
Functional programming languages

Part V: functional intermediate representations

Xavier Leroy

INRIA Rocquencourt

MPRI 2-4-2, 2007

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 1 / 29

Intermediate representations in a compiler

Between high-level languages and machine code, compilers generally go
through one or several intermediate representations where, in particular:

Expressions are decomposed in a sequence of processor-level
instructions.

x = (y + z) * (a - b)

-->

t1 = y + z; t2 = a - b; x = t1 * t2;

Temporary variables (t1, t2) are introduced to hold intermediate
results.

These temporaries, along with program variables, can later be placed
in concrete locations: processor registers or stack slots.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 2 / 29

Outline

1 A conventional IR: RTL-CFG

2 CPS as a functional IR

3 Another functional IR: A-normal forms

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 3 / 29

A conventional IR: RTL-CFG

A conventional intermediate representation: RTL-CFG

(Register Transfer Language with Control-Flow Graph.)

A function = a set of processor-level instructions operating over variables
and temporaries, e.g.

x = y + z

t = load(x + 8)

if (t == 0)

Organized in a control-flow graph:

Nodes = instructions.

Edge from I to J = J can execute just after I .

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 4 / 29

A conventional IR: RTL-CFG

Example: some source code

double average(int * tbl, int size)

{

double s = 0.0;

int i;

for (i = 0; i < size; i++)

s = s + tbl[i];

return s;

}

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 5 / 29

A conventional IR: RTL-CFG

Example: the corresponding RTL graph

s = 0.0

i = 0

if (i >= size)

a = i << 2

b = load(tbl, a)

c = float(b)

s = s +f c

i = i + 1

d = float(size)

e = s /f d

return(e)

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 6 / 29

A conventional IR: RTL-CFG

Classic optimizations over RTL

Many classic optimizations can be performed on the RTL form.

Constant propagation

a = 1 a = 1

b = 2 --> b = 2

c = a + b c = 3

d = x - a d = x + (-1)

Dead code elimination

a = 1 nop

b = 2 --> b = 2

c = 3 c = 3

(if a unused later)

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 7 / 29

A conventional IR: RTL-CFG

Common subexpression elimination

c = a c = a

d = a + b --> d = a + b

e = c + b e = d

Hoisting of loop-invariant computations

L: c = a + b c = a + b

... --> L: ...

... -> L ... -> L

Induction variable elimination

i = 0 i = 0

L: a = i * 4 --> b = p

b = p + a L: ...

... b = b + 4

i = i + 1 -> L i = i + 1 -> L

. . . and much more. (See e.g. Steven Muchnick, Advanced Compiler

Design and Implementation, Morgan Kaufmann Publishers.)

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 8 / 29

A conventional IR: RTL-CFG

RTL optimizations and dataflow analysis

Problem: it is not obvious to see where these optimizations apply, because

1 A given variable or temporary can be defined several times.
(Unavoidable if the source language is imperative.)

2 The CFG is not a structured representation of control.

n = 1 n = 2

n = n + 1

n← 1

n statically unknown

n← 2

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 9 / 29

A conventional IR: RTL-CFG

RTL optimizations and dataflow analysis

Solution: use static analyses to determine opportunities for optimization,
e.g. dataflow analyses (a simple case of abstract interpretation).

Example: for constant propagation, use the abstract lattice

a := ⊤ | ⊥ | N

n = 1 n = 2

n = n + 1

ñ = 1

ñ = ⊤

ñ = 2

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 10 / 29

CPS as a functional IR

Outline

1 A conventional IR: RTL-CFG

2 CPS as a functional IR

3 Another functional IR: A-normal forms

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 11 / 29

CPS as a functional IR

CPS as a functional IR

CPS terms share many features of intermediate representations. In
particular, expressions are decomposed in individual operations and
intermediate results are named.

Example: source term let x = (y + z) ∗ (a− b) in

CPS RTL

(y + z) $ (λt. t = y + z;

(a - b) $ (λu. u = a - b;

(t * u) $ (λx. x = t * u;

...))) ...

(We write $ for reverse function application: a $ b = b a.)

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 12 / 29

CPS as a functional IR

CPS as a functional IR

Likewise, let-bound continuations correspond to join points in a
control-flow graph.

Example: source term let x = (if c then y else z) in . . .

let k = λx ... in

if c

then k y

else k z

x = y x = z

. . .

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 13 / 29

CPS as a functional IR

Optimizations on CPS terms

When expressed over CPS terms, many classic optimizations boil down to
β or arithmetic reductions, or variants thereof.

Example: constant propagation ≈ β, arithmetic reduction.

1 $ (λx x + 1 . . . x + y . . .)
→ . . . 2 . . . 1 + y . . .

Example: common subexpression elimination ≈ inverse β

(a + b) $ (λx. (a + b) $ (λx.

... ---> ...

(a + b) $ (λy. x $ (λy.

... ...

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 14 / 29

CPS as a functional IR

Back to direct style

To support stack-allocation of activation records, several functional
compilers perform an inverse CPS transformation after CPS optimization,
to recover direct-style function calls.

Source

CPS
transf.

administrative
reductions

optimizing

reductions

inverse CPS
transf.

DS

CPS

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 15 / 29

CPS as a functional IR

The origin of ANF

In 1993, Flanagan, Sabry and Felleisen showed that this detour through
CPS can be avoided, and indeed is unnecessary in the following formal
sense:

Source

CPS
transf.

administrative
reductions

optimizing

reductions

inverse CPS
transf.

DS

CPS

ANF
conversion

optimizing

reductions

inverse CPS
transf.

ANF stands for “administrative normal form”, and is the direct-style
sub-language that is the target of inv-CPS-transf ◦ adm-red ◦ CPS-transf.

(C. Flanagan, A. Sabry, M. Felleisen, The essence of compiling with

continuations, PLDI 1993.)

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 16 / 29

Another functional IR: A-normal forms

Outline

1 A conventional IR: RTL-CFG

2 CPS as a functional IR

3 Another functional IR: A-normal forms

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 17 / 29

Another functional IR: A-normal forms

Syntax of ANF

Atom:
a ::= x | N | λ~x .b

Computation:
c ::= a1 op a2 arithmetic
| a(~a) function application
| C (~a) datatype constructor
| closure(a,~a) closure constructor

Body:
b ::= c tail computation
| let x = c in b sequencing
| if a then b1 else b2 conditional
| match a with . . . pi → bi . . . pattern-matching

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 18 / 29

Another functional IR: A-normal forms

ANF as a CFG

let x = a + b in

if (x >= a)

then x

else 0

x = a + b

if (x >= a)

return x return 0

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 19 / 29

Another functional IR: A-normal forms

Conversion to ANF

Step 1: perform monadic conversion.

Example 1

Source term: 1 + (if x >= 0 then f (x) else 0)

Monadic conversion:

bind (if x >= 0 then f(x) else ret 0)

(λt. 1 + t)

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 20 / 29

Another functional IR: A-normal forms

Conversion to ANF

Step 2: interpret the result in the Identity monad:

ret a 7→ a

bind a (λx .b) 7→ let x = a in b

Example 2

Source term: 1 + (if x >= 0 then f (x) else 0)

Monadic conversion + identity monad:

let t = if x >= 0 then f(x) else ret 0

in 1 + t

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 21 / 29

Another functional IR: A-normal forms

Conversion to ANF

Step 3: “flatten” the nesting of let, if and match.

let x = (let y = a in b) in c

→ let y = a in let x = b in c (if y not free in c)

let x = (match a with . . . pi → bi . . .) in c

→ match a with . . . pi → let x = bi in c . . .

match (match a with . . . pi → bi . . .) with . . . qj → cj . . .

→ match a with . . . pi → (match bi with . . . qj → cj . . .) . . .

Example 3

if x >= 0

then let t = f(x) in 1 + t

else let t = 0 in 1 + t

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 22 / 29

Another functional IR: A-normal forms

Tail duplication, and how to avoid it

Note that possibly large terms can be duplicated:

if (if a then b else c) then d else e

→ if a then (if b then d else e) else (if c then d else e)

This can be avoided by using auxiliary functions:

if (if a then b else c) then d else e

→ let f (x) = if x then d else e in if a then f (b) else f (c)

a

b

d e

c

d e

a

b c

d e

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 23 / 29

Another functional IR: A-normal forms

Optimizations on ANF terms

As in the case of CPS, classic optimizations boil down to β or arithmetic
reductions over ANF terms.

Example: constant propagation ≈ β, arithmetic reduction.

let x = 1 in . . . x + 1 . . . x + y . . .

→ . . . 2 . . . 1 + y . . .

Example: common subexpression elimination ≈ inverse β

let x = a + b in let x = a + b in

... --> ...

let y = a + b in let y = x in

... ...

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 24 / 29

Another functional IR: A-normal forms

Register allocation

The register allocation problem: place every variable in hardware registers
or stack locations, maximizing the use of hardware registers.

Naive approach:
Assign the N hardware registers to the N most used variables; assign stack
slots to the other variables.

Finer approach:
Notice that the same hardware register can be assigned to several distinct
variables, provided they are never used simultaneously.

Example 4

if ... then (let x = ... in ...) else (let y = ... in ...)

x and y can share a register.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 25 / 29

Another functional IR: A-normal forms

Register allocation on ANF

On functional intermediate representations like ANF, register allocation
boils down to α-conversion:

The register allocation problem, revisited: rename variables, using
hardware registers or stack locations as new names, in such a way that

(Correctness) the renamed term is α-equivalent to the original;

(Efficiency) hardware registers are used as much as possible.

Example 5

if ... then (let x = ... in ...) else (let y = ... in ...)

can be α-converted to

if ... then (let R1 = ... in ...) else (let R1 = ... in ...)

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 26 / 29

Another functional IR: A-normal forms

The interference graph

An undirected graph,

Nodes: names of variables

Edges: between any two variables that cannot be renamed to the
same location, as this would violate α-equivalence.

Constructing the interference graph: at each point where a variable x is
bound, add edges with all other variables that occur free in the
continuation of this binding.

let x = c in b

→ add edges between x and all y ∈ FV (b) \ {x}

match a with . . .C (x1, . . . , xn)→ b . . .

→ add edges between xi and all y ∈ FV (b) \ {xi}.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 27 / 29

Another functional IR: A-normal forms

Example of an interference graph

let s = 0.0 in

let i = 0 in

let rec f(s,i) =

if (ri < size) then

let a = i*4 in

let b = load(tbl+a) in

let c = float(b) in

let s = s +f c in

let i = i + 1 in

f(s,i)

else

let d = float(size) in

s /f d

in f(s,i)

tbl

size

i

s

a

b

c

d

tbl

size

i

s

a

b

c

d

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 28 / 29

Another functional IR: A-normal forms

Register allocation by graph coloring

Correct register allocations correspond to colorings of the interference
graph: each node should be assigned a color (= a register or stack
location) so that adjacent nodes have different colors.

If the interference graph can be colored with at most N colors (where N is
the number of hardware register), we obtain a perfect register allocation.

Otherwise, the coloring is a good starting point to determine which
variables go into registers.

A. Appel, Modern compiler implementation in ML, Cambridge U. Press, esp.
chapter 11.

F. Pereira and J. Palsberg, Register allocation via coloring of chordal graphs,

APLAS 2005.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 29 / 29

	A conventional IR: RTL-CFG
	CPS as a functional IR
	Another functional IR: A-normal forms

