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Part |: CLP - Introduction and Logical Background

@ The Constraint Programming paradigm
Examples and Applications

o p PP
First Order Logic

o g

@ Models

© Logical Theories
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Part |I: Constraint Logic Programs

@ Constraint Languages
o Decidability in Complete Theories

@ CLP(X)
@ Definition
@ Operational Semantics

Q CLP(H)
@ Prolog
@ Examples

e CLP(R,FD,B)
e CLP(R)
o CLP(FD)
e CLP(B)
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Part Ill: Operational and Fixpoint Semantics

@ Operational Semantics

@ Fixpoint Semantics
@ Fixpoint Preliminaries
@ Fixpoint Semantics of Successes
o Fixpoint Semantics of Computed Answers

@ Program Analysis

@ Abstract Interpretation
o Constraint-based Model Checking
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Part IV: Logical Semantics

@ Logical Semantics of CLP(X)
@ Soundness
o Completeness

@ Automated Deduction

@ Proofs in Group Theory
@ CLP())

@ \-calculus

@ Proofs in A-calculus

@ Negation as Failure
o Finite Failure
o Clark’s Completion
@ Soundness w.r.t. Clark's Completion

o Completeness w.r.t. Clark's Completion
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Part V: Concurrent Constraint Programming

@ Introduction
@ Syntax
o CCvs. CLP

@ Operational Semantics
@ Transitions
@ Properties
@ Observables

@ Examples
@ append

@ merge

o CC(FD)
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Part VI: CC - Denotational Semantics

€@ Deterministic Case
@ Syntax
@ |/O Function
@ Terminal Stores

@ Constraint Propagation
@ Closure Operators
@ Chaotic Iteration

@ Non-deterministic Case
@ Problems
@ Blind Choice

o Example: merge

€@ Sequentiality
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Deterministic Case

Terminal Stores

Semantic Equations

Let [] : D x A— P(C) be a closure operator presented by the set
of its fixpoints, and defined as the least fixpoint set of the
equations:

[D.tell(c)] =Tc (~ As.s A 0)

[D.c = Al =(C\Tc)u(l cn[D.A])

(~ As. if s ¢ c then [D.A]s else s

)
[D.A||B] = [D.A]N[D.B] (= Y(»s.[D.A][D.B]s))
[D.3xA] ={d | c € [D.A], Ixc = Ixd} (= rs.3x[D.413x5)
[D.p(X)] = [D.A[X/Y]] if p(¥) = AED (= rsIp.A%/715)

Theorem ([SRP91])

For any deterministic process D.A

[D.AINT ¢)} if [D.A] # 0

otherwise

min
Ou(D.A; c) = { é (
VRIA

Sylvain.Soliman@inria.fr CLP



Non-deterministic Case Hliag) Cliete

Non-deterministic CC(X') with Local Choice (2)

Let [] : D x A— P(P(C)) be the least fixpoint (for C) of

[D.c] = {1c}

[D.c = Al = {C\1Tc}U{lcnX|X €[D.A]}
[DAB] = {XNY|Xe|[D.A] Y e [D.B]}

[D.A+B] = [D.AJU[D.B]
[D.AxA] = {{d | 3Ixc =3xd, c € X}|X € [D.A]}
[Dp(R)] = [DAR/]

Theorem ([MFP97])

For any process D.A,
Ots(D.A; ¢) = {d| there exists X € [D.A] s.t. d = min(T cN X)}.
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Part VII: CC and Linear Logic

€@ CC - Logical Semantics
@ Intuitionistic

@ Linear
@ Soundness
o Completeness
€ Must Properties
@ Definition
@ Soundness
@ Completeness
€ Program Analysis
@ Equivalence
@ Phase Semantics
@ LCC
@ Syntax and Operational Semantics
o Examples B iINRIA

Sylvain.Soliman@inria.fr CLP



CC - Logical Semantics
Soundness
Completeness

Soundness

Theorem (Soundness of transitions)

Let (X;c;T) and (Y; d; A) be CC configurations.

If (X;c;T)=(Y;d;A) then (X;c; F)T—H—,LL(QD)(Y; d; A)T.
If (X;c;T) — (Y;d;A) then (X;c;T)T Fie,py (Yid; At

By induction on =. Immediate.

By induction on —.

The choice operator + is translated by the additive conjunction &,
which expresses “may” properties: A& B+ Aand A& B+FB. [
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CC - Logical Semantics
Soundness
Completeness

Completeness |

Theorem (Observation of successes)

Let A be a CC agent and c be a constraint.

If AT FiLLc,p) € then there exists a constraint d such that
(0;1; A) — (X; d; 0) and 3Xd ¢ c.

By induction on a sequent calculus proof 7 of AlT, e Anf
FiLe,p) ¢
where the A;’s are agents and ¢ is either a constraint or a
procedure name.

N |
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CC - Logical Semantics

Soundness
Completeness

Completeness ||

Recall that T is the additive true constant neutral for & .

Theorem (Observation of accessible stores)

Let A be a CC agent and c be a constraint.

If Af Fiee,py € ® T, then c is a store accessible from A,

i.e. there exist a constraint d and a multiset [ of agents such that
(0;1; A) — (X;d;T) and 3Xd ¢ c.

The proof uses the first completeness theorem, and proceeds by
an easy induction for the right introduction of the tensor
connective in c® T. []
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Examples
LCC

Encoding the m-calculus in LCC(H)

@ Direct encoding of the asynchronous w-calculus:

[0] =1

[(v)P] = 3Jy[P]

[xy.0] =

[x(y).P] =

[P|Q] = [PII[Q]
[x=ylP] = (x=y)—I[P]
[P+Ql = [PI+][Q]

@ The usual (synchronous) m-calculus can be simulated with a
synchronous communication protocol.
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Examples
LCC

Encoding the m-calculus in LCC(H)

@ Direct encoding of the asynchronous w-calculus:

[0] =1

[(v)P] = 3Jy[P]

[xy.0] = tell(c(x,y))
[x(y).P] =

[P|Q] = [P]l[Q]
[x=y]P] = (x=y)—[P]
[P+Q = [PI+[Q]

@ The usual (synchronous) m-calculus can be simulated with a
synchronous communication protocol.
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Examples
LCC

Encoding the m-calculus in LCC(H)

@ Direct encoding of the asynchronous w-calculus:

[0] =1

[(v)P] = 3Jy[P]

[xy.0] = tell(c(x,y))
[x(y).Pl = Vyc(x,y)—[P]
[PIQ] = [P]l[Q]
[x=y]P] = (x=y)—[P]
[P+Q = [PI+[Q]

@ The usual (synchronous) m-calculus can be simulated with a
synchronous communication protocol.
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Examples
LCC

Producer Consumer Protocol in LCC

P = dem — (pro | P)
C = pro — (dem || C)
init = dem” || P™ || Ck

Deadlock-freeness: init +—;cc dem” || P™ || ¢¥' | pro’’, with
either " =/'=0o0orm =0o0r k' =0

Number of units consumed always < number of units produced:
P = dem — (pro || P || VX (np=X — np=X+1))

C =pro — (dem || C || VX (nc=X — nc=X+1))

init = dem” || P™ | C¥ || np=0 | nc=0

init +—;cc dem” || pro’ || P™ || ¢ || np=np, || nc=ncy

with nco > np,
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Part VIII

LCC
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Part VIII: LCC

€ Operational Semantics

€@ Examples
@ Dining Philosophers
@ Indexicals

€@ Logical Semantics
@ Intuitionistic Linear Logic
@ Phase Semantics
@ Example
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Operational Semantics

LCC Operational Semantics

Tell (X;c; tell(d),T) — (X;c®d;TN

cke d®e[t/y]

Ask (X c.v7(e = A).T) — (X:d; A1)
. y € XUfv(c,T)

Hiding (Xic;IyAT) — (XU{y}ic; AT)

Proc. call (p()7) — A) €D

(X;eip(y),T) — (Xic;AT)

Choice (Xic; A+ B,T) — (X; ;AT
(Xic;A+B,T) — (X;¢; B,T)

z & fv(A)

A=Ay ANEEBIA AIEBIO=(AIB)]C
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Dining Philosophers

Examples .
P Indexicals

An LCC(FD) program for the dining philosophers
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Dining Philosophers

Examples .
P Indexicals

An LCC(FD) program for the dining philosophers

Goal(N) = RecPhil(1,N).

RecPhil(M,P) =
M # P — (Philo(M,P) || fork(M) | RecPhil(M+1,P))
|

M =P — (Philo(M,P) | fork(M)).

Philo(I,N) =
(fork(I) ® fork(I+1l mod N)) —
(eat(I) ||
eat(I) — (fork(I) || fork(I+1 mod N) ||
Philo(I,N))).
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Dining Philosophers

Examples 5
P Indexicals

CC(FD) in LCC(H)

fd(X) = tell(min(X,min_integer) ® max(X,max_integer))

‘x>y+e’ (X,Y,0) =

min(X,MinX) ® min(Y,MinY) ® (MinX<MinY+C)

— (tell(min(X,MinY+C) ® min(Y,MinY))

|| ’x>1y+c’ (X,Y,C))

'x>y+c’ (X,Y,0) = 2x>y+c¢’ (X,Y,C) || *x>oy+c’ (X,Y,0)
’ask(x>y)—a’(X,Y,A) =

min(X,MinX) ® max(Y,MaxY) ® (MinX>MaxY)

— A || tell(min(X,MinX) ® max(Y,MaxY))
CC(FD) propagators, including indexicals, are now easily
embedded in LCC.
Imperative variables allow a finer control, which is necessary for
certain constraint solvers, see for instance the implementation of a
Simplex solver in LCC [Sch99]. B inRIA
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Intuitionistic Linear Logic
Phase Semantics
Logical Semantics Example

Logical Semantics

Simple translation of LCC into ILL:

tell(c)l = ¢ p(X)" = p(x)
Vi(c = A =Vy (c < A) (A B) = At @ Bf
(A+B) = AT & BT (IxA)t = IxAT

ILL(C, D) denotes the deduction system obtained by adding to
intuitionistic linear logic the axioms:

@ ct d forevery clF¢ d in ik,

o p(X) F AT for every declaration p(X) = A in D.

Same soundness/completeness as CC.
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Intuitionistic Linear Logic
Phase Semantics
Logical Semantics Example

Phase Semantics

A phase space P = (P, x, 1, F) is a structure such that:

Q (P, x,1) is a commutative monoid.
@ the set of facts F is a subset of P such that: F is closed by
arbitrary intersection, and for all A C P, for all F € F,

A—oF={xeP:VacAaxxeF}isa fact.
We define the following operations:

A&B=ANB
ARB=(\{FeF:AxBCF} AeB=(\{FeF:AuBCF}

A=(Fer:(JACF} VWxA=(){FeF:()A)CF}

We'll note T the fact P, 0 = ({F € F} and
1={FeF|leF}.
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Intuitionistic Linear Logic
Phase Semantics
Logical Semantics Example

Interpretation

Let i be a valuation assigning a fact to each atomic formula such
that: n(T) =T, n(1) =1 and 1(0) = 0.

We can now define inductively the interpretation of a sequent:
n(F'E A) =n(l) — n(A) n(F) =1if I is empty
n(F,A)=n(M) @n(d)  n(A® B) = n(A) @n(B)

(A& B) =n(A)&n(B)  n(A— B) =n(A) — n(B)

We then define the notion of validity as follows:
P,nE(TFA)Iff1en(lF A), thus n(I") C n(A).
Soundness:

[ Aimplies VP, ¥, P, n = (T F A).
ZIINRIA
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Intuitionistic Linear Logic
Phase Semantics
Logical Semantics Example

Phase Counter-Models

We impose to every valuation 7 to satisfy the non-logical axioms of
ILL¢ p:

e 7(c) C n(d) for every cl¢ d in I,

o 7(p) C n(AT") for every declaration p = A in D.

The contrapositive of the two soundness theorems becomes:

Theorem

to prove a safety property of the form
(X;c;A) + (Y;d; B)

It is enough to show

3P, 3, Ja € n((X; c; A)Y) such that a & n((Y; d; B)T).
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Intuitionistic Linear Logic
Phase Semantics
Logical Semantics Example

Producer Consumer Protocol in LCC

P = dem — (pro || P)
C = pro — (dem || C)
init = dem” | P™ || Ck

Deadlock-freeness: init +— dem” || P™ || K’ || pro’, with either

nn=/'=0orm=00rk'=0
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Intuitionistic Linear Logic
Phase Semantics
Logical Semantics Example

Producer Consumer Protocol in LCC

P = dem — (pro || P)
C = pro — (dem || C)
init = dem” | P™ || Ck

Deadlock-freeness: init +— dem” || P™ || K’ || pro’, with either
n=1"=0orm=00rk'=0

Let us consider the structure (N, x, 1, P(N)), it is obviously a
phase space.

ZIINRIA

Sylvain.Soliman@inria.fr CLP



Intuitionistic Linear Logic
Phase Semantics
Logical Semantics Example

Producer Consumer Protocol in LCC

P = dem — (pro || P)
C = pro — (dem || C)
init = dem” | P™ || Ck

Deadlock-freeness: init +— dem” || P™ || K’ || pro’, with either
n=1"=0orm=00rk'=0

Let us consider the structure (N, x, 1, P(N)), it is obviously a
phase space.

Let us define the following valuation:
n(P) = {2} n(C) = {3} n(dem) = {5} n(pro) = {5}
n(init) = {2m-3kK. 5"}
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Intuitionistic Linear Logic
Phase Semantics
Logical Semantics Example

@ We have to check the correctness of 7:
Vp1 € n(P),3p2 € n(P),dem - p1 = pro - p2, hence
n(P) C n(body of P).
The same for C, and n(init) = n(body of init).

@ Instead of exhibiting a counter-example, we will prove Ab
absurdum that the inclusion
n(init) C n(dem” || P™ || ¥’ || pro’) is impossible.
Suppose 7(init) C {5” - 2™ .3k .5/} Comparing the power
of 5, 3 and 2, anything else than: n’ + /" = n and m" = m and
k" = k is impossible, and therefore if there is a deadlock
(n"+1"=0#n,orm =0%# m, or K =0 # k) n(init) is
not a subset of its interpretation and thus init does not
reduce into it, qed.
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Intuitionistic Linear Logic
Phase Semantics
Logical Semantics Example

Automatization

The search for a phase space can be automatized, if one accepts
some restrictions:

@ always use the structure (N, x, 1, P(N));

@ always look for simple (singleton/doubleton /finite)
interpretations.
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Intuitionistic Linear Logic
Phase Semantics
Logical Semantics Example

Automatization

The search for a phase space can be automatized, if one accepts
some restrictions:

@ always use the structure (N, x, 1, P(N));
[be careful that integers are invertible]

@ always look for simple (singleton/doubleton /finite)
interpretations.
[might lead to confusions]
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