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Part |: CLP - Introduction and Logical Background

@ The Constraint Programming paradigm
Examples and Applications

o p PP
First Order Logic

o g

@ Models

© Logical Theories
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Part |I: Constraint Logic Programs

@ Constraint Languages
o Decidability in Complete Theories

@ CLP(X)
@ Definition
@ Operational Semantics

Q CLP(H)
@ Prolog
@ Examples

e CLP(R,FD,B)
e CLP(R)
o CLP(FD)
e CLP(B)
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Part Ill: Operational and Fixpoint Semantics

@ Operational Semantics

@ Fixpoint Semantics
@ Fixpoint Preliminaries
@ Fixpoint Semantics of Successes
o Fixpoint Semantics of Computed Answers

@ Program Analysis

@ Abstract Interpretation
o Constraint-based Model Checking
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Part IV: Logical Semantics

@ Logical Semantics of CLP(X)
@ Soundness
o Completeness

@ Automated Deduction
@ CLP())

@ M-calculus
@ Proofs in A-calculus

@ Negation as Failure
o Finite Failure
o Clark's Completion
@ Soundness w.r.t. Clark's Completion
@ Completeness w.r.t. Clark's Completion
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Part V: Concurrent Constraint Programming

@ Introduction
@ Syntax
e CCvs. CLP

@ Operational Semantics
@ Transitions
@ Properties
@ Observables
o CC(FD)
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Transitions
Properties

Operational Semantics Observables

CC(X) Transitions

Interleaving semantics

(p(y)=A) €D
(X% ¢ p(y),I) — (X ¢, AT

Procedure call

Tell (X, c; tell(d),T) — (X;cAd;T)

cFx d[t/y]

Ask (% ¢ Vy(d — A),T) — (%: ¢; A[E/7],T)

Blind choice (X;c; A+ B, T) — (X;
(local/internal) (X;c;A+ B,I") — (X;
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Transitions
Properties

Operational Semantics Observables

Properties of CC Transitions (1)

Theorem (Monotonicity)

If (X;¢;T) — (y;d; A) then (X;cNe;T,X) — (y;d Ae; A X) for
every constraint e and agents A.

tell and ask are monotonic (monotonic conditions in guards). [

Strong fairness and weak fairness are equivalent. \
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Transitions
Properties
Observables

Operational Semantics

Properties of CC Transitions (3)

Theorem (Extensivity)
If (%, ¢;T) — (¥;d; A) then 3yd Fx IXc.

For any constraint e, c A ey c.

Theorem (Restartability)
If (X, ¢;T) =* (v, d; A) then (X;3yd; ) —=* (v; d; Q).

By extensivity and monotonicity. [ \
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Transitions
Properties

Operational Semantics Observables

CC(X) Operational Semanticssss

@ observing the set of success stores,
Oss(D.A;c) ={3Xd € X |(0; c; A) —" (X: d; €)}

@ observing the set of terminal stores (successes and
suspensions),

Ots(D.A;c) = {3Xd € X |(0; c; A) —* (X, d;T) +}
@ observing the set of accessible stores,
O.s(D.A;c) ={3xd € X |(0; c; A) —* (X; d; B)}
@ observing the set of limit stores?
Ox(D.A; o) = {U2{3Xici}ix0l(0; co; A) — (x1;¢1;T1) — ...}
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Part VI

CC - Denotational Semantics
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Part VI: CC - Denotational Semantics

@ Deterministic Case
@ Syntax
@ |/O Function
@ Terminal Stores

€ Constraint Propagation
@ Closure Operators
@ Chaotic Iteration

@ Non-deterministic Case
@ Problems
@ Blind Choice

o Example: merge

€ Sequentiality
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Deterministic Case Syt

1/O Function
Terminal Stores

Deterministic CC

Agents:
Acz=tell(c) | c— A|A| A|3IxA | p(X)

@ No choice operator

@ Deterministic ask.

Replace non-deterministic pattern matching
VX(c — A)
by deterministic ask and tell:
(IXc) — Ix(tell(c)||A)
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Deterministic Case
Syntax

1/O Function
Terminal Stores

Denotational semantics: input/output function

Input: initial store ¢
Output: terminal store ¢ or false for infinite computations

Order the lattice of constraints (C, <) by the information ordering:
Ve,deCc<diffdrFyx ciff T d CT c where
lTc={deC|c<d}

[D.A]:C—Cis
@ Extensive: Vc ¢ < [D.A]c
@ Monotone: Ve, d ¢ < d = [D.A]c < [D.A]ld
@ Idempotent: Ve [D.A]c = [D.A]([D.A]c)
i.e. [D.A]is a over (C, <).
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Deterministic Case
Syntax

1/O Function
Terminal Stores

Denotational semantics: input/output function

Input: initial store ¢
Output: terminal store ¢ or false for infinite computations

Order the lattice of constraints (C, <) by the information ordering:
Ve,deCc<diffdrFyx ciff T d CT c where
lTc={deC|c<d}

[D.A]:C—Cis
@ Extensive: Vc ¢ < [D.A]c
@ Monotone: Ve, d ¢ < d = [D.A]c < [D.A]ld
@ Idempotent: Ve [D.A]c = [D.A]([D.A]c)

i.e. [D.A] is a closure operator over (C, <).
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Deterministic Case
Syntax

1/O Function
Terminal Stores

Closure Operators

Proposition

A closure operator f is characterized by the set of its fixpoints
Fix(f).

We show that f = Ax.min(Fix(f)N T x).

Let y = f(x). By idempotence and extensivity, y € Fix(f)N T x.
By monotonicity y = f(x) < f(y’) for any y’ €1 x.

Hence, if y' € Fix(f)N T x then y <y’ O
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Deterministic Case
Syntax

1/O Function
Terminal Stores

Semantic Equations

Let [] : D x A— P(C) be a closure operator presented by the set
of its fixpoints, and defined as the least fixpoint set of the
equations:

[D.tell(c)] =1c (~ As.s A 0)

[D.c = A] =(C\Tc)u(l cn[D.A])

(= Xs. if s b-¢ c then [D.A]s else 5)
[D.A||B] = [D.A]N[D.B] (= Y(»s.[D.A][D.B]s))
[D.3xA] ={d | c € [D.A], Ixc = Ixd} (= rs.3x[D.413x5)
[D.p(X)] = [D.A[X/Y]] if p(¥) = AED (= rs[D.A%/715)

Theorem ([SRP91])

For any deterministic process D.A

[D.AINT ¢)} if [D.A] # 0

otherwise

min
Ow(D.A; c) = { é (
VRIA
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Constraint Propagation Closure Operators
Chaotic Iteration

Constraint Propagation and Closure Operators

An environment E : V —2P associates a domain of possible values
to each variable.

Consider the lattice of environments (£, C), for the information
ordering defined by E C E’ if and only if Vx € V, E(x) D E’'(x).

The semantics of a constraint propagator ¢ can be defined as a
closure operator over &, noted ¢, i.e. a mapping £ — & satisfying
O (extensivity) E C ¢(E),
@ (monotonicity) if E C E’ then ©(E) C ¢(E’)
© (idempotence) ¢(c(E)) = ¢(E).
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Constraint Propagation Closure Operators
Chaotic Iteration

Example in CC(FD)

Let b= (x> y) and c = (y > x).
Let E(x) = [1,10], E(y) = [1,10] be the initial environment
we have
bE(x) = [2,10]
CE(x) = [1,9]
(bUT)E(x) = [2,9]

The closure operator b, ¢ associated to the conjunction of
constraints b A ¢ gives the intended semantics:

b,cE(x) = Y(\s.b(c(s)))E(x) =0
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Constraint Propagation Closure Operators
Chaotic Iteration

Chaotic Iteration of Monotone Operators

Let L(C, L, T,U,M) be a complete lattice, and F : L" — L" a
monotone operator over L" with n > 0.

The chaotic iteration of F from D € L" for a fair transfinite choice
sequence < J% : § € Ord > is the sequence < X® >:

X% =D,
X0t = Fi(X0) if i e J°, X% = X;® otherwise,
X;? = ,.sX;* for any limit ordinal &.

Theorem ([CC77])

Let D € L" be a pre fixpoint of F (i.e. D C F(D)). Any chaotic
iteration of F starting from D is increasing and has for limit the
least fixpoint of F above D.
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Constraint Propagation Closure Operators
Chaotic Iteration

Constraint Propagation as Chaotic lteration

Corollary (Correctness of constraint propagation)

Let ¢ = a; A ... A\ an, and E be an environment. Then €(E) is the
limit of any fair iteration of closure operators ai, ..., a, from E.

Let F: L"T1 — L™ be defined by its projections F;'s:

Eq :El(E) = Fl(El, .o, En, E)
E = 52(E) = Fg(El, .o, En, E)

E, = an(E) = Fo(Ev, ..., Ey, E)
E=EnNn---NE,= n+1(E1,...,En,E)

The functions F;'s are obviously monotonic, any fair iteration of
ai, ..., an is thus a chaotic iteration of Fq, ..., F,4+1 therefore its

limit is equal to the least fixpoint greater than E, i.e. T(E). B iNRIA
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Problems
Blind Choice

Non-deterministic Case
Example: merge

Denotational Semantics of Non-deterministic CC

Problem: the set of terminal stores of a CC process with one step
guarded choice (i.e. global choice) is not compositional:

A = ask(x = a) — tell(y = a)
+ ask(true) — tell(false)
B = tell(x =any = a)

A and B have the same set of terminal stores

but that is not the case for 3xB and 3xA
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Problems
Blind Choice

Non-deterministic Case
Example: merge

Denotational Semantics of Non-deterministic CC

Problem: the set of terminal stores of a CC process with one step
guarded choice (i.e. global choice) is not compositional:

A = ask(x = a) — tell(y = a)
+ ask(true) — tell(false)
B = tell(x =any = a)

A and B have the same set of terminal stores

T{x=any=a}
(with global choice C\ T (x = a) is not a terminal store for A)
but that is not the case for 3xB and 3xA
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Problems
Blind Choice

Non-deterministic Case
Example: merge

Denotational Semantics of Non-deterministic CC

Problem: the set of terminal stores of a CC process with one step
guarded choice (i.e. global choice) is not compositional:

A = ask(x = a) — tell(y = a)
+ ask(true) — tell(false)
B = tell(x =any = a)

A and B have the same set of terminal stores
T{x=any=a}
(with global choice C\ T (x = a) is not a terminal store for A)
but that is not the case for IxB and JxA

y = a is a terminal store for 9xB and not for IxA...
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Problems
Blind Choice
Example: merge

Non-deterministic Case

Non-deterministic CC(X') with Local Choice (1)

The set of terminal stores of a CC process with blind choice can be

characterized easily by adding the semantic equation:
[D.A+ B] = [D.A]U[D.B]

Theorem ([dBGP96])
[D.A] = U.ee Ous(D.A; c)

but the input-output relation cannot be recovered from [D.A]:

[tell(true)] =
[tell(true) + tell(c)] =

Oqs(tell(true); true) =
Oqs(tell(true) + tell(c); true) =

Idea:
ZIINRIA
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Problems
Blind Choice
Example: merge

Non-deterministic Case

Non-deterministic CC(X') with Local Choice (1)

The set of terminal stores of a CC process with blind choice can be

characterized easily by adding the semantic equation:
[D.A+ B] = [D.A]U[D.B]

Theorem ([dBGP96])
[D.A] = U.ee Ous(D.A; c)

but the input-output relation cannot be recovered from [D.A]:

[tell(true)] =C
[tell(true) + tell(c)] =

Oqs(tell(true); true) =
Oqs(tell(true) + tell(c); true) =

Idea:
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Problems
Blind Choice
Example: merge

Non-deterministic Case

Non-deterministic CC(X') with Local Choice (1)

The set of terminal stores of a CC process with blind choice can be

characterized easily by adding the semantic equation:
[D.A+ B] = [D.A]U[D.B]

Theorem ([dBGP96])
[D.A] = U.ee Ous(D.A; c)

but the input-output relation cannot be recovered from [D.A]:

[tell(true)] =C

[tell(true) + tell(c)] = C
Oqs(tell(true); true) =
Oys(tell(true) + tell(c); true) =

Idea:
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Problems
Blind Choice
Example: merge

Non-deterministic Case

Non-deterministic CC(X') with Local Choice (1)

The set of terminal stores of a CC process with blind choice can be

characterized easily by adding the semantic equation:
[D.A+ B] = [D.A]U[D.B]

Theorem ([dBGP96])
[D.A] = U.ee Ous(D.A; c)

but the input-output relation cannot be recovered from [D.A]:

[tell(true)] = C

[tell(true) + tell(c)] = C
Oqs(tell(true); true) = {true}
Oqs(tell(true) + tell(c); true) =

Idea:
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Problems
Blind Choice
Example: merge

Non-deterministic Case

Non-deterministic CC(X') with Local Choice (1)

The set of terminal stores of a CC process with blind choice can be

characterized easily by adding the semantic equation:
[D.A+ B] = [D.A]U[D.B]

Theorem ([dBGP96])
[D.A] = U.ee Ous(D.A; c)

but the input-output relation cannot be recovered from [D.A]:

[tell(true)] = C
[tell(true) + tell(c)] = C

Oqs(tell(true); true) = {true}
Oqs(tell(true) + tell(c); true) = {true, c}

Idea:
ZIINRIA
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Problems
Blind Choice
Example: merge

Non-deterministic Case

Non-deterministic CC(X') with Local Choice (1)

The set of terminal stores of a CC process with blind choice can be
characterized easily by adding the semantic equation:

[D.A+ B] = [D.A]U[D.B]

Theorem ([dBGP96])

[D.A] = U.ee Ous(D.A; c)

but the input-output relation cannot be recovered from [D.A]:

[tell(true)] = C
[tell(true) + tell(c)] = C

Oqs(tell(true); true) = {true}
Oqs(tell(true) + tell(c); true) = {true, c}

Idea: define [] : D x A — P(P(C)) to distinguish between
branches. WINRIA
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Problems
Blind Choice

Non-deterministic Case
Example: merge

Non-deterministic CC(X) with Local Choice (2)

Let [] : D x A— P(P(C)) be the least fixpoint (for C) of

[D.c] = {1c}

[D.c = Al = {C\1Tc}U{TcnX|X € [D.A]}
[DAB] = {XNY|Xe[D.A] Y e [D.B]}

[D.A+B] = [D.AJU[D.B]
[D.axA] = {{d | 3Ixc =3xd, c € X}|X € [D.A]}
[Dp(R)] = [DAR/]

Theorem ([MFP97])

For any process D.A,
Ots(D.A; ¢) = {d| there exists X € [D.A] s.t. d = min(T cN X)}.

vay INRIA
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Problems
Blind Choice

Non-deterministic Case E )
xample: merge

'merge’ Example Revisited

Merging streams
merge(A, B, C) =
(A=[— tell(C = B)) |
(B = — tell(C = A)) |
(VX, L(A = [X|L] — tell(C = [X|R])||merge(L, B, R)) +
VX, L(B = [X|L] — tell(C = [X]|R])||merge(A, L, R)))

Do we have the expected terminal stores?

ZIINRIA
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Problems
Blind Choice

Non-deterministic Case Example: merge

'merge’ Example Revisited

Merging streams
merge(A, B, C) =
(A=[— tell(C = B)) |
(B = — tell(C = A)) |
(VX, L(A = [X|L] — tell(C = [X|R])||merge(L, B, R)) +
VX, L(B = [X|L] — tell(C = [X]|R])||merge(A, L, R)))

Do we have the expected terminal stores?
No!

for merge(X, [1|Y], Z) we don't get 1 in Z, the merging is not
greedy. . .
ZIINRIA
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Sequentiality

Sequentiality

Let us define a new operator, e, as follows:

(X;c;A) — (Y d; B) o -
(X;c;Ae C,T) — (Y;d;Be C,TN) (XicileA) — (X A)

We can characterize completely the observables of any CCgeq
program, D.A, by those of a new CC (without ) program, D*.A°®,
in a new constraint system, C®.

ZIINRIA

Sylvain.Soliman@inria.fr CLP



Sequentiality

Let ok be a new relation symbol of arity one. C® is the constraint
system C to which ok is added, without any non-logical axiom.
The program D*®.A® is defined inductively as follows:

(p(Y) =A)> = p*(x,y)=A;

A® = 3IxA}
tell(c)y = tell(c A ok(x))
p(Y): = P'(x.¥)
(Al B): = Ay, (A} || B || (ok(y) A ok(z)) — ok(x))
(A+B)y = AL+ B;
(7(c — A2 = VE(clZ/7] — AlZ/TTS) with x & 7

(3yA)s, = 3zA[z/y]s with z # x

(AeB);, =

ZIINRIA
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Sequentiality

Let ok be a new relation symbol of arity one. C® is the constraint
system C to which ok is added, without any non-logical axiom.
The program D*®.A® is defined inductively as follows:

(p(Y) =A)> = p*(x,y)=A;

A = IxA}
tell(c)y = tell(c A ok(x))
pP(Y)x = pP'(x.¥)
(Al By = 3y, z(A) || BZ || (ok(y) A ok(z)) — ok(x))
(A+B)y = A+ B;
(Vy(c = A)x = VZ(c[Z/y] — AlZ/Y]X) with x & Z

(IyA)y = 3JzA[z/y]s with z # x

(AeB): = Fy(A} [l ok(y) — BR)
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Part VII

CC and Linear Logic
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Part VII: CC and Linear Logic

€@ CC - Logical Semantics
@ Intuitionistic

@ Linear
@ Soundness
o Completeness
€ Must Properties
@ Definition
@ Soundness
@ Completeness
€@ Program Analysis
@ Equivalence
@ Phase Semantics
@ LCC
@ Syntax and Operational Semantics
o Examples B iINRIA
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CC - Logical Semantics Intuitionistic
Linear
Soundness
Completeness

Logical Semantics of CC?

@ CC calculus is sound but not complete
w.r.t. CLP logical semantics (interpreting asks as tells)

o Interpreting ask(c — A) as logical implication leads to
identify CC transitions with logical deductions:

cked p(X) Fp Af
cA(d— Af)F cAAT cAp(X)F cAAT

left —

(reverses the arrow of CLP interpretation...)

@ To distinguish between successes and accessible stores
agents shouldn’t disappear by the weakening rule:

MN-c
leftW ——_ ¢
T T AT ¢

ZIINRIA
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CC - Logical Semantics Intuitionistic
Linear
Soundness
Completeness

Linear Logic

@ Introduced by Jean-Yves Girard in 1986 as a new constructive
logic without the asymmetry of intuitionistic logic (sequent
calculus with symmetric left and right sides)

@ Logic of resource consumption
ARQAV LA
A®(A—B)F . B
AR (A— B)t/1 1 A® B

@ !A provides arbitrary duplication (unbounded throwable
resource)

|A®(A—OB) Fii AR B B

@ Sequent calculus without weakening and contraction
ZIINRIA
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CC - Logical Semantics Intuitionistic
Linear
Soundness
Completeness

Intuitionistic Linear Logic

Multiplicatives

rnNAB-FC TFHA AFB rNFA ABFEC NAEB
NMABFC T,AFA®B AT A—BFC THFA—B

Additives
MNAEC I,BEC N=A =B
NNMA®BEC rFA® B FrNFA¢ B
NAEC NBEC r'-A Ir=B
MNNA&BEC NNA&BEC FrFA&B
Constants
Mr-=A -
F1FA F1 1+ e 1 r=T1 oA
ZIINRIA
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CC - Logical Semantics Intuitionistic
Linear
Soundness
Completeness

Intuitionistic Linear Logic (cont.)

Axiom - Cut
[FA AAFB
AFA ATHB
Bang
AFB  T,AIALB M- B IM - A
[LIAF B [IAF B FTAFB ITHIA
Quantifiers
[ A[t/x] - B M-A
fu(T
[VxAF B Fvea < & V(0
rAFB [ Alt/x]
roarg # V(B [ F 3xA

ZIINRIA
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CC - Logical Semantics Intuitionistic
Linear
Soundness
Completeness

Intuit. Linear Logic = the Logic of CC agents

Translation:
(c—Af=c—-Al  (A||B)f =A@ Bt tell(c)t =lc
(A+B) = AT & Bf (IxA)t = IxAl p(X)t = p(%

(X;c; N =3X(le®TT)
Axioms: lc F!d for all c ¢ d p(X) - Af for all p(X) = A€ D

Soundness and Completeness
If (c;T) —cc (d;A) then cT @ Tt FiLe,p) di @ AT,
If Af FiLe(c,py € then there exists a success store d such that
(true; A) —cc (d; 0) and d F¢ c.
If Af FiLee,p) € ® T then there exists an accessible store d such
that (true; A) —¢cc (d;T) and d k¢ c.
ZIINRIA
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CC - Logical Semantics Intuitionistic
Linear
Soundness
Completeness

Soundness

Theorem (Soundness of transitions)

Let (X;c;T) and (Y; d; A) be CC configurations.

If (X;c;T)=(Y;d;A) then (X;c; F)T—H—,LL(QD)(Y; d; A)T.
If (X;c;T) — (Y;d;A) then (X;c;T)T Fie,py (Yid; At

By induction on =. Immediate.

By induction on —.

The choice operator + is translated by the additive conjunction &,
which expresses “may” properties: A& B+ Aand A& B+FB. [

ZIINRIA
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CC - Logical Semantics Intuitionistic
Linear
Soundness
Completeness

Completeness |

Theorem (Observation of successes)

Let A be a CC agent and c be a constraint.

If AT FiLic,p) € then there exists a constraint d such that
(0;1; A) — (X; d; 0) and 3Xd ¢ c.

By induction on a sequent calculus proof 7 of AlT, e Anf
FiLe,p) ¢
where the A;’s are agents and ¢ is either a constraint or a
procedure name.

N |
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CC - Logical Semantics Intuitionistic
Linear
Soundness
Completeness

Completeness |l

Recall that T is the additive true constant neutral for & .

Theorem (Observation of accessible stores)

Let A be a CC agent and c be a constraint.

If Af FiLee,py € ® T, then c is a store accessible from A,

i.e. there exist a constraint d and a multiset [ of agents such that
(0;1; A) — (X;d;T) and 3Xd ¢ c.

The proof uses the first completeness theorem, and proceeds by
an easy induction for the right introduction of the tensor
connective in c® T. []

Yl INRIA
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Definition
Soundness
Completeness

Must Properties

Observing “must” Properties

Properties true on all branches on the derivation tree.
Redefine the operational semantics by a rewriting relation on
frontiers, i.e. multisets of configurations

Blind choice

(X;c;A+ B),®) = ((X;c;A),(X;c; B),®)
Tell
((X; c; tell(d),T),®) = ((X;cAd;T),P)

Ask
cked®e

(Xicie = AT), &) = ((X;d;AT),®)
Procedure calls

(p(¥) =A) €D
(Xicp(y),T),®) = (X;ic;AT), ®)
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Definition
Soundness
Completeness

Must Properties

Translating the Frontier Calculus in LL with &

Translate
(A+ B)i = At @ B!

(X; c; A), ®)F = 3X(c @ A @ ¢!

same translation for the other operations

Theorem (Soundness of transitions)

Let ® and V be two frontiers.
If ® =V then ((D)L“_ILL(C,D)(\U)i
If & = V¥ then (Di FILL(C,D) Wi
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Definition
Soundness
Completeness

Must Properties

Completeness Il for “must” Properties

Theorem (Observation of frontiers’ accessible stores)

Let A be a CC agent and c be a constraint.

/)(:Ai l_ILL(C,'D) c® T

then ((0;1; A)) = ((X1;d1;T1), oy (Xns dni Th)) with
Vj AXjdj Fc ¢

Theorem (Observation of frontiers’ success stores)

Let A be an CC agent and c be a constraint.
If:Ai l_lLL(C,D) C
then ((0;1; A)) = ((X1; d1;0), ..., (Xn; dn; 0)) with ¥j 3X;dj ¢ ¢
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Equivalence
Program Analysis Phase Semantics

Logical Equivalence of CC programs

Let P = D.A be a CC(C) process.

Corollary

If Py icmy P
then Oss(P) = Oss(P') (same set of success stores)
and O,s(P) = Oa5(P') (same set of accessible stores).

| A\

Corollary

If Py 1cmy P

then P and P’ have the same set of accessible stores on all
branches

and the same success frontiers.

v
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Equivalence
Program Analysis Phase Semantics

Proving Properties of CC Programs

@ Proving logical equivalence of CC programs with the sequent
calculus of LL:
o focusing proofs (deterministic rules for the additives first)
o lazy splitting (input/output contexts for the multiplicatives)
@ Proving safety properties of CC programs with the phase
semantics of LL [FRS98]
Soundness gives I ;1 A implies YPVn P,n = (I' - A).
3P, n, s.t. P,nj~ (I'= A) implies T ;. , A

To prove a safety property (c, A) + (d, B), it is enough to show
that 3 a phase space P, a valuation n , and an element
a € n((c,A)) such that a & n((d, B)T).

NRIA

Sylvain.Soliman@inria.fr CLP



Equivalence
Program Analysis Phase Semantics

Implementations of LL Sequent Calculi

e Forum [Miller&al.] specification languages based on LL

o LO [Andreoli] Property of “focusing proofs” in LL

o Lolli [Cervesato Hodas Pfenning] Search for “Uniform proofs”
e Lygon [Harland Winikoff] Linear Logic Programming language

Problem of lazy splitting:

AT k&A@)
FA®B,T,A

First idea:
FA—(ILA),A +FB,A

FA®B,T,A (®)

@ problems with the rules for ! and for T...

@ stacks are necessary 7
%I INRIA
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Syntax and Operational Semantics
Examples
LCC

Linear Constraint Systems (C, )

C is a set of formulas built from V, ¥ with logical operators: 1, ®,
Jand !;

IF¢C C x C defines the non-logical axioms of the constraint system.

¢ is the least subset of C* x C containing IF¢ and closed by:

NcHFd AFc N-c¢
che FAFd S o s

= A+ r F = Mck
a &) ,Cc1, G0 ¢ c[t/x] ,chHd « & (T, d)
NMAFa®o a®olkc N=3dxc Ndxckd
NNcHd THd MN-=d Mlclckd
MNlekd ITHd T,lekd MNlekd

A synchronization constraint is a constraint not appearing in IF¢
ZIINRIA
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Syntax and Operational Semantics
Examples
LCC

Linear-CC(C) Operational Semantics

XN =X ) — (Y d;A)= (Y d; D)

Equival
quivalence XcT)— (Y:d d)
Tell (X; ¢ tell(d),T) — (X;c®d;TN)
ched[t/y]®e
Ask — =
(Xievy(d — A),T) — (X; e Alt/y]T)
Hiding y & X Ufv(c,IN

(X;c;3yAT) — (XU{y};c;AT)

(p(y)=A)eD
(X;cip(y),T) — (X;c; A T)

Procedure calls
ZIINRIA
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Syntax and Operational Semantics
Examples
LCC

An LCC(FD) program for the dining philosophers

Goal(N) = RecPhil(1,N).
RecPhil (M,P) =

M # P — (Philo(M,P) || fork(M) | RecPhil(M+1,P))
|

M =P — (Philo(M,P) | fork(M)).

Philo(I,N) =
(fork(I) ® fork(I+1l mod N)) —
(eat (1) ||
eat(I) — (fork(I) | fork(I+l mod N) ||
Philo(I,N))).

Safety properties: deadlock freeness, two neighbors don't eat at

the same time, etc.
ZIINRIA
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Syntax and Operational Semantics
Examples
LCC

Encoding Linda in LCC(H)

Shared tuple space
@ Asynchronous communication (through tuple space)

@ input consumes the tuple, read doesn't

One-step guarded choice

Conditional with else case (check the absence of tuple) not
encodable in LCC.
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Syntax and Operational Semantics
Examples
LCC

Encoding the m-calculus in LCC(H)

@ Direct encoding of the asynchronous mw-calculus:

[0] =1

[(v)P] = Jy[P]

[xy.0] =

[x(y).P] =

[P|Q] = [P]II[Q]
[x=ylP] = (x=y)—I[P]
[P+Ql = [PI+I[Q]

@ The usual (synchronous) m-calculus can be simulated with a
synchronous communication protocol.
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Syntax and Operational Semantics
Examples
LCC

Encoding the m-calculus in LCC(H)

@ Direct encoding of the asynchronous mw-calculus:

[0] =1

[(v)P] = Jy[P]

[xy.0] = tell(c(x,y))
[x(v).P] =

[PIQ] = [P]ll[Q]
[x=y]P] = (x=y)—[P]
[P+Q = [PI+[Q]

@ The usual (synchronous) m-calculus can be simulated with a
synchronous communication protocol.
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Syntax and Operational Semantics
Examples
LCC

Encoding the m-calculus in LCC(H)

@ Direct encoding of the asynchronous mw-calculus:

[0] =1

[(v)P] = 3Jy[P]

[xy.0] = tell(c(x,y))
[x(y).Pl = Vyc(x,y) = [P]
[PIQ] = [P]ll[Q]
[x=y]P] = (x=y)—[P]
[P+Q = [PI+[Q]

@ The usual (synchronous) m-calculus can be simulated with a
synchronous communication protocol.
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Syntax and Operational Semantics
Examples
LCC

Producer Consumer Protocol in LCC

P = dem — (pro | P)
C = pro — (dem || C)
init = dem” || P™ || CK

Deadlock-freeness: init +—;cc dem” || P™ || ¢¥' | pro’, with
either " =/'=0o0orm =0o0r kK =0

Number of units consumed always < number of units produced:
P = dem — (pro || P || VX (np=X — np=X+1))

C =pro — (dem || C || VX (nc=X — nc=X+1))

init = dem” || P™ | C¥ || np=0 | nc=0

init +—;cc dem” || pro’ || P™ || ¢ || np=np, || nc=ncy

with nco > np,
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