
Constraint Logic Programming

Sylvain Soliman, François Fages and Nicolas Beldiceanu
{Sylvain.Soliman,Francois.Fages}@inria.fr

INRIA – Projet CONTRAINTES

MPRI C-2-4-1 Course – September-November, 2006

Sylvain.Soliman@inria.fr CLP

The Constraint Programming paradigm
Examples and Applications

First Order Logic
Models

Logical Theories

Part I: CLP - Introduction and Logical Background

1 The Constraint Programming paradigm

2 Examples and Applications

3 First Order Logic

4 Models

5 Logical Theories

Sylvain.Soliman@inria.fr CLP

Constraint Languages
CLP(X)
CLP(H)

CLP(R,FD,B)

Part II: Constraint Logic Programs

6 Constraint Languages
Decidability in Complete Theories

7 CLP(X)
Definition
Operational Semantics

8 CLP(H)
Prolog
Examples

9 CLP(R,FD,B)
CLP(R)
CLP(FD)
CLP(B)

Sylvain.Soliman@inria.fr CLP

Operational Semantics
Fixpoint Semantics

Program Analysis

Part III: Operational and Fixpoint Semantics

10 Operational Semantics

11 Fixpoint Semantics
Fixpoint Preliminaries
Fixpoint Semantics of Successes
Fixpoint Semantics of Computed Answers

12 Program Analysis
Abstract Interpretation
Constraint-based Model Checking

Sylvain.Soliman@inria.fr CLP

Logical Semantics of CLP(X)
Automated Deduction

CLP(λ)
Negation as Failure

Part IV: Logical Semantics

13 Logical Semantics of CLP(X)
Soundness
Completeness

14 Automated Deduction

15 CLP(λ)
λ-calculus
Proofs in λ-calculus

16 Negation as Failure
Finite Failure
Clark’s Completion
Soundness w.r.t. Clark’s Completion
Completeness w.r.t. Clark’s Completion

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Part V: Concurrent Constraint Programming

17 Introduction
Syntax
CC vs. CLP

18 Operational Semantics
Transitions
Properties
Observables
CC(FD)

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Transitions
Properties
Observables

CC(X) Transitions

Interleaving semantics

Procedure call
(p(~y) = A) ∈ D

(~x ; c ; p(~y), Γ) −→ (~x ; c ;A, Γ)

Tell (~x ; c ; tell(d), Γ) −→ (~x ; c ∧ d ; Γ)

Ask
c `X d [~t/~y]

(~x ; c ;∀~y(d → A), Γ) −→ (~x ; c ;A[~t/~y], Γ)

Blind choice (~x ; c ;A + B, Γ) −→ (~x ; c ;A, Γ)
(local/internal) (~x ; c ;A + B, Γ) −→ (~x ; c ;B, Γ)

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Transitions
Properties
Observables

Properties of CC Transitions (1)

Theorem (Monotonicity)

If (~x ; c ; Γ) → (~y ; d ;∆) then (~x ; c ∧ e; Γ,Σ) → (~y ; d ∧ e;∆,Σ) for
every constraint e and agents ∆.

Proof.

tell and ask are monotonic (monotonic conditions in guards).

Corollary

Strong fairness and weak fairness are equivalent.

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Transitions
Properties
Observables

Properties of CC Transitions (3)

Theorem (Extensivity)

If (~x ; c ; Γ) → (~y ; d ;∆) then ∃~yd `X ∃~xc.

Proof.

For any constraint e, c ∧ e `X c .

Theorem (Restartability)

If (~x ; c ; Γ) →∗ (~y ; d ;∆) then (~x ;∃~yd ; Γ) →∗ (~y ; d ;∆).

Proof.

By extensivity and monotonicity.

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Transitions
Properties
Observables

CC(X) Operational Semanticssss

observing the set of success stores,

Oss(D.A; c) = {∃~xd ∈ X |(∅; c ;A) −→∗ (~x ; d ; ε)}

observing the set of terminal stores (successes and
suspensions),

Ots(D.A; c) = {∃~xd ∈ X |(∅; c ;A) −→∗ (~x ; d ; Γ) Y−→}

observing the set of accessible stores,

Oas(D.A; c) = {∃~xd ∈ X |(∅; c ;A) −→∗ (~x ; d ;B)}

observing the set of limit stores?

O∞(D.A; c0) = {t?{∃~xici}i≥0|(∅; c0;A) −→ (~x1; c1; Γ1) −→ ...}

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Part VI

CC - Denotational Semantics

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Part VI: CC - Denotational Semantics

19 Deterministic Case
Syntax
I/O Function
Terminal Stores

20 Constraint Propagation
Closure Operators
Chaotic Iteration

21 Non-deterministic Case
Problems
Blind Choice
Example: merge

22 Sequentiality

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Syntax
I/O Function
Terminal Stores

Deterministic CC

Agents:
A ::= tell(c) | c → A | A ‖ A | ∃xA | p(~x)

No choice operator

Deterministic ask.

Replace non-deterministic pattern matching

∀~x(c → A)

by deterministic ask and tell:

(∃~xc) → ∃~x(tell(c)||A)

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Syntax
I/O Function
Terminal Stores

Denotational semantics: input/output function

Input: initial store c0

Output: terminal store c or false for infinite computations

Order the lattice of constraints (C,≤) by the information ordering:
∀c , d ∈ C c ≤ d iff d `X c iff ↑ d ⊆↑ c where
↑ c = {d ∈ C | c ≤ d}.

JD.AK : C → C is

1 Extensive: ∀c c ≤ JD.AKc
2 Monotone: ∀c , d c ≤ d ⇒ JD.AKc ≤ JD.AKd
3 Idempotent: ∀c JD.AKc = JD.AK(JD.AKc)

i.e. JD.AK is a

closure operator

over (C,≤).

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Syntax
I/O Function
Terminal Stores

Denotational semantics: input/output function

Input: initial store c0

Output: terminal store c or false for infinite computations

Order the lattice of constraints (C,≤) by the information ordering:
∀c , d ∈ C c ≤ d iff d `X c iff ↑ d ⊆↑ c where
↑ c = {d ∈ C | c ≤ d}.

JD.AK : C → C is

1 Extensive: ∀c c ≤ JD.AKc
2 Monotone: ∀c , d c ≤ d ⇒ JD.AKc ≤ JD.AKd
3 Idempotent: ∀c JD.AKc = JD.AK(JD.AKc)

i.e. JD.AK is a closure operator over (C,≤).

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Syntax
I/O Function
Terminal Stores

Closure Operators

Proposition

A closure operator f is characterized by the set of its fixpoints
Fix(f).

Proof.

We show that f = λx .min(Fix(f)∩ ↑ x).
Let y = f (x). By idempotence and extensivity, y ∈ Fix(f)∩ ↑ x .
By monotonicity y = f (x) ≤ f (y ′) for any y ′ ∈↑ x .
Hence, if y ′ ∈ Fix(f)∩ ↑ x then y ≤ y ′.

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Syntax
I/O Function
Terminal Stores

Semantic Equations

Let JK : D × A → P(C) be a closure operator presented by the set
of its fixpoints, and defined as the least fixpoint set of the
equations:
JD.tell(c)K =↑ c (' λs.s ∧ c)

JD.c → AK = (C\ ↑ c) ∪ (↑ c ∩ JD.AK)
(' λs. if s `C c then JD.AKs else s)

JD.A||BK = JD.AK ∩ JD.BK (' Y (λs.JD.AKJD.BKs))

JD.∃xAK = {d | c ∈ JD.AK, ∃xc = ∃xd} (' λs.∃xJD.AK∃xs)

JD.p(~x)K = JD.A[~x/~y]K if p(~y) = A ∈ D (' λs.JD.A[~x/~y]Ks)

Theorem ([SRP91])

For any deterministic process D.A

Ots(D.A; c) =

{
{min(JD.AK∩ ↑ c)} if JD.AK 6= ∅
∅ otherwise

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Closure Operators
Chaotic Iteration

Constraint Propagation and Closure Operators

An environment E : V →2D associates a domain of possible values
to each variable.

Consider the lattice of environments (E ,v), for the information
ordering defined by E v E ′ if and only if ∀x ∈ V, E (x) ⊇ E ′(x).

The semantics of a constraint propagator c can be defined as a
closure operator over E , noted c , i.e. a mapping E → E satisfying

1 (extensivity) E v c(E),

2 (monotonicity) if E v E ′ then c(E) v c(E ′)

3 (idempotence) c(c(E)) = c(E).

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Closure Operators
Chaotic Iteration

Example in CC(FD)

Let b = (x > y) and c = (y > x).

Let E (x) = [1, 10], E (y) = [1, 10] be the initial environment

we have

bE (x) = [2, 10]

cE (x) = [1, 9]

(b t c)E (x) = [2, 9]

The closure operator b, c associated to the conjunction of
constraints b ∧ c gives the intended semantics:

b, cE (x) = Y (λs.b(c(s)))E (x) = ∅

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Closure Operators
Chaotic Iteration

Chaotic Iteration of Monotone Operators

Let L(v,⊥,>,t,u) be a complete lattice, and F : Ln → Ln a
monotone operator over Ln with n > 0.

The chaotic iteration of F from D ∈ Ln for a fair transfinite choice
sequence < Jδ : δ ∈ Ord > is the sequence < X δ >:

X 0 = D,

Xi
δ+1 = Fi (X

δ) if i ∈ Jδ, Xi
δ+1 = Xi

δ otherwise,

Xi
δ =

⊔
α<δXi

α for any limit ordinal δ.

Theorem ([CC77])

Let D ∈ Ln be a pre fixpoint of F (i.e. D v F (D)). Any chaotic
iteration of F starting from D is increasing and has for limit the
least fixpoint of F above D.

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Closure Operators
Chaotic Iteration

Constraint Propagation as Chaotic Iteration

Corollary (Correctness of constraint propagation)

Let c = a1 ∧ ... ∧ an, and E be an environment. Then c(E) is the
limit of any fair iteration of closure operators a1, ..., an from E.

Let F : Ln+1 → Ln+1 be defined by its projections Fi ’s:
E1 = a1(E) = F1(E1, . . . ,En,E)
E2 = a2(E) = F2(E1, . . . ,En,E)
. . .
En = an(E) = Fn(E1, . . . ,En,E)
E = E1 ∩ · · · ∩ En = Fn+1(E1, . . . ,En,E)

The functions Fi ’s are obviously monotonic, any fair iteration of
a1, ..., an is thus a chaotic iteration of F1, ...,Fn+1 therefore its
limit is equal to the least fixpoint greater than E , i.e. c(E).

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Problems
Blind Choice
Example: merge

Denotational Semantics of Non-deterministic CC

Problem: the set of terminal stores of a CC process with one step
guarded choice (i.e. global choice) is not compositional:

A = ask(x = a) → tell(y = a)

+ ask(true) → tell(false)

B = tell(x = a ∧ y = a)

A and B have the same set of terminal stores

↑ {x = a ∧ y = a}

(with global choice C\ ↑ (x = a) is not a terminal store for A)

but that is not the case for ∃xB and ∃xA

y = a is a terminal store for ∃xB and not for ∃xA...

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Problems
Blind Choice
Example: merge

Denotational Semantics of Non-deterministic CC

Problem: the set of terminal stores of a CC process with one step
guarded choice (i.e. global choice) is not compositional:

A = ask(x = a) → tell(y = a)

+ ask(true) → tell(false)

B = tell(x = a ∧ y = a)

A and B have the same set of terminal stores

↑ {x = a ∧ y = a}

(with global choice C\ ↑ (x = a) is not a terminal store for A)

but that is not the case for ∃xB and ∃xA

y = a is a terminal store for ∃xB and not for ∃xA...

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Problems
Blind Choice
Example: merge

Denotational Semantics of Non-deterministic CC

Problem: the set of terminal stores of a CC process with one step
guarded choice (i.e. global choice) is not compositional:

A = ask(x = a) → tell(y = a)

+ ask(true) → tell(false)

B = tell(x = a ∧ y = a)

A and B have the same set of terminal stores

↑ {x = a ∧ y = a}

(with global choice C\ ↑ (x = a) is not a terminal store for A)

but that is not the case for ∃xB and ∃xA

y = a is a terminal store for ∃xB and not for ∃xA...

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Problems
Blind Choice
Example: merge

Non-deterministic CC(X) with Local Choice (1)

The set of terminal stores of a CC process with blind choice can be
characterized easily by adding the semantic equation:
JD.A + BK = JD.AK ∪ JD.BK

Theorem ([dBGP96])

JD.AK =
⋃

c∈C Ots(D.A; c)

but the input-output relation cannot be recovered from JD.AK:

Jtell(true)K =

C

Jtell(true) + tell(c)K =

C

Ots(tell(true); true) =

{true}

Ots(tell(true) + tell(c); true) =

{true, c}

Idea:

define JK : D × A → P(P(C)) to distinguish between
branches.

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Problems
Blind Choice
Example: merge

Non-deterministic CC(X) with Local Choice (1)

The set of terminal stores of a CC process with blind choice can be
characterized easily by adding the semantic equation:
JD.A + BK = JD.AK ∪ JD.BK

Theorem ([dBGP96])

JD.AK =
⋃

c∈C Ots(D.A; c)

but the input-output relation cannot be recovered from JD.AK:

Jtell(true)K = C
Jtell(true) + tell(c)K =

C

Ots(tell(true); true) =

{true}

Ots(tell(true) + tell(c); true) =

{true, c}

Idea:

define JK : D × A → P(P(C)) to distinguish between
branches.

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Problems
Blind Choice
Example: merge

Non-deterministic CC(X) with Local Choice (1)

The set of terminal stores of a CC process with blind choice can be
characterized easily by adding the semantic equation:
JD.A + BK = JD.AK ∪ JD.BK

Theorem ([dBGP96])

JD.AK =
⋃

c∈C Ots(D.A; c)

but the input-output relation cannot be recovered from JD.AK:

Jtell(true)K = C
Jtell(true) + tell(c)K = C

Ots(tell(true); true) =

{true}

Ots(tell(true) + tell(c); true) =

{true, c}

Idea:

define JK : D × A → P(P(C)) to distinguish between
branches.

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Problems
Blind Choice
Example: merge

Non-deterministic CC(X) with Local Choice (1)

The set of terminal stores of a CC process with blind choice can be
characterized easily by adding the semantic equation:
JD.A + BK = JD.AK ∪ JD.BK

Theorem ([dBGP96])

JD.AK =
⋃

c∈C Ots(D.A; c)

but the input-output relation cannot be recovered from JD.AK:

Jtell(true)K = C
Jtell(true) + tell(c)K = C

Ots(tell(true); true) = {true}
Ots(tell(true) + tell(c); true) =

{true, c}

Idea:

define JK : D × A → P(P(C)) to distinguish between
branches.

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Problems
Blind Choice
Example: merge

Non-deterministic CC(X) with Local Choice (1)

The set of terminal stores of a CC process with blind choice can be
characterized easily by adding the semantic equation:
JD.A + BK = JD.AK ∪ JD.BK

Theorem ([dBGP96])

JD.AK =
⋃

c∈C Ots(D.A; c)

but the input-output relation cannot be recovered from JD.AK:

Jtell(true)K = C
Jtell(true) + tell(c)K = C

Ots(tell(true); true) = {true}
Ots(tell(true) + tell(c); true) = {true, c}

Idea:

define JK : D × A → P(P(C)) to distinguish between
branches.

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Problems
Blind Choice
Example: merge

Non-deterministic CC(X) with Local Choice (1)

The set of terminal stores of a CC process with blind choice can be
characterized easily by adding the semantic equation:
JD.A + BK = JD.AK ∪ JD.BK

Theorem ([dBGP96])

JD.AK =
⋃

c∈C Ots(D.A; c)

but the input-output relation cannot be recovered from JD.AK:

Jtell(true)K = C
Jtell(true) + tell(c)K = C

Ots(tell(true); true) = {true}
Ots(tell(true) + tell(c); true) = {true, c}

Idea: define JK : D × A → P(P(C)) to distinguish between
branches.

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Problems
Blind Choice
Example: merge

Non-deterministic CC(X) with Local Choice (2)

Let JK : D × A → P(P(C)) be the least fixpoint (for ⊆) of

JD.cK = {↑ c}
JD.c → AK = {C\ ↑ c} ∪ {↑ c ∩ X |X ∈ JD.AK}

JD.A||BK = {X ∩ Y | X ∈ JD.AK, Y ∈ JD.BK}
JD.A + BK = JD.AK ∪ JD.BK

JD.∃xAK = {{d | ∃xc = ∃xd , c ∈ X}|X ∈ JD.AK}
JD.p(~x)K = JD.A[~x/~y]K

Theorem ([MFP97])

For any process D.A,
Ots(D.A; c) = {d | there exists X ∈ JD.AK s.t. d = min(↑ c ∩ X)}.

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Problems
Blind Choice
Example: merge

’merge’ Example Revisited

Merging streams

merge(A,B,C) =
(A = [] → tell(C = B)) ||
(B = [] → tell(C = A)) ||

(∀X , L(A = [X |L] → tell(C = [X |R])||merge(L,B,R)) +
∀X , L(B = [X |L] → tell(C = [X |R])||merge(A, L,R)))

Do we have the expected terminal stores?

No!

for merge(X , [1|Y],Z) we don’t get 1 in Z , the merging is not
greedy. . .

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Problems
Blind Choice
Example: merge

’merge’ Example Revisited

Merging streams

merge(A,B,C) =
(A = [] → tell(C = B)) ||
(B = [] → tell(C = A)) ||

(∀X , L(A = [X |L] → tell(C = [X |R])||merge(L,B,R)) +
∀X , L(B = [X |L] → tell(C = [X |R])||merge(A, L,R)))

Do we have the expected terminal stores?
No!

for merge(X , [1|Y],Z) we don’t get 1 in Z , the merging is not
greedy. . .

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Sequentiality

Let us define a new operator, •, as follows:

(X ; c ;A) −→ (Y ; d ;B)

(X ; c ;A • C , Γ) −→ (Y ; d ;B • C , Γ)
(X ; c ; ∅•A) −→ (X ; c ;A)

We can characterize completely the observables of any CCseq

program, D.A, by those of a new CC (without •) program, D•.A•,
in a new constraint system, C•.

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Proof

Let ok be a new relation symbol of arity one. C• is the constraint
system C to which ok is added, without any non-logical axiom.
The program D•.A• is defined inductively as follows:

(p(~y) = A)• = p•(x , ~y) = A•x

A• = ∃xA•x
tell(c)•x = tell(c ∧ ok(x))

p(~y)•x = p•(x , ~y)

(A ‖ B)•x = ∃y , z(A•y ‖ B•
z ‖ (ok(y) ∧ ok(z)) → ok(x))

(A + B)•x = A•x + B•
x

(∀~y(c → A))•x = ∀~z(c[~z/~y] → A[~z/~y]•x) with x 6∈ ~z

(∃yA)•x = ∃zA[z/y]•x with z 6= x

(A • B)•x =

∃y(A•y ‖ ok(y) → B•
x)

Sylvain.Soliman@inria.fr CLP

Deterministic Case
Constraint Propagation
Non-deterministic Case

Sequentiality

Proof

Let ok be a new relation symbol of arity one. C• is the constraint
system C to which ok is added, without any non-logical axiom.
The program D•.A• is defined inductively as follows:

(p(~y) = A)• = p•(x , ~y) = A•x

A• = ∃xA•x
tell(c)•x = tell(c ∧ ok(x))

p(~y)•x = p•(x , ~y)

(A ‖ B)•x = ∃y , z(A•y ‖ B•
z ‖ (ok(y) ∧ ok(z)) → ok(x))

(A + B)•x = A•x + B•
x

(∀~y(c → A))•x = ∀~z(c[~z/~y] → A[~z/~y]•x) with x 6∈ ~z

(∃yA)•x = ∃zA[z/y]•x with z 6= x

(A • B)•x = ∃y(A•y ‖ ok(y) → B•
x)

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics
Must Properties

Program Analysis
LCC

Part VII

CC and Linear Logic

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics
Must Properties

Program Analysis
LCC

Part VII: CC and Linear Logic
23 CC - Logical Semantics

Intuitionistic
Linear
Soundness
Completeness

24 Must Properties
Definition
Soundness
Completeness

25 Program Analysis
Equivalence
Phase Semantics

26 LCC
Syntax and Operational Semantics
Examples

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics
Must Properties

Program Analysis
LCC

Intuitionistic
Linear
Soundness
Completeness

Logical Semantics of CC?

CC calculus is sound but not complete
w.r.t. CLP logical semantics (interpreting asks as tells)

Interpreting ask(c → A) as logical implication leads to
identify CC transitions with logical deductions:

left → c `C d

c ∧ (d → A†) ` c ∧ A†
p(~x) `D A†

c ∧ p(~x) ` c ∧ A†

(reverses the arrow of CLP interpretation...)

To distinguish between successes and accessible stores
agents shouldn’t disappear by the weakening rule:

leftW
Γ ` c

Γ,A† ` c

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics
Must Properties

Program Analysis
LCC

Intuitionistic
Linear
Soundness
Completeness

Linear Logic

Introduced by Jean-Yves Girard in 1986 as a new constructive
logic without the asymmetry of intuitionistic logic (sequent
calculus with symmetric left and right sides)

Logic of resource consumption

A⊗ A 6`LL A

A⊗ (A (B) `LL B

A⊗ (A (B) 6`LL A⊗ B

!A provides arbitrary duplication (unbounded throwable
resource)

!A⊗ (A (B) `LL !A⊗ B `LL B

Sequent calculus without weakening and contraction

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics
Must Properties

Program Analysis
LCC

Intuitionistic
Linear
Soundness
Completeness

Intuitionistic Linear Logic

Multiplicatives

Γ,A,B ` C

Γ,A⊗ B ` C

Γ ` A ∆ ` B

Γ,∆ ` A⊗ B

Γ ` A ∆,B ` C

∆, Γ,A (B ` C

Γ,A ` B

Γ ` A (B

Additives

Γ,A ` C Γ,B ` C

Γ,A⊕ B ` C

Γ ` A

Γ ` A⊕ B

Γ ` B

Γ ` A⊕ B

Γ,A ` C

Γ,A & B ` C

Γ,B ` C

Γ,A & B ` C

Γ ` A Γ ` B

Γ ` A & B

Constants

Γ ` A

Γ, 1 ` A
` 1 ⊥ ` Γ `

Γ ` ⊥
Γ ` > Γ, 0 ` A

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics
Must Properties

Program Analysis
LCC

Intuitionistic
Linear
Soundness
Completeness

Intuitionistic Linear Logic (cont.)

Axiom - Cut

A ` A
Γ ` A ∆,A ` B

∆, Γ ` B

Bang

Γ,A ` B

Γ, !A ` B

Γ, !A, !A ` B

Γ, !A ` B

Γ ` B

Γ, !A ` B

!Γ ` A

!Γ `!A

Quantifiers

Γ,A[t/x] ` B

Γ,∀xA ` B

Γ ` A

Γ ` ∀xA
x 6∈ fv(Γ)

Γ,A ` B

Γ,∃xA ` B
x 6∈ fv(Γ,B)

Γ ` A[t/x]

Γ ` ∃xA
Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics
Must Properties

Program Analysis
LCC

Intuitionistic
Linear
Soundness
Completeness

Intuit. Linear Logic = the Logic of CC agents

Translation:
(c → A)† = c (A† (A ‖ B)† = A† ⊗ B† tell(c)† =!c
(A + B)† = A† & B† (∃xA)† = ∃xA† p(~x)† = p(~x)

(X ; c ; Γ)† = ∃X (!c ⊗ Γ†)

Axioms: !c `!d for all c `C d p(~x) ` A† for all p(~x) = A ∈ D

Soundness and Completeness
If (c ; Γ) −→CC (d ;∆) then c† ⊗ Γ† `ILL(C,D) d† ⊗∆†.

If A† `ILL(C,D) c then there exists a success store d such that
(true;A) −→CC (d ; ∅) and d `C c .
If A† `ILL(C,D) c ⊗> then there exists an accessible store d such
that (true;A) −→CC (d ; Γ) and d `C c .

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics
Must Properties

Program Analysis
LCC

Intuitionistic
Linear
Soundness
Completeness

Soundness

Theorem (Soundness of transitions)

Let (X ; c ; Γ) and (Y ; d ;∆) be CC configurations.
If (X ; c ; Γ) ≡ (Y ; d ;∆) then (X ; c ; Γ)†a`ILL(C,D)(Y ; d ;∆)†.

If (X ; c ; Γ) −→ (Y ; d ;∆) then (X ; c ; Γ)† `ILL(C,D) (Y ; d ;∆)†.

Proof.

By induction on ≡. Immediate.
By induction on −→.
The choice operator + is translated by the additive conjunction & ,
which expresses “may” properties: A & B ` A and A & B ` B.

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics
Must Properties

Program Analysis
LCC

Intuitionistic
Linear
Soundness
Completeness

Completeness I

Theorem (Observation of successes)

Let A be a CC agent and c be a constraint.
If A† `ILL(C,D) c, then there exists a constraint d such that
(∅; 1; A) −→ (X ; d ; ∅) and ∃Xd `C c.

Proof.

By induction on a sequent calculus proof π of A1
†, . . . , An

†

`ILL(C,D) φ,
where the Ai ’s are agents and φ is either a constraint or a
procedure name.

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics
Must Properties

Program Analysis
LCC

Intuitionistic
Linear
Soundness
Completeness

Completeness II

Recall that > is the additive true constant neutral for & .

Theorem (Observation of accessible stores)

Let A be a CC agent and c be a constraint.
If A† `ILL(C,D) c ⊗>, then c is a store accessible from A,
i.e. there exist a constraint d and a multiset Γ of agents such that
(∅; 1; A) −→ (X ; d ; Γ) and ∃Xd `C c.

Proof.

The proof uses the first completeness theorem, and proceeds by
an easy induction for the right introduction of the tensor
connective in c ⊗>.

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics
Must Properties

Program Analysis
LCC

Definition
Soundness
Completeness

Observing “must” Properties

Properties true on all branches on the derivation tree.
Redefine the operational semantics by a rewriting relation on
frontiers, i.e. multisets of configurations
Blind choice

〈(X ; c ;A + B),Φ〉 =⇒ 〈(X ; c ;A), (X ; c ;B),Φ〉

Tell
〈(X ; c ; tell(d), Γ),Φ〉 =⇒ 〈(X ; c ∧ d ; Γ),Φ〉

Ask
c `C d ⊗ e

〈(X ; c ; e → A, Γ),Φ〉 =⇒ 〈(X ; d ;A, Γ),Φ〉
Procedure calls

(p(~y) = A) ∈ D
〈(X ; c ; p(~y), Γ),Φ〉 =⇒ 〈(X ; c ;A, Γ),Φ〉

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics
Must Properties

Program Analysis
LCC

Definition
Soundness
Completeness

Translating the Frontier Calculus in LL with ⊕

Translate
(A + B)‡ = A‡ ⊕ B‡

〈(X ; c ;A),Φ〉‡ = ∃X (c‡ ⊗ A‡)⊕ Φ‡

same translation for the other operations

Theorem (Soundness of transitions)

Let Φ and Ψ be two frontiers.
If Φ ≡ Ψ then (Φ)‡a`ILL(C,D)(Ψ)‡.

If Φ =⇒ Ψ then Φ‡ `ILL(C,D) Ψ‡.

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics
Must Properties

Program Analysis
LCC

Definition
Soundness
Completeness

Completeness III for “must” Properties

Theorem (Observation of frontiers’ accessible stores)

Let A be a CC agent and c be a constraint.
If A‡ `ILL(C,D) c ⊗>
then 〈(∅; 1; A)〉 =⇒ 〈(X1; d1; Γ1), ..., (Xn; dn; Γn)〉 with
∀j ∃Xjdj `C c

Theorem (Observation of frontiers’ success stores)

Let A be an CC agent and c be a constraint.
If A‡ `ILL(C,D) c
then 〈(∅; 1; A)〉 =⇒ 〈(X1; d1; ∅), ..., (Xn; dn; ∅)〉 with ∀j ∃Xjdj `C c

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics
Must Properties

Program Analysis
LCC

Equivalence
Phase Semantics

Logical Equivalence of CC programs

Let P = D.A be a CC(C) process.

Corollary

If P†a`ILL(C,D)P
′†

then Oss(P) = Oss(P
′) (same set of success stores)

and Oas(P) = Oas(P
′) (same set of accessible stores).

Corollary

If P‡a`ILL(C,D)P
′‡

then P and P ′ have the same set of accessible stores on all
branches
and the same success frontiers.

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics
Must Properties

Program Analysis
LCC

Equivalence
Phase Semantics

Proving Properties of CC Programs

Proving logical equivalence of CC programs with the sequent
calculus of LL:

focusing proofs (deterministic rules for the additives first)
lazy splitting (input/output contexts for the multiplicatives)

Proving safety properties of CC programs with the phase
semantics of LL [FRS98]
Soundness gives Γ `ILL A implies ∀P∀η P, η |= (Γ ` A).
∃P, η, s.t. P, η 6|= (Γ ` A) implies Γ 6`ILLC,D A.

Corollary

To prove a safety property (c ,A) Y−→ (d ,B), it is enough to show
that ∃ a phase space P, a valuation η , and an element
a ∈ η((c ,A)†) such that a 6∈ η((d ,B)†).

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics
Must Properties

Program Analysis
LCC

Equivalence
Phase Semantics

Implementations of LL Sequent Calculi

Forum [Miller&al.] specification languages based on LL

LO [Andreoli] Property of “focusing proofs” in LL

Lolli [Cervesato Hodas Pfenning] Search for “Uniform proofs”

Lygon [Harland Winikoff] Linear Logic Programming language

Problem of lazy splitting:

` A, Γ ` B,∆

` A⊗ B, Γ,∆
(⊗)

First idea:
` A− (Γ,∆); ∆ ` B,∆

` A⊗ B, Γ,∆
(⊗)

problems with the rules for ! and for >. . .

stacks are necessary

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics
Must Properties

Program Analysis
LCC

Syntax and Operational Semantics
Examples

Linear Constraint Systems (C,`C)

C is a set of formulas built from V , Σ with logical operators: 1, ⊗,
∃ and !;

C⊆ C × C defines the non-logical axioms of the constraint system.

`C is the least subset of C? × C containing
C and closed by:

c ` c
Γ, c ` d ∆ ` c

Γ,∆ ` d
` 1

Γ ` c

Γ, 1 ` c

Γ ` c1 ∆ ` c2

Γ,∆ ` c1 ⊗ c2

Γ, c1, c2 ` c

Γ, c1 ⊗ c2 ` c

Γ ` c[t/x]

Γ ` ∃x c

Γ, c ` d

Γ,∃x c ` d
x 6∈ fv(Γ, d)

Γ, c ` d

Γ, !c ` d

!Γ ` d

!Γ `!d

Γ ` d

Γ, !c ` d

Γ, !c , !c ` d

Γ, !c ` d

A synchronization constraint is a constraint not appearing in
C

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics
Must Properties

Program Analysis
LCC

Syntax and Operational Semantics
Examples

Linear-CC(C) Operational Semantics

Equivalence
(X ; c ; Γ) ≡ (X ′; c ′; Γ′) −→ (Y ′; d ′;∆′) ≡ (Y ; d ;∆)

(X ; c ; Γ) −→ (Y ; d ;∆)

Tell (X ; c ; tell(d), Γ) −→ (X ; c ⊗ d ; Γ)

Ask
c `C d [~t/~y]⊗ e

(X ; c ;∀~y(d → A), Γ) −→ (X ; e;A[~t/~y], Γ)

Hiding
y 6∈ X ∪ fv(c , Γ)

(X ; c ;∃yA, Γ) −→ (X ∪ {y}; c ;A, Γ)

Procedure calls
(p(~y) = A) ∈ D

(X ; c ; p(~y), Γ) −→ (X ; c ;A, Γ)

Blind choice (X ; c ;A + B, Γ) −→ (X ; c ;A, Γ)
(X ; c ;A + B, Γ) −→ (X ; c ;B, Γ)

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics
Must Properties

Program Analysis
LCC

Syntax and Operational Semantics
Examples

An LCC(FD) program for the dining philosophers

Goal(N) = RecPhil(1,N).
RecPhil(M,P) =

M 6= P → (Philo(M,P) ‖ fork(M) ‖ RecPhil(M+1,P))
‖

M = P → (Philo(M,P) ‖ fork(M)).
Philo(I,N) =

(fork(I) ⊗ fork(I+1 mod N)) →
(eat(I) ‖
eat(I) → (fork(I) ‖ fork(I+1 mod N) ‖

Philo(I,N))).

Safety properties: deadlock freeness, two neighbors don’t eat at
the same time, etc.

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics
Must Properties

Program Analysis
LCC

Syntax and Operational Semantics
Examples

Encoding Linda in LCC(H)

Shared tuple space

Asynchronous communication (through tuple space)

input consumes the tuple, read doesn’t

One-step guarded choice

Conditional with else case (check the absence of tuple) not
encodable in LCC.

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics
Must Properties

Program Analysis
LCC

Syntax and Operational Semantics
Examples

Encoding the π-calculus in LCC(H)

Direct encoding of the asynchronous π-calculus:

[0] = 1
[(y)P] = ∃y [P]
[xy .0] =

tell(c(x , y))

[x(y).P] =

∀yc(x , y) → [P]

[P|Q] = [P]||[Q]
[[x = y]P] = (x = y) → [P]
[P + Q] = [P] + [Q]

The usual (synchronous) π-calculus can be simulated with a
synchronous communication protocol.

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics
Must Properties

Program Analysis
LCC

Syntax and Operational Semantics
Examples

Encoding the π-calculus in LCC(H)

Direct encoding of the asynchronous π-calculus:

[0] = 1
[(y)P] = ∃y [P]
[xy .0] = tell(c(x , y))
[x(y).P] =

∀yc(x , y) → [P]

[P|Q] = [P]||[Q]
[[x = y]P] = (x = y) → [P]
[P + Q] = [P] + [Q]

The usual (synchronous) π-calculus can be simulated with a
synchronous communication protocol.

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics
Must Properties

Program Analysis
LCC

Syntax and Operational Semantics
Examples

Encoding the π-calculus in LCC(H)

Direct encoding of the asynchronous π-calculus:

[0] = 1
[(y)P] = ∃y [P]
[xy .0] = tell(c(x , y))
[x(y).P] = ∀yc(x , y) → [P]
[P|Q] = [P]||[Q]
[[x = y]P] = (x = y) → [P]
[P + Q] = [P] + [Q]

The usual (synchronous) π-calculus can be simulated with a
synchronous communication protocol.

Sylvain.Soliman@inria.fr CLP

CC - Logical Semantics
Must Properties

Program Analysis
LCC

Syntax and Operational Semantics
Examples

Producer Consumer Protocol in LCC

P = dem → (pro ‖ P)
C = pro → (dem ‖ C)
init = demn ‖ Pm ‖ Ck

Deadlock-freeness: init Y−→LCC demn′ ‖ Pm′ ‖ Ck ′ ‖ prol ′ , with
either n′ = l ′ = 0 or m′ = 0 or k ′ = 0

Number of units consumed always < number of units produced:
P = dem → (pro ‖ P ‖ ∀X (np=X → np=X+1))
C = pro → (dem ‖ C ‖ ∀X (nc=X → nc=X+1))
init = demn ‖ Pm ‖ Ck ‖ np=0 ‖ nc=0
init Y−→LCC demn′ ‖ prol ′ ‖ Pm ‖ Ck ‖ np=np0 ‖ nc=nc0

with nc0 > np0

Sylvain.Soliman@inria.fr CLP

Bibliography I

Patrick Cousot and Radhia Cousot.

Abstract interpretation: A unified lattice model for static analysis of programs by construction or
approximation of fixpoints.
In POPL’77: Proceedings of the 6th ACM Symposium on Principles of Programming Languages, pages
238–252, New York, 1977. ACM Press.
Los Angeles.

Frank S. de Boer, Maurizio Gabbrielli, and Catuscia Palamidessi.

Proving correctness of constraint logic programming with dynamic scheduling.
In Proceedings of SAS’96, LNCS 1145. Springer-Verlag, 1996.

François Fages, Paul Ruet, and Sylvain Soliman.

Phase semantics and verification of concurrent constraint programs.
In Proceedings of the 13thAnnual IEEE Symposium on Logic In Computer Science, pages 141–152,
Indianapolis, 1998. IEEE Computer Society.

Kim Marriott Moreno Falaschi, Maurizio Gabbrielli and Catuscia Palamidessi.

Confluence in concurrent constraint programming.
Theoretical Computer Science, 183(2):281–315, 1997.

Vijay A. Saraswat, Martin C. Rinard, and Prakash Panangaden.

Semantic foundations of concurrent constraint programming.
In POPL’91: Proceedings of the 18th ACM Symposium on Principles of Programming Languages, 1991.

Sylvain.Soliman@inria.fr CLP

	The Constraint Programming paradigm
	Examples and Applications
	First Order Logic
	Models
	Logical Theories
	Constraint Languages
	Decidability in Complete Theories

	CLP(X)
	Definition
	Operational Semantics

	CLP(H)
	Prolog
	Examples

	CLP(R,FD,B)
	CLP(R)
	CLP(FD)
	CLP(B)

	Operational Semantics
	Fixpoint Semantics
	Fixpoint Preliminaries
	Fixpoint Semantics of Successes
	Fixpoint Semantics of Computed Answers

	Program Analysis
	Abstract Interpretation
	Constraint-based Model Checking

	Logical Semantics of CLP(X)
	Soundness
	Completeness

	Automated Deduction
	CLP()
	-calculus
	Proofs in -calculus

	Negation as Failure
	Finite Failure
	Clark's Completion
	Soundness w.r.t. Clark's Completion
	Completeness w.r.t. Clark's Completion

	Introduction
	Syntax
	CC vs. CLP

	Operational Semantics
	Transitions
	Properties
	Observables
	CC(FD)

	Deterministic Case
	Syntax
	I/O Function
	Terminal Stores

	Constraint Propagation
	Closure Operators
	Chaotic Iteration

	Non-deterministic Case
	Problems
	Blind Choice
	Example: merge

	Sequentiality
	CC - Logical Semantics
	Intuitionistic
	Linear
	Soundness
	Completeness

	Must Properties
	Definition
	Soundness
	Completeness

	Program Analysis
	Equivalence
	Phase Semantics

	LCC
	Syntax and Operational Semantics
	Examples

