
2-4-2 / Type systems
Simple types

François Pottier

December 18, 2007

1 / 121

1 Introduction

2 Simply-typed λ-calculus

3 Type soundness

4 Pairs, sums, recursive functions, references

5 Type inference

6 Bibliography

2 / 121

Types

A type is a concise, formal description of the behavior of a program
fragment.

For instance, the following are ML types:

• int
“an integer”

• int → bool
“a function that maps an integer argument to a Boolean result”

• (int → bool) → (list int → list int)
“a function that maps an integer predicate to an integer list
transformer”

3 / 121

Benefits

Types serve as machine-checked documentation.

Types provide a safety guarantee.

“Well-typed expressions do not go wrong.” [Milner, 1978]

Types encourage separate compilation, modularity, and abstraction.

“Type structure is a syntactic discipline for enforcing levels
of abstraction.” [Reynolds, 1983]

4 / 121

Type inference

Types are descriptions of programs, so annotating programs with
types can lead to redundancy.

This creates a need for a certain degree of type inference.

Because type systems are compositional, a type inference problem
can often be expressed as a constraint solving problem, where
constraints are made up of predicates about types, conjunction, and
existential quantification.

5 / 121

Type-preserving compilation

Types make sense in low-level programming languages as well—even
assembly languages can be statically typed! [Morrisett et al., 1999]

In a type-preserving compiler, every intermediate language is typed,
and every compilation phase maps typed programs to typed programs.

Preserving types provides insight into a transformation, helps debug
it, and paves the way to a semantics preservation
proof [Chlipala, 2007].

Interestingly enough, lower-level programming languages often require
richer type systems than their high-level counterparts.

6 / 121

Typed or untyped?

Reynolds [1985] nicely sums up a long and rather acrimonious
debate:

“One side claims that untyped languages preclude
compile-time error checking and are succinct to the point of
unintelligibility, while the other side claims that typed
languages preclude a variety of powerful programming
techniques and are verbose to the point of unintelligibility.”

The issues are safety, expressiveness, and type inference.

A sound type system with decidable type-checking (and possibly
decidable type inference) must be conservative.

7 / 121

Typed, Sir! with better types.

In fact, Reynolds settles the debate:

“From the theorist’s point of view, both sides are right, and
their arguments are the motivation for seeking type systems
that are more flexible and succinct than those of existing
typed languages.”

8 / 121

Outline of the course

This course is structured in five lectures:

1 Simple types

2 Polymorphism

3 Extensions

4 Type-preserving closure conversion

5 Type-preserving defunctionalization

9 / 121

1. Simple types

• Simply-typed λ-calculus

• Type soundness

• Pairs, sums, recursive functions, references

• Type inference

10 / 121

2. Polymorphism

• Polymorphic λ-calculus

• Damas and Milner’s type system

• Type soundness

• Polymorphism and references

• Type inference

11 / 121

3. Extensions

• Type annotations

• Unification under a mixed prefix

• Polymorphic recursion

• Equi- and iso-recursive types

• Algebraic data types

12 / 121

4. Type-preserving closure conversion

• Existential types

• Environment-passing closure conversion

• Closure-passing closure conversion

• Recursive functions

13 / 121

5. Type-preserving defunctionalization

• Defunctionalization

• Monomorphic case

• Generalized algebraic data types

• Polymorphic case

14 / 121

1 Introduction

2 Simply-typed λ-calculus

3 Type soundness

4 Pairs, sums, recursive functions, references

5 Type inference

6 Bibliography

15 / 121

Why λ-calculus?

In this course, the programming language is λ-calculus.

λ-calculus is rich enough to encode many programming
languages [Landin, 1965], and as such provides a suitable setting
for studying type systems.

16 / 121

Syntax

λ-terms, also known as terms and expressions, are given by:

t ::= x | λx.t | t t | . . .

where x denotes a variable.

Types are given by
T ::= X | T → T | . . .

where X denotes a type variable.

More term- and type-level constructs are introduced later on.

17 / 121

Dynamic semantics

We use a small-step operational semantics.

We choose a call-by-value variant. When explaining references,
exceptions, or other forms of side effects, this choice matters.
Otherwise, most of the type-theoretic machinery applies to
call-by-name just as well.

The semantics involves a syntactic category of values v and a
reduction relation ��, whose definitions are not recalled.

18 / 121

Static semantics

Technically, the type system is a 3-place predicate, whose instances
are called judgements. Judgements take the form:

Γ ` t : T

where a type environment Γ is a finite sequence of bindings of
variables to types.

19 / 121

Static semantics

Judgements are defined inductively:

Var

Γ ` x : Γ(x)

Abs
Γ; x : T1 ` t : T2

Γ ` λx.t : T1 → T2

App

Γ ` t1 : T1 → T2 Γ ` t2 : T1

Γ ` t1 t2 : T2

In the simply-typed λ-calculus, the definition is syntax-directed. This
is not true of all type systems.

20 / 121

Example

The following is a valid type derivation:

App

Var
Γ ` f : T1 → T2

Var
Γ ` x : T1

Γ ` f x : T2

Γ ` f : T1 → T2
Var

Γ ` y : T1
Var

Γ ` f y : T2
App

f : T1 → T2; x, y : T1 ` (f x, f y) : T2 × T2
Pair

∅ ` λfxy.(f x, f y) : (T1 → T2) → T1 → T1 → (T2 × T2)
Abs3

(Γ stands for (f : T1 → T2; x, y : T1). Rule Pair is introduced later on.)

21 / 121

A derived construct: let

The construct “let x = t1 in t2” can be viewed as syntactic sugar for
the β-redex “(λx.t2) t1”.

The latter can be type-checked (only) by a derivation of the form:

App

Abs
Γ; x : T1 ` t2 : T2

Γ ` λx.t2 : T1 → T2 Γ ` t1 : T1

Γ ` (λx.t2) t1 : T2

This means that the following derived rule is sound and complete:

LetMono
Γ ` t1 : T1 Γ; x : T1 ` t2 : T2

Γ ` let x = t1 in t2 : T2

22 / 121

1 Introduction

2 Simply-typed λ-calculus

3 Type soundness

4 Pairs, sums, recursive functions, references

5 Type inference

6 Bibliography

23 / 121

Stating type soundness

What is a formal statement of Milner’s slogan?

“Well-typed expressions do not go wrong.”

24 / 121

Stating type soundness

By definition, a closed term t is well-typed if it admits some type T
in the empty environment.

By definition, a closed, irreducible term is either a value or stuck.

A closed term must converge to a value, diverge, or go wrong by
reducing to a stuck term.

25 / 121

Stating type soundness

Milner’s slogan now has formal meaning:

Theorem (Type Soundness)

Well-typed expressions do not go wrong.

Proof.

By Subject Reduction and Progress.

26 / 121

Establishing type soundness

Type soundness follows from two properties:

Theorem (Subject reduction)

Reduction preserves types: ∅ ` t : T and t �� t′ imply ∅ ` t′ : T .

Theorem (Progress)

A well-typed, irreducible term is a value.

This syntactic proof method is due to Wright and Felleisen [1994].

27 / 121

Establishing subject reduction

Subject reduction is proved by structural induction over the
hypothesis t �� t′. Thus, there is one case per reduction rule.

In the pure λ-calculus, there are just two such rules:

• β-reduction;

• reduction under an evaluation context.

28 / 121

Establishing subject reduction

In the β-reduction case, the first hypothesis is

∅ ` (λx.t) v : T2

and the goal is
∅ ` [x 7� v]t : T2

How do we proceed?

29 / 121

Establishing subject reduction

We decompose the first hypothesis.

Because the type system is syntax-directed, its derivation must be
of this form, for some type T1:

App

Abs
x : T1 ` t : T2

∅ ` (λx.t) : T1 → T2 ∅ ` v : T1

∅ ` (λx.t) v : T2

Where next?

30 / 121

Establishing subject reduction

To conclude, we only need a simple lemma:

Lemma (Value substitution)

x : T1 ` t : T2 and ∅ ` v : T1 imply ∅ ` [x 7� v]t : T2.

In plain words, replacing a formal parameter with a type-compatible
actual argument preserves types.

How do we prove this lemma?

31 / 121

Establishing subject reduction

The lemma must be suitably generalized so it can be proven by
structural induction over the term t:

Lemma (Value substitution)

x : T1, Γ ` t : T2 and x 6∈ dom(Γ) and ∅ ` v : T1 imply Γ ` [x 7� v]t : T2.

The proof is straightforward, and, at variables, exploits the fact that
∅ ` v : T1 implies Γ ` v : T1.

This closes the case of the β-reduction rule.

32 / 121

Establishing subject reduction

In the context case, the first hypothesis is

∅ ` E[t] : T

where E is an evaluation context:

E ::= [] t | v [] | . . .

The second hypothesis is
t �� t′

where, by induction hypothesis, this reduction preserves types.

The goal is
∅ ` E[t′] : T

How do we proceed?

33 / 121

Establishing subject reduction

Type-checking is compositional: only the type of sub-expressions
matter, not their exact form.

Lemma (Compositionality)

Assume ∅ ` E[t] : T . Then, there exists T ′ such that:

• ∅ ` t : T ′,

• for every t′, ∅ ` t′ : T ′ implies ∅ ` E[t′] : T .

Proof.

By cases.

Using this lemma, the context case of the subject reduction theorem
is immediate.

34 / 121

Establishing progress

Progress (“A well-typed term t is either reducible or a value”) is
proved by structural induction over the term t. Thus, there is one
case per construct in the syntax of terms.

In the pure λ-calculus, there are just three such constructs:

• variable;

• λ-abstraction;

• application.

35 / 121

Establishing progress

The case of variables is void, because a variable is never well-typed (it
does not admit a type in the empty environment).

The case of λ-abstractions is immediate, because a λ-abstraction is
a value.

In the case of applications, let us consider a well-typed term t1 t2.

36 / 121

Establishing progress

Then, by inversion of the type-checking rule for applications, there
exist types T1, T2 such that ∅ ` t1 : T1 → T2 and ∅ ` t2 : T1. In
particular, both t1 and t2 are well-typed.

By the induction hypothesis, t1 is either reducible or a value v1. If it
is reducible, then, because [] t2 is an evaluation context, t1 t2 is
reducible as well, and we are done. Otherwise:

By the induction hypothesis, t2 is either reducible or a value v2. If it
is reducible, then, because v1 [] is an evaluation context, v1 t2 is
reducible as well, and we are done. Otherwise:

Because v1 admits type T1 → T2, it must be a λ-abstraction (see
next slide), so v1 v2 is a β-redex, and we are done.

37 / 121

Establishing progress

Then, by inversion of the type-checking rule for applications, there
exist types T1, T2 such that ∅ ` t1 : T1 → T2 and ∅ ` t2 : T1. In
particular, both t1 and t2 are well-typed.

By the induction hypothesis, t1 is either reducible or a value v1. If it
is reducible, then, because [] t2 is an evaluation context, t1 t2 is
reducible as well, and we are done. Otherwise:

By the induction hypothesis, t2 is either reducible or a value v2. If it
is reducible, then, because v1 [] is an evaluation context, v1 t2 is
reducible as well, and we are done. Otherwise:

Because v1 admits type T1 → T2, it must be a λ-abstraction (see
next slide), so v1 v2 is a β-redex, and we are done.

38 / 121

Establishing progress

Then, by inversion of the type-checking rule for applications, there
exist types T1, T2 such that ∅ ` t1 : T1 → T2 and ∅ ` t2 : T1. In
particular, both t1 and t2 are well-typed.

By the induction hypothesis, t1 is either reducible or a value v1. If it
is reducible, then, because [] t2 is an evaluation context, t1 t2 is
reducible as well, and we are done. Otherwise:

By the induction hypothesis, t2 is either reducible or a value v2. If it
is reducible, then, because v1 [] is an evaluation context, v1 t2 is
reducible as well, and we are done. Otherwise:

Because v1 admits type T1 → T2, it must be a λ-abstraction (see
next slide), so v1 v2 is a β-redex, and we are done.

39 / 121

Establishing progress

Then, by inversion of the type-checking rule for applications, there
exist types T1, T2 such that ∅ ` t1 : T1 → T2 and ∅ ` t2 : T1. In
particular, both t1 and t2 are well-typed.

By the induction hypothesis, t1 is either reducible or a value v1. If it
is reducible, then, because [] t2 is an evaluation context, t1 t2 is
reducible as well, and we are done. Otherwise:

By the induction hypothesis, t2 is either reducible or a value v2. If it
is reducible, then, because v1 [] is an evaluation context, v1 t2 is
reducible as well, and we are done. Otherwise:

Because v1 admits type T1 → T2, it must be a λ-abstraction (see
next slide), so v1 v2 is a β-redex, and we are done.

40 / 121

Classification

We have appealed to the following property:

Lemma (Classification)

Assume ∅ ` v : T . Then,

• if T is an arrow type, then v is a λ-abstraction;

• . . .

Proof.

By cases.

41 / 121

Towards more complex type systems

In the pure, simply-typed λ-calculus, classification is trivial, because
every value is a λ-abstraction, and progress does not even need the
well-typedness hypothesis, because no term is stuck.

As the programming language and type system are extended with
new features, however, type soundness is no longer trivial.

Most type soundness proofs are shallow but large. Authors are
tempted to skip the “easy” cases, but these may contain hidden
traps!

42 / 121

Towards more complex type systems

Sometimes, the combination of two features is unsound, even though
each feature, in isolation, is sound.

This will be illustrated in this course by the interaction between
references and polymorphism in ML.

In fact, a few such combinations have been implemented, deployed,
and used for some time before they were found to be unsound!

• call/cc + polymorphism in SML/NJ [Harper and Lillibridge, 1991]

• mutable records + existential quantification in Cyclone
[Grossman, 2006]

43 / 121

Soundness versus completeness

Because the λ-calculus is a Turing-complete programming language,
whether a program goes wrong is an undecidable property.

As a result, any sound, decidable type system must be incomplete,
that is, must reject some valid programs.

Type systems can be compared against one another via encodings, so
it is sometimes possible to prove that one system is more expressive
than another.

However, whether a type system is “sufficiently expressive in practice”
can only be assessed via empirical means.

44 / 121

1 Introduction

2 Simply-typed λ-calculus

3 Type soundness

4 Pairs, sums, recursive functions, references

5 Type inference

6 Bibliography

45 / 121

Unit

The untyped calculus is modified as follows.

Values and expressions are extended:

v ::= . . . | ()
t ::= . . . | ()

No new reduction rule is introduced.

46 / 121

Unit

The type system is modified as follows.

Types are extended:
T ::= . . . | unit

A typing rule is introduced:

Unit

Γ ` () : unit

47 / 121

Pairs

The untyped calculus is modified as follows.

Values, expressions, evaluation contexts are extended:

v ::= . . . | (v, v)
t ::= . . . | (t, t) | proji t
E ::= . . . | ([], t) | (v, []) | proji []
i ∈ {1,2}

A new reduction rule is introduced:

proji (v1, v2) �� vi

48 / 121

Pairs

The type system is modified as follows.

Types are extended:
T ::= . . . | T × T

Two new typing rules are introduced:

Pair
∀i, Γ ` ti : Ti

Γ ` (t1, t2) : T1 × T2

Proj

Γ ` t : T1 × T2

Γ ` proji t : Ti

49 / 121

Sums

The untyped calculus is modified as follows.

Values, expressions, evaluation contexts are extended:

v ::= . . . | inji v
t ::= . . . | inji t | case t of v 8 v
E ::= . . . | inji [] | case [] of v 8 v

A new reduction rule is introduced:

case inji v of v1 8 v2 �� vi v

50 / 121

Sums

The type system is modified as follows.

Types are extended:
T ::= . . . | T + T

Two new typing rules are introduced:

Inj

Γ ` t : Ti

Γ ` inji t : T1 + T2

Case
Γ ` t : T1 + T2

∀i, Γ ` vi : Ti → T

Γ ` case t of v1 8 v2 : T

51 / 121

Recursive functions

The untyped calculus is modified as follows.

Values and expressions are extended:

v ::= . . . | µf.λx.t
t ::= . . . | µf.λx.t

A new reduction rule is introduced:

(µf.λx.t) v �� [f 7� µf.λx.t][x 7� v]t

(This rule subsumes the standard β-reduction rule.)

52 / 121

Recursive functions

The type system is modified as follows.

Types are not extended. We already have function types.

A new typing rule is introduced:

FixAbs
Γ; f : T1 → T2 ` λx.t : T1 → T2

Γ ` µf.λx.t : T1 → T2

(This rule subsumes the earlier λ-abstraction rule, Abs.)

In the premise, the type T1 → T2 serves both as an assumption and
a goal. This is a typical feature of recursive definitions.

53 / 121

A derived construct: let rec

The construct “let rec f x = t1 in t2” can be viewed as syntactic
sugar for “let f = µf.λx.t1 in t2”.

The latter can be type-checked (only) by a derivation of the form:

LetMono

FixAbs
Γ; f : T1 → T ′1; x : T1 ` t1 : T ′1

Γ ` µf.λx.t1 : T1 → T ′1 Γ; f : T1 → T ′1 ` t2 : T2

Γ ` let f = µf.λx.t1 in t2 : T2

This means that the following derived rule is sound and complete:

LetRecMono
Γ; f : T1 → T ′1; x : T1 ` t1 : T ′1 Γ; f : T1 → T ′1 ` t2 : T2

Γ ` let rec f x = t1 in t2 : T2

54 / 121

References

In the ML vocabulary, a reference cell, or reference, is a dynamically
allocated block of memory, which holds a value, and whose contents
can change over time.

A reference can be allocated and initialized (ref), written (:=), and
read (!).

Expressions and evaluation contexts are extended:

t ::= . . . | ref t | t := t | !t
E ::= . . . | ref [] | [] := t | v := [] | ![]

55 / 121

References

A reference allocation expression is not a value. Otherwise, by βv , the
program:

(λx.x := 1; !x) (ref 3)

(which intuitively should yield 1) would reduce to:

(ref 3) := 1; !(ref 3)

(which intuitively yields 3).

How shall we solve this problem?

56 / 121

References

(ref 3) should first reduce to a value: the address of a fresh cell.

Not just the content of a cell matters, but also its address. Writing
through one copy of the address should affect a future read via
another copy.

57 / 121

References

We extend the untyped calculus with memory locations:

v ::= . . . | `
t ::= . . . | `

A memory location is just an atom (that is, a name). The value
found at a location ` is obtained by indirection through a memory (or
store). A memory µ is a finite mapping of locations to closed values.

58 / 121

References

A configuration is a pair t/µ of a term and a store.

We maintain a no-dangling-pointers invariant: the locations that
appear in t or in the image of µ are in the domain of µ.

Initially, the store is empty, and the term contains no locations,
because, by convention, memory locations cannot appear in source
programs.

59 / 121

References

The operational semantics now reduces configurations.

All existing reduction rules are augmented with a store, which they
do not touch:

(λx.t) v/µ �� [x 7� v]t/µ
E[t]/µ �� E[t′]/µ′ if t/µ �� t′/µ′

Three new reduction rules are added:

ref v/µ �� `/µ[` 7� v] if ` 6∈ dom(µ)
` := v/µ �� ()/µ[` 7� v]

!`/µ �� µ(`)/µ

In the last two rules, the no-dangling-pointers invariant guarantees
` ∈ dom(µ).

60 / 121

References

The type system is modified as follows.

Types are extended:
T ::= . . . | ref T

Three new typing rules are introduced:

Ref
Γ ` t : T

Γ ` ref t : ref T

Set
Γ ` t1 : ref T Γ ` t2 : T

Γ ` t1 := t2 : unit

Get
Γ ` t : ref T

Γ ` !t : T

Is that all we need?

61 / 121

References

The preceding slides are enough to typecheck source terms, but do
not allow stating or proving type soundness.

Indeed, we have not yet answered these questions:

• what is the type of a memory location `?

• when is a configuration t/µ well-typed?

62 / 121

References

When does a location ` have type ref T?

A possible answer is, “when it points to some value of type T”. This
would be formalized by a typing rule of the form:

µ, ∅ ` µ(`) : T

µ, Γ ` ` : ref T

Comments?

• typing judgements would have the form µ, Γ ` t : T .

• typing judgements would no longer be inductively defined (or else,
every cyclic structure would be ill-typed). Instead, co-induction
would be required.

• if the value µ(`) happens to admit two distinct types T1 and T2,
then ` admits types ref T1 and ref T2. So, one can write at
type T1 and read at type T2: this rule is unsound!

63 / 121

References

When does a location ` have type ref T?

A possible answer is, “when it points to some value of type T”. This
would be formalized by a typing rule of the form:

µ, ∅ ` µ(`) : T

µ, Γ ` ` : ref T

Comments?

• typing judgements would have the form µ, Γ ` t : T .

• typing judgements would no longer be inductively defined (or else,
every cyclic structure would be ill-typed). Instead, co-induction
would be required.

• if the value µ(`) happens to admit two distinct types T1 and T2,
then ` admits types ref T1 and ref T2. So, one can write at
type T1 and read at type T2: this rule is unsound!

64 / 121

References

When does a location ` have type ref T?

A possible answer is, “when it points to some value of type T”. This
would be formalized by a typing rule of the form:

µ, ∅ ` µ(`) : T

µ, Γ ` ` : ref T

Comments?

• typing judgements would have the form µ, Γ ` t : T .

• typing judgements would no longer be inductively defined (or else,
every cyclic structure would be ill-typed). Instead, co-induction
would be required.

• if the value µ(`) happens to admit two distinct types T1 and T2,
then ` admits types ref T1 and ref T2. So, one can write at
type T1 and read at type T2: this rule is unsound!

65 / 121

References

When does a location ` have type ref T?

A possible answer is, “when it points to some value of type T”. This
would be formalized by a typing rule of the form:

µ, ∅ ` µ(`) : T

µ, Γ ` ` : ref T

Comments?

• typing judgements would have the form µ, Γ ` t : T .

• typing judgements would no longer be inductively defined (or else,
every cyclic structure would be ill-typed). Instead, co-induction
would be required.

• if the value µ(`) happens to admit two distinct types T1 and T2,
then ` admits types ref T1 and ref T2. So, one can write at
type T1 and read at type T2: this rule is unsound!

66 / 121

References

A simpler, and sound, approach is to fix the type of a memory
location when it is first allocated. To do so, we use a store
typing M, a finite mapping of locations to types.

So, when does a location ` have type ref T? “When M says so.”

Loc

M, Γ ` ` : ref M(`)

Comments:

• typing judgements now have the form M, Γ ` t : T .

67 / 121

References

How do we know that the store typing predicts appropriate types?

This is required by the typing rules for stores and configurations:

Store
∀` ∈ dom(µ), M, ∅ ` µ(`) : M(`)

` µ : M

Config

M, ∅ ` t : T ` µ : M

` t/µ : T

Comments:

• This is an inductive definition. The store typing M serves both
as an assumption (Loc) and a goal (Store). Cyclic stores are
not a problem.

• The store typing exists neither at runtime nor at type-checking
time. It is used only in the definition of a “well-typed
configuration” and in the type soundness proof.

68 / 121

Stating type soundness

The type soundness statements are slightly modified:

Theorem (Subject reduction)

Reduction preserves types: ` t/µ : T and t/µ �� t′/µ′ imply ` t′/µ′ : T .

Theorem (Progress)

If t/µ is a well-typed, irreducible configuration, then t is a value.

69 / 121

Stating subject reduction

By definition (see Config), subject reduction can also be written:

Theorem (Subject reduction, detailed)

Assume M, ∅ ` t : T and ` µ : M and t/µ �� t′/µ′. Then, there exists
M′ such that M′, ∅ ` t′ : T and ` µ′ : M′.

This statement is correct, but too weak – its proof by induction will
fail in one case. (Which?)

70 / 121

Establishing subject reduction

Let us look at the case of reduction under a context.

The hypotheses are:

M, ∅ ` E[t] : T and ` µ : M and t/µ �� t′/µ′

By compositionality (?), there exists T ′ such that:

M, ∅ ` t : T ′ and ∀t′, (M, ∅ ` t′ : T ′) ⇒ (M, ∅ ` E[t′] : T)

By the induction hypothesis, there exists M′ such that:

M′, ∅ ` t′ : T ′ and ` µ′ : M′

Here, we are stuck. The context E is well-typed under M, but the
term t′ is well-typed under M′, so we cannot combine them. How
could we fix this?

71 / 121

Establishing subject reduction

Let us look at the case of reduction under a context.

The hypotheses are:

M, ∅ ` E[t] : T and ` µ : M and t/µ �� t′/µ′

By compositionality (?), there exists T ′ such that:

M, ∅ ` t : T ′ and ∀t′, (M, ∅ ` t′ : T ′) ⇒ (M, ∅ ` E[t′] : T)

By the induction hypothesis, there exists M′ such that:

M′, ∅ ` t′ : T ′ and ` µ′ : M′

Here, we are stuck. The context E is well-typed under M, but the
term t′ is well-typed under M′, so we cannot combine them. How
could we fix this?

72 / 121

Establishing subject reduction

Let us look at the case of reduction under a context.

The hypotheses are:

M, ∅ ` E[t] : T and ` µ : M and t/µ �� t′/µ′

By compositionality (?), there exists T ′ such that:

M, ∅ ` t : T ′ and ∀t′, (M, ∅ ` t′ : T ′) ⇒ (M, ∅ ` E[t′] : T)

By the induction hypothesis, there exists M′ such that:

M′, ∅ ` t′ : T ′ and ` µ′ : M′

Here, we are stuck. The context E is well-typed under M, but the
term t′ is well-typed under M′, so we cannot combine them. How
could we fix this?

73 / 121

Establishing subject reduction

Let us look at the case of reduction under a context.

The hypotheses are:

M, ∅ ` E[t] : T and ` µ : M and t/µ �� t′/µ′

By compositionality (?), there exists T ′ such that:

M, ∅ ` t : T ′ and ∀t′, (M, ∅ ` t′ : T ′) ⇒ (M, ∅ ` E[t′] : T)

By the induction hypothesis, there exists M′ such that:

M′, ∅ ` t′ : T ′ and ` µ′ : M′

Here, we are stuck. The context E is well-typed under M, but the
term t′ is well-typed under M′, so we cannot combine them. How
could we fix this?

74 / 121

Establishing subject reduction

We are missing a key property: the store typing grows with time.
That is, although new memory locations can be allocated, the type of
an existing location does not change.

This is formalized by strengthening the subject reduction statement:

Theorem (Subject reduction, strengthened)

Assume M, ∅ ` t : T and ` µ : M and t/µ �� t′/µ′. Then, there exists
M′ such that M′, ∅ ` t′ : T and ` µ′ : M′ and M ⊆ M′.

At each reduction step, the new store typing M′ extends the
previous store typing M.

75 / 121

Establishing subject reduction

Growing the store typing preserves well-typedness:

Lemma (Stability under memory allocation)

M, Γ ` t : T and M ⊆ M′ imply M′, Γ ` t : T .

76 / 121

Establishing subject reduction

Stability under memory allocation allows establishing a strengthened
version of compositionality:

Lemma (Compositionality)

Assume M, ∅ ` E[t] : T . Then, there exists T ′ such that:

• M, ∅ ` t : T ′,

• for every M′ such that M ⊆ M′,
for every t′, M′, ∅ ` t′ : T ′ implies M′, ∅ ` E[t′] : T .

77 / 121

Establishing subject reduction

Let us now look again at the case of reduction under a context.

The hypotheses are:

M, ∅ ` E[t] : T and ` µ : M and t/µ �� t′/µ′

By compositionality, there exists T ′ such that:

M, ∅ ` t : T ′

∀M′,∀t′, (M ⊆ M′) ⇒ (M′, ∅ ` t′ : T ′) ⇒ (M′, ∅ ` E[t′] : T ′)

By the induction hypothesis, there exists M′ such that:

M′, ∅ ` t′ : T ′ and ` µ′ : M′ and M ⊆ M′

The goal follows immediately.

78 / 121

Establishing subject reduction

Let us now look again at the case of reduction under a context.

The hypotheses are:

M, ∅ ` E[t] : T and ` µ : M and t/µ �� t′/µ′

By compositionality, there exists T ′ such that:

M, ∅ ` t : T ′

∀M′,∀t′, (M ⊆ M′) ⇒ (M′, ∅ ` t′ : T ′) ⇒ (M′, ∅ ` E[t′] : T ′)

By the induction hypothesis, there exists M′ such that:

M′, ∅ ` t′ : T ′ and ` µ′ : M′ and M ⊆ M′

The goal follows immediately.

79 / 121

Establishing subject reduction

Let us now look again at the case of reduction under a context.

The hypotheses are:

M, ∅ ` E[t] : T and ` µ : M and t/µ �� t′/µ′

By compositionality, there exists T ′ such that:

M, ∅ ` t : T ′

∀M′,∀t′, (M ⊆ M′) ⇒ (M′, ∅ ` t′ : T ′) ⇒ (M′, ∅ ` E[t′] : T ′)

By the induction hypothesis, there exists M′ such that:

M′, ∅ ` t′ : T ′ and ` µ′ : M′ and M ⊆ M′

The goal follows immediately.

80 / 121

Exercise

Exercise (Recommended)

Prove subject reduction and progress for simply-typed λ-calculus
equipped with unit, pairs, sums, recursive functions, and references.

81 / 121

Further reading

For a textbook introduction to λ-calculus and simple types, see
Pierce [2002].

For more details about syntactic type soundness proofs, see Wright
and Felleisen [1994].

82 / 121

On memory deallocation

In ML, memory deallocation is implicit. It must be performed by the
runtime system, possibly with the cooperation of the compiler.

The most common technique is garbage collection. A more ambitious
technique, implemented in the ML Kit, is compile-time region
analysis [Tofte et al., 2004].

References in ML are easy to type-check, thanks in large part to the
no-dangling-pointers property of the semantics.

Making memory deallocation an explicit operation, while preserving
type soundness, is possible, but difficult. This requires reasoning
about aliasing and ownership. See Charguéraud and Pottier’s recent
paper [2007] for citations.

83 / 121

1 Introduction

2 Simply-typed λ-calculus

3 Type soundness

4 Pairs, sums, recursive functions, references

5 Type inference

6 Bibliography

84 / 121

Logical versus algorithmic properties

We have viewed a type system as a 3-place predicate over a type
environment, a term, and a type.

So far, we have been concerned with logical properties of the type
system, namely subject reduction and progress.

However, one should also study its algorithmic properties: is it
decidable whether a term is well-typed? If not, can the problem be
made decidable by requesting programmers to annotate programs
with explicit type information?

85 / 121

Checking type derivations

The typing judgement is inductively defined, so that, in order to prove
that a particular instance holds, one exhibits a type derivation.

In the case of simply-typed λ-calculus, a type derivation is essentially
a version of the program where every node is annotated with a type.

Checking that a type derivation is correct is easy: it basically
amounts to checking equalities between types.

However, type derivations are so verbose as to be intractable by
humans! Requiring every node to be type-annotated is not practical.

86 / 121

Bottom-up type-checking

A more practical, and quite common, approach consists in requesting
just enough annotations to allow types to be reconstructed in a
bottom-up manner.

In other words, one seeks an algorithmic reading of the typing rules,
where, in a judgement Γ ` t : T , the parameters Γ and t are inputs,
while the parameter T is an output.

In the pure, simply-typed λ-calculus, this is quite easy, provided every
λ-bound variable carries a type, that is, provided λ-abstractions take
the form λx : T.t (sometimes known as “Church’s style”).

This is the traditional approach of Pascal, C, C++, Java, . . . : formal
procedure parameters, as well as local variables, are assigned explicit
types. The types of expressions are synthesized bottom-up.

87 / 121

Type inference

Unfortunately, bottom-up type checking does not work for some of
the typing rules that we have presented (Inj, FixAbs). Annotations
would be required there.

Furthermore, annotating every λ-abstraction seems cumbersome.
Perhaps one would prefer to program in “Curry’s style”, without
annotations.

For simply-typed λ-calculus, it turns out that this is possible:
whether a term is well-typed is decidable, even when no type
annotations are provided!

This algorithm, due to Hindley [1969], is known as type inference.

88 / 121

Type inference

The idea behind Hindley’s type inference algorithm is simple.

Because simply-typed λ-calculus is a syntax-directed type system, an
unannotated term determines an isomorphic candidate type derivation,
where all types are unknown: they are distinct type variables.

For a candidate type derivation to become an actual, valid type
derivation, every type variable must be instantiated with a type,
subject to certain equality constraints on types.

For instance, at an application node, the type of the operator must
match the domain type of the operator.

89 / 121

Type inference

Thus, type inference for the simply-typed λ-calculus decomposes into
constraint generation followed by constraint solving.

Simple types are first-order terms. Thus, solving a collection of
equations between simple types is first-order unification.

First-order unification can be performed incrementally in quasi-linear
time, and admits particularly simple solved forms.

90 / 121

Constraints

At the interface between the constraint generation and constraint
solving phases is the constraint language.

It is a logic: a syntax, equipped with an interpretation in a model.

91 / 121

Constraints

There are two syntactic categories: types and constraints.

T ::= X | F ~T
C ::= true | false | T = T | C ∧ C | ∃X.C

A type is either a type variable X or an arity-consistent application
of a type constructor F .

An atomic constraint is truth, falsity, or an equation between types.
Compound constraints are built on top of atomic constraints via
conjunction and existential quantification over type variables.

92 / 121

Constraints

Constraints are interpreted in the Herbrand universe, that is, in the
set of ground types:

t ::= F ~t

Ground types contain no variables. The base case in this definition is
when F has arity zero.

A ground assignment φ is a total mapping of type variables to
ground types.

By homomorphism, a ground assignment determines a total mapping
of types to ground types.

93 / 121

Constraints

The interpretation of constraints takes the form of a judgement,
φ ` C, pronounced: φ satisfies C, or φ is a solution of C.

This judgement is inductively defined:

φ ` true
φT1 = φT2

φ ` T1 = T2

φ ` C1 φ ` C2

φ ` C1 ∧ C2

φ[X 7� t] ` C

φ ` ∃X.C

A constraint C is satisfiable if and only if there exists a ground
assignment φ that satisfies C.

I write C1 ≡ C2 when C1 and C2 have the same solutions.

The problem: “given a constraint C, is C satisfiable?” is first-order
unification.

94 / 121

Constraint generation

Type inference is reduced to constraint solving by defining a mapping
of candidate judgements to constraints.

JΓ ` x : TK = Γ(x) = T

JΓ ` λx.t : TK = ∃X1X2.(JΓ; x : X1 ` t : X2K ∧ X1 → X2 = T)
if X1, X2 # Γ, t, T

JΓ ` t1 t2 : TK = ∃X.(JΓ ` t1 : X → TK ∧ JΓ ` t2 : XK)
if X # Γ, t1, t2, T

Note that, thanks to the use of existential quantification, the
freshness side-conditions are local.

That is, we do not require new type variables to be “globally fresh” –
that would be informal. Instead, they must be fresh for Γ, etc., that
is, they must not appear (free) within Γ, etc.

95 / 121

An example

Let us perform type inference for the closed term

λfxy.(f x, f y)

The problem is to construct and solve the constraint

J∅ ` λfxy.(f x, f y) : X0K

It is possible (and, for a human, easier) to mix these tasks. A
machine, however, could generate and solve in two successive phases.

96 / 121

An example

J∅ ` λfxy.(f x, f y) : X0K

= ∃X1X2.
(

Jf : X1 ` λxy. . . . : X2K
X1 → X2 = X0

)

= ∃X1X2.

 ∃X3X4.
(

Jf : X1; x : X3 ` λy. . . . : X4K
X3 → X4 = X2

)
X1 → X2 = X0



= ∃X1X2.

 ∃X3X4.

 ∃X5X6.
(

Jf : X1; x : X3; y : X5 ` (f x, f y) : X6K
X5 → X6 = X4

)
X3 → X4 = X2


X1 → X2 = X0


We have performed constraint generation for the 3 λ-abstractions.

97 / 121

An example

∃X1X2.

 ∃X3X4.

 ∃X5X6.
(

Jf : X1; x : X3; y : X5 ` (f x, f y) : X6K
X5 → X6 = X4

)
X3 → X4 = X2


X1 → X2 = X0



≡ ∃X1X2X3X4X5X6.


Jf : X1; x : X3; y : X5 ` (f x, f y) : X6K
X5 → X6 = X4
X3 → X4 = X2
X1 → X2 = X0


We have hoisted up several existential quantifiers:

(∃X.C1) ∧ C2 ≡ ∃X.(C1 ∧ C2) if X # C2

98 / 121

An example

∃X1X2X3X4X5X6.


Jf : X1; x : X3; y : X5 ` (f x, f y) : X6K
X5 → X6 = X4
X3 → X4 = X2
X1 → X2 = X0



≡ ∃X1X2X3X5X6.

 Jf : X1; x : X3; y : X5 ` (f x, f y) : X6K
X3 → X5 → X6 = X2
X1 → X2 = X0


We have eliminated a type variable (X4) with a defining equation:

∃X.(C ∧ X = T) ≡ [X 7� T]C if X # T

99 / 121

An example

∃X1X2X3X5X6.

 Jf : X1; x : X3; y : X5 ` (f x, f y) : X6K
X3 → X5 → X6 = X2
X1 → X2 = X0


≡ ∃X1X3X5X6.

(
Jf : X1; x : X3; y : X5 ` (f x, f y) : X6K
X1 → X3 → X5 → X6 = X0

)
We have again eliminated a type variable (X2) with a defining
equation.

In the following, let Γ stand for (f : X1; x : X3; y : X5).

100 / 121

An example

∃X1X3X5X6.
(

JΓ ` (f x, f y) : X6K
X1 → X3 → X5 → X6 = X0

)

≡ ∃X1X3X5X6X7X8.


JΓ ` f x : X7K
JΓ ` f y : X8K
X7 × X8 = X6
X1 → X3 → X5 → X6 = X0



≡ ∃X1X3X5X7X8.

 JΓ ` f x : X7K
JΓ ` f y : X8K
X1 → X3 → X5 → X7 × X8 = X0


We have performed constraint generation for the pair, hoisted the
resulting existential quantifiers, and eliminated a type variable (X6).

Let us now focus on the left-hand application...

101 / 121

An example

JΓ ` f x : X7K

= ∃X9.
(

JΓ ` f : X9 → X7K
JΓ ` x : X9K

)

= ∃X9.
(

X1 = X9 → X7
X3 = X9

)
≡ X1 = X3 → X7

We have performed constraint generation for the variables f and x,
and eliminated a type variable (X9).

Recall that Γ stands for (f : X1; x : X3; y : X5).

Now, back to the big picture...

102 / 121

An example

∃X1X3X5X7X8.

 JΓ ` f x : X7K
JΓ ` f y : X8K
X1 → X3 → X5 → X7 × X8 = X0



≡ ∃X1X3X5X7X8.

 X1 = X3 → X7
JΓ ` f y : X8K
X1 → X3 → X5 → X7 × X8 = X0



≡ ∃X1X3X5X7X8.

 X1 = X3 → X7
X1 = X5 → X8
X1 → X3 → X5 → X7 × X8 = X0


We have applied the previous simplification under a context:

C1 ≡ C2 ⇒ C[C1] ≡ C[C2]

We have simplified the right-hand application analogously.
103 / 121

An example

∃X1X3X5X7X8.

 X1 = X3 → X7
X1 = X5 → X8
X1 → X3 → X5 → X7 × X8 = X0



≡ ∃X1X3X5X7X8.


X1 = X3 → X7
X3 = X5
X7 = X8
X1 → X3 → X5 → X7 × X8 = X0


≡ ∃X3X7.

(
(X3 → X7) → X3 → X3 → X7 × X7 = X0

)
We have applied transitivity at X1, structural decomposition, and
eliminated three type variables (X1, X5, X8).

We have now reached a solved form.

104 / 121

An example

We have checked the following equivalence:

J∅ ` λfxy.(f x, f y) : X0K
≡ ∃X3X7.

(
(X3 → X7) → X3 → X3 → X7 × X7 = X0

)
The ground types of λfxy.(f x, f y) are all ground types of the form
(t3 → t7) → t3 → t3 → t7 × t7.

(X3 → X7) → X3 → X3 → X7 × X7 is a principal type for λfxy.(f x, f y).

105 / 121

An example

Objective Caml implements a form of this type inference algorithm:

fun f x y -> (f x, f y);;
- : (’a -> ’b) -> ’a -> ’a -> ’b * ’b = <fun>

106 / 121

An example

In the simply-typed λ-calculus, type inference works just as well for
open terms. Consider, for instance:

λxy.(f x, f y)

This term has a free variable, namely f .

The type inference problem is to construct and solve the constraint

Jf : X1 ` λfxy.(f x, f y) : X2K

We have already done so... with only a slight difference: X1 and X2
are now free, so they cannot be eliminated.

107 / 121

An example

One can check the following equivalence:

Jf : X1 ` λxy.(f x, f y) : X2K

≡ ∃X3X7.
(

X3 → X7 = X1
X3 → X3 → X7 × X7 = X2

)
In other words, the ground typings of λxy.(f x, f y) are all ground
typings of the form:

((f : t3 → t7), t3 → t3 → t7 × t7)

A typing is a pair of an environment and a type.

108 / 121

Typings

Definition

(Γ, T) is a typing of t if and only if dom(Γ) = fv(t) and the
judgement Γ ` t : T is valid.

The type inference problem is to determine whether a term t admits
a typing, and, if possible, to exhibit a description of the set of all of
its typings.

Up to a change of universes, the problem reduces to finding the
ground typings of a term. (For every type variable, introduce a nullary
type constructor. Then, ground typings in the extended universe are
in one-to-one correspondence with typings in the original universe.)

109 / 121

Constraint generation

Theorem (Soundness and completeness)

φ ` JΓ ` t : TK if and only if φΓ ` t : φT .

Proof.

By structural induction over t. (Recommended exercise.)

In other words, assuming dom(Γ) = fv(t), φ satisfies the constraint
JΓ ` t : TK if and only if (φΓ, φT) is a (ground) typing of t.

110 / 121

Constraint generation

Corollary

Let fv(t) = {x1, . . . , xn}, where n ≥ 0. Let X0, . . . , Xn be pairwise
distinct type variables. Then, the ground typings of t are described by

((xi : φXi)1≥i≥n, φX0)

where φ ranges over all solutions of J(xi : Xi)1≥i≥n ` t : X0K.

Corollary

Let fv(t) = ∅. Then, t is well-typed if and only if ∃X.J∅ ` t : XK ≡ true.

111 / 121

Constraint solving

A constraint solving algorithm is typically presented as a
(nondeterministic) system of constraint rewriting rules.

The system must enjoy the following properties:

• reduction is meaning-preserving: C1 �� C2 implies C1 ≡ C2;

• reduction is terminating;

• every normal form is either “false” (literally) or satisfiable.

The normal forms are called solved forms.

112 / 121

First-order unification as constraint solving

Following Pottier and Rémy [2005, §10.6], I extend the syntax of
constraints and replace ordinary binary equations with
multi-equations:

U ::= true | false | ε | U ∧ U | ∃X̄.U

A multi-equation ε is a multi-set of types. Its interpretation is:

∀T ∈ ε, φT = t

φ ` ε

That is, φ satisfies ε if and only if φ maps all members of ε to a
single ground type.

113 / 121

First-order unification as constraint solving

(∃X̄.U1) ∧ U2 �� ∃X̄.(U1 ∧ U2) (extrusion)

if X̄ # U2
X = ε ∧ X = ε′ �� X = ε = ε′ (fusion)

F ~X = F ~T = ε �� ~X = ~T ∧ F ~X = ε (decomposition)

F T1 . . . Ti . . . Tn = ε �� ∃X.(X = Ti ∧ F T1 . . . X . . . Tn = ε) (naming)

if Ti is not a variable ∧ X # T1, . . . , Tn, ε

F ~T = F′ ~T ′ = ε �� false (clash)

if F 6= F′

U �� false (occurs check)

if U is cyclic

U[false] �� false
X = X = ε �� X = ε

T �� true
U ∧ true �� U

114 / 121

Closing remarks

Thanks to type inference, conciseness and static safety are not
incompatible.

Furthermore, an inferred type is sometimes more general than a
programmer-intended type. Type inference helps reveal unexpected
generality.

115 / 121

1 Introduction

2 Simply-typed λ-calculus

3 Type soundness

4 Pairs, sums, recursive functions, references

5 Type inference

6 Bibliography

116 / 121

Bibliography I

(Most titles are clickable links to online versions.)

Charguéraud, A. and Pottier, F. 2007.
Functional translation of a calculus of capabilities.
Submitted.

Chlipala, A. 2007.
A certified type-preserving compiler from lambda calculus to
assembly language.
In ACM Conference on Programming Language Design and
Implementation (PLDI). 54–65.

Grossman, D. 2006.
Quantified types in an imperative language.
ACM Transactions on Programming Languages and Systems 28, 3
(May), 429–475.

117 / 121

http://cristal.inria.fr/~fpottier/publis/chargueraud-pottier-capabilities.pdf
http://www.cs.berkeley.edu/~adamc/papers/CtpcPLDI07/CtpcPLDI07.pdf
http://www.cs.berkeley.edu/~adamc/papers/CtpcPLDI07/CtpcPLDI07.pdf
http://www.cs.washington.edu/homes/djg/papers/qtil.pdf

[II

Bibliography]Bibliography

Harper, B. and Lillibridge, M. 1991.
ML with callcc is unsound.
Message to the TYPES mailing list.

Hindley, J. R. 1969.
The principal type-scheme of an object in combinatory logic.
Transactions of the American Mathematical Society 146, 29–60.

Landin, P. J. 1965.
Correspondence between ALGOL 60 and Church’s lambda-notation:
part I.
Communications of the ACM 8, 2, 89–101.

118 / 121

http://www.cis.upenn.edu/~bcpierce/types/archives/1991/msg00034.html
http://dx.doi.org/10.2307/1995158
http://doi.acm.org/10.1145/363744.363749
http://doi.acm.org/10.1145/363744.363749

[III

[][

Milner, R. 1978.
A theory of type polymorphism in programming.
Journal of Computer and System Sciences 17, 3 (Dec.), 348–375.

Morrisett, G., Walker, D., Crary, K., and Glew, N. 1999.
From system F to typed assembly language.
ACM Transactions on Programming Languages and Systems 21, 3
(May), 528–569.

Pierce, B. C. 2002.
Types and Programming Languages.
MIT Press.

119 / 121

http://www.diku.dk/undervisning/2006-2007/2006-2007_b2_246/milner78theory.pdf
http://www.cs.cornell.edu/talc/papers/tal-toplas.pdf

[IV

[][

Pottier, F. and Rémy, D. 2005.
The essence of ML type inference.
In Advanced Topics in Types and Programming Languages, B. C.
Pierce, Ed. MIT Press, Chapter 10, 389–489.

Reynolds, J. C. 1983.
Types, abstraction and parametric polymorphism.
In Information Processing 83. Elsevier Science, 513–523.

Reynolds, J. C. 1985.
Three approaches to type structure.
In International Joint Conference on Theory and Practice of
Software Development (TAPSOFT). Lecture Notes in Computer
Science, vol. 185. Springer Verlag, 97–138.

120 / 121

ftp://ftp.cs.cmu.edu/user/jcr/typesabpara.pdf
http://dx.doi.org/10.1007/3-540-15198-2_7

[V

[][

Tofte, M., Birkedal, L., Elsman, M., and Hallenberg, N. 2004.
A retrospective on region-based memory management.
Higher-Order and Symbolic Computation 17, 3 (Sept.), 245–265.

Wright, A. K. and Felleisen, M. 1994.
A syntactic approach to type soundness.
Information and Computation 115, 1 (Nov.), 38–94.

121 / 121

http://www.itu.dk/people/birkedal/papers/regmmp.ps.gz
http://www.cs.rice.edu/CS/PLT/Publications/Scheme/ic94-wf.ps.gz

	Introduction
	Simply-typed lambda-calculus
	Type soundness
	Pairs, sums, recursive functions, references
	Type inference
	Bibliography

