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Introduction
Operational Semantics

Transitions
Properties
Observables

CC(X ) Transitions

Interleaving semantics

Procedure call
(p(~y) = A) ∈ D

(~x ; c ; p(~y), Γ) −→ (~x ; c ;A, Γ)

Tell (~x ; c ; tell(d), Γ) −→ (~x ; c ∧ d ; Γ)

Ask
c `X d [~t/~y ]

(~x ; c ;∀~y(d → A), Γ) −→ (~x ; c ;A[~t/~y ], Γ)

Blind choice (~x ; c ;A + B, Γ) −→ (~x ; c ;A, Γ)
(local/internal) (~x ; c ;A + B, Γ) −→ (~x ; c ;B, Γ)
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Introduction
Operational Semantics

Transitions
Properties
Observables

Properties of CC Transitions (1)

Theorem (Monotonicity)

If (~x ; c ; Γ) → (~y ; d ;∆) then (~x ; c ∧ e; Γ,Σ) → (~y ; d ∧ e;∆,Σ) for
every constraint e and agents ∆.

Proof.

tell and ask are monotonic (monotonic conditions in guards).

Corollary

Strong fairness and weak fairness are equivalent.
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Introduction
Operational Semantics

Transitions
Properties
Observables

Properties of CC Transitions (3)

Theorem (Extensivity)

If (~x ; c ; Γ) → (~y ; d ;∆) then ∃~yd `X ∃~xc.

Proof.

For any constraint e, c ∧ e `X c .

Theorem (Restartability)

If (~x ; c ; Γ) →∗ (~y ; d ;∆) then (~x ;∃~yd ; Γ) →∗ (~y ; d ;∆).

Proof.

By extensivity and monotonicity.
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Introduction
Operational Semantics

Transitions
Properties
Observables

CC(X ) Operational Semanticssss

observing the set of success stores,

Oss(D.A; c) = {∃~xd ∈ X |(∅; c ;A) −→∗ (~x ; d ; ε)}

observing the set of terminal stores (successes and
suspensions),

Ots(D.A; c) = {∃~xd ∈ X |(∅; c ;A) −→∗ (~x ; d ; Γ) Y−→}

observing the set of accessible stores,

Oas(D.A; c) = {∃~xd ∈ X |(∅; c ;A) −→∗ (~x ; d ;B)}

observing the set of limit stores?

O∞(D.A; c0) = {t?{∃~xici}i≥0|(∅; c0;A) −→ (~x1; c1; Γ1) −→ ...}
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Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Syntax
I/O Function
Terminal Stores

Deterministic CC

Agents:
A ::= tell(c) | c → A | A ‖ A | ∃xA | p(~x)

No choice operator

Deterministic ask.

Replace non-deterministic pattern matching

∀~x(c → A)

by deterministic ask and tell:

(∃~xc) → ∃~x(tell(c)||A)
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Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Syntax
I/O Function
Terminal Stores

Denotational semantics: input/output function

Input: initial store c0

Output: terminal store c or false for infinite computations

Order the lattice of constraints (C,≤) by the information ordering:
∀c , d ∈ C c ≤ d iff d `X c iff ↑ d ⊆↑ c where
↑ c = {d ∈ C | c ≤ d}.

JD.AK : C → C is

1 Extensive: ∀c c ≤ JD.AKc
2 Monotone: ∀c , d c ≤ d ⇒ JD.AKc ≤ JD.AKd
3 Idempotent: ∀c JD.AKc = JD.AK(JD.AKc)

i.e. JD.AK is a

closure operator

over (C,≤).
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Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Syntax
I/O Function
Terminal Stores

Closure Operators

Proposition

A closure operator f is characterized by the set of its fixpoints
Fix(f ).

Proof.

We show that f = λx .min(Fix(f )∩ ↑ x).
Let y = f (x). By idempotence and extensivity, y ∈ Fix(f )∩ ↑ x .
By monotonicity y = f (x) ≤ f (y ′) for any y ′ ∈↑ x .
Hence, if y ′ ∈ Fix(f )∩ ↑ x then y ≤ y ′.
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Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Syntax
I/O Function
Terminal Stores

Semantic Equations

Let JK : D × A → P(C) be a closure operator presented by the set
of its fixpoints, and defined as the least fixpoint set of the
equations:
JD.tell(c)K =↑ c (' λs.s ∧ c)

JD.c → AK = (C\ ↑ c) ∪ (↑ c ∩ JD.AK)
(' λs. if s `C c then JD.AKs else s)

JD.A||BK = JD.AK ∩ JD.BK (' Y (λs.JD.AKJD.BKs))

JD.∃xAK = {d | c ∈ JD.AK, ∃xc = ∃xd} (' λs.∃xJD.AK∃xs)

JD.p(~x)K = JD.A[~x/~y ]K if p(~y) = A ∈ D (' λs.JD.A[~x/~y ]Ks)

Theorem ([SRP91])

For any deterministic process D.A

Ots(D.A; c) =

{
{min(JD.AK∩ ↑ c)} if JD.AK 6= ∅
∅ otherwise
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Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Closure Operators
Chaotic Iteration

Constraint Propagation and Closure Operators

An environment E : V →2D associates a domain of possible values
to each variable.

Consider the lattice of environments (E ,v), for the information
ordering defined by E v E ′ if and only if ∀x ∈ V, E (x) ⊇ E ′(x).

The semantics of a constraint propagator c can be defined as a
closure operator over E , noted c , i.e. a mapping E → E satisfying

1 (extensivity) E v c(E ),

2 (monotonicity) if E v E ′ then c(E ) v c(E ′)

3 (idempotence) c(c(E )) = c(E ).
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Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Closure Operators
Chaotic Iteration

Example in CC(FD)

Let b = (x > y) and c = (y > x).

Let E (x) = [1, 10], E (y) = [1, 10] be the initial environment

we have

bE (x) = [2, 10]

cE (x) = [1, 9]

(b t c)E (x) = [2, 9]

The closure operator b, c associated to the conjunction of
constraints b ∧ c gives the intended semantics:

b, cE (x) = Y (λs.b(c(s)))E (x) = ∅
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Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Closure Operators
Chaotic Iteration

Chaotic Iteration of Monotone Operators

Let L(v,⊥,>,t,u) be a complete lattice, and F : Ln → Ln a
monotone operator over Ln with n > 0.

The chaotic iteration of F from D ∈ Ln for a fair transfinite choice
sequence < Jδ : δ ∈ Ord > is the sequence < X δ >:

X 0 = D,

Xi
δ+1 = Fi (X

δ) if i ∈ Jδ, Xi
δ+1 = Xi

δ otherwise,

Xi
δ =

⊔
α<δXi

α for any limit ordinal δ.

Theorem ([CC77])

Let D ∈ Ln be a pre fixpoint of F (i.e. D v F (D)). Any chaotic
iteration of F starting from D is increasing and has for limit the
least fixpoint of F above D.
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Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Closure Operators
Chaotic Iteration

Constraint Propagation as Chaotic Iteration

Corollary (Correctness of constraint propagation)

Let c = a1 ∧ ... ∧ an, and E be an environment. Then c(E ) is the
limit of any fair iteration of closure operators a1, ..., an from E.

Let F : Ln+1 → Ln+1 be defined by its projections Fi ’s:
E1 = a1(E ) = F1(E1, . . . ,En,E )
E2 = a2(E ) = F2(E1, . . . ,En,E )
. . .
En = an(E ) = Fn(E1, . . . ,En,E )
E = E1 ∩ · · · ∩ En = Fn+1(E1, . . . ,En,E )

The functions Fi ’s are obviously monotonic, any fair iteration of
a1, ..., an is thus a chaotic iteration of F1, ...,Fn+1 therefore its
limit is equal to the least fixpoint greater than E , i.e. c(E ).
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Problems
Blind Choice
Example: merge

Denotational Semantics of Non-deterministic CC

Problem: the set of terminal stores of a CC process with one step
guarded choice (i.e. global choice) is not compositional:

A = ask(x = a) → tell(y = a)

+ ask(true) → tell(false)

B = tell(x = a ∧ y = a)

A and B have the same set of terminal stores

↑ {x = a ∧ y = a}

(with global choice C\ ↑ (x = a) is not a terminal store for A)

but that is not the case for ∃xB and ∃xA

y = a is a terminal store for ∃xB and not for ∃xA...
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Problems
Blind Choice
Example: merge

Non-deterministic CC(X ) with Local Choice (1)

The set of terminal stores of a CC process with blind choice can be
characterized easily by adding the semantic equation:
JD.A + BK = JD.AK ∪ JD.BK

Theorem ([dBGP96])

JD.AK =
⋃

c∈C Ots(D.A; c)

but the input-output relation cannot be recovered from JD.AK:

Jtell(true)K =

C

Jtell(true) + tell(c)K =

C

Ots(tell(true); true) =

{true}

Ots(tell(true) + tell(c); true) =

{true, c}

Idea:

define JK : D × A → P(P(C)) to distinguish between
branches.
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Non-deterministic CC(X ) with Local Choice (2)

Let JK : D × A → P(P(C)) be the least fixpoint (for ⊆) of

JD.cK = {↑ c}
JD.c → AK = {C\ ↑ c} ∪ {↑ c ∩ X |X ∈ JD.AK}

JD.A||BK = {X ∩ Y | X ∈ JD.AK, Y ∈ JD.BK}
JD.A + BK = JD.AK ∪ JD.BK

JD.∃xAK = {{d | ∃xc = ∃xd , c ∈ X}|X ∈ JD.AK}
JD.p(~x)K = JD.A[~x/~y ]K

Theorem ([MFP97])

For any process D.A,
Ots(D.A; c) = {d | there exists X ∈ JD.AK s.t. d = min(↑ c ∩ X )}.
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’merge’ Example Revisited

Merging streams

merge(A,B,C ) =
(A = [] → tell(C = B)) ||
(B = [] → tell(C = A)) ||

(∀X , L(A = [X |L] → tell(C = [X |R])||merge(L,B,R)) +
∀X , L(B = [X |L] → tell(C = [X |R])||merge(A, L,R)))

Do we have the expected terminal stores?

No!

for merge(X , [1|Y ],Z ) we don’t get 1 in Z , the merging is not
greedy. . .

Sylvain.Soliman@inria.fr CLP



Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Problems
Blind Choice
Example: merge

’merge’ Example Revisited

Merging streams

merge(A,B,C ) =
(A = [] → tell(C = B)) ||
(B = [] → tell(C = A)) ||

(∀X , L(A = [X |L] → tell(C = [X |R])||merge(L,B,R)) +
∀X , L(B = [X |L] → tell(C = [X |R])||merge(A, L,R)))

Do we have the expected terminal stores?
No!

for merge(X , [1|Y ],Z ) we don’t get 1 in Z , the merging is not
greedy. . .

Sylvain.Soliman@inria.fr CLP



Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Sequentiality

Let us define a new operator, •, as follows:

(X ; c ;A) −→ (Y ; d ;B)

(X ; c ;A • C , Γ) −→ (Y ; d ;B • C , Γ)
(X ; c ; ∅•A) −→ (X ; c ;A)

We can characterize completely the observables of any CCseq

program, D.A, by those of a new CC (without •) program, D•.A•,
in a new constraint system, C•.
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Non-deterministic Case

Sequentiality

Proof

Let ok be a new relation symbol of arity one. C• is the constraint
system C to which ok is added, without any non-logical axiom.
The program D•.A• is defined inductively as follows:

(p(~y) = A)• = p•(x , ~y) = A•x

A• = ∃xA•x
tell(c)•x = tell(c ∧ ok(x))

p(~y)•x = p•(x , ~y)

(A ‖ B)•x = ∃y , z(A•y ‖ B•
z ‖ (ok(y) ∧ ok(z)) → ok(x))

(A + B)•x = A•x + B•
x

(∀~y(c → A))•x = ∀~z(c[~z/~y ] → A[~z/~y ]•x) with x 6∈ ~z

(∃yA)•x = ∃zA[z/y ]•x with z 6= x

(A • B)•x =

∃y(A•y ‖ ok(y) → B•
x )
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CC - Logical Semantics
Must Properties

Program Analysis
LCC

Intuitionistic
Linear
Soundness
Completeness

Logical Semantics of CC?

CC calculus is sound but not complete
w.r.t. CLP logical semantics (interpreting asks as tells)

Interpreting ask(c → A) as logical implication leads to
identify CC transitions with logical deductions:

left → c `C d

c ∧ (d → A†) ` c ∧ A†
p(~x) `D A†

c ∧ p(~x) ` c ∧ A†

(reverses the arrow of CLP interpretation...)

To distinguish between successes and accessible stores
agents shouldn’t disappear by the weakening rule:

leftW
Γ ` c

Γ,A† ` c
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Completeness

Linear Logic

Introduced by Jean-Yves Girard in 1986 as a new constructive
logic without the asymmetry of intuitionistic logic (sequent
calculus with symmetric left and right sides)

Logic of resource consumption

A⊗ A 6`LL A

A⊗ (A ( B) `LL B

A⊗ (A ( B) 6`LL A⊗ B

!A provides arbitrary duplication (unbounded throwable
resource)

!A⊗ (A ( B) `LL !A⊗ B `LL B

Sequent calculus without weakening and contraction
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CC - Logical Semantics
Must Properties

Program Analysis
LCC

Intuitionistic
Linear
Soundness
Completeness

Intuitionistic Linear Logic

Multiplicatives

Γ,A,B ` C

Γ,A⊗ B ` C

Γ ` A ∆ ` B

Γ,∆ ` A⊗ B

Γ ` A ∆,B ` C

∆, Γ,A ( B ` C

Γ,A ` B

Γ ` A ( B

Additives

Γ,A ` C Γ,B ` C

Γ,A⊕ B ` C

Γ ` A

Γ ` A⊕ B

Γ ` B

Γ ` A⊕ B

Γ,A ` C

Γ,A & B ` C

Γ,B ` C

Γ,A & B ` C

Γ ` A Γ ` B

Γ ` A & B

Constants

Γ ` A

Γ, 1 ` A
` 1 ⊥ ` Γ `

Γ ` ⊥
Γ ` > Γ, 0 ` A
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CC - Logical Semantics
Must Properties

Program Analysis
LCC

Intuitionistic
Linear
Soundness
Completeness

Intuitionistic Linear Logic (cont.)

Axiom - Cut

A ` A
Γ ` A ∆,A ` B

∆, Γ ` B

Bang

Γ,A ` B

Γ, !A ` B

Γ, !A, !A ` B

Γ, !A ` B

Γ ` B

Γ, !A ` B

!Γ ` A

!Γ `!A

Quantifiers

Γ,A[t/x ] ` B

Γ,∀xA ` B

Γ ` A

Γ ` ∀xA
x 6∈ fv(Γ)

Γ,A ` B

Γ,∃xA ` B
x 6∈ fv(Γ,B)

Γ ` A[t/x ]

Γ ` ∃xA
Sylvain.Soliman@inria.fr CLP



CC - Logical Semantics
Must Properties

Program Analysis
LCC

Intuitionistic
Linear
Soundness
Completeness

Intuit. Linear Logic = the Logic of CC agents

Translation:
(c → A)† = c ( A† (A ‖ B)† = A† ⊗ B† tell(c)† =!c
(A + B)† = A† & B† (∃xA)† = ∃xA† p(~x)† = p(~x)

(X ; c ; Γ)† = ∃X (!c ⊗ Γ†)

Axioms: !c `!d for all c `C d p(~x) ` A† for all p(~x) = A ∈ D

Soundness and Completeness
If (c ; Γ) −→CC (d ;∆) then c† ⊗ Γ† `ILL(C,D) d† ⊗∆†.

If A† `ILL(C,D) c then there exists a success store d such that
(true;A) −→CC (d ; ∅) and d `C c .
If A† `ILL(C,D) c ⊗> then there exists an accessible store d such
that (true;A) −→CC (d ; Γ) and d `C c .
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CC - Logical Semantics
Must Properties

Program Analysis
LCC

Intuitionistic
Linear
Soundness
Completeness

Soundness

Theorem (Soundness of transitions)

Let (X ; c ; Γ) and (Y ; d ;∆) be CC configurations.
If (X ; c ; Γ) ≡ (Y ; d ;∆) then (X ; c ; Γ)†a`ILL(C,D)(Y ; d ;∆)†.

If (X ; c ; Γ) −→ (Y ; d ;∆) then (X ; c ; Γ)† `ILL(C,D) (Y ; d ;∆)†.

Proof.

By induction on ≡. Immediate.
By induction on −→.
The choice operator + is translated by the additive conjunction & ,
which expresses “may” properties: A & B ` A and A & B ` B.
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CC - Logical Semantics
Must Properties

Program Analysis
LCC

Intuitionistic
Linear
Soundness
Completeness

Completeness I

Theorem (Observation of successes)

Let A be a CC agent and c be a constraint.
If A† `ILL(C,D) c, then there exists a constraint d such that
(∅; 1; A) −→ (X ; d ; ∅) and ∃Xd `C c.

Proof.

By induction on a sequent calculus proof π of A1
†, . . . , An

†

`ILL(C,D) φ,
where the Ai ’s are agents and φ is either a constraint or a
procedure name.
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CC - Logical Semantics
Must Properties

Program Analysis
LCC

Intuitionistic
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Soundness
Completeness

Completeness II

Recall that > is the additive true constant neutral for & .

Theorem (Observation of accessible stores)

Let A be a CC agent and c be a constraint.
If A† `ILL(C,D) c ⊗>, then c is a store accessible from A,
i.e. there exist a constraint d and a multiset Γ of agents such that
(∅; 1; A) −→ (X ; d ; Γ) and ∃Xd `C c.

Proof.

The proof uses the first completeness theorem, and proceeds by
an easy induction for the right introduction of the tensor
connective in c ⊗>.
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CC - Logical Semantics
Must Properties

Program Analysis
LCC

Definition
Soundness
Completeness

Observing “must” Properties

Properties true on all branches on the derivation tree.
Redefine the operational semantics by a rewriting relation on
frontiers, i.e. multisets of configurations
Blind choice

〈(X ; c ;A + B),Φ〉 =⇒ 〈(X ; c ;A), (X ; c ;B),Φ〉

Tell
〈(X ; c ; tell(d), Γ),Φ〉 =⇒ 〈(X ; c ∧ d ; Γ),Φ〉

Ask
c `C d ⊗ e

〈(X ; c ; e → A, Γ),Φ〉 =⇒ 〈(X ; d ;A, Γ),Φ〉
Procedure calls

(p(~y) = A) ∈ D
〈(X ; c ; p(~y), Γ),Φ〉 =⇒ 〈(X ; c ;A, Γ),Φ〉

Sylvain.Soliman@inria.fr CLP



CC - Logical Semantics
Must Properties

Program Analysis
LCC

Definition
Soundness
Completeness

Translating the Frontier Calculus in LL with ⊕

Translate
(A + B)‡ = A‡ ⊕ B‡

〈(X ; c ;A),Φ〉‡ = ∃X (c‡ ⊗ A‡)⊕ Φ‡

same translation for the other operations

Theorem (Soundness of transitions)

Let Φ and Ψ be two frontiers.
If Φ ≡ Ψ then (Φ)‡a`ILL(C,D)(Ψ)‡.

If Φ =⇒ Ψ then Φ‡ `ILL(C,D) Ψ‡.
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CC - Logical Semantics
Must Properties

Program Analysis
LCC

Definition
Soundness
Completeness

Completeness III for “must” Properties

Theorem (Observation of frontiers’ accessible stores)

Let A be a CC agent and c be a constraint.
If A‡ `ILL(C,D) c ⊗>
then 〈(∅; 1; A)〉 =⇒ 〈(X1; d1; Γ1), ..., (Xn; dn; Γn)〉 with
∀j ∃Xjdj `C c

Theorem (Observation of frontiers’ success stores)

Let A be an CC agent and c be a constraint.
If A‡ `ILL(C,D) c
then 〈(∅; 1; A)〉 =⇒ 〈(X1; d1; ∅), ..., (Xn; dn; ∅)〉 with ∀j ∃Xjdj `C c
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CC - Logical Semantics
Must Properties

Program Analysis
LCC

Equivalence
Phase Semantics

Logical Equivalence of CC programs

Let P = D.A be a CC(C) process.

Corollary

If P†a`ILL(C,D)P
′†

then Oss(P) = Oss(P
′) (same set of success stores)

and Oas(P) = Oas(P
′) (same set of accessible stores).

Corollary

If P‡a`ILL(C,D)P
′‡

then P and P ′ have the same set of accessible stores on all
branches
and the same success frontiers.
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CC - Logical Semantics
Must Properties

Program Analysis
LCC

Equivalence
Phase Semantics

Proving Properties of CC Programs

Proving logical equivalence of CC programs with the sequent
calculus of LL:

focusing proofs (deterministic rules for the additives first)
lazy splitting (input/output contexts for the multiplicatives)

Proving safety properties of CC programs with the phase
semantics of LL [FRS98]
Soundness gives Γ `ILL A implies ∀P∀η P, η |= (Γ ` A).
∃P, η, s.t. P, η 6|= (Γ ` A) implies Γ 6`ILLC,D A.

Corollary

To prove a safety property (c ,A) Y−→ (d ,B), it is enough to show
that ∃ a phase space P, a valuation η , and an element
a ∈ η((c ,A)†) such that a 6∈ η((d ,B)†).
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CC - Logical Semantics
Must Properties

Program Analysis
LCC

Equivalence
Phase Semantics

Implementations of LL Sequent Calculi

Forum [Miller&al.] specification languages based on LL

LO [Andreoli] Property of “focusing proofs” in LL

Lolli [Cervesato Hodas Pfenning] Search for “Uniform proofs”

Lygon [Harland Winikoff] Linear Logic Programming language

Problem of lazy splitting:

` A, Γ ` B,∆

` A⊗ B, Γ,∆
(⊗)

First idea:
` A− (Γ,∆); ∆ ` B,∆

` A⊗ B, Γ,∆
(⊗)

problems with the rules for ! and for >. . .

stacks are necessary
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CC - Logical Semantics
Must Properties

Program Analysis
LCC

Syntax and Operational Semantics
Examples

Linear Constraint Systems (C,`C)

C is a set of formulas built from V , Σ with logical operators: 1, ⊗,
∃ and !;


C⊆ C × C defines the non-logical axioms of the constraint system.

`C is the least subset of C? × C containing 
C and closed by:

c ` c
Γ, c ` d ∆ ` c

Γ,∆ ` d
` 1

Γ ` c

Γ, 1 ` c

Γ ` c1 ∆ ` c2

Γ,∆ ` c1 ⊗ c2

Γ, c1, c2 ` c

Γ, c1 ⊗ c2 ` c

Γ ` c[t/x ]

Γ ` ∃x c

Γ, c ` d

Γ,∃x c ` d
x 6∈ fv(Γ, d)

Γ, c ` d

Γ, !c ` d

!Γ ` d

!Γ `!d

Γ ` d

Γ, !c ` d

Γ, !c , !c ` d

Γ, !c ` d

A synchronization constraint is a constraint not appearing in 
C
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CC - Logical Semantics
Must Properties

Program Analysis
LCC

Syntax and Operational Semantics
Examples

Linear-CC(C) Operational Semantics

Equivalence
(X ; c ; Γ) ≡ (X ′; c ′; Γ′) −→ (Y ′; d ′;∆′) ≡ (Y ; d ;∆)

(X ; c ; Γ) −→ (Y ; d ;∆)

Tell (X ; c ; tell(d), Γ) −→ (X ; c ⊗ d ; Γ)

Ask
c `C d [~t/~y ]⊗ e

(X ; c ;∀~y(d → A), Γ) −→ (X ; e;A[~t/~y ], Γ)

Hiding
y 6∈ X ∪ fv(c , Γ)

(X ; c ;∃yA, Γ) −→ (X ∪ {y}; c ;A, Γ)

Procedure calls
(p(~y) = A) ∈ D

(X ; c ; p(~y), Γ) −→ (X ; c ;A, Γ)

Blind choice (X ; c ;A + B, Γ) −→ (X ; c ;A, Γ)
(X ; c ;A + B, Γ) −→ (X ; c ;B, Γ)
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CC - Logical Semantics
Must Properties

Program Analysis
LCC

Syntax and Operational Semantics
Examples

An LCC(FD) program for the dining philosophers

Goal(N) = RecPhil(1,N).
RecPhil(M,P) =

M 6= P → (Philo(M,P) ‖ fork(M) ‖ RecPhil(M+1,P))
‖

M = P → (Philo(M,P) ‖ fork(M)).
Philo(I,N) =

(fork(I) ⊗ fork(I+1 mod N)) →
(eat(I) ‖
eat(I) → (fork(I) ‖ fork(I+1 mod N) ‖

Philo(I,N))).

Safety properties: deadlock freeness, two neighbors don’t eat at
the same time, etc.
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CC - Logical Semantics
Must Properties

Program Analysis
LCC

Syntax and Operational Semantics
Examples

Encoding Linda in LCC(H)

Shared tuple space

Asynchronous communication (through tuple space)

input consumes the tuple, read doesn’t

One-step guarded choice

Conditional with else case (check the absence of tuple) not
encodable in LCC.
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CC - Logical Semantics
Must Properties

Program Analysis
LCC

Syntax and Operational Semantics
Examples

Encoding the π-calculus in LCC(H)

Direct encoding of the asynchronous π-calculus:

[0] = 1
[(y)P] = ∃y [P]
[xy .0] =

tell(c(x , y))

[x(y).P] =

∀yc(x , y) → [P]

[P|Q] = [P]||[Q]
[[x = y ]P] = (x = y) → [P]
[P + Q] = [P] + [Q]

The usual (synchronous) π-calculus can be simulated with a
synchronous communication protocol.
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Must Properties

Program Analysis
LCC

Syntax and Operational Semantics
Examples

Producer Consumer Protocol in LCC

P = dem → (pro ‖ P)
C = pro → (dem ‖ C)
init = demn ‖ Pm ‖ Ck

Deadlock-freeness: init Y−→LCC demn′ ‖ Pm′ ‖ Ck ′ ‖ prol ′ , with
either n′ = l ′ = 0 or m′ = 0 or k ′ = 0

Number of units consumed always < number of units produced:
P = dem → (pro ‖ P ‖ ∀X (np=X → np=X+1))
C = pro → (dem ‖ C ‖ ∀X (nc=X → nc=X+1))
init = demn ‖ Pm ‖ Ck ‖ np=0 ‖ nc=0
init Y−→LCC demn′ ‖ prol ′ ‖ Pm ‖ Ck ‖ np=np0 ‖ nc=nc0

with nc0 > np0
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