Constraint Logic Programming

Sylvain Soliman, Francois Fages and Nicolas Beldiceanu
{Sylvain.Soliman,Francois.Fages}@inria.fr

INRIA — Projet CONTRAINTES

MPRI C-2-4-1 Course — September-November, 2006

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Part |: CLP - Introduction and Logical Background

@ The Constraint Programming paradigm
Examples and Applications

o p PP
First Order Logic

o g

@ Models

© Logical Theories

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Part |I: Constraint Logic Programs

@ Constraint Languages
o Decidability in Complete Theories

@ CLP(X)
@ Definition
@ Operational Semantics

Q CLP(H)
@ Prolog
@ Examples

e CLP(R,FD,B)
e CLP(R)
o CLP(FD)
e CLP(B)
ZIINRIA

Sylvain.Soliman@inria.fr CLP

Part Ill: Operational and Fixpoint Semantics

@ Operational Semantics

@ Fixpoint Semantics
@ Fixpoint Preliminaries
@ Fixpoint Semantics of Successes
o Fixpoint Semantics of Computed Answers

@ Program Analysis

@ Abstract Interpretation
o Constraint-based Model Checking

Sylvain.Soliman@inria.fr CLP

ZIINRIA

Part IV: Logical Semantics

@ Logical Semantics of CLP(X)
@ Soundness
o Completeness

@ Automated Deduction
@ CLP())

@ M-calculus
@ Proofs in A-calculus

@ Negation as Failure
o Finite Failure
o Clark's Completion
@ Soundness w.r.t. Clark's Completion
@ Completeness w.r.t. Clark's Completion

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Part V: Concurrent Constraint Programming

@ Introduction
@ Syntax
e CCvs. CLP

@ Operational Semantics
@ Transitions
@ Properties
@ Observables
o CC(FD)

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Transitions
Properties

Operational Semantics Observables

CC(X) Transitions

Interleaving semantics

(p(y)=A) €D
(X% ¢ p(y),I) — (X ¢, AT

Procedure call

Tell (X, c; tell(d),T) — (X;cAd;T)

cFx d[t/y]

Ask (% ¢ Vy(d — A),T) — (%: ¢; A[E/7],T)

Blind choice (X;c; A+ B, T) — (X;
(local/internal) (X;c;A+ B,I") — (X;

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Transitions
Properties

Operational Semantics Observables

Properties of CC Transitions (1)

Theorem (Monotonicity)

If (X;¢;T) — (y;d; A) then (X;cNe;T,X) — (y;d Ae; A X) for
every constraint e and agents A.

tell and ask are monotonic (monotonic conditions in guards). [

Strong fairness and weak fairness are equivalent. \
ZIINRIA

Sylvain.Soliman@inria.fr CLP

Transitions
Properties
Observables

Operational Semantics

Properties of CC Transitions (3)

Theorem (Extensivity)
If (%, ¢;T) — (¥;d; A) then 3yd Fx IXc.

For any constraint e, c A ey c.

Theorem (Restartability)
If (X, ¢;T) =* (v, d; A) then (X;3yd;) —=* (v; d; Q).

By extensivity and monotonicity. [\

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Transitions
Properties

Operational Semantics Observables

CC(X) Operational Semanticssss

@ observing the set of success stores,
Oss(D.A;c) ={3Xd € X |(0; c; A) —" (X: d; €)}

@ observing the set of terminal stores (successes and
suspensions),

Ots(D.A;c) = {3Xd € X |(0; c; A) —* (X, d;T) +}
@ observing the set of accessible stores,
O.s(D.A;c) ={3xd € X |(0; c; A) —* (X; d; B)}
@ observing the set of limit stores?
Ox(D.A; o) = {U2{3Xici}ix0l(0; co; A) — (x1;¢1;T1) — ...}

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Part VI

CC - Denotational Semantics

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Part VI: CC - Denotational Semantics

@ Deterministic Case
@ Syntax
@ |/O Function
@ Terminal Stores

€ Constraint Propagation
@ Closure Operators
@ Chaotic Iteration

@ Non-deterministic Case
@ Problems
@ Blind Choice

o Example: merge

€ Sequentiality
ZIINRIA

Sylvain.Soliman@inria.fr CLP

Deterministic Case Syt

1/O Function
Terminal Stores

Deterministic CC

Agents:
Acz=tell(c) | c— A|A| A|3IxA | p(X)

@ No choice operator

@ Deterministic ask.

Replace non-deterministic pattern matching
VX(c — A)
by deterministic ask and tell:
(IXc) — Ix(tell(c)||A)

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Syntax

1/O Function
Terminal Stores

Denotational semantics: input/output function

Input: initial store ¢
Output: terminal store ¢ or false for infinite computations

Order the lattice of constraints (C, <) by the information ordering:
Ve,deCc<diffdrFyx ciff T d CT c where
lTc={deC|c<d}

[D.A]:C—Cis
@ Extensive: Vc ¢ < [D.A]c
@ Monotone: Ve, d ¢ < d = [D.A]c < [D.A]ld
@ Idempotent: Ve [D.A]c = [D.A]([D.A]c)
i.e. [D.A]is a over (C, <).

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Syntax

1/O Function
Terminal Stores

Denotational semantics: input/output function

Input: initial store ¢
Output: terminal store ¢ or false for infinite computations

Order the lattice of constraints (C, <) by the information ordering:
Ve,deCc<diffdrFyx ciff T d CT c where
lTc={deC|c<d}

[D.A]:C—Cis
@ Extensive: Vc ¢ < [D.A]c
@ Monotone: Ve, d ¢ < d = [D.A]c < [D.A]ld
@ Idempotent: Ve [D.A]c = [D.A]([D.A]c)

i.e. [D.A] is a closure operator over (C, <).

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Syntax

1/O Function
Terminal Stores

Closure Operators

Proposition

A closure operator f is characterized by the set of its fixpoints
Fix(f).

We show that f = Ax.min(Fix(f)N T x).

Let y = f(x). By idempotence and extensivity, y € Fix(f)N T x.
By monotonicity y = f(x) < f(y’) for any y’ €1 x.

Hence, if y' € Fix(f)N T x then y <y’ O

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Syntax

1/O Function
Terminal Stores

Semantic Equations

Let [] : D x A— P(C) be a closure operator presented by the set
of its fixpoints, and defined as the least fixpoint set of the
equations:

[D.tell(c)] =1c (~ As.s A 0)

[D.c = A] =(C\Tc)u(l cn[D.A])

(= Xs. if s b-¢ c then [D.A]s else 5)
[D.A||B] = [D.A]N[D.B] (= Y(»s.[D.A][D.B]s))
[D.3xA] ={d | c € [D.A], Ixc = Ixd} (= rs.3x[D.413x5)
[D.p(X)] = [D.A[X/Y]] if p(¥) = AED (= rs[D.A%/715)

Theorem ([SRP91])

For any deterministic process D.A

[D.AINT ¢)} if [D.A] # 0

otherwise

min
Ow(D.A; c) = { é (
VRIA

Sylvain.Soliman@inria.fr CLP

Constraint Propagation Closure Operators
Chaotic Iteration

Constraint Propagation and Closure Operators

An environment E : V —2P associates a domain of possible values
to each variable.

Consider the lattice of environments (£, C), for the information
ordering defined by E C E’ if and only if Vx € V, E(x) D E’'(x).

The semantics of a constraint propagator ¢ can be defined as a
closure operator over &, noted ¢, i.e. a mapping £ — & satisfying
O (extensivity) E C ¢(E),
@ (monotonicity) if E C E’ then ©(E) C ¢(E’)
© (idempotence) ¢(c(E)) = ¢(E).

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Constraint Propagation Closure Operators
Chaotic Iteration

Example in CC(FD)

Let b= (x> y) and c = (y > x).
Let E(x) = [1,10], E(y) = [1,10] be the initial environment
we have
bE(x) = [2,10]
CE(x) = [1,9]
(bUT)E(x) = [2,9]

The closure operator b, ¢ associated to the conjunction of
constraints b A ¢ gives the intended semantics:

b,cE(x) = Y(\s.b(c(s)))E(x) =0

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Constraint Propagation Closure Operators
Chaotic Iteration

Chaotic Iteration of Monotone Operators

Let L(C, L, T,U,M) be a complete lattice, and F : L" — L" a
monotone operator over L" with n > 0.

The chaotic iteration of F from D € L" for a fair transfinite choice
sequence < J% : § € Ord > is the sequence < X® >:

X% =D,
X0t = Fi(X0) if i e J°, X% = X;® otherwise,
X;? = ,.sX;* for any limit ordinal &.

Theorem ([CC77])

Let D € L" be a pre fixpoint of F (i.e. D C F(D)). Any chaotic
iteration of F starting from D is increasing and has for limit the
least fixpoint of F above D.

VA INRIA
Sylvain.Soliman@inria.fr CLP

Constraint Propagation Closure Operators
Chaotic Iteration

Constraint Propagation as Chaotic lteration

Corollary (Correctness of constraint propagation)

Let ¢ = a; A ... A\ an, and E be an environment. Then €(E) is the
limit of any fair iteration of closure operators ai, ..., a, from E.

Let F: L"T1 — L™ be defined by its projections F;'s:

Eq :El(E) = Fl(El, .o, En, E)
E = 52(E) = Fg(El, .o, En, E)

E, = an(E) = Fo(Ev, ..., Ey, E)
E=EnNn---NE,= n+1(E1,...,En,E)

The functions F;'s are obviously monotonic, any fair iteration of
ai, ..., an is thus a chaotic iteration of Fq, ..., F,4+1 therefore its

limit is equal to the least fixpoint greater than E, i.e. T(E). B iNRIA

Sylvain.Soliman@inria.fr CLP

Problems
Blind Choice

Non-deterministic Case
Example: merge

Denotational Semantics of Non-deterministic CC

Problem: the set of terminal stores of a CC process with one step
guarded choice (i.e. global choice) is not compositional:

A = ask(x = a) — tell(y = a)
+ ask(true) — tell(false)
B = tell(x =any = a)

A and B have the same set of terminal stores

but that is not the case for 3xB and 3xA

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Problems
Blind Choice

Non-deterministic Case
Example: merge

Denotational Semantics of Non-deterministic CC

Problem: the set of terminal stores of a CC process with one step
guarded choice (i.e. global choice) is not compositional:

A = ask(x = a) — tell(y = a)
+ ask(true) — tell(false)
B = tell(x =any = a)

A and B have the same set of terminal stores

T{x=any=a}
(with global choice C\ T (x = a) is not a terminal store for A)
but that is not the case for 3xB and 3xA

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Problems
Blind Choice

Non-deterministic Case
Example: merge

Denotational Semantics of Non-deterministic CC

Problem: the set of terminal stores of a CC process with one step
guarded choice (i.e. global choice) is not compositional:

A = ask(x = a) — tell(y = a)
+ ask(true) — tell(false)
B = tell(x =any = a)

A and B have the same set of terminal stores
T{x=any=a}
(with global choice C\ T (x = a) is not a terminal store for A)
but that is not the case for IxB and JxA

y = a is a terminal store for 9xB and not for IxA...
ZIINRIA

Sylvain.Soliman@inria.fr CLP

Problems
Blind Choice
Example: merge

Non-deterministic Case

Non-deterministic CC(X') with Local Choice (1)

The set of terminal stores of a CC process with blind choice can be

characterized easily by adding the semantic equation:
[D.A+ B] = [D.A]U[D.B]

Theorem ([dBGP96])
[D.A] = U.ee Ous(D.A; c)

but the input-output relation cannot be recovered from [D.A]:

[tell(true)] =
[tell(true) + tell(c)] =

Oqs(tell(true); true) =
Oqs(tell(true) + tell(c); true) =

Idea:
ZIINRIA

Sylvain.Soliman@inria.fr CLP

Problems
Blind Choice
Example: merge

Non-deterministic Case

Non-deterministic CC(X') with Local Choice (1)

The set of terminal stores of a CC process with blind choice can be

characterized easily by adding the semantic equation:
[D.A+ B] = [D.A]U[D.B]

Theorem ([dBGP96])
[D.A] = U.ee Ous(D.A; c)

but the input-output relation cannot be recovered from [D.A]:

[tell(true)] =C
[tell(true) + tell(c)] =

Oqs(tell(true); true) =
Oqs(tell(true) + tell(c); true) =

Idea:
ZIINRIA

Sylvain.Soliman@inria.fr CLP

Problems
Blind Choice
Example: merge

Non-deterministic Case

Non-deterministic CC(X') with Local Choice (1)

The set of terminal stores of a CC process with blind choice can be

characterized easily by adding the semantic equation:
[D.A+ B] = [D.A]U[D.B]

Theorem ([dBGP96])
[D.A] = U.ee Ous(D.A; c)

but the input-output relation cannot be recovered from [D.A]:

[tell(true)] =C

[tell(true) + tell(c)] = C
Oqs(tell(true); true) =
Oys(tell(true) + tell(c); true) =

Idea:
ZIINRIA

Sylvain.Soliman@inria.fr CLP

Problems
Blind Choice
Example: merge

Non-deterministic Case

Non-deterministic CC(X') with Local Choice (1)

The set of terminal stores of a CC process with blind choice can be

characterized easily by adding the semantic equation:
[D.A+ B] = [D.A]U[D.B]

Theorem ([dBGP96])
[D.A] = U.ee Ous(D.A; c)

but the input-output relation cannot be recovered from [D.A]:

[tell(true)] = C

[tell(true) + tell(c)] = C
Oqs(tell(true); true) = {true}
Oqs(tell(true) + tell(c); true) =

Idea:
ZIINRIA

Sylvain.Soliman@inria.fr CLP

Problems
Blind Choice
Example: merge

Non-deterministic Case

Non-deterministic CC(X') with Local Choice (1)

The set of terminal stores of a CC process with blind choice can be

characterized easily by adding the semantic equation:
[D.A+ B] = [D.A]U[D.B]

Theorem ([dBGP96])
[D.A] = U.ee Ous(D.A; c)

but the input-output relation cannot be recovered from [D.A]:

[tell(true)] = C
[tell(true) + tell(c)] = C

Oqs(tell(true); true) = {true}
Oqs(tell(true) + tell(c); true) = {true, c}

Idea:
ZIINRIA

Sylvain.Soliman@inria.fr CLP

Problems
Blind Choice
Example: merge

Non-deterministic Case

Non-deterministic CC(X') with Local Choice (1)

The set of terminal stores of a CC process with blind choice can be
characterized easily by adding the semantic equation:

[D.A+ B] = [D.A]U[D.B]

Theorem ([dBGP96])

[D.A] = U.ee Ous(D.A; c)

but the input-output relation cannot be recovered from [D.A]:

[tell(true)] = C
[tell(true) + tell(c)] = C

Oqs(tell(true); true) = {true}
Oqs(tell(true) + tell(c); true) = {true, c}

Idea: define [] : D x A — P(P(C)) to distinguish between
branches. WINRIA

Sylvain.Soliman@inria.fr CLP

Problems
Blind Choice

Non-deterministic Case
Example: merge

Non-deterministic CC(X) with Local Choice (2)

Let [] : D x A— P(P(C)) be the least fixpoint (for C) of

[D.c] = {1c}

[D.c = Al = {C\1Tc}U{TcnX|X € [D.A]}
[DAB] = {XNY|Xe[D.A] Y e [D.B]}

[D.A+B] = [D.AJU[D.B]
[D.axA] = {{d | 3Ixc =3xd, c € X}|X € [D.A]}
[Dp(R)] = [DAR/]

Theorem ([MFP97])

For any process D.A,
Ots(D.A; ¢) = {d| there exists X € [D.A] s.t. d = min(T cN X)}.

vay INRIA

Sylvain.Soliman@inria.fr CLP

Problems
Blind Choice

Non-deterministic Case E)
xample: merge

'merge’ Example Revisited

Merging streams
merge(A, B, C) =
(A=[— tell(C = B)) |
(B = — tell(C = A)) |
(VX, L(A = [X|L] — tell(C = [X|R])||merge(L, B, R)) +
VX, L(B = [X|L] — tell(C = [X]|R])||merge(A, L, R)))

Do we have the expected terminal stores?

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Problems
Blind Choice

Non-deterministic Case Example: merge

'merge’ Example Revisited

Merging streams
merge(A, B, C) =
(A=[— tell(C = B)) |
(B = — tell(C = A)) |
(VX, L(A = [X|L] — tell(C = [X|R])||merge(L, B, R)) +
VX, L(B = [X|L] — tell(C = [X]|R])||merge(A, L, R)))

Do we have the expected terminal stores?
No!

for merge(X, [1|Y], Z) we don't get 1 in Z, the merging is not
greedy. . .
ZIINRIA

Sylvain.Soliman@inria.fr CLP

Sequentiality

Sequentiality

Let us define a new operator, e, as follows:

(X;c;A) — (Y d; B) o -
(X;c;Ae C,T) — (Y;d;Be C,TN) (XicileA) — (X A)

We can characterize completely the observables of any CCgeq
program, D.A, by those of a new CC (without) program, D*.A°®,
in a new constraint system, C®.

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Sequentiality

Let ok be a new relation symbol of arity one. C® is the constraint
system C to which ok is added, without any non-logical axiom.
The program D*®.A® is defined inductively as follows:

(p(Y) =A)> = p*(x,y)=A;

A® = 3IxA}
tell(c)y = tell(c A ok(x))
p(Y): = P'(x.¥)
(Al B): = Ay, (A} || B || (ok(y) A ok(z)) — ok(x))
(A+B)y = AL+ B;
(7(c — A2 = VE(clZ/7] — AlZ/TTS) with x & 7

(3yA)s, = 3zA[z/y]s with z # x

(AeB);, =

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Sequentiality

Let ok be a new relation symbol of arity one. C® is the constraint
system C to which ok is added, without any non-logical axiom.
The program D*®.A® is defined inductively as follows:

(p(Y) =A)> = p*(x,y)=A;

A = IxA}
tell(c)y = tell(c A ok(x))
pP(Y)x = pP'(x.¥)
(Al By = 3y, z(A) || BZ || (ok(y) A ok(z)) — ok(x))
(A+B)y = A+ B;
(Vy(c = A)x = VZ(c[Z/y] — AlZ/Y]X) with x & Z

(IyA)y = 3JzA[z/y]s with z # x

(AeB): = Fy(A} [l ok(y) — BR)

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Part VII

CC and Linear Logic

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Part VII: CC and Linear Logic

€@ CC - Logical Semantics
@ Intuitionistic

@ Linear
@ Soundness
o Completeness
€ Must Properties
@ Definition
@ Soundness
@ Completeness
€@ Program Analysis
@ Equivalence
@ Phase Semantics
@ LCC
@ Syntax and Operational Semantics
o Examples B iINRIA

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics Intuitionistic
Linear
Soundness
Completeness

Logical Semantics of CC?

@ CC calculus is sound but not complete
w.r.t. CLP logical semantics (interpreting asks as tells)

o Interpreting ask(c — A) as logical implication leads to
identify CC transitions with logical deductions:

cked p(X) Fp Af
cA(d— Af)F cAAT cAp(X)F cAAT

left —

(reverses the arrow of CLP interpretation...)

@ To distinguish between successes and accessible stores
agents shouldn’t disappear by the weakening rule:

MN-c
leftW ——_ ¢
T T AT ¢

ZIINRIA

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics Intuitionistic
Linear
Soundness
Completeness

Linear Logic

@ Introduced by Jean-Yves Girard in 1986 as a new constructive
logic without the asymmetry of intuitionistic logic (sequent
calculus with symmetric left and right sides)

@ Logic of resource consumption
ARQAV LA
A®(A—B)F . B
AR (A— B)t/1 1 A® B

@ !A provides arbitrary duplication (unbounded throwable
resource)

|A®(A—OB) Fii AR B B

@ Sequent calculus without weakening and contraction
ZIINRIA

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics Intuitionistic
Linear
Soundness
Completeness

Intuitionistic Linear Logic

Multiplicatives

rnNAB-FC TFHA AFB rNFA ABFEC NAEB
NMABFC T,AFA®B AT A—BFC THFA—B

Additives
MNAEC I,BEC N=A =B
NNMA®BEC rFA® B FrNFA¢ B
NAEC NBEC r'-A Ir=B
MNNA&BEC NNA&BEC FrFA&B
Constants
Mr-=A -
F1FA F1 1+ e 1 r=T1 oA
ZIINRIA

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics Intuitionistic
Linear
Soundness
Completeness

Intuitionistic Linear Logic (cont.)

Axiom - Cut
[FA AAFB
AFA ATHB
Bang
AFB T,AIALB M- B IM - A
[LIAF B [IAF B FTAFB ITHIA
Quantifiers
[A[t/x] - B M-A
fu(T
[VxAF B Fvea < & V(0
rAFB [Alt/x]
roarg # V(B [F 3xA

ZIINRIA

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics Intuitionistic
Linear
Soundness
Completeness

Intuit. Linear Logic = the Logic of CC agents

Translation:
(c—Af=c—-Al (A||B)f =A@ Bt tell(c)t =lc
(A+B) = AT & Bf (IxA)t = IxAl p(X)t = p(%

(X;c; N =3X(le®TT)
Axioms: lc F!d for all c ¢ d p(X) - Af for all p(X) = A€ D

Soundness and Completeness
If (c;T) —cc (d;A) then cT @ Tt FiLe,p) di @ AT,
If Af FiLe(c,py € then there exists a success store d such that
(true; A) —cc (d; 0) and d F¢ c.
If Af FiLee,p) € ® T then there exists an accessible store d such
that (true; A) —¢cc (d;T) and d k¢ c.
ZIINRIA

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics Intuitionistic
Linear
Soundness
Completeness

Soundness

Theorem (Soundness of transitions)

Let (X;c;T) and (Y; d; A) be CC configurations.

If (X;c;T)=(Y;d;A) then (X;c; F)T—H—,LL(QD)(Y; d; A)T.
If (X;c;T) — (Y;d;A) then (X;c;T)T Fie,py (Yid; At

By induction on =. Immediate.

By induction on —.

The choice operator + is translated by the additive conjunction &,
which expresses “may” properties: A& B+ Aand A& B+FB. [

ZIINRIA

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics Intuitionistic
Linear
Soundness
Completeness

Completeness |

Theorem (Observation of successes)

Let A be a CC agent and c be a constraint.

If AT FiLic,p) € then there exists a constraint d such that
(0;1; A) — (X; d; 0) and 3Xd ¢ c.

By induction on a sequent calculus proof 7 of AlT, e Anf
FiLe,p) ¢
where the A;’s are agents and ¢ is either a constraint or a
procedure name.

N |

INRIA
Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics Intuitionistic
Linear
Soundness
Completeness

Completeness |l

Recall that T is the additive true constant neutral for & .

Theorem (Observation of accessible stores)

Let A be a CC agent and c be a constraint.

If Af FiLee,py € ® T, then c is a store accessible from A,

i.e. there exist a constraint d and a multiset [of agents such that
(0;1; A) — (X;d;T) and 3Xd ¢ c.

The proof uses the first completeness theorem, and proceeds by
an easy induction for the right introduction of the tensor
connective in c® T. []

Yl INRIA
Sylvain.Soliman@inria.fr CLP

Definition
Soundness
Completeness

Must Properties

Observing “must” Properties

Properties true on all branches on the derivation tree.
Redefine the operational semantics by a rewriting relation on
frontiers, i.e. multisets of configurations

Blind choice

(X;c;A+ B),®) = ((X;c;A),(X;c; B),®)
Tell
((X; c; tell(d),T),®) = ((X;cAd;T),P)

Ask
cked®e

(Xicie = AT), &) = ((X;d;AT),®)
Procedure calls

(p(¥) =A) €D
(Xicp(y),T),®) = (X;ic;AT), ®)

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Definition
Soundness
Completeness

Must Properties

Translating the Frontier Calculus in LL with &

Translate
(A+ B)i = At @ B!

(X; c; A), ®)F = 3X(c @ A @ ¢!

same translation for the other operations

Theorem (Soundness of transitions)

Let ® and V be two frontiers.
If ® =V then ((D)L“_ILL(C,D)(\U)i
If & = V¥ then (Di FILL(C,D) Wi

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Definition
Soundness
Completeness

Must Properties

Completeness Il for “must” Properties

Theorem (Observation of frontiers’ accessible stores)

Let A be a CC agent and c be a constraint.

/)(:Ai l_ILL(C,'D) c® T

then ((0;1; A)) = ((X1;d1;T1), oy (Xns dni Th)) with
Vj AXjdj Fc ¢

Theorem (Observation of frontiers’ success stores)

Let A be an CC agent and c be a constraint.
If:Ai l_lLL(C,D) C
then ((0;1; A)) = ((X1; d1;0), ..., (Xn; dn; 0)) with ¥j 3X;dj ¢ ¢

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Equivalence
Program Analysis Phase Semantics

Logical Equivalence of CC programs

Let P = D.A be a CC(C) process.

Corollary

If Py icmy P
then Oss(P) = Oss(P') (same set of success stores)
and O,s(P) = Oa5(P') (same set of accessible stores).

| A\

Corollary

If Py 1cmy P

then P and P’ have the same set of accessible stores on all
branches

and the same success frontiers.

v

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Equivalence
Program Analysis Phase Semantics

Proving Properties of CC Programs

@ Proving logical equivalence of CC programs with the sequent
calculus of LL:
o focusing proofs (deterministic rules for the additives first)
o lazy splitting (input/output contexts for the multiplicatives)
@ Proving safety properties of CC programs with the phase
semantics of LL [FRS98]
Soundness gives I ;1 A implies YPVn P,n = (I' - A).
3P, n, s.t. P,nj~ (I'= A) implies T ;. , A

To prove a safety property (c, A) + (d, B), it is enough to show
that 3 a phase space P, a valuation n , and an element
a € n((c,A)) such that a & n((d, B)T).

NRIA

Sylvain.Soliman@inria.fr CLP

Equivalence
Program Analysis Phase Semantics

Implementations of LL Sequent Calculi

e Forum [Miller&al.] specification languages based on LL

o LO [Andreoli] Property of “focusing proofs” in LL

o Lolli [Cervesato Hodas Pfenning] Search for “Uniform proofs”
e Lygon [Harland Winikoff] Linear Logic Programming language

Problem of lazy splitting:

AT k&A@)
FA®B,T,A

First idea:
FA—(ILA),A +FB,A

FA®B,T,A (®)

@ problems with the rules for ! and for T...

@ stacks are necessary 7
%I INRIA

Sylvain.Soliman@inria.fr CLP

Syntax and Operational Semantics
Examples
LCC

Linear Constraint Systems (C,)

C is a set of formulas built from V, ¥ with logical operators: 1, ®,
Jand !;

IF¢C C x C defines the non-logical axioms of the constraint system.

¢ is the least subset of C* x C containing IF¢ and closed by:

NcHFd AFc N-c¢
che FAFd S o s

= A+ r F = Mck
a &) ,Cc1, G0 ¢ c[t/x] ,chHd « & (T, d)
NMAFa®o a®olkc N=3dxc Ndxckd
NNcHd THd MN-=d Mlclckd
MNlekd ITHd T,lekd MNlekd

A synchronization constraint is a constraint not appearing in IF¢
ZIINRIA

Sylvain.Soliman@inria.fr CLP

Syntax and Operational Semantics
Examples
LCC

Linear-CC(C) Operational Semantics

XN =X) — (Y d;A)= (Y d; D)

Equival
quivalence XcT)— (Y:d d)
Tell (X; ¢ tell(d),T) — (X;c®d;TN)
ched[t/y]®e
Ask — =
(Xievy(d — A),T) — (X; e Alt/y]T)
Hiding y & X Ufv(c,IN

(X;c;3yAT) — (XU{y};c;AT)

(p(y)=A)eD
(X;cip(y),T) — (X;c; A T)

Procedure calls
ZIINRIA

Sylvain.Soliman@inria.fr CLP

Syntax and Operational Semantics
Examples
LCC

An LCC(FD) program for the dining philosophers

Goal(N) = RecPhil(1,N).
RecPhil (M,P) =

M # P — (Philo(M,P) || fork(M) | RecPhil(M+1,P))
|

M =P — (Philo(M,P) | fork(M)).

Philo(I,N) =
(fork(I) ® fork(I+1l mod N)) —
(eat (1) ||
eat(I) — (fork(I) | fork(I+l mod N) ||
Philo(I,N))).

Safety properties: deadlock freeness, two neighbors don't eat at

the same time, etc.
ZIINRIA

Sylvain.Soliman@inria.fr CLP

Syntax and Operational Semantics
Examples
LCC

Encoding Linda in LCC(H)

Shared tuple space
@ Asynchronous communication (through tuple space)

@ input consumes the tuple, read doesn't

One-step guarded choice

Conditional with else case (check the absence of tuple) not
encodable in LCC.

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Syntax and Operational Semantics
Examples
LCC

Encoding the m-calculus in LCC(H)

@ Direct encoding of the asynchronous mw-calculus:

[0] =1

[(v)P] = Jy[P]

[xy.0] =

[x(y).P] =

[P|Q] = [P]II[Q]
[x=ylP] = (x=y)—I[P]
[P+Ql = [PI+I[Q]

@ The usual (synchronous) m-calculus can be simulated with a
synchronous communication protocol.

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Syntax and Operational Semantics
Examples
LCC

Encoding the m-calculus in LCC(H)

@ Direct encoding of the asynchronous mw-calculus:

[0] =1

[(v)P] = Jy[P]

[xy.0] = tell(c(x,y))
[x(v).P] =

[PIQ] = [P]ll[Q]
[x=y]P] = (x=y)—[P]
[P+Q = [PI+[Q]

@ The usual (synchronous) m-calculus can be simulated with a
synchronous communication protocol.

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Syntax and Operational Semantics
Examples
LCC

Encoding the m-calculus in LCC(H)

@ Direct encoding of the asynchronous mw-calculus:

[0] =1

[(v)P] = 3Jy[P]

[xy.0] = tell(c(x,y))
[x(y).Pl = Vyc(x,y) = [P]
[PIQ] = [P]ll[Q]
[x=y]P] = (x=y)—[P]
[P+Q = [PI+[Q]

@ The usual (synchronous) m-calculus can be simulated with a
synchronous communication protocol.

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Syntax and Operational Semantics
Examples
LCC

Producer Consumer Protocol in LCC

P = dem — (pro | P)
C = pro — (dem || C)
init = dem” || P™ || CK

Deadlock-freeness: init +—;cc dem” || P™ || ¢¥' | pro’, with
either " =/'=0o0orm =0o0r kK =0

Number of units consumed always < number of units produced:
P = dem — (pro || P || VX (np=X — np=X+1))

C =pro — (dem || C || VX (nc=X — nc=X+1))

init = dem” || P™ | C¥ || np=0 | nc=0

init +—;cc dem” || pro’ || P™ || ¢ || np=np, || nc=ncy

with nco > np,

ZIINRIA

Sylvain.Soliman@inria.fr CLP

Bibliography |

@ Patrick Cousot and Radhia Cousot.

Abstract interpretation: A unified lattice model for static analysis of programs by construction or
approximation of fixpoints.

In POPL'77: Prc of P

of the 6th ACM Symposium on Principles
1977. ACM Press

ramming Languages, pages

Frank S. de Boer, Maurizio Gabbrielli, and Catuscia Palamidessi

Proving correctness of constraint logic programming with dynamic scheduling.
In Proceedings of SAS'96, LNCS 1145. Springer-Verlag, 1996

Francois Fages, Paul Ruet, and Sylvain Soliman.

Phase semantics and verification of concurrent constraint programs.
In Proceedings of the 13thAnnual IEEE Symposium on Logic In Computer Science, pages 141-152
Indianapolis, 1998. IEEE Computer Society.

Kim Marriott Moreno Falaschi, Maurizio Gabbrielli and Catuscia Palamidessi.
Confluence in concurrent constraint programming.

Theoretical Computer Science, 183(2):281-315, 1997.

Vijay A. Saraswat, Martin C. Rinard, and Prakash Panangaden.

Semantic foundations of concurrent constraint programming.
In POPL'91: Proceedings of the 18th ACM Symposium on Principles of Programming Languages, 1991

ZIINRIA

Sylvain.Soliman@inria.fr CLP

	The Constraint Programming paradigm
	Examples and Applications
	First Order Logic
	Models
	Logical Theories
	Constraint Languages
	Decidability in Complete Theories

	CLP(X)
	Definition
	Operational Semantics

	CLP(H)
	Prolog
	Examples

	CLP(R,FD,B)
	CLP(R)
	CLP(FD)
	CLP(B)

	Operational Semantics
	Fixpoint Semantics
	Fixpoint Preliminaries
	Fixpoint Semantics of Successes
	Fixpoint Semantics of Computed Answers

	Program Analysis
	Abstract Interpretation
	Constraint-based Model Checking

	Logical Semantics of CLP(X)
	Soundness
	Completeness

	Automated Deduction
	CLP()
	-calculus
	Proofs in -calculus

	Negation as Failure
	Finite Failure
	Clark's Completion
	Soundness w.r.t. Clark's Completion
	Completeness w.r.t. Clark's Completion

	Introduction
	Syntax
	CC vs. CLP

	Operational Semantics
	Transitions
	Properties
	Observables
	CC(FD)

	Deterministic Case
	Syntax
	I/O Function
	Terminal Stores

	Constraint Propagation
	Closure Operators
	Chaotic Iteration

	Non-deterministic Case
	Problems
	Blind Choice
	Example: merge

	Sequentiality
	CC - Logical Semantics
	Intuitionistic
	Linear
	Soundness
	Completeness

	Must Properties
	Definition
	Soundness
	Completeness

	Program Analysis
	Equivalence
	Phase Semantics

	LCC
	Syntax and Operational Semantics
	Examples

