
Constraint Logic Programming

Sylvain Soliman, François Fages and Nicolas Beldiceanu
{Sylvain.Soliman,Francois.Fages}@inria.fr

INRIA – Projet CONTRAINTES

MPRI C-2-4-1 Course – September-November, 2006

Part I: CLP - Introduction and Logical
Background

1 The Constraint Programming paradigm

2 Examples and Applications

3 First Order Logic

4 Models

5 Logical Theories

The Constraint programming Machine

memory of values
programming variables

memory of constraints
mathematical variables

Xi ∈ [3, 15]

ΣaiXi ≥ b

card(1, [X ≥ Y + 5,
Y ≥ X + 3])

Xi = Xj + 2
add

Xi ≥ 5?

test

V1

Vi

Vj

Vi := Vj + 1

rea
d

write

The Paradigm of Constraint Programming

Program = Logical Formula Axiomatization:
”Domain of discourse” X ,

Model of the problem P

Execution = Proof search Constraint satisfiability,
Logical resolution principle

Class of languages CLP(X) parametrized by X :

• Primitive Constraints over X
U = R ∗ I

• Relations defined by logical formulas
∀x , y path(x , y)⇔ edge(x , y) ∨ ∃z(edge(x , z) ∧ path(z , y))

Languages for defining new relations

• First-order logic predicate calculus
∀x , y path(x , y)⇔ edge(x , y) ∨ ∃z(edge(x , z) ∧ path(z , y))

• Prolog/CLP(X) clauses

path(X,Y):- edge(X,Y).
path(X,Y):- edge(X,Z), path(Z,Y).

• Concurrent constraint process languages CC(X)
Process A = c |p(x) | (A ‖ A) | A + A | ask(c)→ A | ∃xA
path(X ,Y) :: edge(X ,Y) + ∃Z (edge(X ,Z)||path(Z ,Y))

• Constraint libraries in object-oriented/functional/imperative
languages (ILOG, Koalog, etc.).

CLP(FD) N-Queens Problem

GNU-Prolog program:

queens(N,L):-

length(L,N),

fd_domain(L,1,N),

safe(L),

fd_labeling(L,[first_fail]).

safe([]).

safe([X|L]):-

noattack(L,X,1),

safe(L).

noattack([],_,_).

noattack([Y|L],X,I):-

X#\=Y,

X#\=Y+I,

X+I#\=Y,

I1 is I+1,

noattack(L,X,I1).

Search space of all solutions

Successes in combinatorial search
problems

Job shop scheduling, resource allocation, graph coloring,...

• Decision Problems: existence of a solution (of given cost)
in P: if algorithm of polynomial time complexity
in NP: if non-deterministic algorithm of polynomial
complexity.
NP-complete if polynomial encoding of any other NP problem

• Optimisation Problems: computation of a solution of optimal
cost
NP-hard if the decision problem is NP-complete

• The size of the search space does not tell the complexity of
the problem
Sorting n elements in O(n log n), search space in !n...
SAT over n Boolean in O(2n), search space in 2n.

Workplan of the Lecture

1 Introduction to CLP, operational semantics, examples

2 CLP - Fixpoint and logical semantics

3 CSP resolution - simplification and domain reduction

4 Symmetries - variables, values, breaking

5 Global constraints and graph properties

6 CC - Examples, operational and denotational semantics

7 CC - Linear Logic semantics

8 LCC, CHR, SiLCC

Written exam + Programming project

Hot Research Topics in Constraint
Programming

• Combinatorial Benchmarks (open shop 6x6, social golfer,...)
Global constraints
Search procedures, randomization
Hybridization of algorithms CP, MILP, local search
Symmetry detection and breaking

• Easily extensible CP languages
Adaptive solving strategies
Automatic synthesis of constraint solvers

• New applications in Bioinformatics

=⇒ Internships

First-Order Terms

Alphabet:
set of variables V ,
set of constant and function symbols SF , given with their arity α

The set T of first-order terms is the least set satisfying

1 V ⊂ T

2 if f ∈ SF , α(f) = n, M1, ...,Mn ∈ T
then f (M1, ...,Mn) ∈ T

First-order Formulas

Alphabet: set SP of predicate symbols.
Atomic propositions: p(M1, ...,Mn) where p ∈ SP , M1, ...,Mn ∈ T .
Formulas: ¬φ, φ ∨ ψ, ∃x φ
The other logical symbols are defined as abbreviations:

φ⇒ ψ = ¬φ ∨ ψ
true = φ⇒ φ

false = ¬true

φ ∧ ψ = ¬(φ⇒ ¬ψ)

φ ≡ ψ = (φ⇒ ψ) ∧ (ψ ⇒ φ)

∀xφ = ¬∃x¬φ

Clauses

A literal L is either an atomic proposition, A, (called a positive
literal), or the negation of an atomic proposition, ¬A (called a
negative literal).

A clause is a disjunction of universally quantified literals,

∀(L1 ∨ ... ∨ Ln),

A Horn clause is a clause having at most one positive literal.

¬A1 ∨ ... ∨ ¬An

A ∨ ¬A1 ∨ ... ∨ ¬An

Interpretations

An interpretation < D, [] > is a mathematical structure given with

• a domain D,

• distinguished elements [c] ∈ D for each constant c ∈ SF ,

• operators [f] : Dn → D for each function symbol f ∈ SF of
arity n.

• relations [p] : Dn → {true, false} for each predicate symbol
p ∈ SP of arity n

Valuation

A valuation is a function ρ : V → D extended to terms by
morphism

• [x]ρ = ρ(x) if x ∈ V ,

• [f (M1, ...,Mn)]ρ = [f]([M1]ρ, ..., [Mn]ρ) if f ∈ SF

The truth value of an atom p(M1, ...,Mn) in an interpretation
I =< D, [] > and a valuation ρ is the boolean value
[p]([M1]ρ, ..., [Mn]ρ).

The truth value of a formula in I and ρ is determined by truth
tables and
[∃xφ]ρ = true if [φ[d/x]]ρ = true for some d ∈ D, false otherwise.
[∀xφ]ρ = true if [φ[d/x]]ρ = true for every d ∈ D, false otherwise.

Models

• An interpretation I is a model of a closed formula φ, I |= φ,
if φ is true in I .

• A closed formula φ′ is a logical consequence of φ closed,
φ |= φ′, if every model of φ is a model of φ′.

• A formula φ is satisfiable in an interpretation I
if I |= ∃(φ), (e.g. Z |= ∃x x < 0)
φ is valid in I if I |= ∀(φ).

• A formula φ is satisfiable if ∃(φ) has a model (e.g. x < 0)

• A formula is valid, noted |= φ,
if every interpretation is a model of ∀(φ) (e.g. p(x)⇒ ∃yp(y))

Proposition 1

For closed formulas, φ |= φ′ iff |= φ⇒ φ′ .

Herbrand’s Domain H

Domain of closed terms T (SF) “Syntactic” interpretation
[c] = c
[f (M1, ...,Mn)] = f ([M1], ..., [Mn])

Herbrand’s base BH = {p(M1, ...,Mn) | p ∈ SP , Mi ∈ T (SF)}

A Herbrand’s interpretation is identified to a subset of BH

(the subset defines the atomic propositions which are true).

Herbrand’s Models

Proposition 2

Let S be a set of clauses. S is satisfiable if and only if S has a
Herbrand’s model.

Proof.
Suppose I is a model of S : for every I -valuation ρ, for every clause C ∈ S ,
there exists a positive literal A (resp. negative literal ¬A) in C such that
I |= Aρ (resp. I 6|= Aρ).
Let I ′ be the Herbrand’s interpretation defined by

I ′ = {p(M1, ...,Mn) ∈ BH | I |= p(M1, ...,Mn)}.

For every Herbrand’s valuation ρ′, there exists an I -valuation ρ such that
I |= Aρ iff I ′ |= Aρ′. Hence, for every clause, there exists a literal A (resp. ¬A)
such that I ′ |= Aρ′ (resp. I ′ 6|= Aρ′).

Therefore I ′ is a Herbrand’s model of S .

Skolemization

• Put φ in prenex form (all quantifiers in the head)

• Replace an existential variable x by a term f (x1, ..., xk) where
f is a new function symbol and the xi ’s are the universal
variables before x

E.g. φ = ∀x∃y∀z p(x , y , z), φs = ∀x∀z p(x , f (x), z).

Proposition 3

Any formula φ is satisfiable iff its Skolem’s normal form φs is
satisfiable.

If I |= φ then one can choose an interpretation of the Skolem’s function
symbols in φs according to the I -valuation of the existential variables of φ such
that I |= φs .

Conversely, if I |= φs , the interpretation of the Skolem’s functions in φs gives a

valuation of the existential variables in φ s.t. I |= φ.

Logical Theories

A theory is a formal system formed with

• logical axioms and inference rules
¬A ∨ A (excluded middle) A[x ← B]⇒ ∃x A (substitution)

A

B ∨ A
(Weakening)

A ∨ A

A
(Contraction)

A ∨ (B ∨ C)

(A ∨ B) ∨ C
(Associativity)

A ∨ B ¬A ∨ C

B ∨ C
(Cut)

A⇒ B x 6∈ V (B)

∃xA⇒ B
(Existential introduction)

• a set T of non-logical axioms

Deduction relation: T ` φ if the closed formula φ can be derived
in T
T is contradictory if T ` false, otherwise T is consistent.

Validity

Theorem 4 (Deduction theorem)

T ` φ⇒ ψ iff T ∪ {φ} ` ψ.

The implication is immediate with the cut rule.

Conversely the proof is by induction on the derivation of the formula ψ.

Theorem 5 (Validity)

If T ` φ then T |= φ.

By induction on the length of the deduction of φ.

Corollary 6

If T has a model then T is consistent

We show the contrapositive: if T is contradictory, then T ` false, hence

T |= false, hence T has no model.

Gödel’s Completeness Theorem

Theorem 7
A theory is consistent iff it has a model.

The idea is to construct a Herbrand’s model of the theory supposed to be

consistent, by interpreting by true the closed atoms which are theorems of T ,

and by false the closed atoms whose negation is a theorem of T . For this it is

necessary to extend the alphabet to denote domain elements by Herbrand

terms.

Corollary 8

T |= φ iff T ` φ.
If T |= φ then T ∪ {¬φ} has no model, hence T ∪ {¬φ} ` false, and by the

deduction theorem T ` ¬¬φ, now by the cut rule with the axiom of excluded

middle (plus weakening and contraction) we get T ` φ.

Axiomatic and Complete Theories

A theory T is axiomatic if the set of non logical axioms is recursive
(i.e. membership to this set can be decided by an algorithm).

Proposition 9

In an axiomatic theory T , valid formulas, T |= φ, are recursively
enumerable.

(expresses the feasibility of the Logic Programming paradigm...)

A theory is complete if for every closed formula φ, either T ` φ or
T ` ¬φ.

In a complete axiomatic theory, we can decide whether an arbitrary
formula is satisfiable or not (Constraint Satisfaction paradigm...).

Compactness theorem

Theorem 10
T |= φ iff T ′ |= φ for some finite part T ′ of T .

By Gödel’s completeness theorem, T |= φ iff T ` φ.
As the proofs are finite, they use only a finite part of non logical axioms T .

Therefore T |= φ iff T ′ |= φ for some finite part T ′ of T .

Corollary 11

T is consistent iff every finite part of T is consistent.

T is inconsistent iff T ` false,
iff for some finite part T ′ of T , T ′ ` false,

iff some finite part of T is inconsistent.

Coloring infinite maps with four colors

Let T express the coloriability with four colors of an infinite planar
graph G :

• ∀x
∨4

i=1 ci (x),

• ∀x
∧

1≤i<j≤4 ¬(ci (x) ∧ cj(x)),

•
∧4

i=1 ¬(ci (a) ∧ ci (b)) for every adjacent vertices a, b in G .

Let T ′ be any finite part of T , and G ′ be the (finite) subgraph of
G containing the vertices which appear in T ′. As G ′ is finite and
planar it can be colored with 4 colors [Appel and Haken 76], thus
T ′ has a model.

Now as every finite part T ′ of T is satisfiable, we deduce from the
compactness theorem that T is satisfiable. Therefore every infinite
planar graph can be colored with four colors.

Complete theory: Presburger’s arithmetic

Complete axiomatic theory of (N, 0, s,+,=),

E1 : ∀x x = x ,

E2 : ∀x∀y x = y → s(x) = s(y),

E3 : ∀x∀y∀z∀v x = y ∧ z = v → (x = z → y = v),

E4,Π1: ∀x∀y s(x) = s(y)→ x = y ,

E5,Π2: ∀x 0 6= s(x),

Π3: ∀x x + 0 = x ,

Π4: ∀x x + s(y) = s(x + y),

Π5: φ[x ← 0]∧ (∀x φ→ φ[x ← s(x)])→ ∀xφ for every formula φ.

Note that E6 : ∀x x 6= s(x) and E7 : ∀x x = 0 ∨ ∃y x = s(y) are
provable by induction.

Gödel’s Incompleteness Theorem
Peano’s arithmetic contains moreover two axioms for ×:

Π6: ∀x x × 0 = 0,

Π7: ∀x∀y x × s(y) = x × y + x ,

Theorem 12
Any consistent axiomatic extension of Peano’s arithmetic is
incomplete.

The idea of the proof, following the liar paradox of Epimenides (600 bc) which

says: “I lie”, is to construct in the language of Peano’s arithmetic Π a formula

φ which is true in the structure of natural numbers N if and only if φ is not

provable in Π. As N is a model of Π, φ is necessarily true in N and not provable

in Π, hence Π is incomplete.

Corollary 13

The structure (N, 0, 1,+, ∗) is not axiomatizable.

Part II: Constraint Logic Programs

6 Constraint Languages
Decidability in Complete Theories

7 CLP(X)
Definition
Operational Semantics

8 CLP(H)
Prolog
Examples

9 CLP(R,FD,B)
CLP(FD)
CLP(B)

Constraint Languages

Alphabet: set V of variables,
set SF of constant and function symbols,
set SC of predicate symbols containing true and =.

We assume a set of basic constraints, supposed to be closed by
variable renaming, and to contain all atomic constraints.

The language of constraints is the closure by conjonction and
existential quantification of the set of basic constraints.
Constraints will be denoted by c , d , ...

Fixed Interpretation X

Structure X for interpreting the constraint language.

We assume that the constraint satisfiability problem, X |=? ∃(c), is
decidable.
This is equivalent to assume that X is presented by an axiomatic
theory T satisfying:

1 (soundness) X |= T
2 (completeness for constraint satisfaction) for every constraint

c , either T ` ∃(c), or T ` ¬∃(c).

Clark’s Equality Theory for the Herbrand
domain

E1 ∀x x = x ,

E2 ∀(x1 = y1 ∧ ... ∧ xn = yn → f (x1, ..., xn) = f (y1, ..., yn)),

E3 ∀(x1 = y1 ∧ ... ∧ xn = yn → p(x1, ..., xn)→ p(y1, ..., yn)),

E4 ∀(f (x1, ..., xn) = f (y1, ..., yn)→ x1 = y1 ∧ ... ∧ xn = yn),

E5 ∀(f (x1, ..., xm) 6= g(y1, ..., yn)) for different function symbols
f , g ∈ SF with arity m and n respectively,

E6 ∀x M[x] 6= x for every term M strictly containing x .

Proposition 14

H |= CET.

Proposition 15

Furthermore if the set of function symbols is infinite, CET is a
complete theory.

CLP(X) Programs

Alphabet V , SF , SC of constraint symbols.
Structure X presented by a satisfaction complete theory T

Alphabet SP of program predicate symbols

A CLP(X) program is a finite set of program clauses.

Program clause ∀(A ∨ ¬c1 ∨ ...¬cm ∨ ¬A1 ∨ ... ∨ ¬An)

A← c1, ..., cm|A1, ...An

Goal clause ∀(¬c1 ∨ ...¬cm ∨ ¬A1 ∨ ... ∨ ¬An)

c1, ..., cm|A1, ...,An

Operational semantics: CSLD Resolution

(p(t1, t2)← c ′|A1, ...,An)θ ∈ P X |= ∃(c ∧ s1 = t1 ∧ s2 = t2 ∧ c ′)

(c |α, p(s1, s2), α′) −→ (c , s1 = t1, s2 = t2, c ′ | α,A1, ...,An, α′)

where θ is a renaming substitution of the program clause with new
variables.

A successful derivation is a derivation of the form
G −→ G1 −→ G2 −→ ... −→ c |�
c is called a computed answer constraint for G .

Prolog as CLP(H)

The programming language Prolog is an implementation of
CLP(H) in which:

• the constraints are only equalities between terms,

• the selection strategy consists in solving the atoms from left
to right according to their order in the goal,

• the search strategy consists in searching the derivation tree
depth-first by backtracking.

Only constants: Deductive Databases

gdfather(X,Y):-father(X,Z),parent(Z,Y).

gdmother(X,Y):-mother(X,Z),parent(Z,Y).

parent(X,Y):-father(X,Y).

parent(X,Y):-mother(X,Y).

father(alphonse,chantal).

mother(emilie,chantal).

mother(chantal,julien).

father(julien,simon).

| ?- gdfather(X,Y).

X = alphonse, Y = julien ? ;

no

| ?- gdmother(X,Y).

X = emilie, Y = julien ? ;

X = chantal, Y = simon ? ;

no

Lists

member(X,cons(X,L)).
member(X,cons(Y,L)):-member(X,L).

| ?- member(X,cons(a,cons(b,cons(c,nil)))).
X = a ? ;
X = b ? ;
X = c ? ;
no
| ?- member(X,Y).
Y = cons(X,_A) ? ;
Y = cons(_B,cons(X,_A)) ? ;
Y = cons(_C,cons(_B,cons(X,_A))) ?
yes

Appending lists

append([],L,L).
append([X|L],L2,[X|L3]):-append(L,L2,L3).

| ?- append([a,b],[c,d],L).
L = [a,b,c,d] ? ;
no
| ?- append(X,Y,L).
X = [],
Y = L ? ;
L = [_A|Y],
X = [_A] ? ;
L = [_A,_B|Y],
X = [_A,_B] ?
yes

Reversing a list

reverse([],[]).
reverse([X|L],R):-reverse(L,K),append(K,[X],R).
| ?- reverse([a,b,c,d],M).
M = [d,c,b,a] ? ;
no
| ?- reverse(M,[a,b,c,d]).
M = [d,c,b,a] ?

rev(L,R):-rev_lin(L,[],R).
rev_lin([],R,R).
rev_lin([X|L],K,R):-rev_lin(L,[X|K],R).
| ?- reverse(X,Y).
X = [], Y = [] ? ;
X = [_A], Y = [_A] ? ;
...

Quicksort

quicksort([],[]).
quicksort([X|L],R):-

partition(L,Linf,X,Lsup),
quicksort(Linf,L1),
quicksort(Lsup,L2),
append(L1,[X|L2],R).

partition([],[],_,[]).
partition([Y|L],[Y|Linf],X,Lsup):-

Y=<X,
partition(L,Linf,X,Lsup).

partition([Y|L],Linf,X,[Y|Lsup]):-
Y>X,
partition(L,Linf,X,Lsup).

Parsing

sentence(L):-nounphrase(L1), verbphrase(L2), append(L1,L2,L).

nounphrase(L):- determiner(L1), noun(L2), append(L1,L2,L).
nounphrase(L):- noun(L).

verbphrase(L):- verb(L).
verbphrase(L):- verb(L1), nounphrase(L2), append(L1,L2,L).

verb([eats]).

determiner([the]).

noun([monkey]).
noun([banana]).

Parsing/Synthesis (continued)

| ?- sentence([the,monkey,eats]).
yes

| ?- sentence([the,eats]).
no

| ?- sentence(L).
L = [the,monkey,eats] ? ;
L = [the,monkey,eats,the,monkey] ? ;
L = [the,monkey,eats,the,banana] ? ;
L = [the,monkey,eats,monkey] ?
yes

Prolog Meta-interpreter

solve((A,B)) :- solve(A), solve(B).
solve(A) :- clause(A).
solve(A) :- clause((A:-B)), solve(B).

clause(member(X,[X|_])).
clause((member(X,[_|L]) :- member(X,L))).

| ?- solve(member(X,L)).

L = [X|_A] ? ;
L = [_A,X|_B] ? ;
L = [_A,_B,X|_C] ? ;
L = [_A,_B,_C,X|_D] ?
yes

Linear Programming

• Variables with a continuous domain R.

A.x ≤ B max c .x

Satisfiability and optimization has polynomial complexity
(Simplex algorithm, interior point method).

• Mixed Integer Linear Programming
Variables with either a continuous domain R or a discrete
domain Z

x ∈ Z A.x ≤ B max c .x

NP-hard problem (Branch and bound procedure, Gomory’s
cuts,...)

CLP(R) mortgage program

int(P,T,I,B,M):- T > 0, T <= 1, B + M = P * (1 + I).

int(P,T,I,B,M):- T > 1, int(P * (1 + I) - M, T - 1, I, B, M).

| ?- int(120000,120,0.01,0,M).

M = 1721.651381 ?

yes

| ?- int(P,120,0.01,0,1721.651381).

P = 120000 ?

yes

| ?- int(P,120,0.01,0,M).

P = 69.700522*M ?

yes

| ?- int(P,120,0.01,B,M).

P = 0.302995*B + 69.700522*M ?

yes

| ?- int(999, 3, Int, 0, 400).

400 = (-400 + (599 + 999*Int) * (1 + Int)) * (1 + Int) ?

CLP(R) heat equation

| ?- X=[[0,0,0,0,0,0,0,0,0,0,0],

[100,_,_,_,_,_,_,_,_,_,100],

[100,_,_,_,_,_,_,_,_,_,100],

[100,_,_,_,_,_,_,_,_,_,100],

[100,_,_,_,_,_,_,_,_,_,100],

[100,_,_,_,_,_,_,_,_,_,100],

[100,_,_,_,_,_,_,_,_,_,100],

[100,_,_,_,_,_,_,_,_,_,100],

[100,_,_,_,_,_,_,_,_,_,100],

[100,_,_,_,_,_,_,_,_,_,100],

[100,100,100,100,100,100,100,100,100,100,100]],

laplace(X).

X=[[0,0,0,0,0,0,0,0,0,0,0],

[100,51.11,32.52,24.56,21.11,20.12,21.11,24.56,32.52,51.11,100],

[100,71.91,54.41,44.63,39.74,38.26,39.74,44.63,54.41,71.91,100],

[100,82.12,68.59,59.80,54.97,53.44,54.97,59.80,68.59,82.12,100],

[100,87.97,78.03,71.00,66.90,65.56,66.90,71.00,78.03,87.97,100],

[100,91.71,84.58,79.28,76.07,75.00,76.07,79.28,84.58,91.71,100],

[100,94.30,89.29,85.47,83.10,82.30,83.10,85.47,89.29,94.30,100],

[100,96.20,92.82,90.20,88.56,88.00,88.56,90.20,92.82,96.20,100],

[100,97.67,95.59,93.96,92.93,92.58,92.93,93.96,95.59,97.67,100],

[100,98.89,97.90,97.12,96.63,96.46,96.63,97.12,97.90,98.89,100],

[100,100,100,100,100,100,100,100,100,100,100]] ?

CLP(R) heat equation

laplace([H1,H2,H3|T]):-laplace_vec(H1,H2,H3),laplace([H2,H3|T]).
laplace([_,_]).
laplace_vec([TL,T,TR|T1],[ML,M,MR|T2],[BL,B,BR|T3]):-

B + T + ML + MR - 4 * M = 0,
laplace_vec([T,TR|T1],[M,MR|T2],[B,BR|T3]).

laplace_vec([_,_],[_,_],[_,_]).

| ?- laplace([[B11, B12, B13, B14],
[B21, M22, M23, B24],
[B31, M32, M33, B34],
[B41, B42, B43, B44]]).

B12 = -B21 - 4*B31 + 16*M32 - 8*M33 + B34 - 4*B42 + B43,
B13 = -B24 + B31 - 8*M32 + 16*M33 - 4*B34 + B42 - 4*B43,
M22 = -B31 + 4*M32 - M33 - B42,
M23 = -M32 + 4*M33 - B34 - B43 ?

CLP(FD)= over Finite Domains

Variables {x1, ..., xv}
over a finite domain D = {e1, ..., ed}.

Constraints to satisfy:

• unary constraints of domains x ∈ {ei , ej , ek}
• binary constraints: c(x , y)

defined intentionally, x > y + 2,
or extentionally, {c(a, b), c(d , c), c(a, d)}.

• n-ary global constraints: c(x1, ..., xn),

CLP(FD) N-Queens Problem

GNU-Prolog program:

queens(N,L):-

length(L,N),

fd_domain(L,1,N),

safe(L),

fd_labeling(L,first_fail).

safe([]).

safe([X|L]):-

noattack(L,X,1),

safe(L).

noattack([],_,_).

noattack([Y|L],X,I):-

X#\=Y,

X#\=Y+I,

X+I#\=Y,

I1 is I+1,

noattack(L,X,I1).

Search space of all solutions

CLP(FD) send+more=money

send(L):-sendc(L), labeling(L).
sendc([S,E,N,D,M,O,R,Y]) :-

domain([S,E,N,D,M,O,R,Y],[0,9]),
alldifferent([S,E,N,D,M,O,R,Y]), S#=/=0, M#=/=0,
eqln(1000*S+100*E+10*N+D

+ 1000*M+100*O+10*R+E ,
10000*M+1000*O+100*N+10*E+Y).

| ?- send(L).
L = [9,5,6,7,1,0,8,2] ? ;
no

CLP(FD) send+more=money

| ?- send([S,E,N,D,M,O,R,Y]).

D = 1,
O = 0,
S = 9,
domain(E,[4,7]),
domain(N,[5,8]),
domain(D,[2,8]),
domain(R,[2,8]),
domain(Y,[2,8]),
Y+90*N#=10*R+D+91*E,
alldifferent([E,N,D,R,Y]) ?

CLP(FD) scheduling

Simple PERT problem

| ?- minimise((B#>=A+5,C#>=B+2,D#>=B+3,E#>=C+5,E#>=D+5), E).
Solution de cout 13
A = 0, B = 5, D = 8, E = 13, domain(C,[7,8]) ?
yes

Disjunctive scheduling is NP-hard

| ?- minimise((B#>=A+5,C#>=B+2,D#>=B+3,E#>=C+5,
E#>=D+5, (C#>=D+5 ; D#>=C+5)), E).

Solution de cout 18
Solution de cout 17
A = 0, B = 5, C = 7, D = 12, E = 17 ? ;
no

Disjunctive scheduling: bridge problem
(4000 nodes)

Reified constraints in CLP(B,FD)

The reified constraint B ⇔ (X < Y)
associates a boolean variable B to the satisfaction of the
constraint X < Y

Cardinality constraint card(N, [C1, ...,Cm]) is true iff there are
exactly N constraints true in [C1, ...,Cm].

card(0,[]).
card(N,[C|L]) :-

fd_domain_bool(B),
B #<=> C,
N #= B+M,
card(M,L).

Magic Series

Find a sequence of integers (i0, ..., in−1) such that
ij is the number of occurrences of the integer j in the sequence

n−1∧
j=0

card(ij , [i0 = j , ..., in−1 = j])

Constraint propagation with reified constraints bk ⇔ ik = j ,
Redundant constraints n =

∑n−1
j=0 ij ,

Enumeration with first fail heuristics,
Less than one second CPU for n = 50...

Multiple Modeling in CLP(FD)

N-queens with two concurrent models: by lines and by columns

queens2(N,L) :-
list(N, Column), fd_domain(Column,1,N), safe(Column),
list(N, Line), fd_domain(Line,1,N), safe(Line),
linking(Line,1,Column),
append(Line,Column,L), fd_labelingff(L).

linking([],_,_).
linking([X|L],I,C):- equivalence(X,I,C,1),

I1 is I+1,
linking(L,I1,C).

equivalence(_,_,[],_).
equivalence(X,I,[Y|L],J):- B#<=>(X#=J), B#<=>(Y#=I),

J1 is J+1,
equivalence(X,I,L,J1).

Programming in CLP(H,B,FD,R)

• Basic constraints on domains of terms H, bounded integers
FD, reals R, booleans B, ontologies H≤, etc.

• Relations defined extensionally by constrained facts:

precedence(X,D,Y) :- X+D<Y.
disjonctives(X,D,Y,E) :- X+D<Y.
disjonctives(X,D,Y,E) :- Y+E<X.

and intentionally by rules:

labeling([]).
labeling([X|L]):- indomain(X), labeling(L).

• Programming of search procedures and heuristics:
And-parallelism (variable choice): “first-fail” heuristics min
domain
Or-parallelism (value choice): “best-first” heuristics min value

Part III: Operational and Fixpoint
Semantics

10 Operational Semantics

11 Fixpoint Semantics
Fixpoint Preliminaries
Fixpoint Semantics of Successes
Fixpoint Semantics of Computed Answers

12 Program Analysis
Abstract Interpretation
Constraint-based Model Checking

Operational semantics: CSLD Resolution

(p(t1, t2)← c ′|A1, ...,An)θ ∈ P X |= ∃(c ∧ s1 = t1 ∧ s2 = t2 ∧ c ′)

(c |α, p(s1, s2), α′) −→ (c , s1 = t1, s2 = t2, c ′ | α,A1, ...,An, α′)

where θ is a renaming substitution of the program clause with new
variables.

A successful derivation is a derivation of the form

G −→ G1 −→ G2 −→ ... −→ c |�

c is called a computed answer constraint for G .

∧-Compositionality of CSLD-derivations

Lemma 16 (∧-compositionality)

c is a computed answer for the goal (d |A1, ...,An)
iff
there exist computed answers c1, ..., cn for the goals
true|A1, ..., true|An, such that c = d ∧

∧n
i=1 ci is satisfiable.

Corollary 17

Independance of the selection strategy.

∧-Compositionality of CSLD-derivations

Proof.
(⇐) d |A1, ...,An →∗ d ∧ c1|A2, ...,An...→∗ d ∧ c1 ∧ ... ∧ cn|�.
(⇒) By induction on the length l of the derivation.
If l = 1 we have true|A1 → c1|�.
Otherwise, suppose A1 is the selected atom, there exists a rule
(A1 ← d1|B1, ...,Bk) ∈ P such that
d |A1, ...,An → d ∧ d1|B1, ...,Bk ,A2, ...,An →∗ c |�.
By induction, there exist computed answers e1, ..., el , c2, ..., cn for
the goals B1, ...,Bl ,A2, ...,An such that
c = d ∧ d1 ∧

∧l
i=1 ei ∧

∧n
j=2 cj . Now let c1 = d1 ∧

∧l
i=1 ei , c1 is a

computed answer for true|A1.

Operational Semantics of CLP(X)
Programs

Observation of the sets of projected computed answer constraints

O(P) = {(∃X c)|A : true|A −→∗ c |�, X |= ∃(c), X = V (c)\V (A)}

Program equivalence: P ≡ P ′ iff O(P) = O(P ′) iff for every goal
G , P and P ′ have the same sets of computed answer constraints.

Finer observables: the multisets of computed answer constraints
or the sets of succesful CSLD derivations (equivalence of traces)

More abstract observable: the set of goals having a success
(theorem proving versus programming point of view).

Operational Semantics of CLP(X)
Programs

Observation of computed answer constraints

Oca(P) = {c |A : true|A −→∗ c |�, X |= ∃(c)}

P ≡ca P ′ iff for every goal G , P and P ′ have the same sets of
computed answer constraints.

Observation of ground successes

Ogs(P) = {Aρ ∈ BX : true|A −→∗ c |�, X |= cρ}

P ≡gs P ′ iff P and P ′ have the same ground success sets, iff for
every goal G , G has a CSLD refutation in P iff G has one in P ′.

Definitions

Let (S ,≤) be a partial order. Let X ⊆ S be a subset of S .
An upper bound of X is an element a ∈ S such that ∀x ∈ X x ≤ a.
The maximum element of X , if it exists, is the unique upper bound
of X belonging to X .
The least upper bound (lub) of X , if it exists, is the minimum of
the upper bounds of X .
A sup-semi-lattice is a partial order such that every finite part
admits a lub.
A lattice is a sup-semi-lattice and an inf-semi-lattice.
A chain is an increasing sequence x1 ≤ x2 ≤ . . .
A partial order is complete if every chain admits a lub.
A function f : S → S is monotonic if x ≤ y ⇒ f (x) ≤ f (y).
continuous if f (lub(X)) = lub(f (X)) for every chain X .

Fixpoint theorems

Theorem 18 (Knaster-Tarski)

Let S be a complete partial order. Let f : S → S be a continuous
operator over S. Then f admits a least fixed point lfp(f) = f ↑ ω.

Proof.
First, as f is continuous, f is monotonic, hence
⊥ ≤ f (⊥) ≤ f (f (⊥)) ≤ ... forms an increasing chain. Let
a = lub({f n(⊥)|n ∈ N}) = f ↑ ω. By continuity
f (a) = lub({f n+1(⊥) | n ∈ N}) = a, hence a is a fixed point of f .
Let e be any fixed point of f . We show that for all integer n,
f n(⊥) ≤ e, by induction on n. Clearly ⊥ ≤ e. Furthermore if
f n(⊥) ≤ e then by monotonicity, f n+1(⊥) ≤ f (e) = e.
Thus f n(⊥) ≤ e for all n, hence a ≤ e.

Least Post-Fixed Point

Theorem 19
Let S be a complete sup-semi-lattice. Let f be a continuous
operator over S. Then f admits a least post-fixed point (i.e. an
element e satisfying f (e) ≤ e) which is equal to lfp(f).

Proof.
Let g(x) = lub(x , f (x)).
An element e is a post fixed point of f , i.e. f (e) ≤ e, if and only if
e is a fixed point of g , g(e) = e.
Now g is continuous, hence lfp(g) is the least fixed point of g and
the least post-fixed point of f .
Furthermore, lfp(g) = lub{f n(⊥)} = lfp(f).

Fixpoint semantics of Ogs

Consider the complete lattice of X -interpretations (2BX ,⊆)
The bottom element is the empty X -interpretation (all atoms false)
The top element is BX (all atoms true).

A chain X is an increasing sequence I1 ⊆ I2 ⊆ ...
lub(X) =

⋃
i≥1 Ii .

Define the semantics Ogs(P) as the least solution of a fixpoint
equation over 2BX : I = T (I).

TXP immediate consequence operator

TXP : 2BX → 2BX is defined by:

TXP (I) = {Aρ ∈ BX | there exists a renamed clause in normal form
(A← c |A1, ...,An) ∈ P, and a valuation ρ s.t.
X |= cρ and {A1ρ, ...,Anρ} ⊆ I}

Example 20

append(A,B,C):- A=[], B=C.
append(A,B,C):- A=[X|L], C=[X|R], append(L,B,R).

TH
P (∅) = {append([],B,B) | B ∈ H}

TH
P (TH

P (∅)) = TH
P (∅) ∪ {append([X],B, [X |B]) | X ,B ∈ H}

TH
P (TH

P (TH
P (∅))) = TH

P (TH
P (∅)) ∪

{append([X ,Y],B, [X ,Y |B]) | X ,Y ,B ∈ H}

Continuity of TXP operator

Proposition 21

TXP is a continuous operator on the complete lattice of
X -interpretations.

Proof.
Let X be a chain of X -interpretations. Aρ ∈ TXP (lub(X)),
iff (A← c |A1, ...,An) ∈ P, X |= cρ and {A1ρ, ...,Anρ} ⊂ lub(X),
iff (A← c |A1, ...,An) ∈ P, X |= cρ and {A1ρ, ...,Anρ} ⊂ I ,

for some I ∈ X (as X is a chain)
iff Aρ ∈ TXP (I) for some I ∈ X , iff Aρ ∈ lub(TXP (X)).

Corollary 22

TXP admits a least (post) fixed point TXP ↑ ω.

Full abstraction

Let F1(P) = lfp(TXP) = TXP ↑ ω = ...TXP (TXP (∅))...

Theorem 23 ([JL87])

F1(P) = Ogs(P).

F1(P) ⊆ Ogs(P) is proved by induction on the powers n of TX
P . n = 0 is

trivial. Let Aρ ∈ TX
P ↑ n, there exists a rule (A← c |A1, ...,An) ∈ P,

s.t. {A1ρ, ...,Anρ} ⊆ TX
P ↑ n − 1 and X |= cρ. By induction

{A1ρ, ...,Anρ} ⊆ Ogs(P). By definition of Ogs we get Aρ ∈ Ogs(P).

Ogs(P) ⊆ F1(P) is proved by induction on the length of derivations.

Successes with derivation of length 0 are ground facts in TX
P ↑ 1. Let

Aρ ∈ Ogs(P) with a derivation of length n. By definition of Ogs there

exists (A← c |A1, ...,An) ∈ P s.t. {A1ρ, ...,Anρ} ⊆ Ogs(P) and X |= cρ.

By induction {A1ρ, ...,Anρ} ⊆ F1(P). Hence by definition of TX
P we get

Aρ ∈ F1(P).

TXP and X models

Proposition 24

I is a X -model of P iff I is a post-fixed point of TXP , TXP (I) ⊆ I .

Proof.
I is a X -model of P,
iff for each clause A← c |A1, ...,An ∈ P and for each X -valuation
ρ, if X |= cρ and {A1ρ, ...,Anρ} ⊆ I then Aρ ∈ I ,
iff TXP (I) ⊆ I .

TXP and X models

Theorem 25 (Least X -model [JL87])

Let P be a constraint logic program on X . P has a least X -model,
denoted by MXP satisfying:

MXP = F1(P)

Proof.
F1(P) = lfp(TXP) is also the least post-fixed point of TXP , thus by
Prop. 24, lfp(TXP) is the least X -model of P.

Fixpoint semantics of Oca

Consider the set of constrained atoms
B′X = {c |A : A is an atom and X |= ∃(c)} modulo renaming.

Consider the lattice of constrained interpretations (2B
′
X ,⊆).

For a constrained interpretation I , let us define the closed
X -interpretation:
[I]X = {Aρ : there exists a valuation ρ and c |A ∈ I s.t. X |= cρ}.

Define the semantics Oca(P) as the least solution of a fixpoint
equation over 2B

′
X .

Non-ground immediate consequence
operator

SXP : 2B
′
X → 2B

′
X is defined as:

SXP (I) = {c |A ∈ B′X | there exists a renamed clause in normal form
(A← d |A1, ...,An) ∈ P, and constrained atoms
{c1|A1, ..., cn|An} ⊆ I , s.t. c = d ∧

∧n
i=1 ci is X -satisfiable}

Proposition 26

For any B′X -interpretation I , [SXP (I)]X = TXP ([I]X).

Proof.
Aρ ∈ [SXP (I)]X
iff (A← d |A1, ...,An) ∈ P, c = d ∧

∧n
i=1 ci , X |= cρ and

{c1|A1, ..., cn|An} ⊂ I

iff (A← d |A1, ...,An) ∈ P, c = d ∧
∧n

i=1 ci , X |= cρ and

{A1ρ, ...,Anρ} ⊂ [I]X iff Aρ ∈ TX
P ([I]X).

Continuity of SXP operator

Proposition 27

SXP is continuous.

Proof.
Let X be a chain of constrained interpretations. c |A ∈ SXP (lub(X)),
iff (A← d |A1, ...,An) ∈ P, c = d ∧

∧n
i=1 ci , X |= ∃(c) and

{c1|A1, ..., cn|An} ⊂ lub(X).
iff (A← d |A1, ...,An) ∈ P, c = d ∧

∧n
i=1 ci , X |= ∃(c) and

{c1|A1, ..., cn|An} ⊂ I , for some I ∈ X (as X is a chain)

iff c |A ∈ SXP (I) for some I ∈ X , iff c |A ∈ lub(SXP (X)).

Corollary 28

SXP admits a least (post) fixed point F2(P) = lfp(SXP) = SXP ↑ ω.

Example CLP(H)

append(A,B,C):- A=[], B=C.
append(A,B,C):- A=[X|L], C=[X|R], append(L,B,R).

Example 29
SHP ↑ 0 = ∅
SHP ↑ 1 = {A = [],B = C |append(A,B,C)}
SHP ↑ 2 = SHP ↑ 1 ∪

{A = [X |L],C = [X |R], L = [],B = R|append(A,B,C)}
= SHP ↑ 1 ∪ {A = [X],C = [X |B]|append(A,B,C)}

SHP ↑ 3 = SHP ↑ 2 ∪
{A = [X ,Y],C = [X ,Y |B]|append(A,B,C)}

SHP ↑ 4 = SHP ↑ 3 ∪
{A = [X ,Y ,Z],C = [X ,Y ,Z |B]|append(A,B,C)}

... = ...

Relating SXP and TXP operators

Theorem 30 ([JL87])

For every ordinal α, TXP ↑ α = [SXP ↑ α]X .

Proof.
The base case α = 0 is trivial. For a successor ordinal, we have
[SXP ↑ α]X = [SXP (SXP ↑ α− 1)]X

= TX
P ([SXP ↑ α− 1]X)

= TX
P (TX

P ↑ α− 1) by induction
= TX

P ↑ α.
For a limit ordinal, we have
[SXP ↑ α]X = [

⋃
β<α SXP ↑ β]X

=
⋃

β<α[SXP ↑ β]X
=

⋃
β<α TX

P ↑ β by induction

= TX
P ↑ α

Full abstraction w.r.t. computed
constraints

Theorem 31 (Theorem of full abstraction [GL91])

Oca(P) = F2(P).

F2(P) ⊆ Oca(P) is proved by induction on the powers n of SXP . n = 0 is
trivial. Let c |A ∈ SXP ↑ n, there exists a rule (A← d |A1, ...,An) ∈ P,
s.t. {c1|A1, ..., cn|An} ⊆ SXP ↑ n − 1, c = d ∧

∧n
i=1 ci and X |= ∃c . By

induction {c1|A1, ..., cn|An} ⊆ Oca(P). By definition of Oca we get
c |A ∈ Oca(P).

Oca(P) ⊆ F2(P) is proved by induction on the length of derivations.

Successes with derivation of length 0 are facts in SXP ↑ 1. Let

c |A ∈ Oca(P) with a derivation of length n. By definition of Oca there

exists (A← d |A1, ...,An) ∈ P s.t. {c1|A1, ..., cn|An} ⊆ Oca(P),

c = d ∧
∧n

i=1 ci and X |= ∃c . By induction {c1|A1, ..., cn|An} ⊆ F2(P).

Hence by definition of SXP we get c |A ∈ F2(P).

Program analysis by abstract
interpretation

SHP ↑ ω captures the set of computed answer constraints with P,
nevertheless this set may be infinite and
it may contain too much information for proving some properties
of the computed constraints.

Abstract interpretation [CC77] is a method for proving properties
of programs without handling irrelevant information.

The idea is to replace the real computation domain by an abstract
computation domain which retains sufficient information w.r.t. the
property to prove.

Groundness analysis by abstract
interpretation

Consider the CLP(H) append program

append(A,B,C):- A=[], B=C.
append(A,B,C):- A=[X|L], C=[X|R], append(L,B,R).

What is the groundness relation between arguments after a
success?

The term structure can be abstracted by a boolean structure which
expresses the groundness of the arguments.
We thus associate a CLP(B) abstract program:

append(A,B,C):- A=true, B=C.
append(A,B,C):- A=X/\L, C=X/\R, append(L,B,R).

Its least fixed point computed in at most 23 steps will express the
groundness relation between arguments of the concrete program.

Groundness analysis (continued)

SBP ↑ 0 = ∅
SBP ↑ 1 = {A = true,B = C |append(A,B,C)}
SBP ↑ 2 = SBP ↑ 1 ∪

{A = X ∧ L,C = X ∧ R, L = true,B = R|append(A,B,C)}
= SBP ↑ 1 ∪ {C = A ∧ B|append(A,B,C)}

SBP ↑ 3 = SBP ↑ 2 ∪
{A = X ∧ L,C = X ∧ R,R = L ∧ B|append(A,B,C)}
= SBP ↑ 2 ∪ {C = A ∧ B|append(A,B,C)}
= SBP ↑ 2 = SBP ↑ ω

In a success of append(A,B,C), C is ground if and only if A and
B are ground.

Groundness analysis of reverse

Concrete CLP(H) program:

rev(A,B) :- A=[], B=[].
rev(A,B) :- A=[X|L], rev(L,K), append(K,[X],B).

Abstract CLP(B) program:

rev(A,B) :- A=true, B=true.
rev(A,B) :- A=X/\L, rev(L,K), append(K,X,B).

SBP ↑ 0 = ∅
SBP ↑ 1 = {A = true,B = true|rev(A,B)}
SBP ↑ 2 = SBP ↑ 1 ∪{A = X ,B = X |rev(A,B)}

= SBP ↑ 1 ∪ {A = B|rev(A,B)}
SBP ↑ 3 = SBP ↑ 2 ∪{A = X ∧ L, L = K ,B = K ∧ X |rev(A,B)}

= SBP ↑ 2 ∪ {A = B|rev(A,B)}= SBP ↑ 2 = SBP ↑ ω

Constraint-based Model Checking [DP99]

Analysis of unbounded states concurrent systems by CLP programs.

Concurrent transition systems defined by condition-action rules
[Sha93]:

condition φ(~x) action ~x ′ = ψ(~x)

Translation into CLP clauses over one predicate p (for states)

p(~x)← φ(~x), ψ(~x ′,~x), p(~x ′).

The transitions of the concurrent system are in one-to-one
correspondance to the CSLD derivations of the CLP program.

Proposition 32

The set of states from which a set of states defined by a constraint
c is reachable is the set lfp(TP)
where P is the CLP program plus the clause p(~x)← c(~x).

Computation Tree Logic CTL

Temporal logic for branching time:

• States described by propositional or
first-order formulas

• Two path quantifiers for
non-determinism:

• A “for all transition paths”
• E “for some transition path”

• Several temporal operators:
• X “next time”,
• F “eventually”,
• G “always”,
• U “until”.

E , A

F , G s p q

s

s

s

s

s

Model Checking

Two types of interesting properties:
AG¬φ “Safety” property.
AFψ “Liveness” property.

Duality: for any formula φ we have
EFφ = ¬AG¬φ and
EGφ = ¬AF¬φ.

Model checking is an algorithm for computing, in a given Kripke
structure K = (S , I ,R), I ⊂ S ,R ⊂ S × S (S is the set of states, I
the initial states and R the transition relation), the set of states
which satisfy a given CTL formula φ, i.e. the set {s ∈ S |K , s |= φ}.

(Symbolic) Model Checking

Basic algorithm

When S is finite, represent K as a graph, and iteratively label the
nodes with the subformulas of φ which are true in that node.
Add A to the states satisfying A (¬A, A ∧ B,...)
Add EFφ (EXφ) to the (immediate) predecessors of states labeled by φ
Add E (φUψ) to the predecessor states of ψ while they satisfy φ

Add EGφ to the states for which there exists a path leading to a non

trivial strongly connected components of the subgraph restricted to the

states satisfying φ

Symbolic model checking

Use OBDD’s to represent states and transitions as boolean
formulas (S is finite).

Constraint-based Model Checking

Constraint-based model checking [DP99] applies to Kripke
structures with an infinite set of states.
Numerical constraints provide a finite representation for an infinite
set of states.

Constraint logic programming theory:

EF (φ) = lfp(TR∪{p(~x)←φ})

EG (φ) = gfp(TR∧φ)

Prototype implementation DMC in Sicstus Prolog + Simplex,
CLP(H,FD,R,B)

Part IV: Logical Semantics

13 Logical Semantics of CLP(X)
Soundness
Completeness

14 Automated Deduction
Proofs in Group Theory

15 CLP(λ)
λ-calculus
Proofs in λ-calculus

16 Negation as Failure
Finite Failure
Clark’s Completion
Soundness w.r.t. Clark’s Completion
Completeness w.r.t. Clark’s Completion

Logical Semantics of CLP(X) Programs

• Proper logical semantics

(1) P, T |= ∃(G) (4) P, T |= c ⊃ G ,

• Logical semantics in a fixed pre-interpretation

(2) P |=X ∃(G) (5) P |=X c ⊃ G ,

• Algebraic semantics

(3) MXP |= ∃(G) (6) MXP |= c ⊃ G .

We show (1)⇔ (2)⇔ (3) and (4)⇒ (5)⇔ (6).

Soundness of CSLD Resolution

Theorem 33 ([JL87])

If c is a computed answer for the goal G then MXP |= c ⊃ G,
P |=X c ⊃ G and P, T |= c ⊃ G.

If G = (d |A1, ...,An), we deduce from the ∧-compositionality lemma,
that there exist computed answers c1, ..., cn for the goals A1, ...,An such
that c = d ∧

∧n
i=1 ci is satisfiable. For every 1 ≤ i ≤ n

ci |Ai ∈ SXP ↑ ω, by the full abstraction Thm, 31,
[ci |Ai]X ⊆ MX

P , by Thm. 30, and Prop. 24, hence MX
P |= ∀(ci ⊃ Ai),

P |=X ∀(ci ⊃ Ai) as MX
P is the least X -model of P,

P |=X ∀(c ⊃ Ai) as X |= ∀(c ⊃ ci) for all i , 1 ≤ i ≤ n.
Therefore we have P |=X ∀(c ⊃ (d ∧ A1 ∧ ... ∧ An)),

and as the same reasoning applies to any model X of T ,

P, T |= ∀(c ⊃ (d ∧ A1 ∧ ... ∧ An))

Completeness of CSLD resolution

Theorem 34 ([Mah87])

If MXP |=X c ⊃ G then there exists a set {ci}i≥0 of computed
answers for G, such that: X |= ∀(c ⊃

∨
i≥0 ∃Yici).

Proof.
For every solution ρ of c , for every atom Aj in G ,
MX

P |= Ajρ iff Ajρ ∈ TX
P ↑ ω, by Thm. 23, iff Ajρ ∈ [SXP ↑ ω]X , by

Thm. 30,
iff cj,ρ|Aj ∈ SXP ↑ ω, for some constraint cj,ρ s.t. ρ is solution of ∃Yj,ρcj,ρ,
where Yj,ρ = V (cj,ρ) \ V (Aj),
iff cj,ρ is a computed answer for Aj (by 31) and X |= ∃Yj,ρcj,ρρ.
Let cρ be the conjunction of cj,ρ for all j . cρ is a computed answer for G .

By taking the collection of cρ for all ρ we get X |= ∀(c ⊃
∨

cρ
∃Yρcρ)

Completeness w.r.t. the theory of the
structure

Theorem 35 ([Mah87])

If P, T |= c ⊃ G then there exists a finite set {c1, ..., cn} of
computed answers to G, such that:
T |= ∀(c ⊃ ∃Y1c1 ∨ ... ∨ ∃Yncn).

Proof.
If P, T |= c ⊃ G then for every model X of T , for every X -solution ρ of
c , there exists a computed constraint cX ,ρ for G s.t. X |= cX ,ρρ. Let
{ci}i≥0 be the set of these computed answers. Then for every model X
and for every X -valuation ρ, X |= c ⊃

∨
i≥1 ∃Yici , therefore

T |= c ⊃
∨

i≥1 ∃Yici ,

As T ∪ {∃(c ∧ ¬∃Yici)}i is unsatisfiable, by applying the compactness

theorem of first-order logic there exists a finite part {ci}1≤i≤n,

s.t. T |= c ⊃
∨n

i=1 ∃Yici .

First-order theorem proving in CLP(H)

Prolog can be used to find proofs by refutation of Horn clauses
(with a complete search meta-interpreter).
P,∀(¬A) is unsatisfiable iff P |= ∃(A) iff A −→∗ �.

Groups can be axiomatized with Horn clauses with a ternary
predicate p(x , y , z) meaning x ∗ y = z .

clause(p(e,X,X)).
clause(p(i(X),X,e)).
clause((p(U,Z,W) :- p(X,Y,U), p(Y,Z,V), p(X,V,W))).
clause((p(X,V,W) :- p(X,Y,U), p(Y,Z,V), p(U,Z,W))).

Theorem proving in groups

To show i(i(x)) = x by refutation,
we show that the formula ¬∀x p(i(i(X)), e,X) is unsatisfiable
By Skolemization we get the goal clause ¬p(i(i(a)), e, a)

| ?- solve(p(i(i(a)),e,a)).
depth 2
yes
| ?- solve(p(a,e,a)).
depth 4
yes
| ?- solve(p(a,i(a),e)).
depth 3
yes

Theorem proving in groups (cont.)

To show that any non empty subset of a group, stable by division,
is a subgroup we add two clauses

clause(s(a)).
clause((s(Z) :- s(X), s(Y), p(X,i(Y),Z))).

and prove that s contains e and i(a).

| ?- solve(s(e)).
depth 4
yes
| ?- solve(s(i(a))).
depth 5
yes

Higher-order theorem proving in CLP(λ)

Church’s simply typed λ-calculus
t ::= v | t1 → t2
e : t ::= x : t | (λx : t1.e : t2) : t1 → t2 | (e1 : t1 → t2(e2 : t1)) : t2

Theory of functionality
λx .e1 =α λy .e1[y/x] if y 6∈ V (e1),
(λx .e1)e2 →β e1[e2/x]
=α .→β is terminating and confluent

e1 =α,β e2 iff ↓β e1 =α ↓β e2.

Equality is decidable, but not unification...

Theorem proving in CLP(λ)

Theorem 36 (Cantor’s Theorem)

NN is not countable.

Proof.
By two steps of CSLD resolution!
Let us suppose ∃h : N→ (N→ N) ∀f : N→ N ∃n : N h(n) = f
After Skolemisation we get ∀F h(n(F)) = F , i.e. ∀F ¬h(n(F)) 6= F .
Let us consider the following program G 6= H ← G (N) 6= H(N).

N 6= s(N).
We have h(n F) 6= F −→σ1 (h(n F))(I) 6= F (I) −→σ2 �
where the unifier σ2 = {G = h I I , I = n(F), F = λi .s(h i i), H = F}
is Cantor’s diagonal argument!

Negation as Failure

A derivation CSLD is fair if every atom which appears in a goal of
the derivation is selected after a finite number of resolution steps.
A fair CSLD tree for a goal G is a CSLD derivation tree for G in
which all derivations are fair.
A goal G is finitely failed if G has a fair CSLD derivation tree to
G , which is finite and which contains no success.

p :- p.

| ?- member(a,[b,c,d]).
no

| ?- p, member(a,[b,c,d]).
...

Logical semantics of finite failure?

Horn clauses entail no negative information: the Herbrand’s base
BX is a model.

On the other hand, the complement of the least X -model MXP is
not recursively enumerable.

Indeed let us suppose the opposite. We could define in Prolog the
predicates:

• success(P,B) which succeeds iff MP |= ∃B, i.e. if the goal B
has a successful SLD derivation with the program P

• fail(P,B) which succeeds iff MP |= ¬∃B

Undecidability of MXP

loop:- loop.
contr(P):- success(P,P), loop.
contr(P):- fail(P,P).

If contr(contr) has a success,
then success(contr,contr) succeeds,
and fail(contr,contr) doesn’t succeed,
hence contr(contr) doesn’t succeed: contradiction.

If contr(contr) doesn’t succeed,
then fail(contr,contr) succeeds,
hence contr(contr) succeeds: contradiction.

Therefore programs success and fail cannot exist.

Clark’s completion

The Clark’s completion of P is the set P∗ of formulas of the form
∀X p(X)↔ (∃Y1c1 ∧A1

1 ∧ ...∧A1
n1

)∨ ...∨ (∃Ykck ∧Ak
1 ∧ ...∧Ak

nk
)

where the p(X)← ci |Ai
1, ...,A

i
ni

are the rules in P and Yi ’s the
local variables,
∀X¬p(X) if p is not defined in P.

Example 37

CLP(H) program p(s(X)):- p(X).
Clark’s completion P∗ = {∀x p(x)↔ ∃y x = s(y) ∧ p(y)}.
The goal p(0) finitely fails, we have P∗,CET |= ¬p(0).
The goal p(X) doesn’t finitely fail,
we have P∗,CET 6|= ¬∃X p(X) although P∗ |=H ¬∃X p(X)

Supported X -models

Proposition 38

i) I is a supported X -model of P iff ii) I is a X -model of P∗ iff iii)
I is a fixed point of TXP .

Proof.
I is a X -model of P∗

iff I is a X -model of ∀X p(X)← φ1 ∨ ... ∨ φk for every formula
∀X p(X)↔ φ1 ∨ ... ∨ φk in P∗,
iff I is a post-fixed point of TX

P , i.e. .TX
P (I) ⊆ I .

I is a supported X -interpretation of P,
iff I is a X -model of ∀X p(X)→ φ1 ∨ ... ∨ φk for every formula
∀X p(X)↔ φ1 ∨ ... ∨ φk in P∗,
iff I is a pre-fixed point of TX

P , i.e. I ⊆ TX
P (I).

Thus i) I is a supported X -model of P iff ii) I is a X -model of P∗ iff iii)

I is a fixed point of TX
P .

Models of the Clark’s completion

Theorem 39
i) P∗ has the same least X -model than P, MXP = MXP∗
ii) P |=X c ⊃ A iff P∗ |=X c ⊃ A, for all c and A,
iii) P, T |= c ⊃ A iff P∗, T |= c ⊃ A.

Proof.
i) is an immediate corollary of full abstraction and least X -model
theorems.
For iii) we clearly have (P, T |= c ⊃ A)⇒ (P∗, T |= c ⊃ A). We show
the contrapositive of the opposite, (P, T 6|= c ⊃ A)⇒ (P∗, T 6|= c ⊃ A).
Let I be a model of P and T , based on a structure X , let ρ be a
valuation such that I |= ¬Aρ and X |= cρ.
We have MX

P |= ¬Aρ, thus MX
P∗ |= ¬Aρ, and as T |= cρ, we conclude

that P∗, T 6|= c ⊃ A.
The proof of ii) is identical, the structure X being fixed.

Soundness of Negation as Finite Failure

Theorem 40
If G is finitely failed then P∗, T |= ¬G.

Proof.
By induction on the height h of the tree in finite failure for G = c |A, α
where A is the selected atom at the root of the tree.
In the base case h = 1, the constrained atom c |A has no CSLD transition,
we can deduce that P∗, T |= ¬(c ∧ A) hence that P∗, T |= ¬G .

For the induction step, let us suppose h > 1. Let G1, ...,Gn be the sons

of the root and Y1, ...,Yn be the respective sets of introduced variables.

We have P∗, T |= G ↔ ∃Y1 G1 ∨ ... ∨ ∃n Gn. By induction hypothesis,

P∗, T |= ¬Gi for every 1 ≤ i ≤ n, therefore P∗, T |= ¬G .

Completeness of Negation as Failure

Theorem 41 ([JL87])

If P∗, T |= ¬G then G is finitely failed.

We show that if G is not finitely failed then P∗, T ,∃(G) is satisfiable. If
G has a success then by the soundness of CSLD resolution, P∗, T |= ∃G .
Else G has a fair infinite derivation G = c0|G0 −→ c1|G1 −→ ...

For every i ≥ 0, ci is T -satisfiable, thus by the compactness theorem,

cω =
⋃

i≥0 ci is T -satisfiable. Let X be a model of T s.t. X |= ∃(cω).

Let I0 = {Aρ | A ∈ Gi for some i ≥ 0 and X |= cωρ}. As the derivation

is fair, every atom A in I0 is selected, thus cω|A −→ cω|A1, ...,An with

[cω|A] ∪ ... ∪ [cω|An] ⊆ I0. We deduce that I0 ⊆ TX
P (I0). By

Knaster-Tarski’s theorem, the iterated application up to ordinal ω of the

operator TX
P from I0 leads to a fixed point I s.t. I0 ⊆ I , thus [cω|G0] ∈ I .

Hence P∗,∃(G) is X -satisfiable, and P∗, T ,∃(G) is satisfiable.

Part V: Concurrent Constraint
Programming

17 Introduction
Syntax
CC vs. CLP

18 Operational Semantics
Transitions
Properties
Observables

19 Examples
append
merge
CC(FD)

The Paradigm of Constraint Programming

memory of values
programming variables

memory of constraints
mathematical variables

Xi ∈ [3, 15]

ΣaiXi ≥ b

card(1, [X ≥ Y + 5,
Y ≥ X + 3])

Xi = Xj + 2
add

Xi ≥ 5?

test

V1

Vi

Vj

Vi := Vj + 1

rea
d

write

Concurrent Constraint Programs

Class of programming languages CC(X) introduced by Saraswat
[Sar93] as a merge of Constraint and Concurrent Logic
Programming.

Processes P ::= D.A
Declarations D ::= p(~x) = A,D | ε
Agents A ::= tell(c) | ∀~x(c → A) | A ‖ A | A + A | ∃xA | p(~x)

Constraint Store

CC agent CC agent

tellask

+

+ +

Translating CLP(X) into CC(X)
Declarations

CLP(X) program:

A← c |B,C
A← d |D,E
B ← e

equivalent CC(X) declaration:

A = tell(c)||B||C + tell(d)||D||E
B = tell(e)

This is just a process calculus syntax for CLP programs. . .

Translating CC(X) without ask into
CLP(X)

(CC agent)† = CLP goal

(tell(c))† = c
(A || B)† = A†,B†

(A + B)† = p(~x) where ~x = fv(A) ∪ fv(B) and
p(~x)← A†

p(~x)← B†

(∃x A)† = q(~y) where ~y = fv(A) \ {x} and
q(~y)← A†

(p(~x))† = p(~x)

The ask operation c → A has no CLP equivalent.

It is a new synchronization primitive between agents.

CC Computations

Concurrency = communication (shared variables)
+ synchronization (ask)

Communication channels, i.e. variables, are transmissible by agents
(like in π-calculus, unlike CCS, CSP, Occam,...)

Communication is additive (a constraint will never be removed),
monotonic accumulation of information in the store (as in CLP, as
in Scott’s information systems)

Synchronization makes computation both data-driven and
goal-directed.

No private communication, all agents sharing a variable will see a
constraint posted on that variable,

Not a parallel implementation model.

CC(X) Configurations

Configuration (~x ; c ; Γ): store c of constraints, multiset Γ of agents,
modulo ≡ the smallest congruence s.t.:

X -equivalence
ca`Xd

c ≡ d

α-Conversion
z 6∈ fv(A)

∃yA ≡ ∃zA[z/y]

Parallel (~x ; c ;A ‖ B, Γ) ≡ (~x ; c ;A,B, Γ)

Hiding
y 6∈ fv(c , Γ)

(~x ; c ;∃yA, Γ) ≡ (~x , y ; c ;A, Γ)

y 6∈ fv(c , Γ)

(~x , y ; c ; Γ) ≡ (~x ; c ; Γ)

CC(X) Transitions

Interleaving semantics

Procedure call
(p(~y) = A) ∈ D

(~x ; c ; p(~y), Γ) −→ (~x ; c ;A, Γ)

Tell (~x ; c ; tell(d), Γ) −→ (~x ; c ∧ d ; Γ)

Ask
c `X d [~t/~y]

(~x ; c ;∀~y(d → A), Γ) −→ (~x ; c ;A[~t/~y], Γ)

Blind choice (~x ; c ;A + B, Γ) −→ (~x ; c ;A, Γ)
(local/internal) (~x ; c ;A + B, Γ) −→ (~x ; c ;B, Γ)

CC(X) extra rules

Guarded choice
c `X cj

(~x ; c ; Σici → Ai , Γ) −→ (~x ; c ;Aj , Γ)
(global/external)

AskNot
c `X ¬d

(~x ; c ;∀~y(d → A), Γ) −→ (~x ; c ; Γ)

Sequentiality
(~x ; c ; Γ) −→ (~x ; d ; Γ′)

(~x ; c ; (Γ;∆),Φ) −→ (~x ; d ; (Γ′;∆),Φ)

(~x ; c ; (∅; Γ),∆) −→ (~x ; d ; Γ,∆)

Properties of CC Transitions (1)

Theorem 42 (Monotonicity)

If (~x ; c ; Γ)→ (~y ; d ;∆) then (~x ; c ∧ e; Γ,Σ)→ (~y ; d ∧ e;∆,Σ) for
every constraint e and agents ∆.

Proof.
tell and ask are monotonic (monotonic conditions in guards).

Corollary 43

Strong fairness and weak fairness are equivalent.

Properties of CC Transitions (2)

A configuration without + is called deterministic.

Theorem 44 (Confluence)

For any deterministic configuration κ with deterministic
declarations,
if κ→ κ1 and κ→ κ2 then κ1 → κ′ and κ2 → κ′ for some κ′.

Corollary 45

Independence of the scheduling of the execution of parallel agents.

Properties of CC Transitions (3)

Theorem 46 (Extensivity)

If (~x ; c ; Γ)→ (~y ; d ;∆) then ∃~yd `X ∃~xc.

Proof.
For any constraint e, c ∧ e `X c .

Theorem 47 (Restartability)

If (~x ; c ; Γ)→∗ (~y ; d ;∆) then (~x ;∃~yd ; Γ)→∗ (~y ; d ;∆).

Proof.
By extensivity and monotonicity.

CC(X) Operational Semanticssss

• observing the set of success stores,

Oss(D.A; c) = {∃~xd ∈ X |(∅; c ;A) −→∗ (~x ; d ; ε)}

• observing the set of terminal stores (successes and
suspensions),

Ots(D.A; c) = {∃~xd ∈ X |(∅; c ;A) −→∗ (~x ; d ; Γ) Y−→}

• observing the set of accessible stores,

Oas(D.A; c) = {∃~xd ∈ X |(∅; c ;A) −→∗ (~x ; d ;B)}

• observing the set of limit stores?

O∞(D.A; c0) = {t?{∃~xici}i≥0|(∅; c0;A) −→ (~x1; c1; Γ1) −→ ...}

CC(H) ’append’ Program(s)

Undirectional CLP style

append(A,B,C) = tell(A = [])||tell(C = B)
+tell(A = [X |L])||tell(C = [X |R])||append(L,B,R)

Directional CC success store style

append(A,B,C) = (A = []→ tell(C = B))
+∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))

Directional CC terminal store style

append(A,B,C) = A = []→ tell(C = B)
||∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))

CC(H) ’merge’ Program

Merging streams

merge(A,B,C) = (A = []→ tell(C = B))
+(B = []→ tell(C = A))
+∀X , L(A = [X |L]→ tell(C = [X |R])||merge(L,B,R))
+∀X , L(B = [X |L]→ tell(C = [X |R])||merge(A, L,R))

Good for the Oss observable(s?)

Many-to-one communication:
client(C1, ...)
...
client(Cn, ...)
server([C1, ...,Cn], ...) =∑n

i=1 ∀X , L(Ci = [X |L]→ ...||server([C1, ..., L, ...,Cn], ...)

CC(FD) Finite Domain Constraints

Approximating ask condition with the Elimination condition

EL: c ∧ Γ −→ Γ
if FD |= cσ for every valuation σ of the variables in c by values of
their domain.

ask(X ≥ Y + k) = min(X) ≥ max(Y) + k

asknot(X ≥ Y + k) = max(X) < min(Y) + k

ask(X 6= Y) = max(X) < min(Y) ∨min(X) > max(Y)
a better approximation:
= (dom(X) ∩ dom(Y) = ∅)

CC(FD) Constraints

Basic constraints
(X ≥ Y + k) = X in min(Y) + k .. ∞ || Y in 0 .. max(X)− k

Reified constraints
(B ⇔ X = A) = B in 0..1 ||

X = A→ B = 1 || X 6= A→ B = 0 ||
B = 1→ X = A || B = 0→ X 6= A

Higher-order constraints
card(N, L) = L = []→ N = 0 ||

L = [C |S]→
∃B,M (B ⇔ C || N = B + M || card(M,S))

Andora Principle

“Always execute deterministic computation first”.

Disjunctive scheduling:

deterministic propagation of the disjunctive constraints for which
one of the alternatives is dis-entailed:

card(1, [x ≥ y + dy , y ≥ x + dx])

before creating choice points:

(x ≥ y + dy) + (y ≥ x + dx)

Constructive Disjunction in CC(FD) (1)

∨L
c `X e d `X e

c ∨ d `X e

Intuitionistic logic tells us we can infer the common information to
both branches of a disjunction without creating choice points!

max(X ,Y ,Z) = (X > Y ||Z = X) + (X <= Y ||Z = Y)
or
max(X ,Y ,Z) = X > Y → Z = X + X <= Y → Z = Y .
or
max(X ,Y ,Z) = X > Y → Z = X || X <= Y → Z = Y .
better?
max(X ,Y ,Z) = Z in min(X)..∞ || Z in min(Y)..∞

|| Z in dom(X) ∪ dom(Y)

Constructive Disjunction in CC(FD) (2)

Disjunctive precedence constraints

disjunctive(T1,D1,T2,D2) =
(T1 >= T2 + D2)+
(T2 >= T1 + D1)

Using constructive disjunction

disjunctive(T1,D1,T2,D2) =
T1 in (0..max(T2)− D1) ∪ (min(T2) + D2..∞) ||
T2 in (0..max(T1)− D2) ∪ (min(T1) + D1..∞)

Part VI: CC - Denotational Semantics

20 Deterministic Case
Syntax
I/O Function
Terminal Stores

21 Constraint Propagation
Closure Operators
Chaotic Iteration

22 Non-deterministic Case
Problems
Blind Choice
Example: merge

23 Sequentiality

Deterministic CC

Agents:
A ::= tell(c) | c → A | A ‖ A | ∃xA | p(~x)

• No choice operator

• Deterministic ask.

Replace non-deterministic pattern matching

∀~x(c → A)

by deterministic ask and tell:

(∃~xc)→ ∃~x(tell(c)||A)

Denotational semantics: input/output
function

Input: initial store c0

Output: terminal store c or false for infinite computations

Order the lattice of constraints (C,≤) by the information ordering:
∀c , d ∈ C c ≤ d iff d `X c iff ↑ d ⊆↑ c where
↑ c = {d ∈ C | c ≤ d}.

JD.AK : C → C is

1 Extensive: ∀c c ≤ JD.AKc
2 Monotone: ∀c , d c ≤ d ⇒ JD.AKc ≤ JD.AKd
3 Idempotent: ∀c JD.AKc = JD.AK(JD.AKc)

i.e. JD.AK is a closure operator over (C,≤).

Closure Operators

Proposition 48

A closure operator f is characterized by the set of its fixpoints
Fix(f).

Proof.
We show that f = λx .min(Fix(f)∩ ↑ x).
Let y = f (x). By idempotence and extensivity, y ∈ Fix(f)∩ ↑ x .
By monotonicity y = f (x) ≤ f (y ′) for any y ′ ∈↑ x .
Hence, if y ′ ∈ Fix(f)∩ ↑ x then y ≤ y ′.

Semantic Equations

Let JK : D × A→ P(C) be a closure operator presented by the set
of its fixpoints, and defined as the least fixpoint set of the
equations:

JD.tell(c)K =↑ c (' λs.s ∧ c)

JD.c → AK = (C\ ↑ c) ∪ (↑ c ∩ JD.AK)
(' λs. if s `C c then JD.AKs else s)

JD.A||BK = JD.AK ∩ JD.BK (' Y (λs.JD.AKJD.BKs))

JD.∃xAK = {d | c ∈ JD.AK, ∃xc = ∃xd} (' λs.∃xJD.AK∃xs)

JD.p(~x)K = JD.A[~x/~y]K if p(~y) = A ∈ D (' λs.JD.A[~x/~y]Ks)

Theorem 49 ([SRP91])

For any deterministic process D.A

Ots(D.A; c) =

{
{min(JD.AK∩ ↑ c)} if JD.AK 6= ∅
∅ otherwise

Constraint Propagation and Closure
Operators

An environment E : V →2D associates a domain of possible values
to each variable.

Consider the lattice of environments (E ,v), for the information
ordering defined by E v E ′ if and only if ∀x ∈ V, E (x) ⊇ E ′(x).

The semantics of a constraint propagator c can be defined as a
closure operator over E , noted c , i.e. a mapping E → E satisfying

1 (extensivity) E v c(E),

2 (monotonicity) if E v E ′ then c(E) v c(E ′)

3 (idempotence) c(c(E)) = c(E).

Example in CC(FD)

Let b = (x > y) and c = (y > x).

Let E (x) = [1, 10], E (y) = [1, 10] be the initial environment

we have

bE (x) = [2, 10]

cE (x) = [1, 9]

(b t c)E (x) = [2, 9]

The closure operator b, c associated to the conjunction of
constraints b ∧ c gives the intended semantics:

b, cE (x) = Y (λs.b(c(s)))E (x) = ∅

Chaotic Iteration of Monotone Operators

Let L(v,⊥,>,t,u) be a complete lattice, and F : Ln → Ln a
monotone operator over Ln with n > 0.

The chaotic iteration of F from D ∈ Ln for a fair transfinite choice
sequence < Jδ : δ ∈ Ord > is the sequence < X δ >:

X 0 = D,

Xi
δ+1 = Fi (X

δ) if i ∈ Jδ, Xi
δ+1 = Xi

δ otherwise,

Xi
δ =

⊔
α<δXi

α for any limit ordinal δ.

Theorem 50 ([CC77])

Let D ∈ Ln be a pre fixpoint of F (i.e. D v F (D)). Any chaotic
iteration of F starting from D is increasing and has for limit the
least fixpoint of F above D.

Constraint Propagation as Chaotic
Iteration

Corollary 51 (Correctness of constraint propagation)

Let c = a1 ∧ ... ∧ an, and E be an environment. Then c(E) is the
limit of any fair iteration of closure operators a1, ..., an from E.

Let F : Ln+1 → Ln+1 be defined by its projections Fi ’s:
E1 = a1(E) = F1(E1, . . . ,En,E)
E2 = a2(E) = F2(E1, . . . ,En,E)
. . .
En = an(E) = Fn(E1, . . . ,En,E)
E = E1 ∩ · · · ∩ En = Fn+1(E1, . . . ,En,E)

The functions Fi ’s are obviously monotonic, any fair iteration of
a1, ..., an is thus a chaotic iteration of F1, ...,Fn+1 therefore its
limit is equal to the least fixpoint greater than E , i.e. c(E).

Denotational Semantics of
Non-deterministic CC

Problem: the set of terminal stores of a CC process with one step
guarded choice (i.e. global choice) is not compositional:

A = ask(x = a)→ tell(y = a)

+ ask(true)→ tell(false)

B = tell(x = a ∧ y = a)

A and B have the same set of terminal stores

↑ {x = a ∧ y = a}

(with global choice C\ ↑ (x = a) is not a terminal store for A)

but that is not the case for ∃xB and ∃xA

y = a is a terminal store for ∃xB and not for ∃xA...

Non-deterministic CC(X) with Local
Choice (1)

The set of terminal stores of a CC process with blind choice can be
characterized easily by adding the semantic equation:
JD.A + BK = JD.AK ∪ JD.BK

Theorem 52 ([dBGP96])

JD.AK =
⋃

c∈C Ots(D.A; c)

but the input-output relation cannot be recovered from JD.AK:

Jtell(true)K = C
Jtell(true) + tell(c)K = C

Ots(tell(true); true) = {true}
Ots(tell(true) + tell(c); true) = {true, c}

Idea: define JK : D × A→ P(P(C)) to distinguish between
branches.

Non-deterministic CC(X) with Local
Choice (2)

Let JK : D × A→ P(P(C)) be the least fixpoint (for ⊆) of

JD.cK = {↑ c}
JD.c → AK = {C\ ↑ c} ∪ {↑ c ∩ X |X ∈ JD.AK}

JD.A||BK = {X ∩ Y | X ∈ JD.AK, Y ∈ JD.BK}
JD.A + BK = JD.AK ∪ JD.BK

JD.∃xAK = {{d | ∃xc = ∃xd , c ∈ X}|X ∈ JD.AK}
JD.p(~x)K = JD.A[~x/~y]K

Theorem 53 ([MFP97])

For any process D.A,
Ots(D.A; c) = {d | there exists X ∈ JD.AK s.t. d = min(↑ c ∩ X)}.

’merge’ Example Revisited

Merging streams

merge(A,B,C) =
(A = []→ tell(C = B)) ||
(B = []→ tell(C = A)) ||

(∀X , L(A = [X |L]→ tell(C = [X |R])||merge(L,B,R)) +
∀X , L(B = [X |L]→ tell(C = [X |R])||merge(A, L,R)))

Do we have the expected terminal stores?
No!

for merge(X , [1|Y],Z) we don’t get 1 in Z , the merging is not
greedy. . .

Sequentiality

Let us define a new operator, •, as follows:

(X ; c ;A) −→ (Y ; d ;B)

(X ; c ;A • C , Γ) −→ (Y ; d ;B • C , Γ)
(X ; c ; ∅•A) −→ (X ; c ;A)

We can characterize completely the observables of any CCseq

program, D.A, by those of a new CC (without •) program, D•.A•,
in a new constraint system, C•.

Proof

Let ok be a new relation symbol of arity one. C• is the constraint
system C to which ok is added, without any non-logical axiom.
The program D•.A• is defined inductively as follows:

(p(~y) = A)• = p•(x , ~y) = A•x

A• = ∃xA•x
tell(c)•x = tell(c ∧ ok(x))

p(~y)•x = p•(x , ~y)

(A ‖ B)•x = ∃y , z(A•y ‖ B•z ‖ (ok(y) ∧ ok(z))→ ok(x))

(A + B)•x = A•x + B•x

(∀~y(c → A))•x = ∀~z(c[~z/~y]→ A[~z/~y]•x) with x 6∈ ~z
(∃yA)•x = ∃zA[z/y]•x with z 6= x

(A • B)•x = ∃y(A•y ‖ ok(y)→ B•x)

Part VII: CC and Linear Logic

24 CC - Logical Semantics
Intuitionistic
Linear
Soundness
Completeness

25 Must Properties
Definition
Soundness
Completeness

26 Program Analysis
Equivalence
Phase Semantics

27 LCC
Syntax and Operational Semantics
Examples

Logical Semantics of CC?

• CC calculus is sound but not complete
w.r.t. CLP logical semantics (interpreting asks as tells)

• Interpreting ask(c → A) as logical implication leads to
identify CC transitions with logical deductions:

left → c `C d

c ∧ (d → A†) ` c ∧ A†
p(~x) `D A†

c ∧ p(~x) ` c ∧ A†

(reverses the arrow of CLP interpretation...)

• To distinguish between successes and accessible stores
agents shouldn’t disappear by the weakening rule:

leftW
Γ ` c

Γ,A† ` c

Linear Logic

• Introduced by Jean-Yves Girard in 1986 as a new constructive
logic without the asymmetry of intuitionistic logic (sequent
calculus with symmetric left and right sides)

• Logic of resource consumption

A⊗ A 6`LL A

A⊗ (A (B) `LL B

A⊗ (A (B) 6`LL A⊗ B

• !A provides arbitrary duplication (unbounded throwable
resource)

!A⊗ (A (B) `LL !A⊗ B `LL B

• Sequent calculus without weakening and contraction

Intuitionistic Linear Logic

Multiplicatives

Γ,A,B ` C

Γ,A⊗ B ` C

Γ ` A ∆ ` B

Γ,∆ ` A⊗ B

Γ ` A ∆,B ` C

∆, Γ,A (B ` C

Γ,A ` B

Γ ` A (B

Additives

Γ,A ` C Γ,B ` C

Γ,A⊕ B ` C

Γ ` A

Γ ` A⊕ B

Γ ` B

Γ ` A⊕ B

Γ,A ` C

Γ,A & B ` C

Γ,B ` C

Γ,A & B ` C

Γ ` A Γ ` B

Γ ` A & B

Constants

Γ ` A

Γ, 1 ` A
` 1 ⊥ ` Γ `

Γ ` ⊥
Γ ` > Γ, 0 ` A

Intuitionistic Linear Logic (cont.)

Axiom - Cut

A ` A
Γ ` A ∆,A ` B

∆, Γ ` B

Bang

Γ,A ` B

Γ, !A ` B

Γ, !A, !A ` B

Γ, !A ` B

Γ ` B

Γ, !A ` B

!Γ ` A

!Γ `!A

Quantifiers

Γ,A[t/x] ` B

Γ,∀xA ` B

Γ ` A

Γ ` ∀xA
x 6∈ fv(Γ)

Γ,A ` B

Γ,∃xA ` B
x 6∈ fv(Γ,B)

Γ ` A[t/x]

Γ ` ∃xA

Intuit. Linear Logic = the Logic of CC
agents

Translation:
(c → A)† = c (A† (A ‖ B)† = A† ⊗ B† tell(c)† =!c
(A + B)† = A† & B† (∃xA)† = ∃xA† p(~x)† = p(~x)

(X ; c ; Γ)† = ∃X (!c ⊗ Γ†)

Axioms: !c `!d for all c `C d p(~x) ` A† for all p(~x) = A ∈ D

Soundness and Completeness
If (c ; Γ) −→CC (d ;∆) then c† ⊗ Γ† `ILL(C,D) d† ⊗∆†.

If A† `ILL(C,D) c then there exists a success store d such that
(true;A) −→CC (d ; ∅) and d `C c .
If A† `ILL(C,D) c ⊗> then there exists an accessible store d such
that (true;A) −→CC (d ; Γ) and d `C c .

Soundness

Theorem 54 (Soundness of transitions)

Let (X ; c ; Γ) and (Y ; d ;∆) be CC configurations.
If (X ; c ; Γ) ≡ (Y ; d ;∆) then (X ; c ; Γ)†a`ILL(C,D)(Y ; d ;∆)†.

If (X ; c ; Γ) −→ (Y ; d ;∆) then (X ; c ; Γ)† `ILL(C,D) (Y ; d ;∆)†.

Proof.
By induction on ≡. Immediate.
By induction on −→.
The choice operator + is translated by the additive conjunction & ,
which expresses “may” properties: A & B ` A and A & B ` B.

Completeness I

Theorem 55 (Observation of successes)

Let A be a CC agent and c be a constraint.
If A† `ILL(C,D) c, then there exists a constraint d such that
(∅; 1; A) −→ (X ; d ; ∅) and ∃Xd `C c.

Proof.
By induction on a sequent calculus proof π of A1

†, . . . , An
†

`ILL(C,D) φ,
where the Ai ’s are agents and φ is either a constraint or a
procedure name.

Completeness II

Recall that > is the additive true constant neutral for & .

Theorem 56 (Observation of accessible stores)

Let A be a CC agent and c be a constraint.
If A† `ILL(C,D) c ⊗>, then c is a store accessible from A,
i.e. there exist a constraint d and a multiset Γ of agents such that
(∅; 1; A) −→ (X ; d ; Γ) and ∃Xd `C c.

Proof.
The proof uses the first completeness theorem, and proceeds by

an easy induction for the right introduction of the tensor
connective in c ⊗>.

Observing “must” Properties

Properties true on all branches on the derivation tree.
Redefine the operational semantics by a rewriting relation on
frontiers, i.e. multisets of configurations
Blind choice

〈(X ; c ;A + B),Φ〉 =⇒ 〈(X ; c ;A), (X ; c ;B),Φ〉

Tell
〈(X ; c ; tell(d), Γ),Φ〉 =⇒ 〈(X ; c ∧ d ; Γ),Φ〉

Ask
c `C d ⊗ e

〈(X ; c ; e → A, Γ),Φ〉 =⇒ 〈(X ; d ;A, Γ),Φ〉
Procedure calls

(p(~y) = A) ∈ D
〈(X ; c ; p(~y), Γ),Φ〉 =⇒ 〈(X ; c ;A, Γ),Φ〉

Translating the Frontier Calculus in LL
with ⊕

Translate
(A + B)‡ = A‡ ⊕ B‡

〈(X ; c ;A),Φ〉‡ = ∃X (c‡ ⊗ A‡)⊕ Φ‡

same translation for the other operations

Theorem 57 (Soundness of transitions)

Let Φ and Ψ be two frontiers.
If Φ ≡ Ψ then (Φ)‡a`ILL(C,D)(Ψ)‡.

If Φ =⇒ Ψ then Φ‡ `ILL(C,D) Ψ‡.

Completeness III for “must” Properties

Theorem 58 (Observation of frontiers’ accessible stores)

Let A be a CC agent and c be a constraint.
If A‡ `ILL(C,D) c ⊗>
then 〈(∅; 1; A)〉 =⇒ 〈(X1; d1; Γ1), ..., (Xn; dn; Γn)〉 with
∀j ∃Xjdj `C c

Theorem 59 (Observation of frontiers’ success stores)

Let A be an CC agent and c be a constraint.
If A‡ `ILL(C,D) c
then 〈(∅; 1; A)〉 =⇒ 〈(X1; d1; ∅), ..., (Xn; dn; ∅)〉 with ∀j ∃Xjdj `C c

Logical Equivalence of CC programs

Let P = D.A be a CC(C) process.

Corollary 60

If P†a`ILL(C,D)P
′†

then Oss(P) = Oss(P
′) (same set of success stores)

and Oas(P) = Oas(P
′) (same set of accessible stores).

Corollary 61

If P‡a`ILL(C,D)P
′‡

then P and P ′ have the same set of accessible stores on all
branches
and the same success frontiers.

Proving Properties of CC Programs

• Proving logical equivalence of CC programs with the sequent
calculus of LL:

• focusing proofs (deterministic rules for the additives first)
• lazy splitting (input/output contexts for the multiplicatives)

• Proving safety properties of CC programs with the phase
semantics of LL [FRS98]
Soundness gives Γ `ILL A implies ∀P∀η P, η |= (Γ ` A).
∃P, η, s.t. P, η 6|= (Γ ` A) implies Γ 6`ILLC,D A.

Corollary 62

To prove a safety property (c ,A) Y−→ (d ,B), it is enough to show
that ∃ a phase space P, a valuation η , and an element
a ∈ η((c ,A)†) such that a 6∈ η((d ,B)†).

Implementations of LL Sequent Calculi

• Forum [Miller&al.] specification languages based on LL

• LO [Andreoli] Property of “focusing proofs” in LL

• Lolli [Cervesato Hodas Pfenning] Search for “Uniform proofs”

• Lygon [Harland Winikoff] Linear Logic Programming language

Problem of lazy splitting:

` A, Γ ` B,∆

` A⊗ B, Γ,∆
(⊗)

First idea:
` A− (Γ,∆); ∆ ` B,∆

` A⊗ B, Γ,∆
(⊗)

• problems with the rules for ! and for >. . .

• stacks are necessary

Linear Constraint Systems (C,`C)

C is a set of formulas built from V , Σ with logical operators: 1, ⊗,
∃ and !;

C⊆ C × C defines the non-logical axioms of the constraint system.

`C is the least subset of C? × C containing
C and closed by:

c ` c
Γ, c ` d ∆ ` c

Γ,∆ ` d
` 1

Γ ` c

Γ, 1 ` c

Γ ` c1 ∆ ` c2

Γ,∆ ` c1 ⊗ c2

Γ, c1, c2 ` c

Γ, c1 ⊗ c2 ` c

Γ ` c[t/x]

Γ ` ∃x c

Γ, c ` d

Γ,∃x c ` d
x 6∈ fv(Γ, d)

Γ, c ` d

Γ, !c ` d

!Γ ` d

!Γ `!d
Γ ` d

Γ, !c ` d

Γ, !c , !c ` d

Γ, !c ` d

A synchronization constraint is a constraint not appearing in
C

Linear-CC(C) Operational Semantics

Equivalence
(X ; c ; Γ) ≡ (X ′; c ′; Γ′) −→ (Y ′; d ′;∆′) ≡ (Y ; d ;∆)

(X ; c ; Γ) −→ (Y ; d ;∆)

Tell (X ; c ; tell(d), Γ) −→ (X ; c ⊗ d ; Γ)

Ask
c `C d [~t/~y]⊗ e

(X ; c ;∀~y(d → A), Γ) −→ (X ; e;A[~t/~y], Γ)

Hiding
y 6∈ X ∪ fv(c , Γ)

(X ; c ;∃yA, Γ) −→ (X ∪ {y}; c ;A, Γ)

Procedure calls
(p(~y) = A) ∈ D

(X ; c ; p(~y), Γ) −→ (X ; c ;A, Γ)

Blind choice (X ; c ;A + B, Γ) −→ (X ; c ;A, Γ)
(X ; c ;A + B, Γ) −→ (X ; c ;B, Γ)

An LCC(FD) program for the dining
philosophers

Goal(N) = RecPhil(1,N).
RecPhil(M,P) =

M 6= P → (Philo(M,P) ‖ fork(M) ‖ RecPhil(M+1,P))
‖

M = P → (Philo(M,P) ‖ fork(M)).
Philo(I,N) =

(fork(I) ⊗ fork(I+1 mod N)) →
(eat(I) ‖
eat(I) → (fork(I) ‖ fork(I+1 mod N) ‖

Philo(I,N))).

Safety properties: deadlock freeness, two neighbors don’t eat at
the same time, etc.

Encoding Linda in LCC(H)

• Shared tuple space

• Asynchronous communication (through tuple space)

• input consumes the tuple, read doesn’t

• One-step guarded choice

• Conditional with else case (check the absence of tuple) not
encodable in LCC.

Encoding the π-calculus in LCC(H)

• Direct encoding of the asynchronous π-calculus:

[0] = 1
[(y)P] = ∃y [P]
[xy .0] = tell(c(x , y))
[x(y).P] = ∀y c(x , y)→ [P]
[P|Q] = [P]||[Q]
[[x = y]P] = (x = y)→ [P]
[P + Q] = [P] + [Q]

• The usual (synchronous) π-calculus can be simulated with a
synchronous communication protocol.

Producer Consumer Protocol in LCC

P = dem → (pro ‖ P)
C = pro → (dem ‖ C)
init = demn ‖ Pm ‖ Ck

Deadlock-freeness: init Y−→LCC demn′ ‖ Pm′ ‖ Ck ′ ‖ prol ′ , with
either n′ = l ′ = 0 or m′ = 0 or k ′ = 0

Number of units consumed always < number of units produced:
P = dem → (pro ‖ P ‖ ∀X (np=X → np=X+1))
C = pro → (dem ‖ C ‖ ∀X (nc=X → nc=X+1))
init = demn ‖ Pm ‖ Ck ‖ np=0 ‖ nc=0
init Y−→LCC demn′ ‖ prol ′ ‖ Pm ‖ Ck ‖ np=np0 ‖ nc=nc0

with nc0 > np0

Part VIII: LCC

28 Operational Semantics

29 Examples
Dining Philosophers
Indexicals

30 Logical Semantics
Intuitionistic Linear Logic
Phase Semantics
Example

LCC Operational Semantics

Tell (X ; c ; tell(d), Γ) −→ (X ; c ⊗ d ; Γ)

Ask
c `C d ⊗ e[~t/~y]

(X ; c ;∀~y(e → A), Γ) −→ (X ; d ;A[~t/~y], Γ)

Hiding
y 6∈ X ∪ fv(c , Γ)

(X ; c ;∃yA, Γ) −→ (X ∪ {y}; c ;A, Γ)

Proc. call
(p(~y) = A) ∈ D

(X ; c ; p(~y), Γ) −→ (X ; c ;A, Γ)

Choice (X ; c ;A + B, Γ) −→ (X ; c ;A, Γ)
(X ; c ;A + B, Γ) −→ (X ; c ;B, Γ)

Congr.
z 6∈ fv(A)

∃yA ≡ ∃zA[z/y]
A ‖ B ≡ B ‖ A A ‖ (B ‖ C) ≡ (A ‖ B) ‖ C

An LCC(FD) program for the dining
philosophers

Goal(N) = RecPhil(1,N).

RecPhil(M,P) =
M 6= P → (Philo(M,P) ‖ fork(M) ‖ RecPhil(M+1,P))

‖
M = P → (Philo(M,P) ‖ fork(M)).

Philo(I,N) =
(fork(I) ⊗ fork(I+1 mod N)) →

(eat(I) ‖
eat(I) → (fork(I) ‖ fork(I+1 mod N) ‖

Philo(I,N))).

CC(FD) in LCC(H)

fd(X) = tell(min(X,min integer) ⊗ max(X,max integer))

’x≥1y+c’(X,Y,C) =
min(X,MinX) ⊗ min(Y,MinY) ⊗ (MinX<MinY+C)
→ (tell(min(X,MinY+C) ⊗ min(Y,MinY))
‖ ’x≥1y+c’(X,Y,C))

’x≥y+c’(X,Y,C) = ’x≥1y+c’(X,Y,C) ‖ ’x≥2y+c’(X,Y,C)

’ask(x≥y)→a’(X,Y,A) =
min(X,MinX) ⊗ max(Y,MaxY) ⊗ (MinX>MaxY)

→ A ‖ tell(min(X,MinX) ⊗ max(Y,MaxY))

CC(FD) propagators, including indexicals, are now easily
embedded in LCC.

Imperative variables allow a finer control, which is necessary for
certain constraint solvers, see for instance the implementation of a
Simplex solver in LCC [Sch99].

Logical Semantics

Simple translation of LCC into ILL:

tell(c)† = c p(~x)† = p(~x)
∀~y(c → A)† = ∀~y (c (A†) (A ‖ B)† = A† ⊗ B†

(A + B)† = A† & B† (∃xA)† = ∃xA†

ILL(C,D) denotes the deduction system obtained by adding to
intuitionistic linear logic the axioms:

• c ` d for every c
C d in
C ,

• p(~x) ` A† for every declaration p(~x) = A in D.

Same soundness/completeness as CC.

Phase Semantics

A phase space P = 〈P,×, 1,F〉 is a structure such that:

1 〈P,×, 1〉 is a commutative monoid.

2 the set of facts F is a subset of P such that: F is closed by
arbitrary intersection, and for all A ⊂ P, for all F ∈ F ,

A (F = {x ∈ P : ∀a ∈ A, a× x ∈ F} is a fact.

We define the following operations:

A & B = A ∩ B

A⊗B =
⋂
{F ∈ F : A×B ⊂ F} A⊕B =

⋂
{F ∈ F : A∪B ⊂ F}

∃xA =
⋂
{F ∈ F : (

⋃
x

A) ⊂ F} ∀xA =
⋂
{F ∈ F : (

⋂
x

A) ⊂ F}

We’ll note > the fact P, 0 =
⋂
{F ∈ F} and

1 =
⋂
{F ∈ F | 1 ∈ F}.

Interpretation

Let η be a valuation assigning a fact to each atomic formula such
that: η(>) = >, η(1) = 1 and η(0) = 0.

We can now define inductively the interpretation of a sequent:

η(Γ ` A) = η(Γ) (η(A) η(Γ) = 1 if Γ is empty

η(Γ,∆) = η(Γ)⊗ η(∆) η(A⊗ B) = η(A)⊗ η(B)

η(A & B) = η(A) & η(B) η(A (B) = η(A) (η(B)

We then define the notion of validity as follows:
P, η |= (Γ ` A) iff 1 ∈ η(Γ ` A), thus η(Γ) ⊂ η(A).

Soundness:

Γ `ILL A implies ∀P,∀η,P, η |= (Γ ` A).

Phase Counter-Models

We impose to every valuation η to satisfy the non-logical axioms of
ILLC,D:

• η(c) ⊂ η(d) for every c
C d in
C ,

• η(p) ⊂ η(A†) for every declaration p = A in D.

The contrapositive of the two soundness theorems becomes:

Theorem 63
to prove a safety property of the form

(X ; c ;A) Y−→ (Y ; d ;B)

It is enough to show

∃P,∃η, ∃a ∈ η((X ; c ;A)†) such that a 6∈ η((Y ; d ;B)†).

Producer Consumer Protocol in LCC

P = dem → (pro ‖ P)
C = pro → (dem ‖ C)
init = demn ‖ Pm ‖ Ck

Deadlock-freeness: init Y−→ demn′ ‖ Pm′ ‖ Ck ′ ‖ prol ′ , with either
n′ = l ′ = 0 or m′ = 0 or k ′ = 0

Let us consider the structure (N,×, 1,P(N)), it is obviously a
phase space.

Let us define the following valuation:

η(P) = {2} η(C) = {3} η(dem) = {5} η(pro) = {5}

η(init) = {2m · 3k · 5n}

Proof

• We have to check the correctness of η:
∀p1 ∈ η(P),∃p2 ∈ η(P), dem · p1 = pro · p2, hence
η(P) ⊂ η(body of P).
The same for C, and η(init) = η(body of init).

• Instead of exhibiting a counter-example, we will prove Ab
absurdum that the inclusion
η(init) ⊂ η(demn′ ‖ Pm′ ‖ Ck ′ ‖ prol ′) is impossible.
Suppose η(init) ⊂ {5n′ · 2m′ · 3k ′ · 5l ′} Comparing the power
of 5, 3 and 2, anything else than: n′ + l ′ = n and m′ = m and
k ′ = k is impossible, and therefore if there is a deadlock
(n′ + l ′ = 0 6= n, or m′ = 0 6= m, or k ′ = 0 6= k) η(init) is
not a subset of its interpretation and thus init does not
reduce into it, qed.

Automatization

The search for a phase space can be automatized, if one accepts
some restrictions:

• always use the structure (N,×, 1,P(N));
[be careful that integers are invertible]

• always look for simple (singleton/doubleton/finite)
interpretations.
[might lead to confusions]

Bibliography I

Patrick Cousot and Radhia Cousot.

Abstract interpretation: A unified lattice model for static analysis of programs by construction or
approximation of fixpoints.
In POPL’77: Proceedings of the 6th ACM Symposium on Principles of Programming Languages, pages
238–252, New York, 1977. ACM Press.
Los Angeles.

Frank S. de Boer, Maurizio Gabbrielli, and Catuscia Palamidessi.

Proving correctness of constraint logic programming with dynamic scheduling.
In Proceedings of SAS’96, LNCS 1145. Springer-Verlag, 1996.

Giorgio Delzanno and Andreas Podelski.

Model checking in clp.
In Rance Cleaveland, editor, TACAS’99: Proceedings of the 5th International Conference on Tools and
Algorithms for Construction and Analysis of Systems, volume 1579 of Lecture Notes in Computer Science,
pages 223–239. Springer-Verlag, 1999.

François Fages, Paul Ruet, and Sylvain Soliman.

Phase semantics and verification of concurrent constraint programs.
In Proceedings of the 13thAnnual IEEE Symposium on Logic In Computer Science, pages 141–152,
Indianapolis, 1998. IEEE Computer Society.

Maurizio Gabbrielli and Giorgio Levi.

Modeling answer constraints in constraint logic programs.
In K. Furukawa, editor, Proceedings of ICLP’91, International Conference on Logic Programming, pages
238–252, Cambridge, 1991. MIT Press.

Bibliography II

Joxan Jaffar and Jean-Louis Lassez.

Constraint logic programming.
In Proceedings of the 14th ACM Symposium on Principles of Programming Languages, Munich, Germany,
pages 111–119. ACM, January 1987.

Michael J. Maher.

Logic semantics for a class of committed-choice programs.
In Proceedings of ICLP’87, International Conference on Logic Programming, 1987.

Kim Marriott Moreno Falaschi, Maurizio Gabbrielli and Catuscia Palamidessi.

Confluence in concurrent constraint programming.
Theoretical Computer Science, 183(2):281–315, 1997.

Vijay A. Saraswat.

Concurrent constraint programming.
ACM Doctoral Dissertation Awards. MIT Press, 1993.

Vincent Schächter.

Programmation concurrente avec contraintes fondée sur la logique linéaire.
PhD thesis, Université d’Orsay, Paris 11, 1999.

Udaya A. Shankar.

An introduction to assertional reasoning for concurrent systems.
ACM Computing Surveys, 25(3):225–262, 1993.

Vijay A. Saraswat, Martin C. Rinard, and Prakash Panangaden.

Semantic foundations of concurrent constraint programming.
In POPL’91: Proceedings of the 18th ACM Symposium on Principles of Programming Languages, 1991.

	The Constraint Programming paradigm
	Examples and Applications
	First Order Logic
	Formulas, Clauses
	Interpretations, Valuations

	Models
	H: Herbrand's Domain
	Skolemization

	Logical Theories
	Axiomatic Theories
	Complete Theories

	Constraint Languages
	Decidability in Complete Theories

	CLP(X)
	Definition
	Operational Semantics

	CLP(H)
	Prolog
	Examples

	CLP(R,FD,B)
	Constraint Propagation, Simplex, Arc-consistency
	CLP(R)
	CLP(FD)
	CLP(B)

	Operational Semantics
	Fixpoint Semantics
	Fixpoint Preliminaries
	Fixpoint Semantics of Successes
	Fixpoint Semantics of Computed Answers

	Program Analysis
	Abstract Interpretation
	Constraint-based Model Checking

	Logical Semantics of CLP(X)
	Soundness
	Completeness

	Automated Deduction
	Proofs in Group Theory

	CLP()
	-calculus
	Proofs in -calculus

	Negation as Failure
	Finite Failure
	Clark's Completion
	Soundness w.r.t. Clark's Completion
	Completeness w.r.t. Clark's Completion

	Introduction
	Syntax
	CC vs. CLP

	Operational Semantics
	Transitions
	Properties
	Observables

	Examples
	append
	merge
	CC(FD)

	Deterministic Case
	Syntax
	I/O Function
	Terminal Stores

	Constraint Propagation
	Closure Operators
	Chaotic Iteration

	Non-deterministic Case
	Problems
	Blind Choice
	Example: merge

	Sequentiality
	CC - Logical Semantics
	Intuitionistic
	Linear
	Soundness
	Completeness

	Must Properties
	Definition
	Soundness
	Completeness

	Program Analysis
	Equivalence
	Phase Semantics

	LCC
	Syntax and Operational Semantics
	Examples

	Operational Semantics
	Examples
	Dining Philosophers
	Indexicals

	Logical Semantics
	Intuitionistic Linear Logic
	Phase Semantics
	Example

