ogs(P).

Ogs(P) ⊆ F1(P) is proved by induction on the length of derivations.

Successes with derivation of length 0 are ground facts in TX
P ↑ 1. Let

Aρ ∈ Ogs(P) with a derivation of length n. By definition of Ogs there

exists (A← c |A1, ...,An) ∈ P s.t. {A1ρ, ...,Anρ} ⊆ Ogs(P) and X |= cρ.

By induction {A1ρ, ...,Anρ} ⊆ F1(P). Hence by definition of TX
P we get

Aρ ∈ F1(P).

Sylvain.Soliman@inria.fr CLP

Operational Semantics
Fixpoint Semantics

Program Analysis

Fixpoint Semantics of Successes
Fixpoint Semantics of Computed Answers

TXP and X models

Proposition

I is a X -model of P iff I is a post-fixed point of TX
P , TX

P (I) ⊆ I .

Proof.

I is a X -model of P,
iff for each clause A← c |A1, ...,An ∈ P and for each X -valuation
ρ, if X |= cρ and {A1ρ, ...,Anρ} ⊆ I then Aρ ∈ I ,
iff TX

P (I) ⊆ I .

Sylvain.Soliman@inria.fr CLP

Operational Semantics
Fixpoint Semantics

Program Analysis

Fixpoint Semantics of Successes
Fixpoint Semantics of Computed Answers

Relating SXP and TXP operators

Theorem ([JL87])

For every ordinal α, TX
P ↑ α = [SXP ↑ α]X .

Proof.

The base case α = 0 is trivial. For a successor ordinal, we have
[SXP ↑ α]X = [SXP (SXP ↑ α− 1)]X

= TX
P ([SXP ↑ α− 1]X)

= TX
P (TX

P ↑ α− 1) by induction
= TX

P ↑ α.
For a limit ordinal, we have
[SXP ↑ α]X = [

⋃
β<α SXP ↑ β]X

=
⋃

β<α[SXP ↑ β]X
=

⋃
β<α TX

P ↑ β by induction

= TX
P ↑ α

Sylvain.Soliman@inria.fr CLP

Operational Semantics
Fixpoint Semantics

Program Analysis

Fixpoint Semantics of Successes
Fixpoint Semantics of Computed Answers

Full abstraction w.r.t. computed constraints

Theorem (Theorem of full abstraction [GL91])

Oca(P) = F2(P).

F2(P) ⊆ Oca(P) is proved by induction on the powers n of SXP . n = 0 is
trivial. Let c |A ∈ SXP ↑ n, there exists a rule (A← d |A1, ...,An) ∈ P,
s.t. {c1|A1, ..., cn|An} ⊆ SXP ↑ n − 1, c = d ∧

∧n
i=1 ci and X |= ∃c . By

induction {c1|A1, ..., cn|An} ⊆ Oca(P). By definition of Oca we get
c |A ∈ Oca(P).

Oca(P) ⊆ F2(P) is proved by induction on the length of derivations.

Successes with derivation of length 0 are facts in SXP ↑ 1. Let

c |A ∈ Oca(P) with a derivation of length n. By definition of Oca there

exists (A← d |A1, ...,An) ∈ P s.t. {c1|A1, ..., cn|An} ⊆ Oca(P),

c = d ∧
∧n

i=1 ci and X |= ∃c . By induction {c1|A1, ..., cn|An} ⊆ F2(P).

Hence by definition of SXP we get c |A ∈ F2(P).

Sylvain.Soliman@inria.fr CLP

Logical Semantics of CLP(X)
Automated Deduction

CLP(λ)
Negation as Failure

Part IV

Logical Semantics

Sylvain.Soliman@inria.fr CLP

Logical Semantics of CLP(X)
Automated Deduction

CLP(λ)
Negation as Failure

Part IV: Logical Semantics

13 Logical Semantics of CLP(X)
Soundness
Completeness

14 Automated Deduction
Proofs in Group Theory

15 CLP(λ)
λ-calculus
Proofs in λ-calculus

16 Negation as Failure
Finite Failure
Clark’s Completion
Soundness w.r.t. Clark’s Completion
Completeness w.r.t. Clark’s Completion

Sylvain.Soliman@inria.fr CLP

Logical Semantics of CLP(X)
Automated Deduction

CLP(λ)
Negation as Failure

Soundness
Completeness

Logical Semantics of CLP(X) Programs

Proper logical semantics

(1) P, T |= ∃(G) (4) P, T |= c ⊃ G ,

Logical semantics in a fixed pre-interpretation

(2) P |=X ∃(G) (5) P |=X c ⊃ G ,

Algebraic semantics

(3) MX
P |= ∃(G) (6) MX

P |= c ⊃ G .

We show (1)⇔ (2)⇔ (3) and (4)⇒ (5)⇔ (6).

Sylvain.Soliman@inria.fr CLP

Logical Semantics of CLP(X)
Automated Deduction

CLP(λ)
Negation as Failure

Soundness
Completeness

Soundness of CSLD Resolution

Theorem ([JL87])

If c is a computed answer for the goal G then MX
P |= c ⊃ G,

P |=X c ⊃ G and P, T |= c ⊃ G.

If G = (d |A1, ...,An), we deduce from the ∧-compositionality lemma,
that there exist computed answers c1, ..., cn for the goals A1, ...,An such
that c = d ∧

∧n
i=1 ci is satisfiable. For every 1 ≤ i ≤ n

ci |Ai ∈ SXP ↑ ω, by the full abstraction Thm, 4,
[ci |Ai]X ⊆ MX

P , by Thm. 3, and Prop. 2, hence MX
P |= ∀(ci ⊃ Ai),

P |=X ∀(ci ⊃ Ai) as MX
P is the least X -model of P,

P |=X ∀(c ⊃ Ai) as X |= ∀(c ⊃ ci) for all i , 1 ≤ i ≤ n.
Therefore we have P |=X ∀(c ⊃ (d ∧ A1 ∧ ... ∧ An)),

and as the same reasoning applies to any model X of T ,

P, T |= ∀(c ⊃ (d ∧ A1 ∧ ... ∧ An))

Sylvain.Soliman@inria.fr CLP

Logical Semantics of CLP(X)
Automated Deduction

CLP(λ)
Negation as Failure

Soundness
Completeness

Completeness of CSLD resolution

Theorem ([Mah87])

If MX
P |=X c ⊃ G then there exists a set {ci}i≥0 of computed

answers for G, such that: X |= ∀(c ⊃
∨

i≥0 ∃Yici).

Proof.

For every solution ρ of c , for every atom Aj in G ,
MX

P |= Ajρ iff Ajρ ∈ TX
P ↑ ω, by Thm. 1, iff Ajρ ∈ [SXP ↑ ω]X , by

Thm. 3,
iff cj,ρ|Aj ∈ SXP ↑ ω, for some constraint cj,ρ s.t. ρ is solution of ∃Yj,ρcj,ρ,
where Yj,ρ = V (cj,ρ) \ V (Aj),
iff cj,ρ is a computed answer for Aj (by 4) and X |= ∃Yj,ρcj,ρρ.
Let cρ be the conjunction of cj,ρ for all j . cρ is a computed answer for G .

By taking the collection of cρ for all ρ we get X |= ∀(c ⊃
∨

cρ
∃Yρcρ)

Sylvain.Soliman@inria.fr CLP

Logical Semantics of CLP(X)
Automated Deduction

CLP(λ)
Negation as Failure

Soundness
Completeness

Completeness w.r.t. the theory of the structure

Theorem ([Mah87])

If P, T |= c ⊃ G then there exists a finite set {c1, ..., cn} of
computed answers to G, such that:
T |= ∀(c ⊃ ∃Y1c1 ∨ ... ∨ ∃Yncn).

Proof.

If P, T |= c ⊃ G then for every model X of T , for every X -solution ρ of
c , there exists a computed constraint cX ,ρ for G s.t. X |= cX ,ρρ. Let
{ci}i≥0 be the set of these computed answers. Then for every model X
and for every X -valuation ρ, X |= c ⊃

∨
i≥1 ∃Yici , therefore

T |= c ⊃
∨

i≥1 ∃Yici ,

As T ∪ {∃(c ∧ ¬∃Yici)}i is unsatisfiable, by applying the compactness

theorem of first-order logic there exists a finite part {ci}1≤i≤n,

s.t. T |= c ⊃
∨n

i=1 ∃Yici .
Sylvain.Soliman@inria.fr CLP

Logical Semantics of CLP(X)
Automated Deduction

CLP(λ)
Negation as Failure

Proofs in Group Theory

First-order theorem proving in CLP(H)

Prolog can be used to find proofs by refutation of Horn clauses
(with a complete search meta-interpreter).
P,∀(¬A) is unsatisfiable iff P |= ∃(A) iff A −→∗ �.

Groups can be axiomatized with Horn clauses with a ternary
predicate p(x , y , z) meaning x ∗ y = z .

clause(p(e,X,X)).
clause(p(i(X),X,e)).
clause((p(U,Z,W) :- p(X,Y,U), p(Y,Z,V), p(X,V,W))).
clause((p(X,V,W) :- p(X,Y,U), p(Y,Z,V), p(U,Z,W))).

Sylvain.Soliman@inria.fr CLP

Logical Semantics of CLP(X)
Automated Deduction

CLP(λ)
Negation as Failure

Proofs in Group Theory

Theorem proving in groups

To show i(i(x)) = x by refutation,
we show that the formula ¬∀x p(i(i(X)), e,X) is unsatisfiable
By Skolemization we get the goal clause ¬p(i(i(a)), e, a)

| ?- solve(p(i(i(a)),e,a)).
depth 2
yes
| ?- solve(p(a,e,a)).
depth 4
yes
| ?- solve(p(a,i(a),e)).
depth 3
yes

Sylvain.Soliman@inria.fr CLP

Logical Semantics of CLP(X)
Automated Deduction

CLP(λ)
Negation as Failure

Proofs in Group Theory

Theorem proving in groups (cont.)

To show that any non empty subset of a group, stable by division,
is a subgroup we add two clauses

clause(s(a)).
clause((s(Z) :- s(X), s(Y), p(X,i(Y),Z))).

and prove that s contains e and i(a).

| ?- solve(s(e)).
depth 4
yes
| ?- solve(s(i(a))).
depth 5
yes

Sylvain.Soliman@inria.fr CLP

Logical Semantics of CLP(X)
Automated Deduction

CLP(λ)
Negation as Failure

λ-calculus
Proofs in λ-calculus

Higher-order theorem proving in CLP(λ)

Church’s simply typed λ-calculus
t ::= v | t1 → t2
e : t ::= x : t | (λx : t1.e : t2) : t1 → t2 | (e1 : t1 → t2(e2 : t1)) : t2

Theory of functionality
λx .e1 =α λy .e1[y/x] if y 6∈ V (e1),
(λx .e1)e2 →β e1[e2/x]
=α .→β is terminating and confluent

e1 =α,β e2 iff ↓β e1 =α ↓β e2.

Equality is decidable, but not unification...

Sylvain.Soliman@inria.fr CLP

Logical Semantics of CLP(X)
Automated Deduction

CLP(λ)
Negation as Failure

λ-calculus
Proofs in λ-calculus

Theorem proving in CLP(λ)

Theorem (Cantor’s Theorem)

NN is not countable.

Proof.

By two steps of CSLD resolution!
Let us suppose ∃h : N→ (N→ N) ∀f : N→ N ∃n : N h(n) = f
After Skolemisation we get ∀F h(n(F)) = F , i.e. ∀F ¬h(n(F)) 6= F .
Let us consider the following program G 6= H ← G (N) 6= H(N).

N 6= s(N).
We have h(n F) 6= F −→σ1 (h(n F))(I) 6= F (I) −→σ2 �
where the unifier σ2 = {G = h I I , I = n(F), F = λi .s(h i i), H = F}
is Cantor’s diagonal argument!

Sylvain.Soliman@inria.fr CLP

Logical Semantics of CLP(X)
Automated Deduction

CLP(λ)
Negation as Failure

Finite Failure
Clark’s Completion
Soundness w.r.t. Clark’s Completion
Completeness w.r.t. Clark’s Completion

Negation as Failure

A derivation CSLD is fair if every atom which appears in a goal of
the derivation is selected after a finite number of resolution steps.
A fair CSLD tree for a goal G is a CSLD derivation tree for G in
which all derivations are fair.
A goal G is finitely failed if G has a fair CSLD derivation tree to
G , which is finite and which contains no success.

p :- p.

| ?- member(a,[b,c,d]).
no

| ?- p, member(a,[b,c,d]).
...

Sylvain.Soliman@inria.fr CLP

Logical Semantics of CLP(X)
Automated Deduction

CLP(λ)
Negation as Failure

Finite Failure
Clark’s Completion
Soundness w.r.t. Clark’s Completion
Completeness w.r.t. Clark’s Completion

Logical semantics of finite failure?

Horn clauses entail no negative information: the Herbrand’s base
BX is a model.

On the other hand, the complement of the least X -model MX
P is

not recursively enumerable.

Indeed let us suppose the opposite. We could define in Prolog the
predicates:

success(P,B) which succeeds iff MP |= ∃B, i.e. if the goal B
has a successful SLD derivation with the program P

fail(P,B) which succeeds iff MP |= ¬∃B

Sylvain.Soliman@inria.fr CLP

Logical Semantics of CLP(X)
Automated Deduction

CLP(λ)
Negation as Failure

Finite Failure
Clark’s Completion
Soundness w.r.t. Clark’s Completion
Completeness w.r.t. Clark’s Completion

Undecidability of MXP

loop:- loop.
contr(P):- success(P,P), loop.
contr(P):- fail(P,P).

If contr(contr) has a success,
then success(contr,contr) succeeds,
and fail(contr,contr) doesn’t succeed,
hence contr(contr) doesn’t succeed: contradiction.

If contr(contr) doesn’t succeed,
then fail(contr,contr) succeeds,
hence contr(contr) succeeds: contradiction.

Therefore programs success and fail cannot exist.

Sylvain.Soliman@inria.fr CLP

Logical Semantics of CLP(X)
Automated Deduction

CLP(λ)
Negation as Failure

Finite Failure
Clark’s Completion
Soundness w.r.t. Clark’s Completion
Completeness w.r.t. Clark’s Completion

Clark’s completion

The Clark’s completion of P is the set P∗ of formulas of the form
∀X p(X)↔ (∃Y1c1 ∧A1

1 ∧ ...∧A1
n1

)∨ ...∨ (∃Ykck ∧Ak
1 ∧ ...∧Ak

nk
)

where the p(X)← ci |Ai
1, ...,A

i
ni

are the rules in P and Yi ’s the
local variables,
∀X¬p(X) if p is not defined in P.

Example

CLP(H) program p(s(X)):- p(X).
Clark’s completion P∗ = {∀x p(x)↔ ∃y x = s(y) ∧ p(y)}.
The goal p(0) finitely fails, we have P∗,CET |= ¬p(0).
The goal p(X) doesn’t finitely fail,
we have P∗,CET 6|= ¬∃X p(X) although P∗ |=H ¬∃X p(X)

Sylvain.Soliman@inria.fr CLP

Logical Semantics of CLP(X)
Automated Deduction

CLP(λ)
Negation as Failure

Finite Failure
Clark’s Completion
Soundness w.r.t. Clark’s Completion
Completeness w.r.t. Clark’s Completion

Supported X -models

Proposition

i) I is a supported X -model of P iff ii) I is a X -model of P∗ iff iii)
I is a fixed point of TX

P .

Proof.

I is a X -model of P∗

iff I is a X -model of ∀X p(X)← φ1 ∨ ... ∨ φk for every formula
∀X p(X)↔ φ1 ∨ ... ∨ φk in P∗,
iff I is a post-fixed point of TX

P , i.e. .TX
P (I) ⊆ I .

I is a supported X -interpretation of P,
iff I is a X -model of ∀X p(X)→ φ1 ∨ ... ∨ φk for every formula
∀X p(X)↔ φ1 ∨ ... ∨ φk in P∗,
iff I is a pre-fixed point of TX

P , i.e. I ⊆ TX
P (I).

Thus i) I is a supported X -model of P iff ii) I is a X -model of P∗ iff iii)

I is a fixed point of TX
P .

Sylvain.Soliman@inria.fr CLP

Logical Semantics of CLP(X)
Automated Deduction

CLP(λ)
Negation as Failure

Finite Failure
Clark’s Completion
Soundness w.r.t. Clark’s Completion
Completeness w.r.t. Clark’s Completion

Models of the Clark’s completion

Theorem

i) P∗ has the same least X -model than P, MX
P = MX

P∗

ii) P |=X c ⊃ A iff P∗ |=X c ⊃ A, for all c and A,
iii) P, T |= c ⊃ A iff P∗, T |= c ⊃ A.

Proof.

i) is an immediate corollary of full abstraction and least X -model
theorems.
For iii) we clearly have (P, T |= c ⊃ A)⇒ (P∗, T |= c ⊃ A). We show
the contrapositive of the opposite, (P, T 6|= c ⊃ A)⇒ (P∗, T 6|= c ⊃ A).
Let I be a model of P and T , based on a structure X , let ρ be a
valuation such that I |= ¬Aρ and X |= cρ.
We have MX

P |= ¬Aρ, thus MX
P∗ |= ¬Aρ, and as T |= cρ, we conclude

that P∗, T 6|= c ⊃ A.
The proof of ii) is identical, the structure X being fixed.

Sylvain.Soliman@inria.fr CLP

Logical Semantics of CLP(X)
Automated Deduction

CLP(λ)
Negation as Failure

Finite Failure
Clark’s Completion
Soundness w.r.t. Clark’s Completion
Completeness w.r.t. Clark’s Completion

Soundness of Negation as Finite Failure

Theorem

If G is finitely failed then P∗, T |= ¬G.

Proof.

By induction on the height h of the tree in finite failure for G = c |A, α
where A is the selected atom at the root of the tree.
In the base case h = 1, the constrained atom c |A has no CSLD transition,
we can deduce that P∗, T |= ¬(c ∧ A) hence that P∗, T |= ¬G .

For the induction step, let us suppose h > 1. Let G1, ...,Gn be the sons

of the root and Y1, ...,Yn be the respective sets of introduced variables.

We have P∗, T |= G ↔ ∃Y1 G1 ∨ ... ∨ ∃n Gn. By induction hypothesis,

P∗, T |= ¬Gi for every 1 ≤ i ≤ n, therefore P∗, T |= ¬G .

Sylvain.Soliman@inria.fr CLP

Logical Semantics of CLP(X)
Automated Deduction

CLP(λ)
Negation as Failure

Finite Failure
Clark’s Completion
Soundness w.r.t. Clark’s Completion
Completeness w.r.t. Clark’s Completion

Completeness of Negation as Failure

Theorem ([JL87])

If P∗, T |= ¬G then G is finitely failed.

We show that if G is not finitely failed then P∗, T ,∃(G) is satisfiable. If
G has a success then by the soundness of CSLD resolution, P∗, T |= ∃G .
Else G has a fair infinite derivation G = c0|G0 −→ c1|G1 −→ ...

For every i ≥ 0, ci is T -satisfiable, thus by the compactness theorem,

cω =
⋃

i≥0 ci is T -satisfiable. Let X be a model of T s.t. X |= ∃(cω).

Let I0 = {Aρ | A ∈ Gi for some i ≥ 0 and X |= cωρ}. As the derivation

is fair, every atom A in I0 is selected, thus cω|A −→ cω|A1, ...,An with

[cω|A] ∪ ... ∪ [cω|An] ⊆ I0. We deduce that I0 ⊆ TX
P (I0). By

Knaster-Tarski’s theorem, the iterated application up to ordinal ω of the

operator TX
P from I0 leads to a fixed point I s.t. I0 ⊆ I , thus [cω|G0] ∈ I .

Hence P∗,∃(G) is X -satisfiable, and P∗, T ,∃(G) is satisfiable.

Sylvain.Soliman@inria.fr CLP

Logical Semantics of CLP(X)
Automated Deduction

CLP(λ)
Negation as Failure

Finite Failure
Clark’s Completion
Soundness w.r.t. Clark’s Completion
Completeness w.r.t. Clark’s Completion

Interlude

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Part V

Concurrent Constraint Programming

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Part V: Concurrent Constraint Programming

17 Introduction
Syntax
CC vs. CLP

18 Operational Semantics
Transitions
Properties
Observables

19 Examples
append
merge
CC(FD)

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Syntax
CC vs. CLP

The Paradigm of Constraint Programming

memory of values
programming variables

memory of constraints
mathematical variables

Xi ∈ [3, 15]

ΣaiXi ≥ b

card(1, [X ≥ Y + 5,
Y ≥ X + 3])

Xi = Xj + 2
add

Xi ≥ 5?

test

V1

Vi

Vj

Vi := Vj + 1

rea
d

write

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Syntax
CC vs. CLP

Concurrent Constraint Programs

Class of programming languages CC(X) introduced by Saraswat
[Sar93] as a merge of Constraint and Concurrent Logic
Programming.

Processes P ::= D.A
Declarations D ::= p(~x) = A,D | ε
Agents A ::= tell(c) | ∀~x(c → A) | A ‖ A | A + A | ∃xA | p(~x)

Constraint Store

CC agent CC agent

tellask

+

+ +

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Syntax
CC vs. CLP

Translating CLP(X) into CC(X) Declarations

CLP(X) program:

A← c |B,C
A← d |D,E
B ← e

equivalent CC(X) declaration:

A = tell(c)||B||C + tell(d)||D||E
B = tell(e)

This is just a process calculus syntax for CLP programs. . .

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Syntax
CC vs. CLP

Translating CC(X) without ask into CLP(X)

(CC agent)† = CLP goal

(tell(c))† = c
(A || B)† = A†,B†

(A + B)† = p(~x) where ~x = fv(A) ∪ fv(B) and
p(~x)← A†

p(~x)← B†

(∃x A)† = q(~y) where ~y = fv(A) \ {x} and
q(~y)← A†

(p(~x))† = p(~x)

The ask operation c → A has no CLP equivalent.

It is a new synchronization primitive between agents.

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Transitions
Properties
Observables

CC Computations

Concurrency = communication (shared variables)
+ synchronization (ask)

Communication channels, i.e. variables, are transmissible by agents
(like in π-calculus, unlike CCS, CSP, Occam,...)

Communication is additive (a constraint will never be removed),
monotonic accumulation of information in the store (as in CLP, as
in Scott’s information systems)

Synchronization makes computation both data-driven and
goal-directed.

No private communication, all agents sharing a variable will see a
constraint posted on that variable,

Not a parallel implementation model.

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Transitions
Properties
Observables

CC(X) Configurations

Configuration (~x ; c ; Γ): store c of constraints, multiset Γ of agents,
modulo ≡ the smallest congruence s.t.:

X -equivalence
ca`Xd

c ≡ d

α-Conversion
z 6∈ fv(A)

∃yA ≡ ∃zA[z/y]

Parallel (~x ; c ;A ‖ B, Γ) ≡ (~x ; c ;A,B, Γ)

Hiding
y 6∈ fv(c , Γ)

(~x ; c ;∃yA, Γ) ≡ (~x , y ; c ;A, Γ)

y 6∈ fv(c , Γ)

(~x , y ; c ; Γ) ≡ (~x ; c ; Γ)

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Transitions
Properties
Observables

CC(X) Transitions

Interleaving semantics

Procedure call
(p(~y) = A) ∈ D

(~x ; c ; p(~y), Γ) −→ (~x ; c ;A, Γ)

Tell (~x ; c ; tell(d), Γ) −→ (~x ; c ∧ d ; Γ)

Ask
c `X d [~t/~y]

(~x ; c ;∀~y(d → A), Γ) −→ (~x ; c ;A[~t/~y], Γ)

Blind choice (~x ; c ;A + B, Γ) −→ (~x ; c ;A, Γ)
(local/internal) (~x ; c ;A + B, Γ) −→ (~x ; c ;B, Γ)

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Transitions
Properties
Observables

CC(X) extra rules

Guarded choice
c `X cj

(~x ; c ; Σici → Ai , Γ) −→ (~x ; c ;Aj , Γ)
(global/external)

AskNot
c `X ¬d

(~x ; c ;∀~y(d → A), Γ) −→ (~x ; c ; Γ)

Sequentiality
(~x ; c ; Γ) −→ (~x ; d ; Γ′)

(~x ; c ; (Γ;∆),Φ) −→ (~x ; d ; (Γ′;∆),Φ)

(~x ; c ; (∅; Γ),∆) −→ (~x ; d ; Γ,∆)

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Transitions
Properties
Observables

Properties of CC Transitions (1)

Theorem (Monotonicity)

If (~x ; c ; Γ)→ (~y ; d ;∆) then (~x ; c ∧ e; Γ,Σ)→ (~y ; d ∧ e;∆,Σ) for
every constraint e and agents ∆.

Proof.

tell and ask are monotonic (monotonic conditions in guards).

Corollary

Strong fairness and weak fairness are equivalent.

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Transitions
Properties
Observables

Properties of CC Transitions (2)

A configuration without + is called deterministic.

Theorem (Confluence)

For any deterministic configuration κ with deterministic
declarations,
if κ→ κ1 and κ→ κ2 then κ1 → κ′ and κ2 → κ′ for some κ′.

Corollary

Independence of the scheduling of the execution of parallel agents.

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Transitions
Properties
Observables

Properties of CC Transitions (3)

Theorem (Extensivity)

If (~x ; c ; Γ)→ (~y ; d ;∆) then ∃~yd `X ∃~xc.

Proof.

For any constraint e, c ∧ e `X c .

Theorem (Restartability)

If (~x ; c ; Γ)→∗ (~y ; d ;∆) then (~x ;∃~yd ; Γ)→∗ (~y ; d ;∆).

Proof.

By extensivity and monotonicity.

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Transitions
Properties
Observables

CC(X) Operational Semanticssss

observing the set of success stores,

Oss(D.A; c) = {∃~xd ∈ X |(∅; c ;A) −→∗ (~x ; d ; ε)}

observing the set of terminal stores (successes and
suspensions),

Ots(D.A; c) = {∃~xd ∈ X |(∅; c ;A) −→∗ (~x ; d ; Γ) Y−→}

observing the set of accessible stores,

Oas(D.A; c) = {∃~xd ∈ X |(∅; c ;A) −→∗ (~x ; d ;B)}

observing the set of limit stores?

O∞(D.A; c0) = {t?{∃~xici}i≥0|(∅; c0;A) −→ (~x1; c1; Γ1) −→ ...}

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(H) ’append’ Program(s)

Undirectional CLP style

append(A,B,C) = tell(A = [])||tell(C = B)
+tell(A = [X |L])||tell(C = [X |R])||append(L,B,R)

Directional CC success store style

append(A,B,C) = (A = []→ tell(C = B))
+∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))

Directional CC terminal store style

append(A,B,C) = A = []→ tell(C = B)
||∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(H) ’append’ Program(s)

Undirectional CLP style

append(A,B,C) = tell(A = [])||tell(C = B)
+tell(A = [X |L])||tell(C = [X |R])||append(L,B,R)

Directional CC success store style

append(A,B,C) = (A = []→ tell(C = B))
+∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))

Directional CC terminal store style

append(A,B,C) = A = []→ tell(C = B)
||∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(H) ’append’ Program(s)

Undirectional CLP style

append(A,B,C) = tell(A = [])||tell(C = B)
+tell(A = [X |L])||tell(C = [X |R])||append(L,B,R)

Directional CC success store style

append(A,B,C) = (A = []→ tell(C = B))
+∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))

Directional CC terminal store style

append(A,B,C) = A = []→ tell(C = B)
||∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(H) ’append’ Program(s)

Undirectional CLP style

append(A,B,C) = tell(A = [])||tell(C = B)
+tell(A = [X |L])||tell(C = [X |R])||append(L,B,R)

Directional CC success store style

append(A,B,C) = (A = []→ tell(C = B))
+∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))

Directional CC terminal store style

append(A,B,C) = A = []→ tell(C = B)
||∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(H) ’append’ Program(s)

Undirectional CLP style

append(A,B,C) = tell(A = [])||tell(C = B)
+tell(A = [X |L])||tell(C = [X |R])||append(L,B,R)

Directional CC success store style

append(A,B,C) = (A = []→ tell(C = B))
+∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))

Directional CC terminal store style

append(A,B,C) = A = []→ tell(C = B)
||∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(H) ’append’ Program(s)

Undirectional CLP style

append(A,B,C) = tell(A = [])||tell(C = B)
+tell(A = [X |L])||tell(C = [X |R])||append(L,B,R)

Directional CC success store style

append(A,B,C) = (A = []→ tell(C = B))
+∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))

Directional CC terminal store style

append(A,B,C) = A = []→ tell(C = B)
||∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(H) ’merge’ Program

Merging streams

merge(A,B,C) = (A = []→ tell(C = B))
+(B = []→ tell(C = A))
+∀X , L(A = [X |L]→ tell(C = [X |R])||merge(L,B,R))
+∀X , L(B = [X |L]→ tell(C = [X |R])||merge(A, L,R))

Good for the

Oss

observable(s?)

Many-to-one communication:
client(C1, ...)
...
client(Cn, ...)
server([C1, ...,Cn], ...) =∑n

i=1 ∀X , L(Ci = [X |L]→ ...||server([C1, ..., L, ...,Cn], ...)

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(H) ’merge’ Program

Merging streams

merge(A,B,C) = (A = []→ tell(C = B))
+(B = []→ tell(C = A))
+∀X , L(A = [X |L]→ tell(C = [X |R])||merge(L,B,R))
+∀X , L(B = [X |L]→ tell(C = [X |R])||merge(A, L,R))

Good for the Oss observable

(s?)

Many-to-one communication:
client(C1, ...)
...
client(Cn, ...)
server([C1, ...,Cn], ...) =∑n

i=1 ∀X , L(Ci = [X |L]→ ...||server([C1, ..., L, ...,Cn], ...)

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(FD) Finite Domain Constraints

Approximating ask condition with the Elimination condition

EL: c ∧ Γ −→ Γ
if FD |= cσ for every valuation σ of the variables in c by values of
their domain.

ask(X ≥ Y + k) = min(X) ≥ max(Y) + k

asknot(X ≥ Y + k) = max(X) < min(Y) + k

ask(X 6= Y) = max(X) < min(Y) ∨min(X) > max(Y)
a better approximation:
= (dom(X) ∩ dom(Y) = ∅)

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(FD) Constraints

Basic constraints
(X ≥ Y + k) = X in min(Y) + k .. ∞ || Y in 0 .. max(X)− k

Reified constraints
(B ⇔ X = A) = B in 0..1 ||

X = A→ B = 1 || X 6= A→ B = 0 ||
B = 1→ X = A || B = 0→ X 6= A

Higher-order constraints
card(N, L) = L = []→ N = 0 ||

L = [C |S]→
∃B,M (B ⇔ C || N = B + M || card(M,S))

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

Andora Principle

“Always execute deterministic computation first”.

Disjunctive scheduling:

deterministic propagation of the disjunctive constraints for which
one of the alternatives is dis-entailed:

card(1, [x ≥ y + dy , y ≥ x + dx])

before creating choice points:

(x ≥ y + dy) + (y ≥ x + dx)

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

Constructive Disjunction in CC(FD) (1)

∨L
c `X e d `X e

c ∨ d `X e

Intuitionistic logic tells us we can infer the common information to
both branches of a disjunction without creating choice points!

max(X ,Y ,Z) = (X > Y ||Z = X) + (X <= Y ||Z = Y)
or
max(X ,Y ,Z) = X > Y → Z = X + X <= Y → Z = Y .
or
max(X ,Y ,Z) = X > Y → Z = X || X <= Y → Z = Y .
better?

max(X ,Y ,Z) = Z in min(X)..∞ || Z in min(Y)..∞
|| Z in dom(X) ∪ dom(Y)

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

Constructive Disjunction in CC(FD) (1)

∨L
c `X e d `X e

c ∨ d `X e

Intuitionistic logic tells us we can infer the common information to
both branches of a disjunction without creating choice points!

max(X ,Y ,Z) = (X > Y ||Z = X) + (X <= Y ||Z = Y)
or
max(X ,Y ,Z) = X > Y → Z = X + X <= Y → Z = Y .
or
max(X ,Y ,Z) = X > Y → Z = X || X <= Y → Z = Y .
better?
max(X ,Y ,Z) = Z in min(X)..∞ || Z in min(Y)..∞

|| Z in dom(X) ∪ dom(Y)

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

Constructive Disjunction in CC(FD) (2)

Disjunctive precedence constraints

disjunctive(T1,D1,T2,D2) =
(T1 >= T2 + D2)+
(T2 >= T1 + D1)

Using constructive disjunction

disjunctive(T1,D1,T2,D2) =
T1 in (0..max(T2)− D1) ∪ (min(T2) + D2..∞) ||
T2 in (0..max(T1)− D2) ∪ (min(T1) + D1..∞)

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

Constructive Disjunction in CC(FD) (2)

Disjunctive precedence constraints

disjunctive(T1,D1,T2,D2) =
(T1 >= T2 + D2)+
(T2 >= T1 + D1)

Using constructive disjunction

disjunctive(T1,D1,T2,D2) =
T1 in (0..max(T2)− D1) ∪ (min(T2) + D2..∞) ||
T2 in (0..max(T1)− D2) ∪ (min(T1) + D1..∞)

Sylvain.Soliman@inria.fr CLP

Bibliography I

Maurizio Gabbrielli and Giorgio Levi.

Modeling answer constraints in constraint logic programs.
In K. Furukawa, editor, Proceedings of ICLP’91, International Conference on Logic Programming, pages
238–252, Cambridge, 1991. MIT Press.

Joxan Jaffar and Jean-Louis Lassez.

Constraint logic programming.
In Proceedings of the 14th ACM Symposium on Principles of Programming Languages, Munich, Germany,
pages 111–119. ACM, January 1987.

Michael J. Maher.

Logic semantics for a class of committed-choice programs.
In Proceedings of ICLP’87, International Conference on Logic Programming, 1987.

Vijay A. Saraswat.

Concurrent constraint programming.
ACM Doctoral Dissertation Awards. MIT Press, 1993.

Sylvain.Soliman@inria.fr CLP

	The Constraint Programming paradigm
	Examples and Applications
	First Order Logic
	Models
	Logical Theories
	Constraint Languages
	Decidability in Complete Theories

	CLP(X)
	Definition
	Operational Semantics

	CLP(H)
	Prolog
	Examples

	CLP(R,FD,B)
	CLP(R)
	CLP(FD)
	CLP(B)

	Operational Semantics
	Fixpoint Semantics
	Fixpoint Preliminaries
	Fixpoint Semantics of Successes
	Fixpoint Semantics of Computed Answers

	Program Analysis
	Abstract Interpretation
	Constraint-based Model Checking

	Logical Semantics of CLP(X)
	Soundness
	Completeness

	Automated Deduction
	Proofs in Group Theory

	CLP()
	-calculus
	Proofs in -calculus

	Negation as Failure
	Finite Failure
	Clark's Completion
	Soundness w.r.t. Clark's Completion
	Completeness w.r.t. Clark's Completion

	Introduction
	Syntax
	CC vs. CLP

	Operational Semantics
	Transitions
	Properties
	Observables

	Examples
	append
	merge
	CC(FD)

