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MPRI: Cours de sous-typage

Language Primitives

Working on XML data requires at least two kinds of primitives:

1 deconstruction/extraction primitives: pinpoint and capture
subparts of the XML data
Two solutions stem from practice:

Path expressions
Regular expression patterns

2 iteration primitives: iterate over XML trees the process of
extraction and transformation of data.
No emerging solution: FLWR (XQuery), select-from-where (Cω,

CQL), select-where (Lorel, loto-ql), filter (XDuce), xtransform

(CDuce), in the language semantics (XSLT), . . .
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Deconstructors/extractors

In running query/programming languages:

Paths: “vertical” exploration of data, capture elements that
may be at different depths (unary queries)
Usually XPath paths, but also the “dot” navigations (Cω, Lorel,

TQL) or caterpillar expressions.

Regular expression patterns: “horizontal” exploration of
data, perform finer grained decomposition on sequences of
elements
Proposed by Hosoya&Pierce for XDuce and then

adopted by CDuce/CQL, Xtatic, Scala, XHaskell,. . .

The two primitives are not antagonist:
they are orthogonal and complementary.
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Deconstructors/extractors

In running query/programming languages:

Paths: “vertical” exploration of data, capture elements that
may be at different depths (unary queries)
Usually XPath paths, but also the “dot” navigations (Cω, Lorel,

TQL) or caterpillar expressions.

Regular expression patterns: “horizontal” exploration of
data, perform finer grained decomposition on sequences of
elements
Proposed by Hosoya&Pierce for XDuce and then

adopted by CDuce/CQL, Xtatic, Scala, XHaskell,. . .

The two primitives are not antagonist:
they are orthogonal and complementary.

It seems natural to integrate both of them into
a query/programming language for XML.
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Mixing horizontal and vertical selectors

Several theoretical works from different areas about integrating
vertical and horizontal exploration:

1 Unranked tree logics: e.g. Neven&Schwentick’s ETL.

2 Spatial modal logics: e.g. Cardelli&Ghelli’s TQL.

3 Query languages: e.g. Papakonstantinou&Vianu’s Loto-ql

But in running languages I am aware of just two examples:

1 CQL (i.e. CDuce Query Language)

2 Xtatic (an extension of C#)

Paths and Regexp Patterns “coexist” but they are not integrated.
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Mixing horizontal and vertical selectors

Several theoretical works from different areas about integrating
vertical and horizontal exploration:

1 Unranked tree logics: e.g. Neven&Schwentick’s ETL.

2 Spatial modal logics: e.g. Cardelli&Ghelli’s TQL.

3 Query languages: e.g. Papakonstantinou&Vianu’s Loto-ql

But in running languages I am aware of just two examples:

1 CQL (i.e. CDuce Query Language)

2 Xtatic (an extension of C#)

Paths and Regexp Patterns “coexist” but they are not integrated.

Opportunity of collaboration between the database
and the programming languages communities
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Outline of the talk

1 An overview of regexp types/patterns

Patterns in functional languages

Patterns as types with variables

Regexp Patterns and types for XML

2 Eight reasons to consider regexp types/patterns

Classic usages of type systems ( 1 2 3 )

Efficient and type precise main memory execution ( 4 5 6 )

Secondary memory optimization ( 7 8 )

3 Conclusion.
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Regular expression
Types and Patterns for XML
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MPRI: Cours de sous-typage

Types & patterns: the functional languages perspective

Types are sets of values

Values are decomposed by patterns

Patterns are roughly values with capture variables

Instead of

let x = fst(e) in
let y = snd(e) in (y,x)

with pattern one can write

let (x,y) = e in (y,x)

which syntactic sugar for

match e with (x,y) -> (y,x)

“match” is more interesting than “let”, since it can test
several “|||”-separated patterns.
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Example: tail-recursive version of length for lists:

type List = (Any,List) | ‘nil

fun length (x:(List,Int)) : Int =
match x with
| (‘nil , n) -> n
| (( ,t), n) -> length(t,n+1)

So patterns are values with capture variables, wildcards, constants.

But if we:

1 use for types the same constructors as for values
(e.g. (s,t) instead of s × t)

2 use values to denote singleton types
(e.g. ‘nil in the list type);

3 consider the wildcard “ ” as synonym of Any
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MPRI: Cours de sous-typage

Unions, intersections, differences

Boolean operators are needed to type pattern matching:
match e with p1 -> e1 | p2 -> e2

- To infer the type t1 of e1 we need t& *** p1+++ (where e : t);
- To infer the type t2 of e2 we need (t \ *** p1+++)& *** p2+++;
- The type of the match is t1|t2 .

Boolean type constructors are useful for programming:

map catalogue with
x :: (Car & (Guaranteed|(Any\Used)) -> x

Select in catalogue all cars that if used then are guaranteed.
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Boolean type constructors are useful for programming:

map catalogue with
x :: (Car & (Guaranteed|(Any\Used)) -> x

Select in catalogue all cars that if used then are guaranteed.

Roadmap to extend it to XML:

1 Define types for XML documents,
2 Add boolean type constructors,
3 Define patterns as types with capture variables
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MPRI::

MPRI: Cours de sous-typage

XML Types Example: A bibliography

type Bib = <bib>[Book*]
type Book = <book year=String>[

Title
(Author+ | Editor+ )
Price?
Publisher]

type Author = <author>[Last First]
type Editor = <editor>[Last First]
type Title = <title>[PCDATA]
type Last = <last>[PCDATA]
type First = <first>[PCDATA]
type Publisher = String
type Price = <price>[PCDATA]

This and: singletons, intersections, differences, Empty, and Any.
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Patterns

Patterns = Types + Capture variables
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type Bib = <bib>[Book*]
type Book = <book year=String>[Title Author+ Publisher]T

Y
P
E
S
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Y
P
E
S

match bibs with
<bib>[x::Book*] -> x

Returns the content of bibs.

P
A
T

T
E
R
N

S

G. Castagna Types and Patterns for Querying XML 12/28



1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Patterns

Patterns = Types + Capture variables

type Bib = <bib>[Book*]
type Book = <book year=String>[Title Author+ Publisher]T

Y
P
E
S

match bibs with
<bib>[( x::<book year="2005"> | y:: )*] -> x@y

P
A
T

T
E
R
N

S

G. Castagna Types and Patterns for Querying XML 12/28



1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Patterns

Patterns = Types + Capture variables

type Bib = <bib>[Book*]
type Book = <book year=String>[Title Author+ Publisher]T

Y
P
E
S

match bibs with
<bib>[( x::<book year="2005"> | y:: )*] -> x@y

Binds x to the sequence of all this year’s books, and y to all the
other books.

P
A
T

T
E
R
N

S

G. Castagna Types and Patterns for Querying XML 12/28



1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Patterns

Patterns = Types + Capture variables

type Bib = <bib>[Book*]
type Book = <book year=String>[Title Author+ Publisher]T

Y
P
E
S

match bibs with
<bib>[( x::<book year="2005"> | y:: )*] -> x@y

P
A
T

T
E
R
N

S

G. Castagna Types and Patterns for Querying XML 12/28



1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Patterns

Patterns = Types + Capture variables

type Bib = <bib>[Book*]
type Book = <book year=String>[Title Author+ Publisher]T

Y
P
E
S

match bibs with
<bib>[( x::<book year="2005"> | y:: )*] -> x@y

Returns the concatenation (i.e., “@”) of the two captured sequencesP
A
T

T
E
R
N

S

G. Castagna Types and Patterns for Querying XML 12/28



1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Patterns

Patterns = Types + Capture variables

type Bib = <bib>[Book*]
type Book = <book year=String>[Title Author+ Publisher]T

Y
P
E
S

match bibs with
<bib>[(x::<book year="1990">[ * Publisher\"ACM"] | )*] -> x

P
A
T

T
E
R
N

S

G. Castagna Types and Patterns for Querying XML 12/28



1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Patterns

Patterns = Types + Capture variables

type Bib = <bib>[Book*]
type Book = <book year=String>[Title Author+ Publisher]T

Y
P
E
S

match bibs with
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match bibs with
<bib>[(x::<book year="1990">[ * Publisher\"ACM"] | )*] -> x

Returns all the captured books

Exact type inference:

E.g.: if we match the pattern [(x::Int| )*] against an expression
of type [Int* String Int] the type deduced for x is [Int+]
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MPRI::

MPRI: Cours de sous-typage

Select-from-where

Instead of just variables
select e from

x1 in e1 p1
...

xn in en pn

where c

Biblio = <bib>[Book*]
Book = <book year=String>[Title (Author+|Editor+) Price?]
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select e from

p1 in e1
...

pn in en

where c

fun getTitles(bibs : Biblio) : [(<book>[Title])*]

<bib>[b::Book*]
<book year="1990">[ t::Title + <price>"69.99" ]in b

(1) captures in b all the books of a bibliography
(2) captures in t the title of a book if it is of 1990 and costs 69.99
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Book = <book year=String>[Title (Author+|Editor+) Price?]
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1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

XPath encoding

For instance in CQL (. . . but see Xtatic for a very different encoding):

All children of e with tag tag (e/tag )

select x from < ..>[( x::(<tag ..> )| )*] in e

All attributes labelled by id (e/@id )

select x from < id =x ..> in e

Notice that regexp patterns can define non-unary queries.
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XPath encoding

For instance in CQL (. . . but see Xtatic for a very different encoding):

All children of e with tag tag (e/tag )

select x from < ..>[( x::(<tag ..> )| )*] in e

All attributes labelled by id (e/@id )

select x from < id =x ..> in e

Notice that regexp patterns can define non-unary queries.

Rationale

CQL, Xtatic, add syntactic sugar for XPath . . . but we need more
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1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

. . . it is all syntactic sugar!

Types

t ::= Int | v | (t, t) | t ∨ t | t ∧ t | ¬t | Any

Patterns

p ::= t | x | (p, p) | p ∨ p | p ∧ p

Example:

type Book = <book>[Title (Author+|Editor+) Price?]

encoded as

Book = (‘book, (Title,X ∨ Y ))
X = (Author,X ∨ (Price, ‘nil) ∨ ‘nil)
Y = (Editor,Y ∨ (Price, ‘nil) ∨ ‘nil)
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1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Some reasons to consider regular
expression types and patterns
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MPRI::

MPRI: Cours de sous-typage

Some good reasons to consider regexp patterns/types

Theoretical reason: very compact

Eight practical reasons:

1 Classic usage
2 Informative error messages
3 Error mining
4 Efficient execution
5 Logical optimisation of pattern-based queries
6 Pattern matches as building blocks for iterators
7 Type/pattern-based data pruning for memory usage optimisation
8 Type-based query optimisation
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These optimisations are orthogonal to the classical optimisa-
tions: they sum up and bring a further gain of performance
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Given a query q execute it on documents in which parts not
necessary to evaluate q are pruned. Recently adopted in main
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We can start from the optimal compilation of patterns: Compile
patterns in order to have as many “ ” wildcards as possible

fun check(x : A|B) = match x with A -> 1 | B -> 0

compiled as

fun check(x : A|B) = match x with <a> -> 1 | -> 0
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We can start from the optimal compilation of patterns: Compile
patterns in order to have as many “ ” wildcards as possible

fun check(x : A|B) = match x with A -> 1 | B -> 0

compiled as

fun check(x : A|B) = match x with <a> -> 1 | -> 0

G. Castagna Types and Patterns for Querying XML 24/28

Use type analysis to determine which parts of an XML data
need not to be loaded in main memory



1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

7. Type/pattern-based pruning to optimise memory usage

Given a query q execute it on documents in which parts not
necessary to evaluate q are pruned. Recently adopted in main
memory XML query engines, e.g. [Marian-Siméon], [Bressan et al.].
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Data matched by wildcards “ ” not in the scope of a capture
variable are not necessary to the evaluation. Use boolean type
constructors to determine the program data-need.
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8. Type-based query optimisation

Data description is more precise:
E.g. in IMDB there are constraints such as:

If a show-element contains season-elements,
then its type-attribute is "TV Series".

Transformation description is more precise:
Exact type inference for pattern variables.
Finer type inference for queries:

for bibs/book/(title|author|editor)
infer type [(Title (Author+|Editor+))*]
rather than [(Title|Author|Editor)*]

DTD/Schema already used to optimise access to XML
data on disk. It should be possible to use also the precision
of regexp types to optimise secondary memory queries.
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Conclusion

Regexp patterns start from two simple ideas:
Use the same constructors for types and value
Define patterns as types with capture variables

Tightly connected with boolean combinators,
make several aspects programmer-friendly:

Semantic types are set of values, and unions, intersections,
and differences behave set-theoretically.
Concepts are easier for the programmer (e.g. subtyping)
Informative error messages.
Precise and powerful specification language

Several benefits:
Types yield highly efficient runtime: in main memory it
outperforms efficiency-oriented XQuery processors such as
Qizx and Qexo [XMark and XQuery Use Cases benchmarks].
High precision in typing queries, iterators, complex transformations.
Multiple usages without the need of introducing new specific
formalisms (error mining, data pruning, logical optimisations,
constraint specifications,. . . )
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Conclusion

. . . but that’s not enough

Regexp are good for horizontal exploration but not for vertical
one. Should be integrated with path-like primitives, extended
to iterators, endowed with more friendly QBE-like interfaces,
. . .

I tried to give an idea about the kind of research that is
pursued on XML in the programming language community
but much other research goes on (security, distribution,
integration in mainstream languages, streaming, . . . )

A good place to start from is PLAN-X, ACM SIGPLAN
Workshop on Programming Languages Technologies for XML.

To try all this install CDuce
http://www.cduce.org

(on Linux, yum/apt-get install cduce)

G. Castagna Types and Patterns for Querying XML 28/28

http://www.cduce.org


1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Conclusion

. . . but that’s not enough

Regexp are good for horizontal exploration but not for vertical
one. Should be integrated with path-like primitives, extended
to iterators, endowed with more friendly QBE-like interfaces,
. . .

I tried to give an idea about the kind of research that is
pursued on XML in the programming language community
but much other research goes on (security, distribution,
integration in mainstream languages, streaming, . . . )

A good place to start from is PLAN-X, ACM SIGPLAN
Workshop on Programming Languages Technologies for XML.

To try all this install CDuce
http://www.cduce.org

(on Linux, yum/apt-get install cduce)

G. Castagna Types and Patterns for Querying XML 28/28

http://www.cduce.org


1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Conclusion

. . . but that’s not enough

Regexp are good for horizontal exploration but not for vertical
one. Should be integrated with path-like primitives, extended
to iterators, endowed with more friendly QBE-like interfaces,
. . .

I tried to give an idea about the kind of research that is
pursued on XML in the programming language community
but much other research goes on (security, distribution,
integration in mainstream languages, streaming, . . . )

A good place to start from is PLAN-X, ACM SIGPLAN
Workshop on Programming Languages Technologies for XML.

To try all this install CDuce
http://www.cduce.org

(on Linux, yum/apt-get install cduce)

G. Castagna Types and Patterns for Querying XML 28/28

http://www.cduce.org


1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Conclusion

. . . but that’s not enough

Regexp are good for horizontal exploration but not for vertical
one. Should be integrated with path-like primitives, extended
to iterators, endowed with more friendly QBE-like interfaces,
. . .

I tried to give an idea about the kind of research that is
pursued on XML in the programming language community
but much other research goes on (security, distribution,
integration in mainstream languages, streaming, . . . )

A good place to start from is PLAN-X, ACM SIGPLAN
Workshop on Programming Languages Technologies for XML.

To try all this install CDuce
http://www.cduce.org

(on Linux, yum/apt-get install cduce)

G. Castagna Types and Patterns for Querying XML 28/28

http://www.cduce.org


1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Conclusion

. . . but that’s not enough

Regexp are good for horizontal exploration but not for vertical
one. Should be integrated with path-like primitives, extended
to iterators, endowed with more friendly QBE-like interfaces,
. . .

I tried to give an idea about the kind of research that is
pursued on XML in the programming language community
but much other research goes on (security, distribution,
integration in mainstream languages, streaming, . . . )

A good place to start from is PLAN-X, ACM SIGPLAN
Workshop on Programming Languages Technologies for XML.

To try all this install CDuce
http://www.cduce.org

(on Linux, yum/apt-get install cduce)

G. Castagna Types and Patterns for Querying XML 28/28

http://www.cduce.org

	Introduction
	Regular expression Types and Patterns for XML: an overview
	Eight good reasons to consider regular types and patterns
	Conclusion

