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Generalities on program transformations

In the broadest sense: all translations between programming languages
that preserve the meaning of programs.

Focus in this lecture: examples of program transformations that eliminate
high-level features of a (mostly) functional programming language and
target a smaller or lower-level language.

I.e. translate from language L1 having features A, B, C , D
to language L2 having features B, C , D, E .
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Uses for program transformations

1 As passes in a compiler.
Progressively bridge the gap between high-level source languages and
machine code.

2 To give semantics to the source language.
The semantics of feature A is defined in terms of that of features
B, C , D, E .

3 To program in languages that lack the desired feature A.
E.g. use higher-order functions or objects in C;
use imperative programming in Haskell or Coq.
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Closure conversion

Closure conversion

Goal: make explicit the construction of closures and the accesses to the
environment part of closures.

Input: a fully-fledged functional programming language, with general
functions (possibly having free variables) as first-class values.

Output: the same language where only closed functions (without free
variables) are first-class values. Such closed functions can be represented
at run-time as code pointers, just as in C for instance.

Idea: every function receives its own closure as an extra argument, from
which it recovers values for its free variables. Such functions are closed.
Function closures are explicitly represented as a tuple (closed function,
values of free variables).

Uses: compilation; functional programming in C, Java, . . .
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Closure conversion

Definition of closure conversion

[[x ]] = x

[[λx .a]] = tuple(λc , x . let x1 = field1(c) in
. . .
let xn = fieldn(c) in
[[a]],

x1, . . . , xn)

where x1, . . . , xn are the free variables of λx .a

[[a b]] = let c = [[a]] in field0(c)(c , [[b]])

The translation extends isomorphically to other constructs, e.g.

[[let x = a in b]] = let x = [[a]] in [[b]]

[[a + b]] = [[a]] + [[b]]
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Closure conversion

Example of closure conversion
Source program in Caml:

fun x lst ->

let rec map f lst =

match lst with [] -> [] | hd :: tl -> f hd :: map f tl

in

map (fun y -> x + y) lst

Result of partial closure conversion for the f argument of map:

fun x lst ->

let rec map f lst =

match lst with [] -> []

| hd :: tl -> field0(f)(f,hd) :: map f tl

in

map tuple(λc,y. let x = field1(c) in x + y,

x)

lst
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Closure conversion

Closure conversion for recursive functions

In a recursive function µf .λx .a, the body a needs access to f , i.e. the
closure for itself. This closure can be found in the extra function
parameter that closure conversion introduces.

[[µf .λx .a]] = tuple(λf , x . let x1 = field1(f ) in
. . .
let xn = fieldn(f ) in
[[a]],

x1, . . . , xn)

where x1, . . . , xn are the free variables of µf .λx .a

In other terms, regular functions λx .a are converted exactly like
pseudo-recursive functions µc .λx .a where c is a variable not free in a.
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Closure conversion

Minimal environments in closures

Closures built by closure conversions have minimal environments: they
contain values only for variables actually free in the function.
In contrast, closures built by the abstract machines of lecture II have full
environments containing values for all variables in scope when the function
is evaluated.
Minimal closures consume less memory and enable a garbage collector to
reclaim other data structures earlier. Consider:

let l = <big list> in λx. x+1

With full closures, the list l is reachable from the closure of λx .x + 1 and
cannot be reclaimed as long as this closure is live.
With minimal closures, no reference to l is kept in the closure, enabling
earlier garbage collection.
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Closure conversion

Closure conversion in object-oriented style

If the target of the conversion is an object-oriented language in the style of
Java, we can use the following variant of closure conversion:

[[x ]] = x

[[λx .a]] = new Cλx .a(x1, . . . , xn)

where x1, . . . , xn are the free variables of λx .a

[[a b]] = [[a]].apply([[b]])
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Closure conversion

Closure conversion in object-oriented style

The class Cλx .a (one for each λ-abstraction in the source) is defined as
follows:

class Cλx .a {

Object x1; ...; Object xn;

Cλx .a(Object x1, ..., Object xn) {
this.x1 = x1; ...; this.xn = xn;

}

Object apply(Object x) {
return [[a]];

}
}
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Closure conversion

Closures and objects

In more general terms:

Closure ≈ Object with a single apply method

Object ≈ Closure with multiple entry points

Both function application and method invocation compile down to
self application:

[[fun arg ]] = let c = [[fun]] in field0(c)(c , [[arg ]])

[[obj .meth(arg)]] = let o = [[obj ]] in o.meth(o, [[arg ]])
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Defunctionalization
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Defunctionalization

Defunctionalization

Goal: like closure conversion, make explicit the construction of closures
and the accesses to the environment part of closures. Unlike closure
conversion, do not use closed functions as first-class values.

Input: a fully-fledged functional programming language, with general
functions (possibly having free variables) as first-class values.

Output: any first-order language (no functions as values).

Idea: represent each function value λx .a as a data structure C (v1, . . . , vn)
where the constructor C uniquely identifies the function, and the
constructor arguments v1, . . . , vn are the values of the free variables
x1, . . . , xn.

Uses: functional programming in Pascal, Ada, Basic, . . .
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Defunctionalization

Definition of defunctionalization

[[x ]] = x

[[λx .a]] = Cλx .a(x1, . . . , xn)

where x1, . . . , xn are the free variables of λx .a

[[µf .λx .a]] = Cµf .λx .a(x1, . . . , xn)

where x1, . . . , xn are the free variables of µf .λx .a

[[a b]] = apply([[a]], [[b]])

(Other constructs: isomorphically.)
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Defunctionalization

Definition of defunctionalization

The apply function collects the bodies of all functions and dispatches on
its first argument. There is one case per function occurring in the source
program.

let rec apply(fun, arg) =
match fun with

| Cλx .a(x1, . . . , xn)→ let x = arg in [[a]]
| Cµf ′.λx ′.a′(x

′

1, . . . , x
′

n′)→ let f ′ = fun in let x ′ = arg in [[a′]]
| . . .

in [[program]]

Note: this is a whole-program transformation, unlike closure conversion.
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Defunctionalization

Example

Defunctionalization of (λx .λy .x) 1 2:

let rec apply (fun, arg) =

match fun with

| C1() -> let x = arg in C2(x)

| C2(x) -> let y = arg in x

in

apply(apply(C1(), 1), 2)

We write C1 for Cλx .λy .x and C2 for Cλy .x .
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Exceptions
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Exceptions

Exceptions

Exceptions are a control structure useful for error reporting, error handling,
and more generally all situations that need “early exit” out of a
computation.

let f x =

try 1 + (if x = 0 then raise Error else 100 / x)

with Error -> 101

In try a with Error → b, if a evaluates normally without raising an
exception, its value is returned as the value of the try...with. For
instance, f 4 = 26.
If a raises the Error exception, control branches to b, which becomes the
result of the try...with. For instance, f 0 = 101.
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Exceptions

Exceptions

For a more realistic example of early exit, consider the computation of the
product of a list of integers, returning 0 as soon as a list element is 0:

let product lst =

let rec prod = function

| [] -> 1

| 0 :: tl -> raise Exit

| hd :: tl -> hd * prod tl

in

try prod lst with Exit -> 0
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Exceptions

Reduction semantics for exceptions

In Wright-Felleisen style, add two head reduction rules for try...with
and a generic exception propagation rule:

(try v with x → b)
ε
→ v

(try raise v with x → b)
ε
→ b[x ← v ]

X [raise v ]
ε
→ raise v if X 6= [ ]

Exception propagation contexts X are like reduction contexts E but do not
allow skipping past a try...with

Reduction contexts:
E ::= [ ] | E b | v E | try E with x → b | . . .

Exception propagation contexts:
X ::= [ ] | X b | v X | . . .
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Exceptions

Reduction semantics for exceptions
Assume the current program is p = E [raise v ], that is, we are about to
raise an exception. If there is a try. . . with that encloses the raise, the
program will be decomposed as

p = E ′[try X [raise v ] with x → b]

where X contains no try. . . with constructs.
X [raise v ] head-reduces to raise v , and E ′[try [ ] with x → b] is an
evaluation context. The reduction sequence is therefore:

p = E ′[try X [raise v ] with x → b] → E ′[try raise v with x → b]

→ b[x ← v ]

If there are no try. . . with around the raise, E is an exception
propagation context X and the reduction is therefore

p = E [raise v ]→ raise v
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Exceptions

Reduction semantics for exceptions

Considering reduction sequences, a fourth possible outcome of evaluation
appears: termination on an uncaught exception.

Termination: a
∗

→ v

Uncaught exception: a
∗

→ raise v

Divergence: a
∗

→ a′ → . . .

Error: a
∗

→ a′ 6→ where a 6= v and a 6= raise v .
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Exceptions

Natural semantics for exceptions

In natural semantics, the evaluation relation becomes a⇒ r

where evaluation results are r ::= v | raise v .
Add the following rules for try...with:

a⇒ v

try a with x → b ⇒ v

a⇒ raise v ′ b[x ← v ′]⇒ r

try a with x → b ⇒ r

as well as exception propagation rules such as:

a⇒ raise v

a b ⇒ raise v

a⇒ v ′ b ⇒ raise v

a b ⇒ raise v
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Exceptions

Conversion to exception-returning style

Goal: get rid of exceptions.

Input: a functional language featuring exceptions (raise and
try...with).

Output: a functional language with pattern-matching but no exceptions.

Idea: every expression a evaluates to either V (v) if a evaluates normally
or to E (v) if a terminates early by raising exception v .
V , E are datatype constructors.

Uses: giving semantics to exceptions; programming with exceptions in
Haskell; reasoning about exceptions in Coq.
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Exceptions

Definition of the conversion: Core constructs

[[N]] = V (N)

[[x ]] = V (x)

[[λx .a]] = V (λx . [[a]])

[[let x = a in b]] = match [[a]] with E (x)→ E (x) | V (x)→ [[b]]

[[a b]] = match [[a]] with

| E (ea)→ E (ea)

| V (va)→

match [[b]] with E (eb)→ E (eb) | V (vb)→ va vb

Effect on types: if a : τ then [[a]] : [[τ ]]
where [[τ1 → τ2]] = (τ1 → [[τ2]]) outcome and [[τ ]] = τ outcome otherwise
and where type ’a outcome = V of ’a | E of exn.
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Exceptions

Definition of the conversion: Exception-specific constructs

[[raise a]] = match [[a]] with E (ea)→ E (ea) | V (va)→ E (va)

[[try a with x → b]] = match [[a]] with E (x)→ [[b]] | V (va)→ V (va)
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Exceptions

Example of conversion

[[try fun arg with exn → 0]] =

match

match V(fun) with

| E(x) → E(x)

| V(x) →
match V(arg) with

| E(y) → E(y)

| V(y) → x y

with

| V(z) → V(z)

| E(exn) → V(0)
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Exceptions

Administrative reductions

The naive conversion generates many useless match constructs over
arguments whose shape V (. . .) or E (. . .) is known at compile-time.

These can be eliminated by performing administrative reductions
adm
→ at

compile-time, just after the conversion:

(match E (v) with E (x)→ b | V (x)→ c)
adm
→ b[x ← v ]

(match V (v) with E (x)→ b | V (x)→ c)
adm
→ c[x ← v ]
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Exceptions

Example of conversion

After application of administrative reductions, we obtain:

[[try fun arg with exn → 0]] =

match fun arg with

| V(z) → V(z)

| E(exn) → V(0)
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Exceptions

Correctness of the conversion

Define the conversion of a value [[v ]]v as [[N]]v = N and [[λx .a]]v = λx .[[a]]

Theorem 1

1 If a⇒ v, then [[a]]⇒ V ([[v ]]v ).

2 If a⇒ raise v, then [[a]]⇒ E ([[v ]]v ).

3 If a⇒∞, then [[a]]⇒∞.

Proof.

(1) and (2) are proved simultaneously by induction on the derivation of
a⇒ r where r is an evaluation result. (3) is by coinduction. All three
proofs use the substitution lemma [[a[x ← v ]]] = [[a]][x ← [[v ]]v ].
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State
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State

State (imperative programming)

The word state in programming language theory refers to the
distinguishing feature of imperative programming: the ability to assign
(change the value of) variables after their definition, and to modify data
structures in place after their construction.
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State

References

A simple yet adequate way to model state is to introduce references:
indirection cells / one-element arrays that can be modified in place. The
basic operations over references are:

ref a

Create a new reference containing initially the value of a.

deref a also written !a
Return the current contents of reference a.

assign a b also written a := b

Replace the contents of reference a with the value of b.
Subsequent deref a operations will return this value.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 35 / 72

State

Uses of references

A let-bound reference emulates an imperative variable:

int x = 3; let x = ref 3 in

x = x + 1; ---> x := !x + 1;

return x; !x

(We write a; b instead of let z = a in b if z is not free in b.)

Such references also enable a function to maintain an internal state:

let make_pseudo_random_generator seed =

let state = ref seed in

λn. state := (!state * A + B) mod C; !state mod n

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 36 / 72



State

Uses of references

Arrays ≈ list of references (or better: primitive arrays).

Records with mutable fields ≈ tuples of references.

Imperative singly-linked list, with in-place concatenation:

type ’a mlist = ’a mlist_content ref

and ’a mlist_content = Nil | Cons of ’a * ’a mlist

let rec concat l1 l2 =

match !l1 with

| Nil → l1 := !l2

| Cons(x, r) → concat !r l2
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State

Semantics of references

Semantics based on substitutions fail to account for sharing between
references:

let r = ref 1 in r := 2; !r 6→ (ref 1) := 2; !(ref 1)

Left: the same reference r is shared between assignment and reading;
result is 2.
Right: two distinct references are created, one is assigned, the other read;
result is 1.

To account for sharing, we must use an additional level of indirection:

ref a expressions evaluate to locations ℓ : a new kind of variable
identifying references uniquely. (Locations ℓ are values.)

A global environment called the store associates values to references.
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State

Reduction semantics for references

The one-step reduction relation becomes a / s → a′ / s ′

(read: in initial store s, a reduces to a′ and updates the store to s ′)

(λx .a) v / s
ε
→ a[x ← v ] / s

ref v / s
ε
→ ℓ / (s + ℓ 7→ v) where ℓ /∈ Dom(s)

deref ℓ / s
ε
→ s(ℓ) / s

assign ℓ v / s
ε
→ ( ) / (s + ℓ 7→ v)

a / s
ε
→ a′ / s ′

(context)
E (a) / s → E (a′) / s ′
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State

Example of reduction sequence

In red: the active redex at every step.

let r = ref 3 in let x = r := !r + 1 in !r / ∅

→ let r = ℓ in let x = r := !r + 1 in !r / {ℓ 7→ 3}

→ let x = ℓ := !ℓ + 1 in !ℓ / {ℓ 7→ 3}

→ let x = ℓ := 3 + 1 in !ℓ / {ℓ 7→ 3}

→ let x = ℓ := 4 in !ℓ / {ℓ 7→ 3}

→ let x = ( ) in !ℓ / {ℓ 7→ 4}

→ !ℓ / {ℓ 7→ 4}

→ 4
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State

Conversion to state-passing style

Goal: get rid of state.

Input: a functional language featuring references.

Output: a pure functional language.

Idea: every expression a becomes a function that takes a run-time
representation of the current store and returns a pair (result value,
updated store).

Uses: give semantics to references; program imperatively in Haskell;
reason over imperative code in Coq.
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State

Definition of the conversion: Core constructs

[[N]] = λs.(N, s)

[[x ]] = λs.(x , s)

[[λx .a]] = λs.(λx .[[a]], s)

[[let x = a in b]] = λs. match [[a]] s with (x , s ′)→ [[b]] s ′

[[a b]] = λs. match [[a]] s with (va, s
′)→

match [[b]] s ′ with (vb, s
′′)→ va vb s ′′
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State

Definition of the conversion:
Constructs specific to references

[[ref a]] = λs. match [[a]] s with (va, s
′)→ store alloc va s ′

[[!a]] = λs. match [[a]] s with (va, s
′)→ (store read va s ′, s ′)

[[a := b]] = λs. match [[a]] s with (va, s
′)→

match [[b]] s ′ with (vb, s
′′)→ store write va vb s ′′

The operations store_alloc, store_read and store_write provide a
concrete implementation of the store. Any implementation of the data
structure known as persistent extensible arrays will do.
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State

Example of conversion

Administrative reductions:

(match (a, s) with (x , s ′)→ b)
adm
→ let x = a in b[s ′ ← s]

let x = v in b
adm
→ b[x ← v ]

let x = y in b
adm
→ b[x ← y ]

Example of translation after administrative reductions:

[[ let r = ref 3 in let x = r := !r + 1 in !r ]] =

λs. match alloc s 3 with (r, s1) ->

let t = deref r s1 in

let u = t + 1 in

match assign r u s1 with (x, s2) ->

(deref r s2, s2)
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Continuations

Notion of continuation

Given a program p and a subexpression a of p, the continuation of a is the
computations that remain to be done once a is evaluated to obtain the
result of p.

It can be viewed as a function: (value of a) 7→ (value of p).

Example 2

Consider the program p = (1 + 2) ∗ (3 + 4).

The continuation of a = (1 + 2) is λx .x ∗ (3 + 4).

The continuation of a′ = (3 + 4) is λx .3 ∗ x .

(Remember that 1 + 2 has already been evaluated to 3.)
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Continuations

Continations and reduction contexts

Continuations closely correspond with reduction contexts in
Wright-Felleisen reduction semantics:
If E [a] is a reduct of p, then the continuation of a is λx . E [x ].

Example 3

Consider again p = (1 + 2) ∗ (3 + 4).

(1 + 2) ∗ (3 + 4) = E [1 + 2] with E = [ ] ∗ (3 + 4)

→ 3 ∗ (3 + 4) = E ′[3 + 4] with E ′ = 3 ∗ [ ]

→ 3 ∗ 7 → 21

The continuation of 1 + 2 is λx .E [x ] = λx . x ∗ (3 + 4).
The continuation of 3 + 4 is λx .E ′[x ] = λx . 3 ∗ x .
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Continuations

Continuations as first-class values

The Scheme language offers a primitive callcc (call with current
continuation) that enables a subexpression a of the program to capture its
continuation (as a function ‘value of a’ 7→ ‘value of the program’) and
manipulate this continuation as a first-class value.

The expression callcc (λk .a) evaluates as follows:

The continuation of this expression is passed as argument to λk .a.

Evaluation of a proceeds; its value is the value of callcc (λk .a).

If, during the evaluation of a or later, we evaluate throw k v ,
evaluation continues as if callcc (λk .a) returned v .
That is, the continuation of the callcc expression is reinstalled and
restarted with v as the result provided by this expression.
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Continuations

Using first-class continuations

Libraries for lists, sets, and other collection data types often provide an
imperative iterator iter, e.g.

(* list_iter: (’a -> unit) -> ’a list -> unit *)

let rec list_iter f l =

match l with

| [] -> ()

| head :: tail -> f head; list_iter f tail
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Continuations

Using first-class continuations

Using first-class continuations, an existing imperative iterator can be
turned into a function that returns the first element of a collection
satisfying a given predicate pred.

let find pred lst =

callcc (λk.
list_iter

(λx. if pred x then throw k (Some x) else ())

lst;

None)

If an element x is found such that pred x = true, the throw causes
Some x to be returned immediately as the result of find pred lst.
If no such element exists, list_iter terminates normally, and None is
returned.

X. Leroy (INRIA) Functional programming languages MPRI 2-4-2, 2007 50 / 72



Continuations

Using first-class continuations

The previous example can also be implemented with exceptions. However,
callcc adds the ability to backtrack the search.

let find pred lst =

callcc (λk.
list_iter

(λx. if pred x

then callcc (λk’. throw k (Some(x, k’)))

else ())

lst;

None)

When x is found such that pred x = true, find returns not only x but
also a continuation k’ which, when thrown, will cause backtracking: the
search in lst restarts at the element following x.
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Continuations

Using first-class continuations

The following use of find will print all list elements satisfying the
predicate:

let printall pred lst =

match find pred list with

| None -> ()

| Some(x, k) -> print_string x; throw k ()

The throw k () restarts find pred list where it left the last time.
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First-class continuations

callcc and other control operators are difficult to use directly (“the goto

of functional languages”), but in combination with references, can
implement a variety of interesting control structures:

Exceptions.

Backtracking.

Imperative iterators (such as Python’s yield).

Checkpointing and replay debugging.

Coroutines / cooperative multithreading (next slide).
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Implementing coroutines with continuations

callcc (fun init_k ->

let curr_k = ref init_k in

let communicate x =

callcc (fun k ->

let old_k = !curr_k in curr_k := k; throw old_k x) in

let rec process1 n =

print_string "1: received "; print_int n; print_newline();

process1(communicate(n+1))

and process2 n =

print_string "2: received "; print_int n; print_newline();

process2(communicate(n+1)) in

process1(callcc(fun start1 ->

process2(callcc(fun start2 ->

curr_k := start2; throw start1 0)))))
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Control operators and classical logic

Control operators such as callcc can also be used to provide a
Curry-Howard correspondence for classical logic, i.e. define the
computational content of the excluded middle axiom ∀P. P ∨ ¬P.

Modulo Curry-Howard, this axiom corresponds to the type
∀P. P + (P → False), where False is an empty type and A + B is a
datatype with two constructors
Left : A→ A + B and Right : B → A + B.

The following term “implements” excluded middle:

callcc(λk . Right(λp. throw k (Left(p))))

See A Formulæ-as-Types Notion of Control, T. Griffin, Symp. Principles of

Programming Languages 1990.
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Continuations

Reduction semantics for continuations

In Wright and Felleisen’s style, keep the same head reductions
ε
→ and the

same context rule as before, and add two whole-program reduction rules
(→) for callcc and throw:

E [callcc v ] → E [v (λx .E [x ])]

E [throw k v ] → k v

Same evaluation contexts E as before.
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Example of reductions

E [callcc (λk . 1 + throw k 0)]

→ E [(λk . 1 + throw k 0) (λx .E [x ])]

→ E [1 + throw (λx .E [x ]) 0]

→ (λx .E [x ]) 0

→ E [0]

Note how throw discards the current context E [1 + [ ]] and reinstalls the
saved context E instead.
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Conversion to continuation-passing style (CPS)

Goal: make explicit the handling of continuations.

Input: a call-by-value functional language with callcc.

Output: a call-by-value or call-by-name, pure functional language
(no callcc).

Idea: every term a becomes a function λk . . . that receives its
continuation k as an argument, computes the value v of a, and finishes by
applying k to v .

Uses: compilation of callcc; semantics; programming with continuations
in Caml, Haskell, . . .
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CPS conversion: Core constructs

[[N]] = λk . k N

[[x ]] = λk . k x

[[λx .a]] = λk . k (λx . [[a]])

[[let x = a in b]] = λk . [[a]] (λx . [[b]] k)

[[a b]] = λk . [[a]] (λva. [[b]] (λvb. va vb k))

A function λx .a becomes a function of two arguments, x and the
continuation k that will receive the value of a.

Effect on types: if a : τ then [[a]] : [[τ ]]
where [[τ ]] = (τ → answer)→ answer for base types τ
and [[τ1 → τ2]] = ((τ1 → [[τ2]])→ answer)→ answer.
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Continuations

CPS conversion: Continuation operators

[[callcc a]] = λk .[[a]] k k

[[throw a b]] = λk . [[a]] (λva. [[b]] (λvb. va vb))

In callcc a, the function value of a receives the current continuation k

both as its argument and as its continuation.

In throw a b, we discard the current continuation k and apply directly the
value of a (which is a continuation captured by callcc) to the value of b.
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Administrative reductions

The CPS translation [[· · ·]] produces terms that are more verbose than one
would naturally write by hand, e.g. in the case of an application of a
variable to a variable:

[[f x ]] = λk . (λk1.k1 f ) (λv1. (λk2.k2 x) (λv2. v1 v2 k))

instead of the more natural λk . f x k.

This clutter can be eliminated by performing β reductions at
transformation time to eliminate the “administrative redexes” introduced
by the translation. In particular, we have

(λk . k v) (λx . a)
adm
→ (λx . a) v

adm
→ a[x ← v ]

whenever v is a value or variable.
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Continuations

Examples of CPS translation

[[f (f x)]]

= λk . f x (λv . f v k)))

[[µfact. λn. if n = 0 then 1 else n ∗ fact(n − 1)]]

= λk0. k0(

µfact. λn. λk . if n = 0 then k 1 else fact (n − 1) (λv . k (n ∗ v)))
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Execution of CPS-converted programs

Execution of a program prog is achieved by applying its CPS conversion to
the initial continuation λx .x :

[[prog ]] (λx .x)

Theorem 4

If a
∗

→ N, then [[a]] (λx .x)
∗

→ N.

Proof.

See lecture IV (monadic transformations).
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Continuations

CPS terms

The λ-terms produced by the CPS transformation have a very specific
shape, described by the following grammar:

CPS atom: atom ::= x | N | λv . body | λx .λk . body

CPS body: body ::= atom | atom1 atom2 | atom1 atom2 atom3

[[a]] is an atom, and [[a]] (λx .x) is a body .
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Reduction of CPS terms

CPS atom: atom ::= x | N | λv . body | λx .λk . body

CPS body: body ::= atom | atom1 atom2 | atom1 atom2 atom3

Note that all applications (unary or binary) are in tail-position and at
application-time, their arguments are closed atoms, that is, values.
The following reduction rules suffice to evaluate CPS-converted programs:

(λx .λk . body) atom1 atom2 → body [x ← atom1, k ← atom2]

(λv . body) atom → body [v ← atom]

These reductions are always applied at the top of the program — there is
no need for reduction under a context.
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Continuations

The Indifference theorem
(G. Plotkin, 1975)

Theorem 5 (Indifference)

A closed CPS-converted program [[a]] (λx .x) evaluates in the same way in

call-by-name, in left-to-right call-by-value, and in right-to-left call-by-value.

Proof.

Since closed atoms are values, the reduction rules

(λx .λk . body) atom1 atom2 → body [x ← atom1, k ← atom2]

(λv . body) atom → body [v ← atom]

are admissible both under call-by-value and call-by-name. Since we do not
reduce under application nodes, left-to-right or right-to-left evaluation of
application makes no difference.
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CPS conversion and reduction strategy

CPS conversion encodes the reduction strategy in the structure of the
converted terms. For instance, right-to-left call-by-value is obtained by
taking

[[a b]] = λk . [[b]] (λvb. [[a]] (λva. va vb k))

and call-by-name is achieved by taking

[[x ]] = λk . x k

[[a b]] = λk . [[a]] (λva. va [[b]] k)
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Continuations

Compilation of CPS terms

CPS terms can be executed by a stackless abstract machines with
components

a code pointer c

an environment e

three registers R1, R2, R3.

Instruction set:

ACCESSi (n) store n-th field of the environment in Ri

CONSTi (N) store the integer N in Ri

CLOSUREi (c) store closure of c in Ri

TAILAPPLY1 apply closure in R1 to argument R2

TAILAPPLY2 apply closure in R1 to arguments R2, R3
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Compilation of CPS terms

Compilation of atoms Ai (atom) (leaves the value of atom in Ri ):

Ai (n) = ACCESSi (n)

Ai (N) = CONSTi (N)

Ai (λ
1.a) = CLOSUREi (B(a))

Ai (λ
2.a) = CLOSUREi (B(a))

Compilation of bodies B(body):

B(a) = A1(a)

B(a1 a2) = A1(a1);A2(a2); TAILAPPLY1

B(a1 a2 a3) = A1(a1);A2(a2);A3(a3); TAILAPPLY2
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Transitions of the CPS abstract machine

Machine state before Machine state after

Code Env R1 R2 R3 Code Env R1 R2 R3

TAILAPPLY1; c e c ′[e ′] v c ′ v .e ′

TAILAPPLY2; c e c ′[e ′] v1 v2 c ′ v2.v1.e
′

ACCESS1(n); c e v2 v3 c e e(n) v2 v3

CONST1(n); c e v2 v3 c e N v2 v3

CLOSURE1(c
′); c e v2 v3 c e c ′[e] v2 v3

(Similarly for the other ACCESS, CONST and CLOSURE instructions.)
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Continuations vs. stacks

That CPS terms can be executed without a stack is not surprising, given
that the stack of a machine such as the Modern SECD is isomorphic to
the current continuation in a CPS-based approach.

f x = 1 + g x g x = 2 * h x h x = ...

Consider the execution point where h is entered. In the CPS model, the
continuation at this point is

k = λv . k ′ (2 ∗ v) with k ′ = λv . k ′′ (1 + v) and k ′′ = λv .v

In the Modern SECD model, the stack at this point is

(MUL; RETURN).eg .2
︸ ︷︷ ︸

≈k

. (ADD; RETURN).ef .1
︸ ︷︷ ︸

≈k ′

. ε.ε
︸︷︷︸

≈k ′′
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Continuations

Continuations vs. stacks

At the machine level, stacks and continuations are two ways to represent
the call chain: the chain of function calls currently active.

Continuations: as a singly-linked list of heap-allocated closures, each
closure representing a function activation. These closures are
reclaimed by the garbage collector.

Stacks: as contiguous blocks in a memory area outside the heap, each
block representing a function activation. These blocks are explicitly
deallocated by RETURN instructions.

Stacks are more efficient in terms of GC costs and memory locality, but
need to be copied in full to implement callcc.

Compiling with continuations, A. Appel, Cambridge University Press, 1992.
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