Constraint Logic Programming

Sylvain Soliman, François Fages and Nicolas Beldiceanu \{Sylvain.Soliman, Francois.Fages\}@inria.fr
INRIA - Projet CONTRAINTES

MPRI C-2-4-1 Course - September-November, 2006

Part I: CLP - Introduction and Logical Background

(1) The Constraint Programming paradigm
(2) Examples and Applications
(3) First Order Logic
(4) Models
(5) Logical Theories

Part II: Constraint Logic Programs

(6) Constraint Languages

- Decidability in Complete Theories
(7) $\operatorname{CLP}(\mathcal{X})$
- Definition
- Operational Semantics
(8) $\operatorname{CLP}(\mathcal{H})$
- Prolog
- Examples
(9) $\operatorname{CLP}(\mathcal{R}, \mathcal{F} \mathcal{D}, \mathcal{B})$
- $\operatorname{CLP}(\mathcal{R})$
- $\operatorname{CLP}(\mathcal{F} \mathcal{D})$
- $\operatorname{CLP}(\mathcal{B})$

Part III: Operational and Fixpoint Semantics

(10) Operational Semantics
(11) Fixpoint Semantics

- Fixpoint Preliminaries
- Fixpoint Semantics of Successes
- Fixpoint Semantics of Computed Answers
(12) Program Analysis
- Abstract Interpretation
- Constraint-based Model Checking

Full abstraction

$$
\text { Let } F_{1}(P)=\operatorname{lfp}\left(T_{P}^{\mathcal{X}}\right)=T_{P}^{\mathcal{X}} \uparrow \omega=\ldots T_{P}^{\mathcal{X}}\left(T_{P}^{\mathcal{X}}(\emptyset)\right) \ldots
$$

Theorem ([JL87])

$F_{1}(P)=O_{g s}(P)$.
$F_{1}(P) \subseteq O_{g s}(P)$ is proved by induction on the powers n of $T_{P}^{\mathcal{X}} . n=0$ is trivial. Let $A \rho \in T_{P}^{\mathcal{X}} \uparrow n$, there exists a rule $\left(A \leftarrow c \mid A_{1}, \ldots, A_{n}\right) \in P$, s.t. $\left\{A_{1} \rho, \ldots, A_{n} \rho\right\} \subseteq T_{P}^{\mathcal{X}} \uparrow n-1$ and $\mathcal{X} \equiv c \rho$. By induction $\left\{A_{1} \rho, \ldots, A_{n} \rho\right\} \subseteq O_{g s}(P)$. By definition of $O_{g s}$ we get $A \rho \in O_{g s}(P)$. $O_{g s}(P) \subseteq F_{1}(P)$ is proved by induction on the length of derivations. Successes with derivation of length 0 are ground facts in $T_{P}^{\mathcal{X}} \uparrow 1$. Let $A \rho \in O_{g s}(P)$ with a derivation of length n. By definition of $O_{g s}$ there exists $\left(A \leftarrow c \mid A_{1}, \ldots, A_{n}\right) \in P$ s.t. $\left\{A_{1} \rho, \ldots, A_{n} \rho\right\} \subseteq O_{g s}(P)$ and $\mathcal{X} \models c \rho$. By induction $\left\{A_{1} \rho, \ldots, A_{n} \rho\right\} \subseteq F_{1}(P)$. Hence by definition of $T_{P}^{\mathcal{X}}$ we get $A \rho \in F_{1}(P)$.

$T_{P}^{\mathcal{X}}$ and \mathcal{X} models

Proposition

I is a \mathcal{X}-model of P iff I is a post-fixed point of $T_{P}^{\mathcal{X}}, T_{P}^{\mathcal{X}}(I) \subseteq I$.

Proof.

I is a \mathcal{X}-model of P,
iff for each clause $A \leftarrow c \mid A_{1}, \ldots, A_{n} \in P$ and for each \mathcal{X}-valuation ρ, if $\mathcal{X} \models c \rho$ and $\left\{A_{1} \rho, \ldots, A_{n} \rho\right\} \subseteq I$ then $A \rho \in I$,
iff $T_{P}^{\mathcal{X}}(I) \subseteq I$.

Relating $S_{P}^{\mathcal{X}}$ and $T_{P}^{\mathcal{X}}$ operators

Theorem ([JL87])

For every ordinal $\alpha, T_{P}^{\mathcal{X}} \uparrow \alpha=\left[S_{P}^{\mathcal{X}} \uparrow \alpha\right]_{\mathcal{X}}$.

Proof.

The base case $\alpha=0$ is trivial. For a successor ordinal, we have

$$
\begin{aligned}
{\left[S_{P}^{\mathcal{X}} \uparrow \alpha\right]_{\mathcal{X}} } & =\left[S_{P}^{\mathcal{X}}\left(S_{P}^{\mathcal{X}} \uparrow \alpha-1\right)\right]_{\mathcal{X}} \\
& =T_{P}^{\mathcal{X}}\left(\left[S_{P}^{\mathcal{X}} \uparrow \alpha-1\right]_{\mathcal{X}}\right) \\
& =T_{P}^{\mathcal{X}}\left(T_{P}^{\mathcal{X}} \uparrow \alpha-1\right) \text { by induction } \\
& =T_{P}^{\mathcal{X}} \uparrow \alpha .
\end{aligned}
$$

For a limit ordinal, we have

$$
\begin{aligned}
{\left[S_{P}^{\mathcal{X}} \uparrow \alpha\right]_{\mathcal{X}} } & =\left[\bigcup_{\beta<\alpha} S_{P}^{\mathcal{X}} \uparrow \beta\right]_{\mathcal{X}} \\
& =\bigcup_{\beta<\alpha}\left[S_{P}^{\mathcal{X}} \uparrow \beta\right]_{\mathcal{X}} \\
& =\bigcup_{\beta<\alpha} T_{P}^{\mathcal{X}} \uparrow \beta \text { by induction } \\
& =T_{P}^{\mathcal{X}} \uparrow \alpha
\end{aligned}
$$

Full abstraction w.r.t. computed constraints

Theorem (Theorem of full abstraction [GL91])
$O_{c a}(P)=F_{2}(P)$.
$F_{2}(P) \subseteq O_{c a}(P)$ is proved by induction on the powers n of $S_{P}^{\mathcal{X}} . n=0$ is trivial. Let $c \mid A \in S_{P}^{\mathcal{X}} \uparrow n$, there exists a rule $\left(A \leftarrow d \mid A_{1}, \ldots, A_{n}\right) \in P$, s.t. $\left\{c_{1}\left|A_{1}, \ldots, c_{n}\right| A_{n}\right\} \subseteq S_{P}^{\mathcal{X}} \uparrow n-1, c=d \wedge \bigwedge_{i=1}^{n} c_{i}$ and $\mathcal{X} \models \exists c$. By induction $\left\{c_{1}\left|A_{1}, \ldots, c_{n}\right| A_{n}\right\} \subseteq O_{c a}(P)$. By definition of $O_{c a}$ we get $c \mid A \in O_{c a}(P)$.
$O_{c a}(P) \subseteq F_{2}(P)$ is proved by induction on the length of derivations. Successes with derivation of length 0 are facts in $S_{P}^{\mathcal{X}} \uparrow 1$. Let $c \mid A \in O_{c a}(P)$ with a derivation of length n. By definition of $O_{c a}$ there exists $\left(A \leftarrow d \mid A_{1}, \ldots, A_{n}\right) \in P$ s.t. $\left\{c_{1}\left|A_{1}, \ldots, c_{n}\right| A_{n}\right\} \subseteq O_{c a}(P)$, $c=d \wedge \bigwedge_{i=1}^{n} c_{i}$ and $\mathcal{X} \models \exists c$. By induction $\left\{c_{1}\left|A_{1}, \ldots, c_{n}\right| A_{n}\right\} \subseteq F_{2}(P)$. Hence by definition of $S_{P}^{\mathcal{X}}$ we get $c \mid A \in F_{2}(P)$.

Part IV

Logical Semantics

Part IV: Logical Semantics

(13) Logical Semantics of $\operatorname{CLP}(\mathcal{X})$

- Soundness
- Completeness
(14) Automated Deduction
- Proofs in Group Theory
(15) $\operatorname{CLP}(\lambda)$
- λ-calculus
- Proofs in λ-calculus
(16) Negation as Failure
- Finite Failure
- Clark's Completion
- Soundness w.r.t. Clark's Completion
- Completeness w.r.t. Clark's Completion

Logical Semantics of $\operatorname{CLP}(\mathcal{X})$ Programs

- Proper logical semantics
(1) $P, \mathcal{T} \models \exists(G)$
(4) $P, \mathcal{T} \models c \supset G$,
- Logical semantics in a fixed pre-interpretation

$$
\text { (2) } P \not \models_{\mathcal{X}} \exists(G) \quad \text { (5) } P \not \models_{\mathcal{X}} \subset \supset G \text {, }
$$

- Algebraic semantics

$$
\text { (3) } M_{P}^{\mathcal{X}} \models \exists(G) \quad \text { (6) } \quad M_{P}^{\mathcal{X}} \models c \supset G \text {. }
$$

We show $(1) \Leftrightarrow(2) \Leftrightarrow(3)$ and $(4) \Rightarrow(5) \Leftrightarrow(6)$.

Soundness of CSLD Resolution

Theorem ([JL87])

If c is a computed answer for the goal G then $M_{P}^{\mathcal{X}} \models c \supset G$, $P \models \mathcal{X} c \supset G$ and $P, \mathcal{T} \models c \supset G$.

If $G=\left(d \mid A_{1}, \ldots, A_{n}\right)$, we deduce from the \wedge-compositionality lemma, that there exist computed answers c_{1}, \ldots, c_{n} for the goals A_{1}, \ldots, A_{n} such that $c=d \wedge \bigwedge_{i=1}^{n} c_{i}$ is satisfiable. For every $1 \leq i \leq n$ $c_{i} \mid A_{i} \in S_{P}^{\mathcal{X}} \uparrow \omega$, by the full abstraction Thm, 4,
$\left[c_{i} \mid A_{i}\right]_{\mathcal{X}} \subseteq M_{P}^{\mathcal{X}}$, by Thm. 3, and Prop. 2, hence $M_{P}^{\mathcal{X}} \models \forall\left(c_{i} \supset A_{i}\right)$,
$P \models_{\mathcal{X}} \forall\left(c_{i} \supset A_{i}\right)$ as $M_{P}^{\mathcal{X}}$ is the least \mathcal{X}-model of P, $P \models \mathcal{X} \forall\left(c \supset A_{i}\right)$ as $\mathcal{X} \models \forall\left(c \supset c_{i}\right)$ for all $i, 1 \leq i \leq n$.
Therefore we have $P \models_{\mathcal{X}} \forall\left(c \supset\left(d \wedge A_{1} \wedge \ldots \wedge A_{n}\right)\right)$, and as the same reasoning applies to any model \mathcal{X} of \mathcal{T},

$$
P, \mathcal{T} \models \forall\left(c \supset\left(d \wedge A_{1} \wedge \ldots \wedge A_{n}\right)\right)
$$

Completeness of CSLD resolution

Theorem ([Mah87])

If $M_{P}^{\mathcal{X}} \vDash \mathcal{X} c \supset G$ then there exists a set $\left\{c_{i}\right\}_{i \geq 0}$ of computed answers for G, such that: $\mathcal{X} \models \forall\left(c \supset \bigvee_{i \geq 0} \exists Y_{i} c_{i}\right)$.

Proof.

For every solution ρ of c, for every atom A_{j} in G, $M_{P}^{\mathcal{X}} \models A_{j} \rho$ iff $A_{j} \rho \in T_{P}^{\mathcal{X}} \uparrow \omega$, by Thm. 1 , iff $A_{j} \rho \in\left[S_{P}^{\mathcal{X}} \uparrow \omega\right]_{\mathcal{X}}$, by Thm. 3, iff $c_{j, \rho} \mid A_{j} \in S_{P}^{\mathcal{X}} \uparrow \omega$, for some constraint $c_{j, \rho}$ s.t. ρ is solution of $\exists Y_{j, \rho} c_{j, \rho}$, where $Y_{j, \rho}=V\left(c_{j, \rho}\right) \backslash V\left(A_{j}\right)$, iff $c_{j, \rho}$ is a computed answer for A_{j} (by 4) and $\mathcal{X} \models \exists Y_{j, \rho} c_{j, \rho} \rho$. Let c_{ρ} be the conjunction of $c_{j, \rho}$ for all $j . c_{\rho}$ is a computed answer for G. By taking the collection of c_{ρ} for all ρ we get $\mathcal{X} \vDash \forall\left(c \supset \bigvee_{c_{\rho}} \exists Y_{\rho} c_{\rho}\right)$

Completeness w.r.t. the theory of the structure

Theorem ([Mah87])

If $P, \mathcal{T} \models c \supset G$ then there exists a finite set $\left\{c_{1}, \ldots, c_{n}\right\}$ of computed answers to G, such that:
$\mathcal{T} \models \forall\left(c \supset \exists Y_{1} c_{1} \vee \ldots \vee \exists Y_{n} c_{n}\right)$.

Proof.

If $P, \mathcal{T} \models c \supset G$ then for every model \mathcal{X} of \mathcal{T}, for every \mathcal{X}-solution ρ of c, there exists a computed constraint $c_{\mathcal{X}, \rho}$ for G s.t. $\mathcal{X} \models c_{\mathcal{X}, \rho} \rho$. Let $\left\{c_{i}\right\}_{i \geq 0}$ be the set of these computed answers. Then for every model \mathcal{X} and for every \mathcal{X}-valuation $\rho, \mathcal{X} \mid=c \supset \bigvee_{i \geq 1} \exists Y_{i} c_{i}$, therefore $\mathcal{T} \models c \supset \bigvee_{i \geq 1} \exists Y_{i} c_{i}$,
As $\mathcal{T} \cup\left\{\exists\left(c \wedge \neg \exists Y_{i} c_{i}\right)\right\}_{i}$ is unsatisfiable, by applying the compactness theorem of first-order logic there exists a finite part $\left\{c_{i}\right\}_{1 \leq i \leq n}$,
s.t. $\mathcal{T} \models c \supset \bigvee_{i=1}^{n} \exists Y_{i} c_{i}$.

First-order theorem proving in $\operatorname{CLP}(\mathcal{H})$

Prolog can be used to find proofs by refutation of Horn clauses (with a complete search meta-interpreter). $P, \forall(\neg A)$ is unsatisfiable iff $P \models \exists(A)$ iff $A \longrightarrow^{*} \square$.

Groups can be axiomatized with Horn clauses with a ternary predicate $p(x, y, z)$ meaning $x * y=z$.

```
clause(p(e,X,X)).
clause(p(i(X),X,e)).
clause((p(U,Z,W) :- p(X,Y,U), p(Y,Z,V), p(X,V,W))).
clause((p(X,V,W) :- p(X,Y,U), p(Y,Z,V), p(U,Z,W))).
```


Theorem proving in groups

To show $i(i(x))=x$ by refutation, we show that the formula $\neg \forall x p(i(i(X)), e, X)$ is unsatisfiable By Skolemization we get the goal clause $\neg p(i(i(a)), e, a)$
| ?- solve(p(i(i(a)),e,a)).
depth 2
yes
| ?- solve(p(a,e,a)).
depth 4
yes
| ?- solve(p(a,i(a),e)).
depth 3
yes

Theorem proving in groups (cont.)

To show that any non empty subset of a group, stable by division, is a subgroup we add two clauses
clause(s(a)).
clause((s(Z) :- s(X), s(Y), p(X,i(Y),Z))).
and prove that s contains e and $i(a)$.
| ?- solve(s(e)).
depth 4
yes
| ?- solve(s(i(a))).
depth 5
yes

Higher-order theorem proving in CLP (λ)

Church's simply typed λ-calculus
$t::=v \mid t_{1} \rightarrow t_{2}$
$e: t::=x: t\left|\left(\lambda x: t_{1} \cdot e: t_{2}\right): t_{1} \rightarrow t_{2}\right|\left(e_{1}: t_{1} \rightarrow t_{2}\left(e_{2}: t_{1}\right)\right): t_{2}$
Theory of functionality
$\lambda x . e_{1}={ }_{\alpha} \lambda y . e_{1}[y / x]$ if $y \notin V\left(e_{1}\right)$,
$\left(\lambda x . e_{1}\right) e_{2} \rightarrow_{\beta} e_{1}\left[e_{2} / x\right]$
$=\alpha \cdot \rightarrow_{\beta}$ is terminating and confluent

$$
e_{1}={ }_{\alpha, \beta} \quad e_{2} \text { iff } \downarrow_{\beta} e_{1}={ }_{\alpha} \downarrow_{\beta} e_{2} .
$$

Equality is decidable, but not unification...

Theorem proving in $\operatorname{CLP}(\lambda)$

Theorem (Cantor's Theorem)

$\mathbb{N}^{\mathbb{N}}$ is not countable.

Proof.

By two steps of CSLD resolution!
Let us suppose $\exists h: \mathbb{N} \rightarrow(\mathbb{N} \rightarrow \mathbb{N}) \forall f: \mathbb{N} \rightarrow \mathbb{N} \exists n: \mathbb{N} h(n)=f$ After Skolemisation we get $\forall F h(n(F))=F$, i.e. $\forall F \neg h(n(F)) \neq F$. Let us consider the following program $\quad G \neq H \leftarrow G(N) \neq H(N)$. $N \neq s(N)$.
We have $h(n F) \neq F \longrightarrow{ }^{\sigma_{1}}(h(n F))(I) \neq F(I) \longrightarrow^{\sigma_{2}} \square$ where the unifier $\sigma_{2}=\{G=h I I, I=n(F), F=\lambda i . s(h i i), H=F\}$ is Cantor's diagonal argument!

Negation as Failure

A derivation CSLD is fair if every atom which appears in a goal of the derivation is selected after a finite number of resolution steps. A fair CSLD tree for a goal G is a CSLD derivation tree for G in which all derivations are fair.
A goal G is finitely failed if G has a fair CSLD derivation tree to G, which is finite and which contains no success.
p :- p.
| ?- member (a, [b, c,d]).
no
| ?- p, member (a, [b, c, d]).

Logical semantics of finite failure?

Horn clauses entail no negative information: the Herbrand's base $\mathcal{B}_{\mathcal{X}}$ is a model.

On the other hand, the complement of the least \mathcal{X}-model $M_{P}^{\mathcal{X}}$ is not recursively enumerable.

Indeed let us suppose the opposite. We could define in Prolog the predicates:

- success (P, B) which succeeds iff $M_{P} \models \exists B$, i.e. if the goal B has a successful SLD derivation with the program P
- fail (P, B) which succeeds iff $M_{P} \models \neg \exists B$

Undecidability of M_{P}^{X}

loop:- loop.
contr(P):- success(P, P), loop.
contr(P):- fail(P,P).

If contr (contr) has a success, then success(contr, contr) succeeds, and fail(contr, contr) doesn't succeed, hence contr (contr) doesn't succeed: contradiction.

If contr (contr) doesn't succeed, then fail (contr, contr) succeeds, hence contr(contr) succeeds: contradiction.

Therefore programs success and fail cannot exist.

Clark's completion

The Clark's completion of P is the set P^{*} of formulas of the form $\forall X p(X) \leftrightarrow\left(\exists Y_{1} c_{1} \wedge A_{1}^{1} \wedge \ldots \wedge A_{n_{1}}^{1}\right) \vee \ldots \vee\left(\exists Y_{k} c_{k} \wedge A_{1}^{k} \wedge \ldots \wedge A_{n_{k}}^{k}\right)$ where the $p(X) \leftarrow c_{i} \mid A_{1}^{i}, \ldots, A_{n_{i}}^{i}$ are the rules in P and Y_{i} 's the local variables, $\forall X \neg p(X)$ if p is not defined in P.

Example

$\operatorname{CLP}(\mathcal{H})$ program $\mathrm{p}(\mathrm{s}(\mathrm{X})):-\mathrm{p}(\mathrm{X})$.
Clark's completion $P^{*}=\{\forall x p(x) \leftrightarrow \exists y x=s(y) \wedge p(y)\}$. The goal p(0) finitely fails, we have $P^{*}, C E T \models \neg p(0)$.
The goal $\mathrm{p}(\mathrm{X})$ doesn't finitely fail, we have $P^{*}, C E T \not \vDash \neg \exists X p(X)$ although $P^{*} \models_{\mathcal{H}} \neg \exists X p(X)$

Supported \mathcal{X}-models

Proposition

i) I is a supported \mathcal{X}-model of P iff ii) I is a \mathcal{X}-model of P^{*} iff iii) I is a fixed point of $T_{P}^{\mathcal{X}}$.

Proof.

I is a \mathcal{X}-model of P^{*}
iff I is a \mathcal{X}-model of $\forall X p(X) \leftarrow \phi_{1} \vee \ldots \vee \phi_{k}$ for every formula $\forall X p(X) \leftrightarrow \phi_{1} \vee \ldots \vee \phi_{k}$ in P^{*},
iff I is a post-fixed point of $T_{P}^{\mathcal{X}}$, i.e..$T_{P}^{\mathcal{X}}(I) \subseteq I$.
I is a supported \mathcal{X}-interpretation of P,
iff I is a \mathcal{X}-model of $\forall X p(X) \rightarrow \phi_{1} \vee \ldots \vee \phi_{k}$ for every formula
$\forall X p(X) \leftrightarrow \phi_{1} \vee \ldots \vee \phi_{k}$ in P^{*},
iff I is a pre-fixed point of $T_{P}^{\mathcal{X}}$, i.e. $I \subseteq T_{P}^{\mathcal{X}}(I)$.
Thus i) I is a supported \mathcal{X}-model of P iff ii) I is a \mathcal{X}-model of P^{*} iff iii)
I is a fixed point of $T_{P}^{\mathcal{X}}$.

Models of the Clark's completion

Theorem

i) P^{*} has the same least \mathcal{X}-model than $P, M_{P}^{\mathcal{X}}=M_{P^{*}}^{\mathcal{X}}$
ii) $P \models \mathcal{X} \subset \supset A$ iff $P^{*} \models \mathcal{X} \subset \supset A$, for all c and A, iii) $P, \mathcal{T} \models c \supset A$ iff $P^{*}, \mathcal{T} \models c \supset A$.

Proof.

i) is an immediate corollary of full abstraction and least \mathcal{X}-model theorems.
For iii) we clearly have $(P, \mathcal{T} \models c \supset A) \Rightarrow\left(P^{*}, \mathcal{T} \models c \supset A\right)$. We show the contrapositive of the opposite, $(P, \mathcal{T} \not \vDash c \supset A) \Rightarrow\left(P^{*}, \mathcal{T} \not \vDash c \supset A\right)$.
Let I be a model of P and \mathcal{T}, based on a structure \mathcal{X}, let ρ be a valuation such that $I \models \neg A \rho$ and $\mathcal{X} \models c \rho$.
We have $M_{P}^{\mathcal{X}} \models \neg A \rho$, thus $M_{P^{*}}^{\mathcal{X}} \models \neg A \rho$, and as $\mathcal{T} \models c \rho$, we conclude that $P^{*}, \mathcal{T} \not \vDash c \supset A$.
The proof of ii) is identical, the structure \mathcal{X} being fixed.

Soundness of Negation as Finite Failure

Theorem

If G is finitely failed then $P^{*}, \mathcal{T} \models \neg G$.

Proof.

By induction on the height h of the tree in finite failure for $G=c \mid A, \alpha$ where A is the selected atom at the root of the tree.
In the base case $h=1$, the constrained atom $c \mid A$ has no CSLD transition, we can deduce that $P^{*}, \mathcal{T} \models \neg(c \wedge A)$ hence that $P^{*}, \mathcal{T} \models \neg G$.
For the induction step, let us suppose $h>1$. Let G_{1}, \ldots, G_{n} be the sons of the root and Y_{1}, \ldots, Y_{n} be the respective sets of introduced variables. We have $P^{*}, \mathcal{T} \models G \leftrightarrow \exists Y_{1} G_{1} \vee \ldots \vee \exists_{n} G_{n}$. By induction hypothesis, $P^{*}, \mathcal{T} \models \neg G_{i}$ for every $1 \leq i \leq n$, therefore $P^{*}, \mathcal{T} \models \neg G$.

Completeness of Negation as Failure

Theorem ([JL87])

If $P^{*}, \mathcal{T} \models \neg G$ then G is finitely failed.
We show that if G is not finitely failed then $P^{*}, \mathcal{T}, \exists(G)$ is satisfiable. If G has a success then by the soundness of CSLD resolution, $P^{*}, \mathcal{T} \models \exists G$. Else G has a fair infinite derivation $G=c_{0}\left|G_{0} \longrightarrow c_{1}\right| G 1 \longrightarrow \ldots$
For every $i \geq 0, c_{i}$ is \mathcal{T}-satisfiable, thus by the compactness theorem, $c_{\omega}=\bigcup_{i \geq 0} c_{i}$ is \mathcal{T}-satisfiable. Let \mathcal{X} be a model of \mathcal{T} s.t. $\mathcal{X} \models \exists\left(c_{\omega}\right)$. Let $I_{0}=\left\{A \rho \mid A \in G_{i}\right.$ for some $i \geq 0$ and $\left.\mathcal{X} \models c_{\omega} \rho\right\}$. As the derivation is fair, every atom A in I_{0} is selected, thus $c_{\omega}\left|A \longrightarrow c_{\omega}\right| A_{1}, \ldots, A_{n}$ with $\left[c_{\omega} \mid A\right] \cup \ldots \cup\left[c_{\omega} \mid A_{n}\right] \subseteq I_{0}$. We deduce that $I_{0} \subseteq T_{P}^{\mathcal{X}}\left(I_{0}\right)$. By Knaster-Tarski's theorem, the iterated application up to ordinal ω of the operator $T_{P}^{\mathcal{X}}$ from I_{0} leads to a fixed point I s.t. $I_{0} \subseteq I$, thus $\left[c_{\omega} \mid G_{0}\right] \in I$. Hence $P^{*}, \exists(G)$ is \mathcal{X}-satisfiable, and $P^{*}, \mathcal{T}, \exists(G)$ is satisfiable.

Interlude

Sylvain.Soliman@inria.fr

Part V

Concurrent Constraint Programming

Part V: Concurrent Constraint Programming

(17) Introduction

- Syntax
- CC vs. CLP
(18) Operational Semantics
- Transitions
- Properties
- Observables
(19) Examples
- append
- merge
- $\mathrm{CC}(\mathcal{F D})$

The Paradigm of Constraint Programming

memory of values
programming variables

memory of constraints mathematical variables

RINRIA

Concurrent Constraint Programs

Class of programming languages $\mathrm{CC}(\mathcal{X})$ introduced by Saraswat [Sar93] as a merge of Constraint and Concurrent Logic Programming.

Processes $\quad P::=\mathcal{D} . A$
Declarations $\quad \mathcal{D}::=p(\vec{x})=A, \mathcal{D} \mid \epsilon$
Agents $\quad A::=$ tell $(c)|\forall \vec{x}(c \rightarrow A)| A \| A|A+A| \exists x A \mid p(\vec{x})$
CC agent
CC agent

$$
+
$$

Translating $\operatorname{CLP}(\mathcal{X})$ into $\operatorname{CC}(\mathcal{X})$ Declarations

$\operatorname{CLP}(\mathcal{X})$ program:
$A \leftarrow c \mid B, C$
$A \leftarrow d \mid D, E$
$B \leftarrow e$
equivalent $\operatorname{CC}(\mathcal{X})$ declaration:

$$
\begin{aligned}
& A=\text { tell }(c)|\mid B \| C+\text { tell }(d)||D| \mid E \\
& B=\text { tell }(e)
\end{aligned}
$$

This is just a process calculus syntax for CLP programs...

Translating CC(X) without ask into $\operatorname{CLP}(\mathcal{X})$

\[

\]

The ask operation $c \rightarrow A$ has no CLP equivalent.
It is a new synchronization primitive between agents.

CC Computations

$$
\begin{aligned}
\text { Concurrency } & =\text { communication (shared variables) } \\
& + \text { synchronization (ask) }
\end{aligned}
$$

Communication channels, i.e. variables, are transmissible by agents (like in π-calculus, unlike CCS, CSP, Occam,...)
Communication is additive (a constraint will never be removed), monotonic accumulation of information in the store (as in CLP, as in Scott's information systems)

Synchronization makes computation both data-driven and goal-directed.

No private communication, all agents sharing a variable will see a constraint posted on that variable,

Not a parallel implementation model.

CC (\mathcal{X}) Configurations

Configuration $(\vec{x} ; c ; \Gamma)$: store c of constraints, multiset Γ of agents, modulo \equiv the smallest congruence s.t.:
\mathcal{X}-equivalence

$$
\frac{c \dashv \vdash \mathcal{x} d}{c \equiv d}
$$

α-Conversion $\frac{z \notin f v(A)}{\exists y A \equiv \exists z A[z / y]}$
Parallel

$$
(\vec{x} ; c ; A \| B, \Gamma) \equiv(\vec{x} ; c ; A, B, \Gamma)
$$

Hiding

$$
\frac{y \notin f v(c, \Gamma)}{(\vec{x} ; c ; \exists y A, \Gamma) \equiv(\vec{x}, y ; c ; A, \Gamma)} \frac{y \notin f v(c, \Gamma)}{(\vec{x}, y ; c ; \Gamma) \equiv(\vec{x} ; c ; \Gamma)}
$$

CC (\mathcal{X}) Transitions

Interleaving semantics

Procedure call $\frac{(p(\vec{y})=A) \in \mathcal{D}}{(\vec{x} ; c ; p(\vec{y}), \Gamma) \longrightarrow(\vec{x} ; c ; A, \Gamma)}$
Tell

$$
(\vec{x} ; c ; \text { tell }(d), \Gamma) \longrightarrow(\vec{x} ; c \wedge d ; \Gamma)
$$

Ask

$$
\frac{c \vdash_{\mathcal{X}} d[\vec{t} / \vec{y}]}{(\vec{x} ; c ; \forall \vec{y}(d \rightarrow A), \Gamma) \longrightarrow(\vec{x} ; c ; A[\vec{t} / \vec{y}], \Gamma)}
$$

$\begin{array}{ll}\text { Blind choice } & (\vec{x} ; c ; A+B, \Gamma) \longrightarrow(\vec{x} ; c ; A, \Gamma) \\ \text { (local/internal) } & (\vec{x} ; c ; A+B, \Gamma) \longrightarrow(\vec{x} ; c ; B, \Gamma)\end{array}$

CC (\mathcal{X}) extra rules

Guarded choice

$$
\overline{\left(\vec{x} ; c ; \Sigma_{i} c_{i} \rightarrow A_{i}, \Gamma\right) \longrightarrow\left(\vec{x} ; c ; A_{j}, \Gamma\right)}
$$

(global/external)

AskNot

$$
\frac{c \vdash \mathcal{X} \neg d}{(\vec{x} ; c ; \forall \vec{y}(d \rightarrow A), \Gamma) \longrightarrow(\vec{x} ; c ; \Gamma)}
$$

Sequentiality

Properties of CC Transitions (1)

$$
\begin{aligned}
& \text { Theorem (Monotonicity) } \\
& \text { If }(\vec{x} ; c ; \Gamma) \rightarrow(\vec{y} ; d ; \Delta) \text { then }(\vec{x} ; c \wedge e ; \Gamma, \Sigma) \rightarrow(\vec{y} ; d \wedge e ; \Delta, \Sigma) \text { for } \\
& \text { every constraint e and agents } \Delta \text {. }
\end{aligned}
$$

Proof.

tell and ask are monotonic (monotonic conditions in guards).

Corollary

Strong fairness and weak fairness are equivalent.

Properties of CC Transitions (2)

A configuration without + is called deterministic.

Theorem (Confluence)

For any deterministic configuration κ with deterministic declarations,
if $\kappa \rightarrow \kappa_{1}$ and $\kappa \rightarrow \kappa_{2}$ then $\kappa_{1} \rightarrow \kappa^{\prime}$ and $\kappa_{2} \rightarrow \kappa^{\prime}$ for some κ^{\prime}.

Corollary

Independence of the scheduling of the execution of parallel agents.

Properties of CC Transitions (3)

Theorem (Extensivity)

$$
\text { If }(\vec{x} ; c ; \Gamma) \rightarrow(\vec{y} ; d ; \Delta) \text { then } \exists \vec{y} d \vdash \mathcal{X} \exists \vec{x} c .
$$

Proof.

For any constraint $e, c \wedge e \vdash \mathcal{X} c$.

Theorem (Restartability)
If $(\vec{x} ; c ; \Gamma) \rightarrow^{*}(\vec{y} ; d ; \Delta)$ then $(\vec{x} ; \exists \vec{y} d ; \Gamma) \rightarrow^{*}(\vec{y} ; d ; \Delta)$.
Proof.
By extensivity and monotonicity.

CC(X) Operational Semanticssss

- observing the set of success stores,

$$
\mathcal{O}_{s s}(\mathcal{D} \cdot A ; c)=\left\{\exists \vec{x} d \in \mathcal{X} \mid(\emptyset ; c ; A) \longrightarrow^{*}(\vec{x} ; d ; \epsilon)\right\}
$$

- observing the set of terminal stores (successes and suspensions),

$$
\mathcal{O}_{t s}(\mathcal{D} . A ; c)=\left\{\exists \vec{x} d \in \mathcal{X} \mid(\emptyset ; c ; A) \longrightarrow^{*}(\vec{x} ; d ; \Gamma) \longrightarrow\right\}
$$

- observing the set of accessible stores,

$$
\mathcal{O}_{a s}(\mathcal{D} . A ; c)=\left\{\exists \vec{x} d \in \mathcal{X} \mid(\emptyset ; c ; A) \longrightarrow^{*}(\vec{x} ; d ; B)\right\}
$$

- observing the set of limit stores?

$$
\mathcal{O}_{\infty}\left(\mathcal{D} . A ; c_{0}\right)=\left\{\sqcup_{?}\left\{\exists \vec{x}_{i} c_{i}\right\}_{i \geq 0} \mid\left(\emptyset ; c_{0} ; A\right) \longrightarrow\left(\overrightarrow{x_{1}} ; c_{1} ; \Gamma_{1}\right) \longrightarrow \ldots\right\}
$$

CC(H) 'append' Program(s)

Undirectional CLP style

Directional CC success store style

Directional CC terminal store style

Sylvain.Soliman@inria.fr CLP

CC(\mathcal{H}) 'append' Program(s)

$$
\begin{aligned}
& \text { Undirectional CLP style } \\
& \begin{aligned}
& \text { append }(A, B, C)=\operatorname{tell}(A=[]) \| \text { tell }(C=B) \\
& \qquad+\operatorname{tell}(A=[X \mid L]) \| \text { tell }(C=[X \mid R]) \| \text { append }(L, B, R)
\end{aligned}
\end{aligned}
$$

Directional CC success store style

Directional CC terminal store style

CC(\mathcal{H}) 'append' Program(s)

> Undirectional CLP style $\begin{aligned} & \text { append }(A, B, C)=\operatorname{tell}(A=[]) \| \text { tell }(C=B) \\ & \qquad+ \text { tell }(A=[X \mid L]) \| \text { tel }(C=[X \mid R]) \| \text { append }(L, B, R)\end{aligned}$

Directional CC success store style

Directional CC terminal store style

CC(H) 'append' Program(s)

Undirectional CLP style

$$
\begin{aligned}
& \operatorname{append}(A, B, C)=\text { tell }(A=[]) \| \text { tell }(C=B) \\
& \quad+\operatorname{tell}(A=[X \mid L]) \| \text { tell }(C=[X \mid R]) \| \text { append }(L, B, R)
\end{aligned}
$$

Directional CC success store style

 append $(A, B, C)=(A=[] \rightarrow$ tell $(C=B))$$$
+\forall X, L(A=[X \mid L] \rightarrow \operatorname{tell}(C=[X \mid R]) \| \text { append }(L, B, R))
$$

Directional CC terminal store style

CC(H) 'append' Program(s)

Undirectional CLP style

$$
\begin{aligned}
& \operatorname{append}(A, B, C)=\text { tell }(A=[]) \| \text { tell }(C=B) \\
& \quad+\operatorname{tell}(A=[X \mid L]) \| \text { tell }(C=[X \mid R]) \| \text { append }(L, B, R)
\end{aligned}
$$

Directional $C C$ success store style append $(A, B, C)=(A=[] \rightarrow$ tell $(C=B))$ $+\forall X, L(A=[X \mid L] \rightarrow \operatorname{tell}(C=[X \mid R]) \| a p p e n d(L, B, R))$

Directional CC terminal store style

CC(H) 'append' Program(s)

Undirectional CLP style

$\operatorname{append}(A, B, C)=\operatorname{tell}(A=[]) \| \operatorname{tell}(C=B)$
$+\operatorname{tell}(A=[X \mid L]) \|$ tell $(C=[X \mid R]) \|$ append (L, B, R)
Directional CC success store style append $(A, B, C)=(A=[] \rightarrow$ tell $(C=B))$

$$
+\forall X, L(A=[X \mid L] \rightarrow \text { tel }(C=[X \mid R]) \| \text { append }(L, B, R))
$$

Directional $C C$ terminal store style $\operatorname{append}(A, B, C)=A=[] \rightarrow$ tell $(C=B)$

$$
\| \forall X, L(A=[X \mid L] \rightarrow \text { tel }(C=[X \mid R]) \| \text { append }(L, B, R))
$$

CC(H) 'merge' Program

Merging streams

$$
\begin{aligned}
& \operatorname{merge}(A, B, C)=(A=[] \rightarrow \text { tell }(C=B)) \\
& \quad+(B=[] \rightarrow \text { tell }(C=A)) \\
& \quad+\forall X, L(A=[X \mid L] \rightarrow \text { tell }(C=[X \mid R]) \| \operatorname{merge}(L, B, R)) \\
& \quad+\forall X, L(B=[X \mid L] \rightarrow \text { tell }(C=[X \mid R]) \| \operatorname{merge}(A, L, R))
\end{aligned}
$$

Good for the observable(s?)
Many-to-one communication:
client (C1, ...)
client (Cn, ...)
server $([C 1, \ldots, C n], \ldots)=$

$$
\sum_{i=1}^{n} \forall X, L(C i=[X \mid L] \rightarrow \ldots \| \text { server }([C 1, \ldots, L, \ldots, C n], \ldots)
$$

CC(H) 'merge' Program

Merging streams

$$
\begin{aligned}
& \operatorname{merge}(A, B, C)=(A=[] \rightarrow \text { tell }(C=B)) \\
& \quad+(B=[] \rightarrow \text { tell }(C=A)) \\
& \quad+\forall X, L(A=[X \mid L] \rightarrow \text { tell }(C=[X \mid R]) \| \operatorname{merge}(L, B, R)) \\
& \quad+\forall X, L(B=[X \mid L] \rightarrow \text { tell }(C=[X \mid R]) \| \operatorname{merge}(A, L, R))
\end{aligned}
$$

Good for the $\mathcal{O}_{s s}$ observable
Many-to-one communication:
client (C1, ...)
client (Cn, ...)
server $([C 1, \ldots, C n], \ldots)=$

$$
\sum_{i=1}^{n} \forall X, L(C i=[X \mid L] \rightarrow \ldots \| \text { server }([C 1, \ldots, L, \ldots, C n], \ldots)
$$

CC($\mathcal{F D)}$ Finite Domain Constraints

Approximating ask condition with the Elimination condition
EL: $c \wedge \Gamma \longrightarrow \Gamma$
if $\mathcal{F D} \equiv c \sigma$ for every valuation σ of the variables in c by values of their domain.

$$
\begin{aligned}
\operatorname{ask}(X \geq Y+k) & =\min (X) \geq \max (Y)+k \\
\operatorname{asknot}(X \geq Y+k) & =\max (X)<\min (Y)+k \\
\operatorname{ask}(X \neq Y) & =\max (X)<\min (Y) \vee \min (X)>\max (Y) \\
& \text { a better approximation: } \\
& =(\operatorname{dom}(X) \cap \operatorname{dom}(Y)=\emptyset)
\end{aligned}
$$

CC(FD) Constraints

Basic constraints

$$
(X \geq Y+k)=\quad X \text { in } \min (Y)+k . . \infty \| Y \text { in } 0 . . \max (X)-k
$$

Reified constraints

$$
\begin{aligned}
(B \Leftrightarrow X=A)= & B \text { in } 0 . .1 \| \\
& X=A \rightarrow B=1\|X \neq A \rightarrow B=0\| \\
& B=1 \rightarrow X=A \| B=0 \rightarrow X \neq A
\end{aligned}
$$

Higher-order constraints

$$
\operatorname{card}(N, L)=\quad \begin{array}{ll}
L & =[] \rightarrow N=0 \| \\
& L=[C \mid S] \rightarrow \\
& \exists B, M(B \Leftrightarrow C\|N=B+M\| \operatorname{card}(M, S))
\end{array}
$$

Andora Principle

"Always execute deterministic computation first".
Disjunctive scheduling:
deterministic propagation of the disjunctive constraints for which one of the alternatives is dis-entailed:

$$
\operatorname{card}\left(1,\left[x \geq y+d_{y}, y \geq x+d_{x}\right]\right)
$$

before creating choice points:

$$
\left(x \geq y+d_{y}\right)+\left(y \geq x+d_{x}\right)
$$

Constructive Disjunction in $\operatorname{CC}(\mathcal{F D})(1)$

$$
\vee L \quad \frac{c \vdash_{\mathcal{X}} e d \vdash \mathcal{X} e}{c \vee d \vdash_{\mathcal{X}} e}
$$

Intuitionistic logic tells us we can infer the common information to both branches of a disjunction without creating choice points!

$$
\max (X, Y, Z)=(X>Y \| Z=X)+(X<=Y \| Z=Y)
$$

or
$\max (X, Y, Z)=X>Y \rightarrow Z=X+X<=Y \rightarrow Z=Y$.
or
$\max (X, Y, Z)=X>Y \rightarrow Z=X \| X<=Y \rightarrow Z=Y$.
better?

Constructive Disjunction in $\operatorname{CC}(\mathcal{F D})(1)$

$$
\vee L \quad \frac{c \vdash_{\mathcal{X}} e d \vdash_{\mathcal{X}} e}{c \vee d \vdash_{\mathcal{X}} e}
$$

Intuitionistic logic tells us we can infer the common information to both branches of a disjunction without creating choice points!

$$
\max (X, Y, Z)=(X>Y \| Z=X)+(X<=Y \| Z=Y)
$$

or
$\max (X, Y, Z)=X>Y \rightarrow Z=X+X<=Y \rightarrow Z=Y$.
or

$$
\max (X, Y, Z)=X>Y \rightarrow Z=X \| X<=Y \rightarrow Z=Y
$$

better?
$\max (X, Y, Z)=Z$ in $\min (X) . . \infty \| Z$ in $\min (Y) . . \infty$
$\| Z$ in $\operatorname{dom}(X) \cup \operatorname{dom}(Y)$

Constructive Disjunction in $\mathrm{CC}(\mathcal{F D})(2)$

Disjunctive precedence constraints
disjunctive $(T 1, D 1, T 2, D 2)=$
$(T 1>=T 2+D 2)+$
($T 2>=T 1+D 1$)

Using constructive disjunction

Constructive Disjunction in $\mathrm{CC}(\mathcal{F D})(2)$

Disjunctive precedence constraints

disjunctive $(T 1, D 1, T 2, D 2)=$

$$
\begin{gathered}
(T 1>=T 2+D 2)+ \\
(T 2>=T 1+D 1)
\end{gathered}
$$

Using constructive disjunction

disjunctive $(T 1, D 1, T 2, D 2)=$

$$
\begin{aligned}
& T 1 \text { in }(0 . . \max (T 2)-D 1) \cup(\min (T 2)+D 2 . . \infty) \| \\
& T 2 \text { in }(0 . . \max (T 1)-D 2) \cup(\min (T 1)+D 1 . . \infty)
\end{aligned}
$$

Bibliography I

Maurizio Gabbrielli and Giorgio Levi.
Modeling answer constraints in constraint logic programs.
In K. Furukawa, editor, Proceedings of ICLP'91, International Conference on Logic Programming, pages 238-252, Cambridge, 1991. MIT Press.

Joxan Jaffar and Jean-Louis Lassez.
Constraint logic programming.
In Proceedings of the 14th ACM Symposium on Principles of Programming Languages, Munich, Germany, pages 111-119. ACM, January 1987.

Michael J. Maher.
Logic semantics for a class of committed-choice programs.
In Proceedings of ICLP'87, International Conference on Logic Programming, 1987.
Vijay A. Saraswat.
Concurrent constraint programming.
ACM Doctoral Dissertation Awards. MIT Press, 1993.

Sylvain.Soliman@inria.fr

