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Operational Semantics
Fixpoint Semantics

Program Analysis

Operational semantics: CSLD Resolution

(p(t1, t2)← c ′|A1, ...,An)θ ∈ P X |= ∃(c ∧ s1 = t1 ∧ s2 = t2 ∧ c ′)

(c |α, p(s1, s2), α′) −→ (c , s1 = t1, s2 = t2, c ′ | α,A1, ...,An, α′)

where θ is a renaming substitution of the program clause with new
variables.

A successful derivation is a derivation of the form

G −→ G1 −→ G2 −→ ... −→ c |�

c is called a

computed answer constraint

for G .

Sylvain.Soliman@inria.fr CLP



Operational Semantics
Fixpoint Semantics

Program Analysis

Operational semantics: CSLD Resolution

(p(t1, t2)← c ′|A1, ...,An)θ ∈ P X |= ∃(c ∧ s1 = t1 ∧ s2 = t2 ∧ c ′)

(c |α, p(s1, s2), α′) −→ (c , s1 = t1, s2 = t2, c ′ | α,A1, ...,An, α′)

where θ is a renaming substitution of the program clause with new
variables.

A successful derivation is a derivation of the form

G −→ G1 −→ G2 −→ ... −→ c |�

c is called a

computed answer constraint

for G .

Sylvain.Soliman@inria.fr CLP



Operational Semantics
Fixpoint Semantics

Program Analysis

Operational semantics: CSLD Resolution

(p(t1, t2)← c ′|A1, ...,An)θ ∈ P X |= ∃(c ∧ s1 = t1 ∧ s2 = t2 ∧ c ′)

(c |α, p(s1, s2), α′) −→ (c , s1 = t1, s2 = t2, c ′ | α,A1, ...,An, α′)

where θ is a renaming substitution of the program clause with new
variables.

A successful derivation is a derivation of the form

G −→ G1 −→ G2 −→ ... −→ c |�

c is called a computed answer constraint for G .

Sylvain.Soliman@inria.fr CLP



Operational Semantics
Fixpoint Semantics

Program Analysis

∧-Compositionality of CSLD-derivations

Lemma (∧-compositionality)

c is a computed answer for the goal (d |A1, ...,An)
iff
there exist computed answers c1, ..., cn for the goals
true|A1, ..., true|An, such that c = d ∧

∧n
i=1 ci is satisfiable.

Corollary

Independance of the selection strategy.
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∧-Compositionality of CSLD-derivations

Proof.

(⇐) d |A1, ...,An →∗ d ∧ c1|A2, ...,An...→∗ d ∧ c1 ∧ ... ∧ cn|�.
(⇒) By induction on the length l of the derivation.
If l = 1 we have true|A1 → c1|�.
Otherwise, suppose A1 is the selected atom, there exists a rule
(A1 ← d1|B1, ...,Bk) ∈ P such that
d |A1, ...,An → d ∧ d1|B1, ...,Bk ,A2, ...,An →∗ c |�.
By induction, there exist computed answers e1, ..., el , c2, ..., cn for
the goals B1, ...,Bl ,A2, ...,An such that
c = d ∧ d1 ∧

∧l
i=1 ei ∧

∧n
j=2 cj . Now let c1 = d1 ∧

∧l
i=1 ei , c1 is a

computed answer for true|A1.
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Operational Semantics of CLP(X ) Programs

Observation of the sets of projected computed answer constraints

O(P) = {(∃X c)|A : true|A −→∗ c |�, X |= ∃(c), X = V (c)\V (A)}

Program equivalence: P ≡ P ′ iff O(P) = O(P ′) iff for every goal
G , P and P ′ have the same sets of computed answer constraints.

Finer observables: the multisets of computed answer constraints
or the sets of succesful CSLD derivations (equivalence of traces)

More abstract observable: the set of goals having a success
(theorem proving versus programming point of view).
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Operational Semantics of CLP(X ) Programs

Observation of computed answer constraints

Oca(P) = {c |A : true|A −→∗ c |�, X |= ∃(c)}

P ≡ca P ′ iff for every goal G , P and P ′ have the same sets of
computed answer constraints.

Observation of ground successes

Ogs(P) = {Aρ ∈ BX : true|A −→∗ c |�, X |= cρ}

P ≡gs P ′ iff P and P ′ have the same ground success sets, iff for
every goal G , G has a CSLD refutation in P iff G has one in P ′.

Sylvain.Soliman@inria.fr CLP



Operational Semantics
Fixpoint Semantics

Program Analysis

Fixpoint Preliminaries
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Definitions

Let (S ,≤) be a partial order. Let X ⊆ S be a subset of S .
An upper bound of X is an element a ∈ S such that ∀x ∈ X x ≤ a.
The maximum element of X , if it exists, is the unique upper bound
of X belonging to X .
The least upper bound (lub) of X , if it exists, is the minimum of
the upper bounds of X .
A sup-semi-lattice is a partial order such that every finite part
admits a lub.
A lattice is a sup-semi-lattice and an inf-semi-lattice.
A chain is an increasing sequence x1 ≤ x2 ≤ . . .
A partial order is complete if every chain admits a lub.
A function f : S → S is monotonic if x ≤ y ⇒ f (x) ≤ f (y).
continuous if f (lub(X )) = lub(f (X )) for every chain X .
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Fixpoint theorems

Theorem (Knaster-Tarski)

Let S be a complete partial order. Let f : S → S be a continuous
operator over S. Then f admits a least fixed point lfp(f ) = f ↑ ω.

Proof.

First, as f is continuous, f is monotonic, hence
⊥ ≤ f (⊥) ≤ f (f (⊥)) ≤ ... forms an increasing chain. Let
a = lub({f n(⊥)|n ∈ N}) = f ↑ ω. By continuity
f (a) = lub({f n+1(⊥) | n ∈ N}) = a, hence a is a fixed point of f .
Let e be any fixed point of f . We show that for all integer n,
f n(⊥) ≤ e, by induction on n. Clearly ⊥ ≤ e. Furthermore if
f n(⊥) ≤ e then by monotonicity, f n+1(⊥) ≤ f (e) = e.
Thus f n(⊥) ≤ e for all n, hence a ≤ e.
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Least Post-Fixed Point

Theorem

Let S be a complete sup-semi-lattice. Let f be a continuous
operator over S. Then f admits a least post-fixed point (i.e. an
element e satisfying f (e) ≤ e) which is equal to lfp(f ).

Proof.

Let g(x) = lub(x , f (x)).
An element e is a post fixed point of f , i.e. f (e) ≤ e, if and only if
e is a fixed point of g , g(e) = e.
Now g is continuous, hence lfp(g) is the least fixed point of g and
the least post-fixed point of f .
Furthermore, lfp(g) = lub{f n(⊥)} = lfp(f ).
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Fixpoint semantics of Ogs

Consider the complete lattice of X -interpretations (2BX ,⊆)
The bottom element is the empty X -interpretation (all atoms false)
The top element is BX (all atoms true).

A chain X is an increasing sequence I1 ⊆ I2 ⊆ ...
lub(X ) =

⋃
i≥1 Ii .

Define the semantics Ogs(P) as the least solution of a fixpoint
equation over 2BX : I = T (I ).
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TXP immediate consequence operator

TXP : 2BX → 2BX is defined by:

TXP (I ) = {Aρ ∈ BX | there exists a renamed clause in normal form
(A← c |A1, ...,An) ∈ P, and a valuation ρ s.t.
X |= cρ and {A1ρ, ...,Anρ} ⊆ I}

Example

append(A,B,C):- A=[], B=C.
append(A,B,C):- A=[X|L], C=[X|R], append(L,B,R).

TH
P (∅) = {append([],B,B) | B ∈ H}

TH
P (TH

P (∅)) = TH
P (∅) ∪ {append([X ],B, [X |B]) | X ,B ∈ H}

TH
P (TH

P (TH
P (∅))) = TH

P (TH
P (∅)) ∪

{append([X ,Y ],B, [X ,Y |B]) | X ,Y ,B ∈ H}
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Continuity of TXP operator

Proposition

TXP is a continuous operator on the complete lattice of
X -interpretations.

Proof.

Let X be a chain of X -interpretations. Aρ ∈ TXP (lub(X )),
iff (A← c |A1, ...,An) ∈ P, X |= cρ and {A1ρ, ...,Anρ} ⊂ lub(X ),
iff (A← c |A1, ...,An) ∈ P, X |= cρ and {A1ρ, ...,Anρ} ⊂ I ,

for some I ∈ X (as X is a chain)
iff Aρ ∈ TXP (I ) for some I ∈ X , iff Aρ ∈ lub(TXP (X )).

Corollary

TXP admits a least (post) fixed point TXP ↑ ω.
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Full abstraction

Let F1(P) = lfp(TXP ) = TXP ↑ ω = ...TXP (TXP (∅))...

Theorem ([JL87])

F1(P) = Ogs(P).

F1(P) ⊆ Ogs(P) is proved by induction on the powers n of TX
P . n = 0 is

trivial. Let Aρ ∈ TX
P ↑ n, there exists a rule (A← c |A1, ...,An) ∈ P,

s.t. {A1ρ, ...,Anρ} ⊆ TX
P ↑ n − 1 and X |= cρ. By induction

{A1ρ, ...,Anρ} ⊆ Ogs(P). By definition of Ogs we get Aρ ∈ Ogs(P).

Ogs(P) ⊆ F1(P) is proved by induction on the length of derivations.

Successes with derivation of length 0 are ground facts in TX
P ↑ 1. Let

Aρ ∈ Ogs(P) with a derivation of length n. By definition of Ogs there

exists (A← c |A1, ...,An) ∈ P s.t. {A1ρ, ...,Anρ} ⊆ Ogs(P) and X |= cρ.

By induction {A1ρ, ...,Anρ} ⊆ F1(P). Hence by definition of TX
P we get

Aρ ∈ F1(P).
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TXP and X models

Proposition

I is a X -model of P iff I is a post-fixed point of TXP , TXP (I ) ⊆ I .

Proof.

I is a X -model of P,
iff for each clause A← c |A1, ...,An ∈ P and for each X -valuation
ρ, if X |= cρ and {A1ρ, ...,Anρ} ⊆ I then Aρ ∈ I ,
iff TXP (I ) ⊆ I .

Sylvain.Soliman@inria.fr CLP



Operational Semantics
Fixpoint Semantics

Program Analysis

Fixpoint Preliminaries
Fixpoint Semantics of Successes
Fixpoint Semantics of Computed Answers

TXP and X models

Theorem (Least X -model [JL87])

Let P be a constraint logic program on X . P has a least X -model,
denoted by MXP satisfying:

MXP = F1(P)

Proof.

F1(P) = lfp(TXP ) is also the least post-fixed point of TXP , thus by
Prop. 9, lfp(TXP ) is the least X -model of P.
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Fixpoint semantics of Oca

Consider the set of constrained atoms
B′X = {c |A : A is an atom and X |= ∃(c)} modulo renaming.

Consider the lattice of constrained interpretations (2B
′
X ,⊆).

For a constrained interpretation I , let us define the closed
X -interpretation:
[I ]X = {Aρ : there exists a valuation ρ and c |A ∈ I s.t. X |= cρ}.

Define the semantics Oca(P) as the least solution of a fixpoint
equation over 2B

′
X .
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Non-ground immediate consequence operator

SXP : 2B
′
X → 2B

′
X is defined as:

SXP (I ) = {c |A ∈ B′X | there exists a renamed clause in normal form
(A← d |A1, ...,An) ∈ P, and constrained atoms
{c1|A1, ..., cn|An} ⊆ I , s.t. c = d ∧

∧n
i=1 ci is X -satisfiable}

Proposition

For any B′X -interpretation I , [SXP (I )]X = TXP ([I ]X ).

Proof.

Aρ ∈ [SXP (I )]X
iff (A← d |A1, ...,An) ∈ P, c = d ∧

∧n
i=1 ci , X |= cρ and

{c1|A1, ..., cn|An} ⊂ I

iff (A← d |A1, ...,An) ∈ P, c = d ∧
∧n

i=1 ci , X |= cρ and

{A1ρ, ...,Anρ} ⊂ [I ]X iff Aρ ∈ TX
P ([I ]X ).
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Continuity of SXP operator

Proposition

SXP is continuous.

Proof.

Let X be a chain of constrained interpretations. c |A ∈ SXP (lub(X )),
iff (A← d |A1, ...,An) ∈ P, c = d ∧

∧n
i=1 ci , X |= ∃(c) and

{c1|A1, ..., cn|An} ⊂ lub(X ).
iff (A← d |A1, ...,An) ∈ P, c = d ∧

∧n
i=1 ci , X |= ∃(c) and

{c1|A1, ..., cn|An} ⊂ I , for some I ∈ X (as X is a chain)

iff c |A ∈ SXP (I ) for some I ∈ X , iff c |A ∈ lub(SXP (X )).

Corollary

SXP admits a least (post) fixed point F2(P) = lfp(SXP ) = SXP ↑ ω.
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Example CLP(H)

append(A,B,C):- A=[], B=C.
append(A,B,C):- A=[X|L], C=[X|R], append(L,B,R).

Example

SHP ↑ 0 = ∅
SHP ↑ 1 = {A = [],B = C |append(A,B,C )}
SHP ↑ 2 = SHP ↑ 1 ∪

{A = [X |L],C = [X |R], L = [],B = R|append(A,B,C )}
= SHP ↑ 1 ∪ {A = [X ],C = [X |B]|append(A,B,C )}

SHP ↑ 3 = SHP ↑ 2 ∪
{A = [X ,Y ],C = [X ,Y |B]|append(A,B,C )}

SHP ↑ 4 = SHP ↑ 3 ∪
{A = [X ,Y ,Z ],C = [X ,Y ,Z |B]|append(A,B,C )}

... = ...
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Relating SXP and TXP operators

Theorem ([JL87])

For every ordinal α, TXP ↑ α = [SXP ↑ α]X .

Proof.

The base case α = 0 is trivial. For a successor ordinal, we have
[SXP ↑ α]X = [SXP (SXP ↑ α− 1)]X

= TX
P ([SXP ↑ α− 1]X ) by Prop. 11

= TX
P (TX

P ↑ α− 1) by induction
= TX

P ↑ α.
For a limit ordinal, we have
[SXP ↑ α]X = [

⋃
β<α SXP ↑ β]X

=
⋃

β<α[SXP ↑ β]X
=

⋃
β<α TX

P ↑ β by induction

= TX
P ↑ α
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Full abstraction w.r.t. computed constraints

Theorem (Theorem of full abstraction [GL91])

Oca(P) = F2(P).

F2(P) ⊆ Oca(P) is proved by induction on the powers n of SXP . n = 0 is
trivial. Let c |A ∈ SXP ↑ n, there exists a rule (A← d |A1, ...,An) ∈ P,
s.t. {c1|A1, ..., cn|An} ⊆ SXP ↑ n − 1, c = d ∧

∧n
i=1 ci and X |= ∃c . By

induction {c1|A1, ..., cn|An} ⊆ Oca(P). By definition of Oca we get
c |A ∈ Oca(P).

Oca(P) ⊆ F2(P) is proved by induction on the length of derivations.

Successes with derivation of length 0 are facts in SXP ↑ 1. Let

c |A ∈ Oca(P) with a derivation of length n. By definition of Oca there

exists (A← d |A1, ...,An) ∈ P s.t. {c1|A1, ..., cn|An} ⊆ Oca(P),

c = d ∧
∧n

i=1 ci and X |= ∃c . By induction {c1|A1, ..., cn|An} ⊆ F2(P).

Hence by definition of SXP we get c |A ∈ F2(P).
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Program analysis by abstract interpretation

SHP ↑ ω captures the set of computed answer constraints with P,
nevertheless this set may be infinite and
it may contain too much information for proving some properties
of the computed constraints.

Abstract interpretation [CC77] is a method for proving properties
of programs without handling irrelevant information.

The idea is to replace the real computation domain by an abstract
computation domain which retains sufficient information w.r.t. the
property to prove.
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Groundness analysis by abstract interpretation

Consider the CLP(H) append program

append(A,B,C):- A=[], B=C.
append(A,B,C):- A=[X|L], C=[X|R], append(L,B,R).

What is the groundness relation between arguments after a
success?
The term structure can be abstracted by a boolean structure which
expresses the groundness of the arguments.
We thus associate a CLP(B) abstract program:

append(A,B,C):- A=true, B=C.
append(A,B,C):- A=X/\L, C=X/\R, append(L,B,R).

Its least fixed point computed in at most 23 steps will express the
groundness relation between arguments of the concrete program.
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Groundness analysis (continued)

SBP ↑ 0 = ∅
SBP ↑ 1 = {A = true,B = C |append(A,B,C )}
SBP ↑ 2 = SBP ↑ 1 ∪

{A = X ∧ L,C = X ∧ R, L = true,B = R|append(A,B,C )}
= SBP ↑ 1 ∪ {C = A ∧ B|append(A,B,C )}

SBP ↑ 3 = SBP ↑ 2 ∪
{A = X ∧ L,C = X ∧ R,R = L ∧ B|append(A,B,C )}
= SBP ↑ 2 ∪ {C = A ∧ B|append(A,B,C )}
= SBP ↑ 2 = SBP ↑ ω

In a success of append(A,B,C ), C is ground if and only if A and
B are ground.
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Groundness analysis of reverse

Concrete CLP(H) program:

rev(A,B) :- A=[], B=[].
rev(A,B) :- A=[X|L], rev(L,K), append(K,[X],B).

Abstract CLP(B) program:

rev(A,B) :- A=true, B=true.
rev(A,B) :- A=X/\L, rev(L,K), append(K,X,B).

SBP ↑ 0 = ∅
SBP ↑ 1 = {A = true,B = true|rev(A,B)}
SBP ↑ 2 = SBP ↑ 1 ∪{A = X ,B = X |rev(A,B)}

= SBP ↑ 1 ∪ {A = B|rev(A,B)}
SBP ↑ 3 = SBP ↑ 2 ∪{A = X ∧ L, L = K ,B = K ∧ X |rev(A,B)}

= SBP ↑ 2 ∪ {A = B|rev(A,B)}= SBP ↑ 2 = SBP ↑ ω
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Constraint-based Model Checking [DP99]

Analysis of unbounded states concurrent systems by CLP programs.
Concurrent transition systems defined by condition-action rules
[Sha93]:

condition φ(~x) action ~x ′ = ψ(~x)

Translation into CLP clauses over one predicate p (for states)

p(~x)← φ(~x), ψ(~x ′,~x), p(~x ′).

The transitions of the concurrent system are in one-to-one
correspondance to the CSLD derivations of the CLP program.

Proposition

The set of states from which a set of states defined by a constraint
c is reachable is the set lfp(TP)
where P is the CLP program plus the clause p(~x)← c(~x).
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Computation Tree Logic CTL

Temporal logic for branching time:

States described by propositional or
first-order formulas

Two path quantifiers for
non-determinism:

A “for all transition paths”
E “for some transition path”

Several temporal operators:
X “next time”,
F “eventually”,
G “always”,
U “until”.

E , A

F , G s p q

s

s

s

s

s
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Model Checking

Two types of interesting properties:
AG¬φ “Safety” property.
AFψ “Liveness” property.

Duality: for any formula φ we have
EFφ = ¬AG¬φ and
EGφ = ¬AF¬φ.

Model checking is an algorithm for computing, in a given Kripke
structure K = (S , I ,R), I ⊂ S ,R ⊂ S × S (S is the set of states, I
the initial states and R the transition relation), the set of states
which satisfy a given CTL formula φ, i.e. the set {s ∈ S |K , s |= φ}.
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(Symbolic) Model Checking

Basic algorithm

When S is finite, represent K as a graph, and iteratively label the
nodes with the subformulas of φ which are true in that node.
Add A to the states satisfying A (¬A, A ∧ B,...)
Add EFφ (EXφ) to the (immediate) predecessors of states labeled by φ
Add E (φUψ) to the predecessor states of ψ while they satisfy φ

Add EGφ to the states for which there exists a path leading to a non

trivial strongly connected components of the subgraph restricted to the

states satisfying φ

Symbolic model checking

Use OBDD’s to represent states and transitions as boolean
formulas (S is finite).
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Constraint-based Model Checking

Constraint-based model checking [DP99] applies to Kripke
structures with an infinite set of states.
Numerical constraints provide a finite representation for an infinite
set of states.

Constraint logic programming theory:

EF (φ) = lfp(TR∪{p(~x)←φ})

EG (φ) = gfp(TR∧φ)

Prototype implementation DMC in Sicstus Prolog + Simplex,
CLP(H,FD,R,B)
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Logical Semantics of CLP(X ) Programs

Proper logical semantics

(1) P, T |= ∃(G ) (4) P, T |= c ⊃ G ,

Logical semantics in a fixed pre-interpretation

(2) P |=X ∃(G ) (5) P |=X c ⊃ G ,

Algebraic semantics

(3) MXP |= ∃(G ) (6) MXP |= c ⊃ G .

We show (1)⇔ (2)⇔ (3) and (4)⇒ (5)⇔ (6).
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Soundness of CSLD Resolution

Theorem ([JL87])

If c is a computed answer for the goal G then MXP |= c ⊃ G,
P |=X c ⊃ G and P, T |= c ⊃ G.

If G = (d |A1, ...,An), we deduce from the ∧-compositionality lemma,
that there exist computed answers c1, ..., cn for the goals A1, ...,An such
that c = d ∧

∧n
i=1 ci is satisfiable. For every 1 ≤ i ≤ n

ci |Ai ∈ SXP ↑ ω, by the full abstraction Thm 16,
[ci |Ai ]X ⊆ MX

P , by Thm. 15, and Prop. 9, hence MX
P |= ∀(ci ⊃ Ai ),

P |=X ∀(ci ⊃ Ai ) as MX
P is the least X -model of P,

P |=X ∀(c ⊃ Ai ) as X |= ∀(c ⊃ ci ) for all i , 1 ≤ i ≤ n.
Therefore we have P |=X ∀(c ⊃ (d ∧ A1 ∧ ... ∧ An)),

and as the same reasoning applies to any model X of T ,

P, T |= ∀(c ⊃ (d ∧ A1 ∧ ... ∧ An))
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Completeness of CSLD resolution

Theorem ([Mah87])

If MXP |=X c ⊃ G then there exists a set {ci}i≥0 of computed
answers for G, such that: X |= ∀(c ⊃

∨
i≥0 ∃Yici ).

Proof.

For every solution ρ of c , for every atom Aj in G ,
MX

P |= Ajρ iff Ajρ ∈ TX
P ↑ ω, by Thm. 8, iff Ajρ ∈ [SXP ↑ ω]X , by

Thm. 15,
iff cj,ρ|Aj ∈ SXP ↑ ω, for some constraint cj,ρ s.t. ρ is solution of ∃Yj,ρcj,ρ,
where Yj,ρ = V (cj,ρ) \ V (Aj),
iff cj,ρ is a computed answer for Aj (by 16) and X |= ∃Yj,ρcj,ρρ.
Let cρ be the conjunction of cj,ρ for all j . cρ is a computed answer for G .

By taking the collection of cρ for all ρ we get X |= ∀(c ⊃
∨

cρ
∃Yρcρ)
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Completeness w.r.t. the theory of the structure

Theorem ([Mah87])

If P, T |= c ⊃ G then there exists a finite set {c1, ..., cn} of
computed answers to G, such that:
T |= ∀(c ⊃ ∃Y1c1 ∨ ... ∨ ∃Yncn).

Proof.

If P, T |= c ⊃ G then for every model X of T , for every X -solution ρ of
c , there exists a computed constraint cX ,ρ for G s.t. X |= cX ,ρρ. Let
{ci}i≥0 be the set of these computed answers. Then for every model X
and for every X -valuation ρ, X |= c ⊃

∨
i≥1 ∃Yici , therefore

T |= c ⊃
∨

i≥1 ∃Yici ,

As T ∪ {∃(c ∧ ¬∃Yici )}i is unsatisfiable, by applying the compactness

theorem of first-order logic there exists a finite part {ci}1≤i≤n,

s.t. T |= c ⊃
∨n

i=1 ∃Yici .
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Proofs in Group Theory

First-order theorem proving in CLP(H)

Prolog can be used to find proofs by refutation of Horn clauses
(with a complete search meta-interpreter).
P,∀(¬A) is unsatisfiable iff P |= ∃(A) iff A −→∗ �.

Groups can be axiomatized with Horn clauses with a ternary
predicate p(x , y , z) meaning x ∗ y = z .

clause(p(e,X,X)).
clause(p(i(X),X,e)).
clause((p(U,Z,W) :- p(X,Y,U), p(Y,Z,V), p(X,V,W))).
clause((p(X,V,W) :- p(X,Y,U), p(Y,Z,V), p(U,Z,W))).
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Proofs in Group Theory

Theorem proving in groups

To show i(i(x)) = x by refutation,
we show that the formula ¬∀x p(i(i(X )), e,X ) is unsatisfiable
By Skolemization we get the goal clause ¬p(i(i(a)), e, a)

| ?- solve(p(i(i(a)),e,a)).
depth 2
yes
| ?- solve(p(a,e,a)).
depth 4
yes
| ?- solve(p(a,i(a),e)).
depth 3
yes
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Proofs in Group Theory

Theorem proving in groups (cont.)

To show that any non empty subset of a group, stable by division,
is a subgroup we add two clauses

clause(s(a)).
clause((s(Z) :- s(X), s(Y), p(X,i(Y),Z))).

and prove that s contains e and i(a).

| ?- solve(s(e)).
depth 4
yes
| ?- solve(s(i(a))).
depth 5
yes
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Higher-order theorem proving in CLP(λ)

Church’s simply typed λ-calculus
t ::= v | t1 → t2
e : t ::= x : t | (λx : t1.e : t2) : t1 → t2 | (e1 : t1 → t2(e2 : t1)) : t2

Theory of functionality
λx .e1 =α λy .e1[y/x ] if y 6∈ V (e1),
(λx .e1)e2 →β e1[e2/x ]
=α .→β is terminating and confluent

e1 =α,β e2 iff ↓β e1 =α ↓β e2.

Equality is decidable, but not unification...

Sylvain.Soliman@inria.fr CLP



Logical Semantics of CLP(X )
Automated Deduction

CLP(λ)
Negation as Failure

λ-calculus
Proofs in λ-calculus

Theorem proving in CLP(λ)

Theorem (Cantor’s Theorem)

NN is not countable.

Proof.

By two steps of CSLD resolution!
Let us suppose ∃h : N→ (N→ N) ∀f : N→ N ∃n : N h(n) = f
After Skolemisation we get ∀F h(n(F )) = F , i.e. ∀F ¬h(n(F )) 6= F .
Let us consider the following program G 6= H ← G (N) 6= H(N).

N 6= s(N).
We have h(n F ) 6= F −→σ1 (h(n F ))(I ) 6= F (I ) −→σ2 �
where the unifier σ2 = {G = h I I , I = n(F ), F = λi .s(h i i), H = F}
is Cantor’s diagonal argument!
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Negation as Failure

A derivation CSLD is fair if every atom which appears in a goal of
the derivation is selected after a finite number of resolution steps.
A fair CSLD tree for a goal G is a CSLD derivation tree for G in
which all derivations are fair.
A goal G is finitely failed if G has a fair CSLD derivation tree to
G , which is finite and which contains no success.

p :- p.

| ?- member(a,[b,c,d]).
no

| ?- p, member(a,[b,c,d]).
...
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Logical semantics of finite failure?

Horn clauses entail no negative information: the Herbrand’s base
BX is a model.

On the other hand, the complement of the least X -model MXP is
not recursively enumerable.

Indeed let us suppose the opposite. We could define in Prolog the
predicates:

success(P,B) which succeeds iff MP |= ∃B, i.e. if the goal B
has a successful SLD derivation with the program P

fail(P,B) which succeeds iff MP |= ¬∃B

Sylvain.Soliman@inria.fr CLP



Logical Semantics of CLP(X )
Automated Deduction

CLP(λ)
Negation as Failure

Finite Failure
Clark’s Completion
Soundness w.r.t. Clark’s Completion
Completeness w.r.t. Clark’s Completion

Undecidability of MXP

loop:- loop.
contr(P):- success(P,P), loop.
contr(P):- fail(P,P).

If contr(contr) has a success,
then success(contr,contr) succeeds,
and fail(contr,contr) doesn’t succeed,
hence contr(contr) doesn’t succeed: contradiction.

If contr(contr) doesn’t succeed,
then fail(contr,contr) succeeds,
hence contr(contr) succeeds: contradiction.

Therefore programs success and fail cannot exist.
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Clark’s completion

The Clark’s completion of P is the set P∗ of formulas of the form
∀X p(X )↔ (∃Y1c1 ∧A1

1 ∧ ...∧A1
n1

)∨ ...∨ (∃Ykck ∧Ak
1 ∧ ...∧Ak

nk
)

where the p(X )← ci |Ai
1, ...,A

i
ni

are the rules in P and Yi ’s the
local variables,
∀X¬p(X ) if p is not defined in P.

Example

CLP(H) program p(s(X)):- p(X).
Clark’s completion P∗ = {∀x p(x)↔ ∃y x = s(y) ∧ p(y)}.
The goal p(0) finitely fails, we have P∗,CET |= ¬p(0).
The goal p(X) doesn’t finitely fail,
we have P∗,CET 6|= ¬∃X p(X ) although P∗ |=H ¬∃X p(X )
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Supported X -models

Proposition

i) I is a supported X -model of P iff ii) I is a X -model of P∗ iff iii)
I is a fixed point of TXP .

Proof.

I is a X -model of P∗

iff I is a X -model of ∀X p(X )← φ1 ∨ ... ∨ φk for every formula
∀X p(X )↔ φ1 ∨ ... ∨ φk in P∗,
iff I is a post-fixed point of TX

P , i.e. .TX
P (I ) ⊆ I .

I is a supported X -interpretation of P,
iff I is a X -model of ∀X p(X )→ φ1 ∨ ... ∨ φk for every formula
∀X p(X )↔ φ1 ∨ ... ∨ φk in P∗,
iff I is a pre-fixed point of TX

P , i.e. I ⊆ TX
P (I ).

Thus i) I is a supported X -model of P iff ii) I is a X -model of P∗ iff iii)

I is a fixed point of TX
P .
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Models of the Clark’s completion

Theorem

i) P∗ has the same least X -model than P, MXP = MXP∗
ii) P |=X c ⊃ A iff P∗ |=X c ⊃ A, for all c and A,
iii) P, T |= c ⊃ A iff P∗, T |= c ⊃ A.

Proof.

i) is an immediate corollary of full abstraction and least X -model
theorems.
For iii) we clearly have (P, T |= c ⊃ A)⇒ (P∗, T |= c ⊃ A). We show
the contrapositive of the opposite, (P, T 6|= c ⊃ A)⇒ (P∗, T 6|= c ⊃ A).
Let I be a model of P and T , based on a structure X , let ρ be a
valuation such that I |= ¬Aρ and X |= cρ.
We have MX

P |= ¬Aρ, thus MX
P∗ |= ¬Aρ, and as T |= cρ, we conclude

that P∗, T 6|= c ⊃ A.
The proof of ii) is identical, the structure X being fixed.
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Soundness of Negation as Finite Failure

Theorem

If G is finitely failed then P∗, T |= ¬G.

Proof.

By induction on the height h of the tree in finite failure for G = c |A, α
where A is the selected atom at the root of the tree.
In the base case h = 1, the constrained atom c |A has no CSLD transition,
we can deduce that P∗, T |= ¬(c ∧ A) hence that P∗, T |= ¬G .

For the induction step, let us suppose h > 1. Let G1, ...,Gn be the sons

of the root and Y1, ...,Yn be the respective sets of introduced variables.

We have P∗, T |= G ↔ ∃Y1 G1 ∨ ... ∨ ∃n Gn. By induction hypothesis,

P∗, T |= ¬Gi for every 1 ≤ i ≤ n, therefore P∗, T |= ¬G .
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Completeness of Negation as Failure

Theorem ([JL87])

If P∗, T |= ¬G then G is finitely failed.

We show that if G is not finitely failed then P∗, T ,∃(G ) is satisfiable. If
G has a success then by the soundness of CSLD resolution, P∗, T |= ∃G .
Else G has a fair infinite derivation G = c0|G0 −→ c1|G1 −→ ...

For every i ≥ 0, ci is T -satisfiable, thus by the compactness theorem,

cω =
⋃

i≥0 ci is T -satisfiable. Let X be a model of T s.t. X |= ∃(cω).

Let I0 = {Aρ | A ∈ Gi for some i ≥ 0 and X |= cωρ}. As the derivation

is fair, every atom A in I0 is selected, thus cω|A −→ cω|A1, ...,An with

[cω|A] ∪ ... ∪ [cω|An] ⊆ I0. We deduce that I0 ⊆ TX
P (I0). By

Knaster-Tarski’s theorem, the iterated application up to ordinal ω of the

operator TX
P from I0 leads to a fixed point I s.t. I0 ⊆ I , thus [cω|G0] ∈ I .

Hence P∗,∃(G ) is X -satisfiable, and P∗, T ,∃(G ) is satisfiable.
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Interlude

Short Practical Prolog Tutorial

Emma François

Daniel Nathalie Manu Laurence Pierre Mireille

Lucie Aurélie Rémy Nadia Ludovic Guillaume
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