
1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Types and Patterns for Querying XML

Giuseppe Castagna

CNRS
Laboratoire Preuves, Programmes et Systèmes

Université Paris Diderot - Paris 7

2008/2009

G. Castagna Types and Patterns for Querying XML 1/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Language Primitives

Working on XML data requires at least two kinds of primitives:

1 deconstruction/extraction primitives: pinpoint and capture
subparts of the XML data
Two solutions stem from practice:

Path expressions
Regular expression patterns

2 iteration primitives: iterate over XML trees the process of
extraction and transformation of data.
No emerging solution: FLWR (XQuery), select-from-where (Cω,

CQL), select-where (Lorel, loto-ql), filter (XDuce), xtransform

(CDuce), in the language semantics (XSLT), . . .

G. Castagna Types and Patterns for Querying XML 2/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Language Primitives

Working on XML data requires at least two kinds of primitives:

1 deconstruction/extraction primitives: pinpoint and capture
subparts of the XML data
Two solutions stem from practice:

Path expressions
Regular expression patterns

2 iteration primitives: iterate over XML trees the process of
extraction and transformation of data.
No emerging solution: FLWR (XQuery), select-from-where (Cω,

CQL), select-where (Lorel, loto-ql), filter (XDuce), xtransform

(CDuce), in the language semantics (XSLT), . . .

G. Castagna Types and Patterns for Querying XML 2/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Language Primitives

Working on XML data requires at least two kinds of primitives:

1 deconstruction/extraction primitives: pinpoint and capture
subparts of the XML data
Two solutions stem from practice:

Path expressions
Regular expression patterns

2 iteration primitives: iterate over XML trees the process of
extraction and transformation of data.
No emerging solution: FLWR (XQuery), select-from-where (Cω,

CQL), select-where (Lorel, loto-ql), filter (XDuce), xtransform

(CDuce), in the language semantics (XSLT), . . .

G. Castagna Types and Patterns for Querying XML 2/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Language Primitives

Working on XML data requires at least two kinds of primitives:

1 deconstruction/extraction primitives: pinpoint and capture
subparts of the XML data
Two solutions stem from practice:

Path expressions
Regular expression patterns

2 iteration primitives: iterate over XML trees the process of
extraction and transformation of data.
No emerging solution: FLWR (XQuery), select-from-where (Cω,

CQL), select-where (Lorel, loto-ql), filter (XDuce), xtransform

(CDuce), in the language semantics (XSLT), . . .

G. Castagna Types and Patterns for Querying XML 2/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Language Primitives

Working on XML data requires at least two kinds of primitives:

1 deconstruction/extraction primitives: pinpoint and capture
subparts of the XML data
Two solutions stem from practice:

Path expressions
Regular expression patterns

2 iteration primitives: iterate over XML trees the process of
extraction and transformation of data.
No emerging solution: FLWR (XQuery), select-from-where (Cω,

CQL), select-where (Lorel, loto-ql), filter (XDuce), xtransform

(CDuce), in the language semantics (XSLT), . . .

G. Castagna Types and Patterns for Querying XML 2/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Deconstructors/extractors

In running query/programming languages:

Paths: “vertical” exploration of data, capture elements that
may be at different depths (unary queries)
Usually XPath paths, but also the “dot” navigations (Cω, Lorel,

TQL) or caterpillar expressions.

Regular expression patterns: “horizontal” exploration of
data, perform finer grained decomposition on sequences of
elements
Proposed by Hosoya&Pierce for XDuce and then

adopted by CDuce/CQL, Xtatic, Scala, XHaskell,. . .

The two primitives are not antagonist:
they are orthogonal and complementary.

G. Castagna Types and Patterns for Querying XML 3/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Deconstructors/extractors

In running query/programming languages:

Paths: “vertical” exploration of data, capture elements that
may be at different depths (unary queries)
Usually XPath paths, but also the “dot” navigations (Cω, Lorel,

TQL) or caterpillar expressions.

Regular expression patterns: “horizontal” exploration of
data, perform finer grained decomposition on sequences of
elements
Proposed by Hosoya&Pierce for XDuce and then

adopted by CDuce/CQL, Xtatic, Scala, XHaskell,. . .

The two primitives are not antagonist:
they are orthogonal and complementary.

G. Castagna Types and Patterns for Querying XML 3/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Deconstructors/extractors

In running query/programming languages:

Paths: “vertical” exploration of data, capture elements that
may be at different depths (unary queries)
Usually XPath paths, but also the “dot” navigations (Cω, Lorel,

TQL) or caterpillar expressions.

Regular expression patterns: “horizontal” exploration of
data, perform finer grained decomposition on sequences of
elements
Proposed by Hosoya&Pierce for XDuce and then

adopted by CDuce/CQL, Xtatic, Scala, XHaskell,. . .

The two primitives are not antagonist:
they are orthogonal and complementary.

G. Castagna Types and Patterns for Querying XML 3/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Deconstructors/extractors

In running query/programming languages:

Paths: “vertical” exploration of data, capture elements that
may be at different depths (unary queries)
Usually XPath paths, but also the “dot” navigations (Cω, Lorel,

TQL) or caterpillar expressions.

Regular expression patterns: “horizontal” exploration of
data, perform finer grained decomposition on sequences of
elements
Proposed by Hosoya&Pierce for XDuce and then

adopted by CDuce/CQL, Xtatic, Scala, XHaskell,. . .

The two primitives are not antagonist:
they are orthogonal and complementary.

G. Castagna Types and Patterns for Querying XML 3/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Deconstructors/extractors

In running query/programming languages:

Paths: “vertical” exploration of data, capture elements that
may be at different depths (unary queries)
Usually XPath paths, but also the “dot” navigations (Cω, Lorel,

TQL) or caterpillar expressions.

Regular expression patterns: “horizontal” exploration of
data, perform finer grained decomposition on sequences of
elements
Proposed by Hosoya&Pierce for XDuce and then

adopted by CDuce/CQL, Xtatic, Scala, XHaskell,. . .

The two primitives are not antagonist:
they are orthogonal and complementary.

G. Castagna Types and Patterns for Querying XML 3/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Deconstructors/extractors

In running query/programming languages:

Paths: “vertical” exploration of data, capture elements that
may be at different depths (unary queries)
Usually XPath paths, but also the “dot” navigations (Cω, Lorel,

TQL) or caterpillar expressions.

Regular expression patterns: “horizontal” exploration of
data, perform finer grained decomposition on sequences of
elements
Proposed by Hosoya&Pierce for XDuce and then

adopted by CDuce/CQL, Xtatic, Scala, XHaskell,. . .

The two primitives are not antagonist:
they are orthogonal and complementary.

G. Castagna Types and Patterns for Querying XML 3/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Deconstructors/extractors

In running query/programming languages:

Paths: “vertical” exploration of data, capture elements that
may be at different depths (unary queries)
Usually XPath paths, but also the “dot” navigations (Cω, Lorel,

TQL) or caterpillar expressions.

Regular expression patterns: “horizontal” exploration of
data, perform finer grained decomposition on sequences of
elements
Proposed by Hosoya&Pierce for XDuce and then

adopted by CDuce/CQL, Xtatic, Scala, XHaskell,. . .

The two primitives are not antagonist:
they are orthogonal and complementary.

It seems natural to integrate both of them into
a query/programming language for XML.

G. Castagna Types and Patterns for Querying XML 3/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Mixing horizontal and vertical selectors

Several theoretical works from different areas about integrating
vertical and horizontal exploration:

1 Unranked tree logics: e.g. Neven&Schwentick’s ETL.

2 Spatial modal logics: e.g. Cardelli&Ghelli’s TQL.

3 Query languages: e.g. Papakonstantinou&Vianu’s Loto-ql

But in running languages I am aware of just two examples:

1 CQL (i.e. CDuce Query Language)

2 Xtatic (an extension of C#)

Paths and Regexp Patterns “coexist” but they are not integrated.

G. Castagna Types and Patterns for Querying XML 4/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Mixing horizontal and vertical selectors

Several theoretical works from different areas about integrating
vertical and horizontal exploration:

1 Unranked tree logics: e.g. Neven&Schwentick’s ETL.

2 Spatial modal logics: e.g. Cardelli&Ghelli’s TQL.

3 Query languages: e.g. Papakonstantinou&Vianu’s Loto-ql

But in running languages I am aware of just two examples:

1 CQL (i.e. CDuce Query Language)

2 Xtatic (an extension of C#)

Paths and Regexp Patterns “coexist” but they are not integrated.

G. Castagna Types and Patterns for Querying XML 4/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Mixing horizontal and vertical selectors

Several theoretical works from different areas about integrating
vertical and horizontal exploration:

1 Unranked tree logics: e.g. Neven&Schwentick’s ETL.

2 Spatial modal logics: e.g. Cardelli&Ghelli’s TQL.

3 Query languages: e.g. Papakonstantinou&Vianu’s Loto-ql

But in running languages I am aware of just two examples:

1 CQL (i.e. CDuce Query Language)

2 Xtatic (an extension of C#)

Paths and Regexp Patterns “coexist” but they are not integrated.

G. Castagna Types and Patterns for Querying XML 4/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Mixing horizontal and vertical selectors

Several theoretical works from different areas about integrating
vertical and horizontal exploration:

1 Unranked tree logics: e.g. Neven&Schwentick’s ETL.

2 Spatial modal logics: e.g. Cardelli&Ghelli’s TQL.

3 Query languages: e.g. Papakonstantinou&Vianu’s Loto-ql

But in running languages I am aware of just two examples:

1 CQL (i.e. CDuce Query Language)

2 Xtatic (an extension of C#)

Paths and Regexp Patterns “coexist” but they are not integrated.

G. Castagna Types and Patterns for Querying XML 4/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Mixing horizontal and vertical selectors

Several theoretical works from different areas about integrating
vertical and horizontal exploration:

1 Unranked tree logics: e.g. Neven&Schwentick’s ETL.

2 Spatial modal logics: e.g. Cardelli&Ghelli’s TQL.

3 Query languages: e.g. Papakonstantinou&Vianu’s Loto-ql

But in running languages I am aware of just two examples:

1 CQL (i.e. CDuce Query Language)

2 Xtatic (an extension of C#)

Paths and Regexp Patterns “coexist” but they are not integrated.

G. Castagna Types and Patterns for Querying XML 4/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Mixing horizontal and vertical selectors

Several theoretical works from different areas about integrating
vertical and horizontal exploration:

1 Unranked tree logics: e.g. Neven&Schwentick’s ETL.

2 Spatial modal logics: e.g. Cardelli&Ghelli’s TQL.

3 Query languages: e.g. Papakonstantinou&Vianu’s Loto-ql

But in running languages I am aware of just two examples:

1 CQL (i.e. CDuce Query Language)

2 Xtatic (an extension of C#)

Paths and Regexp Patterns “coexist” but they are not integrated.

Opportunity of collaboration between the database
and the programming languages communities

G. Castagna Types and Patterns for Querying XML 4/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Outline of the talk

1 An overview of regexp types/patterns

Patterns in functional languages

Patterns as types with variables

Regexp Patterns and types for XML

2 Eight reasons to consider regexp types/patterns

Classic usages of type systems (1 2 3)

Efficient and type precise main memory execution (4 5 6)

Secondary memory optimization (7 8)

3 Conclusion.

G. Castagna Types and Patterns for Querying XML 5/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Outline of the talk

1 An overview of regexp types/patterns

Patterns in functional languages

Patterns as types with variables

Regexp Patterns and types for XML

2 Eight reasons to consider regexp types/patterns

Classic usages of type systems (1 2 3)

Efficient and type precise main memory execution (4 5 6)

Secondary memory optimization (7 8)

3 Conclusion.

G. Castagna Types and Patterns for Querying XML 5/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Outline of the talk

1 An overview of regexp types/patterns

Patterns in functional languages

Patterns as types with variables

Regexp Patterns and types for XML

2 Eight reasons to consider regexp types/patterns

Classic usages of type systems (1 2 3)

Efficient and type precise main memory execution (4 5 6)

Secondary memory optimization (7 8)

3 Conclusion.

G. Castagna Types and Patterns for Querying XML 5/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Regular expression
Types and Patterns for XML

G. Castagna Types and Patterns for Querying XML 6/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Types & patterns: the functional languages perspective

Types are sets of values

Values are decomposed by patterns

Patterns are roughly values with capture variables

Instead of

let x = fst(e) in
let y = snd(e) in (y,x)

with pattern one can write

let (x,y) = e in (y,x)

which syntactic sugar for

match e with (x,y) -> (y,x)

“match” is more interesting than “let”, since it can test
several “|||”-separated patterns.

G. Castagna Types and Patterns for Querying XML 7/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Types & patterns: the functional languages perspective

Types are sets of values

Values are decomposed by patterns

Patterns are roughly values with capture variables

Instead of

let x = fst(e) in
let y = snd(e) in (y,x)

with pattern one can write

let (x,y) = e in (y,x)

which syntactic sugar for

match e with (x,y) -> (y,x)

“match” is more interesting than “let”, since it can test
several “|||”-separated patterns.

G. Castagna Types and Patterns for Querying XML 7/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Types & patterns: the functional languages perspective

Types are sets of values

Values are decomposed by patterns

Patterns are roughly values with capture variables

Instead of

let x = fst(e) in
let y = snd(e) in (y,x)

with pattern one can write

let (x,y) = e in (y,x)

which syntactic sugar for

match e with (x,y) -> (y,x)

“match” is more interesting than “let”, since it can test
several “|||”-separated patterns.

G. Castagna Types and Patterns for Querying XML 7/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Types & patterns: the functional languages perspective

Types are sets of values

Values are decomposed by patterns

Patterns are roughly values with capture variables

Instead of

let x = fst(e) in
let y = snd(e) in (y,x)

with pattern one can write

let (x,y) = e in (y,x)

which syntactic sugar for

match e with (x,y) -> (y,x)

“match” is more interesting than “let”, since it can test
several “|||”-separated patterns.

G. Castagna Types and Patterns for Querying XML 7/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Types & patterns: the functional languages perspective

Types are sets of values

Values are decomposed by patterns

Patterns are roughly values with capture variables

Instead of

let x = fst(e) in
let y = snd(e) in (y,x)

with pattern one can write

let (x,y) = e in (y,x)

which syntactic sugar for

match e with (x,y) -> (y,x)

“match” is more interesting than “let”, since it can test
several “|||”-separated patterns.

G. Castagna Types and Patterns for Querying XML 7/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Example: tail-recursive version of length for lists:

type List = (Any,List) | ‘nil

fun length (x:(List,Int)) : Int =
match x with
| (‘nil , n) -> n
| ((,t), n) -> length(t,n+1)

So patterns are values with capture variables, wildcards, constants.

But if we:

1 use for types the same constructors as for values
(e.g. (s,t) instead of s × t)

2 use values to denote singleton types
(e.g. ‘nil in the list type);

3 consider the wildcard “ ” as synonym of Any

G. Castagna Types and Patterns for Querying XML 8/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Example: tail-recursive version of length for lists:

type List = (Any,List) | ‘nil

fun length (x:(List,Int)) : Int =
match x with
| (‘nil , n) -> n
| ((,t), n) -> length(t,n+1)

So patterns are values with capture variables, wildcards, constants.

But if we:

1 use for types the same constructors as for values
(e.g. (s,t) instead of s × t)

2 use values to denote singleton types
(e.g. ‘nil in the list type);

3 consider the wildcard “ ” as synonym of Any

G. Castagna Types and Patterns for Querying XML 8/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Example: tail-recursive version of length for lists:

type List = (Any,List) | ‘nil

fun length (x:(List,Int)) : Int =
match x with
| (‘nil , n) -> n
| ((,t), n) -> length(t,n+1)

So patterns are values with capture variables, wildcards, constants.

But if we:

1 use for types the same constructors as for values
(e.g. (s,t) instead of s × t)

2 use values to denote singleton types
(e.g. ‘nil in the list type);

3 consider the wildcard “ ” as synonym of Any

G. Castagna Types and Patterns for Querying XML 8/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Example: tail-recursive version of length for lists:

type List = (Any,List) | ‘nil

fun length (x:(List,Int)) : Int =
match x with
| (‘nil , n) -> n
| ((,t), n) -> length(t,n+1)

So patterns are values with capture variables, wildcards, constants.

But if we:

1 use for types the same constructors as for values
(e.g. (s,t) instead of s × t)

2 use values to denote singleton types
(e.g. ‘nil in the list type);

3 consider the wildcard “ ” as synonym of Any

G. Castagna Types and Patterns for Querying XML 8/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Example: tail-recursive version of length for lists:

type List = (Any,List) | ‘nil

fun length (x:(List,Int)) : Int =
match x with
| (‘nil , nnn) -> n
| ((,ttt), nnn) -> length(t,n+1)

So patterns are values with capture variables, wildcards, constants.

But if we:

1 use for types the same constructors as for values
(e.g. (s,t) instead of s × t)

2 use values to denote singleton types
(e.g. ‘nil in the list type);

3 consider the wildcard “ ” as synonym of Any

G. Castagna Types and Patterns for Querying XML 8/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Example: tail-recursive version of length for lists:

type List = (Any,List) | ‘nil

fun length (x:(List,Int)) : Int =
match x with
| (‘nil , n) -> n
| ((,t), n) -> length(t,n+1)

So patterns are values with capture variables, wildcards, constants.

But if we:

1 use for types the same constructors as for values
(e.g. (s,t) instead of s × t)

2 use values to denote singleton types
(e.g. ‘nil in the list type);

3 consider the wildcard “ ” as synonym of Any

G. Castagna Types and Patterns for Querying XML 8/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Example: tail-recursive version of length for lists:

type List = (Any,List) | ‘nil

fun length (x:(List,Int)) : Int =
match x with
| (‘nil‘nil‘nil , n) -> n
| ((,t), n) -> length(t,n+1)

So patterns are values with capture variables, wildcards, constants.

But if we:

1 use for types the same constructors as for values
(e.g. (s,t) instead of s × t)

2 use values to denote singleton types
(e.g. ‘nil in the list type);

3 consider the wildcard “ ” as synonym of Any

G. Castagna Types and Patterns for Querying XML 8/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Example: tail-recursive version of length for lists:

type List = (Any,List) | ‘nil

fun length (x:(List,Int)) : Int =
match x with
| (‘nil , n) -> n
| ((,t), n) -> length(t,n+1)

So patterns are values with capture variables, wildcards, constants.

But if we:

1 use for types the same constructors as for values
(e.g. (s,t) instead of s × t)

2 use values to denote singleton types
(e.g. ‘nil in the list type);

3 consider the wildcard “ ” as synonym of Any

G. Castagna Types and Patterns for Querying XML 8/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Example: tail-recursive version of length for lists:

type List = (Any,List) | ‘nil

fun length (x:(List,Int)) : Int =
match x with
| (‘nil , n) -> n
| ((,t), n) -> length(t,n+1)

So patterns are values with capture variables, wildcards, constants.

But if we:

1 use for types the same constructors as for values
(e.g. (s,t) instead of s × t)

2 use values to denote singleton types
(e.g. ‘nil in the list type);

3 consider the wildcard “ ” as synonym of Any

G. Castagna Types and Patterns for Querying XML 8/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Example: tail-recursive version of length for lists:

type List = (Any,List)(Any,List)(Any,List) | ‘nil

fun length (x:(List,Int)(List,Int)(List,Int)) : Int =
match x with
| (‘nil , n) -> n
| ((,t), n) -> length(t,n+1)

So patterns are values with capture variables, wildcards, constants.

But if we:

1 use for types the same constructors as for values
(e.g. (s,t) instead of s × t)

2 use values to denote singleton types
(e.g. ‘nil in the list type);

3 consider the wildcard “ ” as synonym of Any

G. Castagna Types and Patterns for Querying XML 8/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Example: tail-recursive version of length for lists:

type List = (Any,List) | ‘nil

fun length (x:(List,Int)) : Int =
match x with
| (‘nil , n) -> n
| ((,t), n) -> length(t,n+1)

So patterns are values with capture variables, wildcards, constants.

But if we:

1 use for types the same constructors as for values
(e.g. (s,t) instead of s × t)

2 use values to denote singleton types
(e.g. ‘nil in the list type);

3 consider the wildcard “ ” as synonym of Any

G. Castagna Types and Patterns for Querying XML 8/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Example: tail-recursive version of length for lists:

type List = (Any,List) | ‘nil‘nil‘nil

fun length (x:(List,Int)) : Int =
match x with
| (‘nil , n) -> n
| ((,t), n) -> length(t,n+1)

So patterns are values with capture variables, wildcards, constants.

But if we:

1 use for types the same constructors as for values
(e.g. (s,t) instead of s × t)

2 use values to denote singleton types
(e.g. ‘nil in the list type);

3 consider the wildcard “ ” as synonym of Any

G. Castagna Types and Patterns for Querying XML 8/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Example: tail-recursive version of length for lists:

type List = (Any,List) | ‘nil

fun length (x:(List,Int)) : Int =
match x with
| (‘nil , n) -> n
| ((,t), n) -> length(t,n+1)

So patterns are values with capture variables, wildcards, constants.

But if we:

1 use for types the same constructors as for values
(e.g. (s,t) instead of s × t)

2 use values to denote singleton types
(e.g. ‘nil in the list type);

3 consider the wildcard “ ” as synonym of Any

G. Castagna Types and Patterns for Querying XML 8/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Example: tail-recursive version of length for lists:

type List = (AnyAnyAny,List) | ‘nil

fun length (x:(List,Int)) : Int =
match x with
| (‘nil , n) -> n
| ((,t), n) -> length(t,n+1)

So patterns are values with capture variables, wildcards, constants.

But if we:

1 use for types the same constructors as for values
(e.g. (s,t) instead of s × t)

2 use values to denote singleton types
(e.g. ‘nil in the list type);

3 consider the wildcard “ ” as synonym of Any

G. Castagna Types and Patterns for Querying XML 8/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Example: tail-recursive version of length for lists:

type List = (Any,List) | ‘nil

fun length (x:(List,Int)) : Int =
match x with
| (‘nil , n) -> n
| ((,t), n) -> length(t,n+1)

So patterns are values with capture variables, wildcards, constants.

But if we:

1 use for types the same constructors as for values
(e.g. (s,t) instead of s × t)

2 use values to denote singleton types
(e.g. ‘nil in the list type);

3 consider the wildcard “ ” as synonym of Any

Key idea behind regular patterns

Patterns are types with capture variables

Define types: patterns come for free.

G. Castagna Types and Patterns for Querying XML 8/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Example: tail-recursive version of length for lists:

type List = (Any,List) | ‘nil

fun length (x:(List,Int)) : Int =
match x with
| (‘nil , n) -> n
| ((,t), n) -> length(t,n+1)

So patterns are values with capture variables, wildcards, constants.

But if we:

1 use for types the same constructors as for values
(e.g. (s,t) instead of s × t)

2 use values to denote singleton types
(e.g. ‘nil in the list type);

3 consider the wildcard “ ” as synonym of Any

Key idea behind regular patterns

Patterns are types with capture variables

Define types: patterns come for free.

G. Castagna Types and Patterns for Querying XML 8/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Example: tail-recursive version of length for lists:

type List = (Any,List) | ‘nil

fun length (x:(List,Int)) : Int =
match x with
| (‘nil , n) -> n
| ((,t), n) -> length(t,n+1)

So patterns are values with capture variables, wildcards, constants.

But if we:

1 use for types the same constructors as for values
(e.g. (s,t) instead of s × t)

2 use values to denote singleton types
(e.g. ‘nil in the list type);

3 consider the wildcard “ ” as synonym of Any

Key idea behind regular patterns

Patterns are types with capture variables

Define types: patterns come for free.

G. Castagna Types and Patterns for Querying XML 8/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Which types should we start from?

Patterns are tightly connected to boolean type constructors,
that is unions (|), intersections (&) and differences (\):

type List = (Any,List) | ‘nil|||

fun length (x :(List,Int)) : Int =
match x with
| (‘nil , n) -> n Int
| ((,t), n) -> length(t,n+1) Int

G. Castagna Types and Patterns for Querying XML 9/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Which types should we start from?

Patterns are tightly connected to boolean type constructors,
that is unions (|), intersections (&) and differences (\):

type List = (Any,List) | ‘nil|||

fun length (x :(List,Int)) : Int =
match x with
| (‘nil , n) -> n Int
| ((,t), n) -> length(t,n+1) Int

G. Castagna Types and Patterns for Querying XML 9/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Which types should we start from?

Patterns are tightly connected to boolean type constructors,
that is unions (|), intersections (&) and differences (\):

type List = (Any,List) ||| ‘nil|||

fun length (x :(List,Int)) : Int =
match x with
| (‘nil , n) -> n Int
| ((,t), n) -> length(t,n+1) Int

G. Castagna Types and Patterns for Querying XML 9/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Which types should we start from?

Patterns are tightly connected to boolean type constructors,
that is unions (|), intersections (&) and differences (\):

type List = (Any,List) | ‘nil|||

fun length (x :(List,Int)) : Int =
match x with
| (‘nil , n) -> n Int
| ((,t), n) -> length(t,n+1) Int

To type this function we need basic types products, singletons,. . .

t ::= Int | v | (t, t) |

G. Castagna Types and Patterns for Querying XML 9/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Which types should we start from?

Patterns are tightly connected to boolean type constructors,
that is unions (|), intersections (&) and differences (\):

type List = (Any,List) | ‘nil|||

fun length (x :(List,Int)) : Int =
match x with
| (‘nil , n) -> n Int
| ((,t), n) -> length(t,n+1) Int

To type this function we need basic types products, singletons,. . .

t ::= Int | v | (t, t) | t|t | t&t | t\t | Empty | Any

but also boolean type constructors.
Let us type the function.

G. Castagna Types and Patterns for Querying XML 9/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Which types should we start from?

type List = (Any,List) | ‘nil|||

fun length (x :(List,Int)) : Int =
match x with
| (‘nil , n) -> n Int
| ((,t), n) -> length(t,n+1) Int

To type this function we need basic types products, singletons,. . .

t ::= Int | v | (t, t) | t|t | t&t | t\t | Empty | Any

but also boolean type constructors.
Let us type the function.

G. Castagna Types and Patterns for Querying XML 9/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Which types should we start from?

t = {v | v value of type t} and ***p+++ = {v | v matches pattern p}
(this is a type)

type List = (Any,List) | ‘nil|||

fun length (x :(List,Int)) : Int =
match x with
| (‘nil , n) -> n Int
| ((,t), n) -> length(t,n+1) Int

G. Castagna Types and Patterns for Querying XML 9/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Which types should we start from?

t = {v | v value of type t} and ***p+++ = {v | v matches pattern p}
(this is a type)

type List = (Any,List) | ‘nil|||

fun length (x :(List,Int)) : Int =
match x with
| (‘nil , n) -> n Int
| ((,t), n) -> length(t,n+1) Int

G. Castagna Types and Patterns for Querying XML 9/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Which types should we start from?

t = {v | v value of type t} and ***p+++ = {v | v matches pattern p}
(this is a type)

type List = (Any,List) | ‘nil|||

fun length (x :(List,Int)) : Int =
match x with
| (‘nil , n) -> n Int
| ((,t), n) -> length(t,n+1) Int

The first branch is executed only for values and are both in
(List,Int) and in ***(‘nil,n) +++ = (‘nil,Any)

G. Castagna Types and Patterns for Querying XML 9/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Which types should we start from?

t = {v | v value of type t} and ***p+++ = {v | v matches pattern p}
(this is a type)

type List = (Any,List) | ‘nil|||

fun length (x :(List,Int)) : Int =
match x with
| (‘nil , n) -> n Int
| ((,t), n) -> length(t,n+1) Int

The first branch is executed only for values and are both in
(List,Int) and in ***(‘nil,n) +++ = (‘nil,Any)

G. Castagna Types and Patterns for Querying XML 9/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Which types should we start from?

t = {v | v value of type t} and ***p+++ = {v | v matches pattern p}
(this is a type)

type List = (Any,List) | ‘nil|||

fun length (x :(List,Int)) : Int =
match x with
| (‘nil , n) -> n Int
| ((,t), n) -> length(t,n+1) Int

The first branch is executed only for values and are both in
(List,Int) and in ***(‘nil,n) +++ = (‘nil,Any)

(List,Int) & (‘nil,Any) = (‘nil,Int)

G. Castagna Types and Patterns for Querying XML 9/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Which types should we start from?

t = {v | v value of type t} and ***p+++ = {v | v matches pattern p}
(this is a type)

type List = (Any,List) | ‘nil|||

fun length (x :(List,Int)) : Int =
match x with
| (‘nil , n) -> n Int
| ((,t), n) -> length(t,n+1) Int

The first branch is executed only for values and are both in
(List,Int) and in ***(‘nil,n) +++ = (‘nil,Any)

(List,Int) & (‘nil,Any) = (‘nil,Int)

G. Castagna Types and Patterns for Querying XML 9/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Which types should we start from?

t = {v | v value of type t} and ***p+++ = {v | v matches pattern p}
(this is a type)

type List = (Any,List) | ‘nil|||

fun length (x :(List,Int)) : Int =
match x with
| (‘nil , n) -> n Int
| ((,t), n) -> length(t,n+1) Int

The first branch is executed only for values and are both in
(List,Int) and in ***(‘nil,n) +++ = (‘nil,Any)

(List,Int) & (‘nil,Any) = (‘nil,Int)

G. Castagna Types and Patterns for Querying XML 9/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Which types should we start from?

t = {v | v value of type t} and ***p+++ = {v | v matches pattern p}
(this is a type)

type List = (Any,List) | ‘nil|||

fun length (x :(List,Int)) : Int =
match x with
| (‘nil , n) -> n Int
| ((,t), n) -> length(t,n+1) Int

The second branch is executed for values that are in
(List,Int) not in ***(‘nil,n)+++ and in ***((,t),n)+++

G. Castagna Types and Patterns for Querying XML 9/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Which types should we start from?

t = {v | v value of type t} and ***p+++ = {v | v matches pattern p}
(this is a type)

type List = (Any,List) | ‘nil|||

fun length (x :(List,Int)) : Int =
match x with
| (‘nil , n) -> n Int
| ((,t), n) -> length(t,n+1) Int

The second branch is executed for values that are in
(List,Int) not in ***(‘nil,n)+++ and in ***((,t),n)+++

((List,Int)\ (‘nil,Any))&((Any,Any),Any) = ((Any,List),Int)

G. Castagna Types and Patterns for Querying XML 9/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Which types should we start from?

t = {v | v value of type t} and ***p+++ = {v | v matches pattern p}
(this is a type)

type List = (Any,List) | ‘nil|||

fun length (x :(List,Int)) : Int =
match x with
| (‘nil , n) -> n Int
| ((,t), n) -> length(t,n+1) Int

The second branch is executed for values that are in
(List,Int) not in ***(‘nil,n)+++ and in ***((,t),n)+++

((List,Int)\ (‘nil,Any))&((Any,Any),Any) = ((Any,List),Int)

G. Castagna Types and Patterns for Querying XML 9/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Which types should we start from?

t = {v | v value of type t} and ***p+++ = {v | v matches pattern p}
(this is a type)

type List = (Any,List) | ‘nil|||

fun length (x :(List,Int)) : Int =
match x with
| (‘nil , n) -> n Int
| ((,t), n) -> length(t,n+1) Int

The second branch is executed for values that are in
(List,Int) not in ***(‘nil,n)+++ and in ***((,t),n)+++

((List,Int)\ (‘nil,Any))&((Any,Any),Any) = ((Any,List),Int)

G. Castagna Types and Patterns for Querying XML 9/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Which types should we start from?

t = {v | v value of type t} and ***p+++ = {v | v matches pattern p}
(this is a type)

type List = (Any,List) | ‘nil|||

fun length (x :(List,Int)) : Int =
match x with
| (‘nil , n) -> n Int
| ((,t), n) -> length(t,n+1) Int

The match expression has type the union of the possible results

G. Castagna Types and Patterns for Querying XML 9/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Which types should we start from?

t = {v | v value of type t} and ***p+++ = {v | v matches pattern p}
(this is a type)

type List = (Any,List) | ‘nil|||

fun length (x :(List,Int)) : Int =
match x with
| (‘nil , n) -> n Int
| ((,t), n) -> length(t,n+1) Int

The match expression has type the union of the possible results

Int | Int = Int

G. Castagna Types and Patterns for Querying XML 9/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Which types should we start from?

t = {v | v value of type t} and ***p+++ = {v | v matches pattern p}
(this is a type)

type List = (Any,List) | ‘nil|||

fun length (x :(List,Int)) : Int =
match x with
| (‘nil , n) -> n Int
| ((,t), n) -> length(t,n+1) Int

The match expression has type the union of the possible results

Int | Int = Int

The function is well-typed

G. Castagna Types and Patterns for Querying XML 9/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Which types should we start from?

t = {v | v value of type t} and ***p+++ = {v | v matches pattern p}
(this is a type)

type List = (Any,List) | ‘nil|||

fun length (x :(List,Int)) : Int =
match x with
| (‘nil , n) -> n Int
| ((,t), n) -> length(t,n+1) Int

The match expression has type the union of the possible results

Int | Int = Int

The function is well-typed

G. Castagna Types and Patterns for Querying XML 9/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Unions, intersections, differences

Boolean operators are needed to type pattern matching:
match e with p1 -> e1 | p2 -> e2

- To infer the type t1 of e1 we need t& *** p1+++ (where e : t);
- To infer the type t2 of e2 we need (t \ *** p1+++)& *** p2+++;
- The type of the match is t1|t2 .

Boolean type constructors are useful for programming:

map catalogue with
x :: (Car & (Guaranteed|(Any\Used)) -> x

Select in catalogue all cars that if used then are guaranteed.

G. Castagna Types and Patterns for Querying XML 10/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Unions, intersections, differences

Boolean operators are needed to type pattern matching:
match e with p1 -> e1 | p2 -> e2

- To infer the type t1 of e1 we need t& *** p1+++ (where e : t);
- To infer the type t2 of e2 we need (t \ *** p1+++)& *** p2+++;
- The type of the match is t1|t2 .

Boolean type constructors are useful for programming:

map catalogue with
x :: (Car & (Guaranteed|(Any\Used)) -> x

Select in catalogue all cars that if used then are guaranteed.

G. Castagna Types and Patterns for Querying XML 10/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Unions, intersections, differences

Boolean operators are needed to type pattern matching:
match e with p1 -> e1 | p2 -> e2

- To infer the type t1 of e1 we need t& *** p1+++ (where e : t);
- To infer the type t2 of e2 we need (t \ *** p1+++)& *** p2+++;
- The type of the match is t1|t2 .

Boolean type constructors are useful for programming:

map catalogue with
x :: (Car & (Guaranteed|(Any\Used)) -> x

Select in catalogue all cars that if used then are guaranteed.

G. Castagna Types and Patterns for Querying XML 10/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Unions, intersections, differences

Boolean operators are needed to type pattern matching:
match e with p1 -> e1 | p2 -> e2

- To infer the type t1 of e1 we need t& *** p1+++ (where e : t);
- To infer the type t2 of e2 we need (t \ *** p1+++)& *** p2+++;
- The type of the match is t1|t2 .

Boolean type constructors are useful for programming:

map catalogue with
x :: (Car & (Guaranteed|(Any\Used)) -> x

Select in catalogue all cars that if used then are guaranteed.

G. Castagna Types and Patterns for Querying XML 10/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Unions, intersections, differences

Boolean operators are needed to type pattern matching:
match e with p1 -> e1 | p2 -> e2

- To infer the type t1 of e1 we need t&&& *** p1+++ (where e : t);
- To infer the type t2 of e2 we need (t \\\ *** p1+++)&&& *** p2+++;
- The type of the match is t1|||t2 .

Boolean type constructors are useful for programming:

map catalogue with
x :: (Car & (Guaranteed|(Any\Used)) -> x

Select in catalogue all cars that if used then are guaranteed.

G. Castagna Types and Patterns for Querying XML 10/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Unions, intersections, differences

Boolean operators are needed to type pattern matching:
match e with p1 -> e1 | p2 -> e2

- To infer the type t1 of e1 we need t& *** p1+++ (where e : t);
- To infer the type t2 of e2 we need (t \ *** p1+++)& *** p2+++;
- The type of the match is t1|t2 .

Boolean type constructors are useful for programming:

map catalogue with
x :: (Car & (Guaranteed|(Any\Used)) -> x

Select in catalogue all cars that if used then are guaranteed.

G. Castagna Types and Patterns for Querying XML 10/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Unions, intersections, differences

Boolean operators are needed to type pattern matching:
match e with p1 -> e1 | p2 -> e2

- To infer the type t1 of e1 we need t& *** p1+++ (where e : t);
- To infer the type t2 of e2 we need (t \ *** p1+++)& *** p2+++;
- The type of the match is t1|t2 .

Boolean type constructors are useful for programming:

map catalogue with
x :: (Car & (Guaranteed|(Any\Used)) -> x

Select in catalogue all cars that if used then are guaranteed.

G. Castagna Types and Patterns for Querying XML 10/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Unions, intersections, differences

Boolean operators are needed to type pattern matching:
match e with p1 -> e1 | p2 -> e2

- To infer the type t1 of e1 we need t& *** p1+++ (where e : t);
- To infer the type t2 of e2 we need (t \ *** p1+++)& *** p2+++;
- The type of the match is t1|t2 .

Boolean type constructors are useful for programming:

map catalogue with
x :: (Car & (Guaranteed|(Any\Used)) -> x

Select in catalogue all cars that if used then are guaranteed.

Roadmap to extend it to XML:

1 Define types for XML documents,
2 Add boolean type constructors,
3 Define patterns as types with capture variables

G. Castagna Types and Patterns for Querying XML 10/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Unions, intersections, differences

Boolean operators are needed to type pattern matching:
match e with p1 -> e1 | p2 -> e2

- To infer the type t1 of e1 we need t& *** p1+++ (where e : t);
- To infer the type t2 of e2 we need (t \ *** p1+++)& *** p2+++;
- The type of the match is t1|t2 .

Boolean type constructors are useful for programming:

map catalogue with
x :: (Car & (Guaranteed|(Any\Used)) -> x

Select in catalogue all cars that if used then are guaranteed.

Roadmap to extend it to XML:

1 Define types for XML documents,
2 Add boolean type constructors,
3 Define patterns as types with capture variables

G. Castagna Types and Patterns for Querying XML 10/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Unions, intersections, differences

Boolean operators are needed to type pattern matching:
match e with p1 -> e1 | p2 -> e2

- To infer the type t1 of e1 we need t& *** p1+++ (where e : t);
- To infer the type t2 of e2 we need (t \ *** p1+++)& *** p2+++;
- The type of the match is t1|t2 .

Boolean type constructors are useful for programming:

map catalogue with
x :: (Car & (Guaranteed|(Any\Used)) -> x

Select in catalogue all cars that if used then are guaranteed.

Roadmap to extend it to XML:

1 Define types for XML documents,
2 Add boolean type constructors,
3 Define patterns as types with capture variables

G. Castagna Types and Patterns for Querying XML 10/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Unions, intersections, differences

Boolean operators are needed to type pattern matching:
match e with p1 -> e1 | p2 -> e2

- To infer the type t1 of e1 we need t& *** p1+++ (where e : t);
- To infer the type t2 of e2 we need (t \ *** p1+++)& *** p2+++;
- The type of the match is t1|t2 .

Boolean type constructors are useful for programming:

map catalogue with
x :: (Car & (Guaranteed|(Any\Used)) -> x

Select in catalogue all cars that if used then are guaranteed.

Roadmap to extend it to XML:

1 Define types for XML documents,
2 Add boolean type constructors,
3 Define patterns as types with capture variables

G. Castagna Types and Patterns for Querying XML 10/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

XML Types Example: A bibliography

type Bib = <bib>[Book*]
type Book = <book year=String>[

Title
(Author+ | Editor+)
Price?
Publisher]

type Author = <author>[Last First]
type Editor = <editor>[Last First]
type Title = <title>[PCDATA]
type Last = <last>[PCDATA]
type First = <first>[PCDATA]
type Publisher = String
type Price = <price>[PCDATA]

This and: singletons, intersections, differences, Empty, and Any.

G. Castagna Types and Patterns for Querying XML 11/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

XML Types Example: A bibliography

type Bib = <bib>[Book*] Kleene star
type Book = <book year=String>[

Title
(Author+ | Editor+)
Price?
Publisher]

type Author = <author>[Last First]
type Editor = <editor>[Last First]
type Title = <title>[PCDATA]
type Last = <last>[PCDATA]
type First = <first>[PCDATA]
type Publisher = String
type Price = <price>[PCDATA]

This and: singletons, intersections, differences, Empty, and Any.

G. Castagna Types and Patterns for Querying XML 11/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

XML Types Example: A bibliography

type Bib = <bib>[Book*]
type Book = <book year=String>[attribute types

Title
(Author+ | Editor+)
Price?
Publisher]

type Author = <author>[Last First]
type Editor = <editor>[Last First]
type Title = <title>[PCDATA]
type Last = <last>[PCDATA]
type First = <first>[PCDATA]
type Publisher = String
type Price = <price>[PCDATA]

This and: singletons, intersections, differences, Empty, and Any.

G. Castagna Types and Patterns for Querying XML 11/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

XML Types Example: A bibliography

type Bib = <bib>[Book*]
type Book = <book year=String>[

Title
(Author+ | Editor+)
Price?
Publisher]

type Author = <author>[Last First]
type Editor = <editor>[Last First]
type Title = <title>[PCDATA] PCDATA
type Last = <last>[PCDATA]
type First = <first>[PCDATA]
type Publisher = String
type Price = <price>[PCDATA]

This and: singletons, intersections, differences, Empty, and Any.

G. Castagna Types and Patterns for Querying XML 11/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

XML Types Example: A bibliography

type Bib = <bib>[Book*]
type Book = <book year=String>[

Title
(Author+ | Editor+) unions
Price?
Publisher]

type Author = <author>[Last First]
type Editor = <editor>[Last First]
type Title = <title>[PCDATA]
type Last = <last>[PCDATA]
type First = <first>[PCDATA]
type Publisher = String
type Price = <price>[PCDATA]

This and: singletons, intersections, differences, Empty, and Any.

G. Castagna Types and Patterns for Querying XML 11/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

XML Types Example: A bibliography

type Bib = <bib>[Book*]
type Book = <book year=String>[

Title
(Author+ | Editor+)
Price? optional elems
Publisher]

type Author = <author>[Last First]
type Editor = <editor>[Last First]
type Title = <title>[PCDATA]
type Last = <last>[PCDATA]
type First = <first>[PCDATA]
type Publisher = String
type Price = <price>[PCDATA]

This and: singletons, intersections, differences, Empty, and Any.

G. Castagna Types and Patterns for Querying XML 11/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

XML Types Example: A bibliography

type Bib = <bib>[Book*]
type Book = <book year=String>[

Title
(Author+ | Editor+)
Price?
Publisher] mixed content

type Author = <author>[Last First]
type Editor = <editor>[Last First]
type Title = <title>[PCDATA]
type Last = <last>[PCDATA]
type First = <first>[PCDATA]
type Publisher = String
type Price = <price>[PCDATA]

This and: singletons, intersections, differences, Empty, and Any.

G. Castagna Types and Patterns for Querying XML 11/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

XML Types Example: A bibliography

type Bib = <bib>[Book*]
type Book = <book year=String>[

Title
(Author+ | Editor+)
Price?
Publisher]

type Author = <author>[Last First]
type Editor = <editor>[Last First]
type Title = <title>[PCDATA]
type Last = <last>[PCDATA]
type First = <first>[PCDATA]
type Publisher = String
type Price = <price>[PCDATA]

This and: singletons, intersections, differences, Empty, and Any.

G. Castagna Types and Patterns for Querying XML 11/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Patterns

Patterns = Types + Capture variables

T
Y

P
E
S

P
A
T

T
E
R
N

S

G. Castagna Types and Patterns for Querying XML 12/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Patterns

Patterns = Types + Capture variables

type Bib = <bib>[Book*]
type Book = <book year=String>[Title Author+ Publisher]T

Y
P
E
S

P
A
T

T
E
R
N

S

G. Castagna Types and Patterns for Querying XML 12/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Patterns

Patterns = Types + Capture variables

type Bib = <bib>[Book*]
type Book = <book year=String>[Title Author+ Publisher]T

Y
P
E
S

match bibs with
<bib>[x::Book*] -> x

P
A
T

T
E
R
N

S

G. Castagna Types and Patterns for Querying XML 12/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Patterns

Patterns = Types + Capture variables

type Bib = <bib>[Book*]
type Book = <book year=String>[Title Author+ Publisher]T

Y
P
E
S

match bibs with
<bib>[x::Book*] -> x

The pattern binds x to the sequence of all books in the bibliography

P
A
T

T
E
R
N

S

G. Castagna Types and Patterns for Querying XML 12/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Patterns

Patterns = Types + Capture variables

type Bib = <bib>[Book*]
type Book = <book year=String>[Title Author+ Publisher]T

Y
P
E
S

match bibs with
<bib>[x::Book*] -> x

P
A
T

T
E
R
N

S

G. Castagna Types and Patterns for Querying XML 12/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Patterns

Patterns = Types + Capture variables

type Bib = <bib>[Book*]
type Book = <book year=String>[Title Author+ Publisher]T

Y
P
E
S

match bibs with
<bib>[x::Book*] -> x

Returns the content of bibs.

P
A
T

T
E
R
N

S

G. Castagna Types and Patterns for Querying XML 12/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Patterns

Patterns = Types + Capture variables

type Bib = <bib>[Book*]
type Book = <book year=String>[Title Author+ Publisher]T

Y
P
E
S

match bibs with
<bib>[(x::<book year="2005"> | y::)*] -> x@y

P
A
T

T
E
R
N

S

G. Castagna Types and Patterns for Querying XML 12/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Patterns

Patterns = Types + Capture variables

type Bib = <bib>[Book*]
type Book = <book year=String>[Title Author+ Publisher]T

Y
P
E
S

match bibs with
<bib>[(x::<book year="2005"> | y::)*] -> x@y

Binds x to the sequence of all this year’s books, and y to all the
other books.

P
A
T

T
E
R
N

S

G. Castagna Types and Patterns for Querying XML 12/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Patterns

Patterns = Types + Capture variables

type Bib = <bib>[Book*]
type Book = <book year=String>[Title Author+ Publisher]T

Y
P
E
S

match bibs with
<bib>[(x::<book year="2005"> | y::)*] -> x@y

P
A
T

T
E
R
N

S

G. Castagna Types and Patterns for Querying XML 12/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Patterns

Patterns = Types + Capture variables

type Bib = <bib>[Book*]
type Book = <book year=String>[Title Author+ Publisher]T

Y
P
E
S

match bibs with
<bib>[(x::<book year="2005"> | y::)*] -> x@y

Returns the concatenation (i.e., “@”) of the two captured sequencesP
A
T

T
E
R
N

S

G. Castagna Types and Patterns for Querying XML 12/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Patterns

Patterns = Types + Capture variables

type Bib = <bib>[Book*]
type Book = <book year=String>[Title Author+ Publisher]T

Y
P
E
S

match bibs with
<bib>[(x::<book year="1990">[* Publisher\"ACM"] |)*] -> x

P
A
T

T
E
R
N

S

G. Castagna Types and Patterns for Querying XML 12/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Patterns

Patterns = Types + Capture variables

type Bib = <bib>[Book*]
type Book = <book year=String>[Title Author+ Publisher]T

Y
P
E
S

match bibs with
<bib>[(x::<book year="1990">[* Publisher\"ACM"] |)*] -> x

Binds x to the sequence of books published in 1990 from publishers
others than “ACM” and discards all the others.

P
A
T

T
E
R
N

S

G. Castagna Types and Patterns for Querying XML 12/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Patterns

Patterns = Types + Capture variables

type Bib = <bib>[Book*]
type Book = <book year=String>[Title Author+ Publisher]T

Y
P
E
S

match bibs with
<bib>[(x::<book year="1990">[* Publisher\"ACM"] |)*] -> x

P
A
T

T
E
R
N

S

G. Castagna Types and Patterns for Querying XML 12/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Patterns

Patterns = Types + Capture variables

type Bib = <bib>[Book*]
type Book = <book year=String>[Title Author+ Publisher]T

Y
P
E
S

match bibs with
<bib>[(x::<book year="1990">[* Publisher\"ACM"] |)*] -> x

Returns all the captured books

P
A
T

T
E
R
N

S

G. Castagna Types and Patterns for Querying XML 12/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Patterns

Patterns = Types + Capture variables

type Bib = <bib>[Book*]
type Book = <book year=String>[Title Author+ Publisher]T

Y
P
E
S

match bibs with
<bib>[(x::<book year="1990">[* Publisher\"ACM"] |)*] -> x

Returns all the captured books

Exact type inference:

E.g.: if we match the pattern [(x::Int|)*] against an expression
of type [Int* String Int] the type deduced for x is [Int+]

P
A
T

T
E
R
N

S

G. Castagna Types and Patterns for Querying XML 12/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Patterns

Patterns = Types + Capture variables

type Bib = <bib>[Book*]
type Book = <book year=String>[Title Author+ Publisher]T

Y
P
E
S

match bibs with
<bib>[(x::<book year="1990">[* Publisher\"ACM"] |)*] -> x

Returns all the captured books

Exact type inference:

E.g.: if we match the pattern [(x::Int|)***] against an expression
of type [Int* String Int] the type deduced for x is [Int+++]

P
A
T

T
E
R
N

S

G. Castagna Types and Patterns for Querying XML 12/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Select-from-where

Instead of just variables
select e from

x1 in e1 p1
...

xn in en pn

where c

Biblio = <bib>[Book*]
Book = <book year=String>[Title (Author+|Editor+) Price?]

G. Castagna Types and Patterns for Querying XML 13/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Select-from-where

Instead of just variables use patterns
select e from

p1 in e1
...

pn in en

where c

Biblio = <bib>[Book*]
Book = <book year=String>[Title (Author+|Editor+) Price?]

G. Castagna Types and Patterns for Querying XML 13/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Select-from-where

Instead of just variables use patterns
select e from

p1 in e1
...

pn in en

where c

fun getTitles(bibs : Biblio) : [(<book>[Title])*]

<bib>[b::Book*]
<book year="1990">[t::Title + <price>"69.99"]in b

(1) captures in b all the books of a bibliography
(2) captures in t the title of a book if it is of 1990 and costs 69.99

Biblio = <bib>[Book*]
Book = <book year=String>[Title (Author+|Editor+) Price?]

G. Castagna Types and Patterns for Querying XML 13/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Select-from-where

Instead of just variables use patterns
select e from

p1 in e1
...

pn in en

where c

fun getTitles(bibs : Biblio) : [(<book>[Title])*]
select <book>t from
<bib>[b::Book*] in bibs,
<book year="1990">[t::Title + <price>"69.99"] in b

Selects from bibs the titles of all books of 1990 and of price 69.99
and has type Biblio->[(<book>[Title])*]

Biblio = <bib>[Book*]
Book = <book year=String>[Title (Author+|Editor+) Price?]

G. Castagna Types and Patterns for Querying XML 13/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Select-from-where

Instead of just variables use patterns
select e from

p1 in e1
...

pn in en

where c

fun getTitles(bibs : Biblio) : [(<book>[Title])*]
select <book>t from
<bib>[b::Book*] in bibs,
<book year="1990">[t::Title + <price>"69.99"] in b

Selects from bibs the titles of all books of 1990 and of price 69.99
and has type Biblio->[(<book>[Title])*]

Biblio = <bib>[Book*]
Book = <book year=String>[Title (Author+|Editor+) Price?]

G. Castagna Types and Patterns for Querying XML 13/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Select-from-where

Instead of just variables use patterns
select e from

p1 in e1
...

pn in en

where c

fun getTitles(bibs : Biblio) : [(<book>[Title])*]
select <book>t from
<bib>[b::Book*] in bibs,
<book year="1990">[t::Title + <price>"69.99"] in b

Selects from bibs the titles of all books of 1990 and of price 69.99
and has type Biblio -> [(<book>[Title])*]

Biblio = <bib>[Book*]
Book = <book year=String>[Title (Author+|Editor+) Price?]

G. Castagna Types and Patterns for Querying XML 13/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

XPath encoding

For instance in CQL (. . . but see Xtatic for a very different encoding):

All children of e with tag tag (e/tag)

select x from < ..>[(x::(<tag ..>)|)*] in e

All attributes labelled by id (e/@id)

select x from < id =x ..> in e

Notice that regexp patterns can define non-unary queries.

G. Castagna Types and Patterns for Querying XML 14/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

XPath encoding

For instance in CQL (. . . but see Xtatic for a very different encoding):

All children of e with tag tag (e/tag)

select x from < ..>[(x::(<tag ..>)|)*] in e

All attributes labelled by id (e/@id)

select x from < id =x ..> in e

Notice that regexp patterns can define non-unary queries.

G. Castagna Types and Patterns for Querying XML 14/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

XPath encoding

For instance in CQL (. . . but see Xtatic for a very different encoding):

All children of e with tag tag (e/tag)

select x from < ..>[(x::(<tag ..>)|)*] in e

All attributes labelled by id (e/@id)

select x from < id =x ..> in e

Notice that regexp patterns can define non-unary queries.

G. Castagna Types and Patterns for Querying XML 14/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

XPath encoding

For instance in CQL (. . . but see Xtatic for a very different encoding):

All children of e with tag tag (e/tag)

select x from < ..>[(x::(<tag ..>)|)*] in e

All attributes labelled by id (e/@id)

select x from < id =x ..> in e

Notice that regexp patterns can define non-unary queries.

G. Castagna Types and Patterns for Querying XML 14/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

XPath encoding

For instance in CQL (. . . but see Xtatic for a very different encoding):

All children of e with tag tag (e/tag)

select x from < ..>[(x::(<tag ..>)|)*] in e

All attributes labelled by id (e/@id)

select x from < id =x ..> in e

Notice that regexp patterns can define non-unary queries.

Rationale

CQL, Xtatic, add syntactic sugar for XPath . . .

G. Castagna Types and Patterns for Querying XML 14/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

XPath encoding

For instance in CQL (. . . but see Xtatic for a very different encoding):

All children of e with tag tag (e/tag)

select x from < ..>[(x::(<tag ..>)|)*] in e

All attributes labelled by id (e/@id)

select x from < id =x ..> in e

Notice that regexp patterns can define non-unary queries.

Rationale

CQL, Xtatic, add syntactic sugar for XPath . . . but we need more

G. Castagna Types and Patterns for Querying XML 14/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

. . . it is all syntactic sugar!

Types

t ::= Int | v | (t, t) | t ∨ t | t ∧ t | ¬t | Any

Patterns

p ::= t | x | (p, p) | p ∨ p | p ∧ p

Example:

type Book = <book>[Title (Author+|Editor+) Price?]

encoded as

Book = (‘book, (Title,X ∨ Y))
X = (Author,X ∨ (Price, ‘nil) ∨ ‘nil)
Y = (Editor,Y ∨ (Price, ‘nil) ∨ ‘nil)

G. Castagna Types and Patterns for Querying XML 15/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

. . . it is all syntactic sugar!

Types

t ::= Int | v | (t, t) | t ∨ t | t ∧ t | ¬t | Any

Patterns

p ::= t | x | (p, p) | p ∨ p | p ∧ p

Example:

type Book = <book>[Title (Author+|Editor+) Price?]

encoded as

Book = (‘book, (Title,X ∨ Y))
X = (Author,X ∨ (Price, ‘nil) ∨ ‘nil)
Y = (Editor,Y ∨ (Price, ‘nil) ∨ ‘nil)

G. Castagna Types and Patterns for Querying XML 15/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

. . . it is all syntactic sugar!

Types

t ::= Int | v | (t, t) | t ∨ t | t ∧ t | ¬t | Any

Patterns

p ::= t | x | (p, p) | p ∨ p | p ∧ p

Example:

type Book = <book>[Title (Author+|Editor+) Price?]

encoded as

Book = (‘book, (Title,X ∨ Y))
X = (Author,X ∨ (Price, ‘nil) ∨ ‘nil)
Y = (Editor,Y ∨ (Price, ‘nil) ∨ ‘nil)

G. Castagna Types and Patterns for Querying XML 15/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

. . . it is all syntactic sugar!

Types

t ::= Int | v | (t, t) | t ∨ t | t ∧ t | ¬t | Any

Patterns

p ::= t | x | (p, p) | p ∨ p | p ∧ p

Example:

type Book = <book>[Title (Author+|Editor+) Price?]

encoded as

Book = (‘book, (Title,X ∨ Y))
X = (Author,X ∨ (Price, ‘nil) ∨ ‘nil)
Y = (Editor,Y ∨ (Price, ‘nil) ∨ ‘nil)

G. Castagna Types and Patterns for Querying XML 15/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Some reasons to consider regular
expression types and patterns

G. Castagna Types and Patterns for Querying XML 16/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Some good reasons to consider regexp patterns/types

Theoretical reason: very compact

Eight practical reasons:

1 Classic usage
2 Informative error messages
3 Error mining
4 Efficient execution
5 Logical optimisation of pattern-based queries
6 Pattern matches as building blocks for iterators
7 Type/pattern-based data pruning for memory usage optimisation
8 Type-based query optimisation

G. Castagna Types and Patterns for Querying XML 17/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Some good reasons to consider regexp patterns/types

Theoretical reason: very compact (6= simple)

Eight practical reasons:

1 Classic usage
2 Informative error messages
3 Error mining
4 Efficient execution
5 Logical optimisation of pattern-based queries
6 Pattern matches as building blocks for iterators
7 Type/pattern-based data pruning for memory usage optimisation
8 Type-based query optimisation

G. Castagna Types and Patterns for Querying XML 17/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Some good reasons to consider regexp patterns/types

Theoretical reason: very compact (6= simple)

Eight practical reasons:

1 Classic usage
2 Informative error messages
3 Error mining
4 Efficient execution
5 Logical optimisation of pattern-based queries
6 Pattern matches as building blocks for iterators
7 Type/pattern-based data pruning for memory usage optimisation
8 Type-based query optimisation

G. Castagna Types and Patterns for Querying XML 17/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Some good reasons to consider regexp patterns/types

Theoretical reason: very compact (6= simple)

Eight practical reasons:

1 Classic usage
2 Informative error messages
3 Error mining
4 Efficient execution
5 Logical optimisation of pattern-based queries
6 Pattern matches as building blocks for iterators
7 Type/pattern-based data pruning for memory usage optimisation
8 Type-based query optimisation

G. Castagna Types and Patterns for Querying XML 17/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

1. Classic usages of types

Not much to say here, just notice that:

Singletons, unions, intersections, and differences have set-theoretic
semantics on “types as set of values”: they are easy to understand.

A natural and powerful specification and constraint language:

It is possible to specify constraints such as:
If the attribute a has value x, then e-elements that do
not contain f-elements must contain two g-elements.

Types can be composed:
type WithPrice = < ..>[* Price *]
type ThisYear = < year="2005">

then <bib>[((Biblio&ThisYear)\WithPrice)*] defines a view
containing only this year’s books that do not have price element.

G. Castagna Types and Patterns for Querying XML 18/28

Use these types as usual: static detection of errors, partial
correctness, schema specification

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

1. Classic usages of types

Not much to say here, just notice that:

Singletons, unions, intersections, and differences have set-theoretic
semantics on “types as set of values”: they are easy to understand.

A natural and powerful specification and constraint language:

It is possible to specify constraints such as:
If the attribute a has value x, then e-elements that do
not contain f-elements must contain two g-elements.

Types can be composed:
type WithPrice = < ..>[* Price *]
type ThisYear = < year="2005">

then <bib>[((Biblio&ThisYear)\WithPrice)*] defines a view
containing only this year’s books that do not have price element.

G. Castagna Types and Patterns for Querying XML 18/28

Use these types as usual: static detection of errors, partial
correctness, schema specification

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

1. Classic usages of types

Not much to say here, just notice that:

Singletons, unions, intersections, and differences have set-theoretic
semantics on “types as set of values”: they are easy to understand.

A natural and powerful specification and constraint language:

It is possible to specify constraints such as:
If the attribute a has value x, then e-elements that do
not contain f-elements must contain two g-elements.

Types can be composed:
type WithPrice = < ..>[* Price *]
type ThisYear = < year="2005">

then <bib>[((Biblio&ThisYear)\WithPrice)*] defines a view
containing only this year’s books that do not have price element.

G. Castagna Types and Patterns for Querying XML 18/28

Use these types as usual: static detection of errors, partial
correctness, schema specification

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

1. Classic usages of types

Not much to say here, just notice that:

Singletons, unions, intersections, and differences have set-theoretic
semantics on “types as set of values”: they are easy to understand.

A natural and powerful specification and constraint language:

It is possible to specify constraints such as:
If the attribute a has value x, then e-elements that do
not contain f-elements must contain two g-elements.

Types can be composed:
type WithPrice = < ..>[* Price *]
type ThisYear = < year="2005">

then <bib>[((Biblio&ThisYear)\WithPrice)*] defines a view
containing only this year’s books that do not have price element.

G. Castagna Types and Patterns for Querying XML 18/28

Use these types as usual: static detection of errors, partial
correctness, schema specification

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

1. Classic usages of types

Not much to say here, just notice that:

Singletons, unions, intersections, and differences have set-theoretic
semantics on “types as set of values”: they are easy to understand.

A natural and powerful specification and constraint language:

It is possible to specify constraints such as:
If the attribute a has value x, then e-elements that do
not contain f-elements must contain two g-elements.

Types can be composed:
type WithPrice = < ..>[* Price *]
type ThisYear = < year="2005">

then <bib>[((Biblio&ThisYear)\WithPrice)*] defines a view
containing only this year’s books that do not have price element.

G. Castagna Types and Patterns for Querying XML 18/28

Use these types as usual: static detection of errors, partial
correctness, schema specification

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

1. Classic usages of types

Not much to say here, just notice that:

Singletons, unions, intersections, and differences have set-theoretic
semantics on “types as set of values”: they are easy to understand.

A natural and powerful specification and constraint language:

It is possible to specify constraints such as:
If the attribute a has value x, then e-elements that do
not contain f-elements must contain two g-elements.

Types can be composed:
type WithPrice = < ..>[* Price *]
type ThisYear = < year="2005">

then <bib>[((Biblio&ThisYear)\WithPrice)*] defines a view
containing only this year’s books that do not have price element.

G. Castagna Types and Patterns for Querying XML 18/28

Use these types as usual: static detection of errors, partial
correctness, schema specification

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

1. Classic usages of types

Not much to say here, just notice that:

Singletons, unions, intersections, and differences have set-theoretic
semantics on “types as set of values”: they are easy to understand.

A natural and powerful specification and constraint language:

It is possible to specify constraints such as:
If the attribute a has value x, then e-elements that do
not contain f-elements must contain two g-elements.

Types can be composed:
type WithPrice = < ..>[* Price *]
type ThisYear = < year="2005">

then <bib>[((Biblio&ThisYear)\WithPrice)*] defines a view
containing only this year’s books that do not have price element.

G. Castagna Types and Patterns for Querying XML 18/28

Use these types as usual: static detection of errors, partial
correctness, schema specification

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

1. Classic usages of types

Not much to say here, just notice that:

Singletons, unions, intersections, and differences have set-theoretic
semantics on “types as set of values”: they are easy to understand.

A natural and powerful specification and constraint language:

It is possible to specify constraints such as:
If the attribute a has value x, then e-elements that do
not contain f-elements must contain two g-elements.

Types can be composed:
type WithPrice = < ..>[* Price *]
type ThisYear = < year="2005">

then <bib>[((Biblio&ThisYear)\WithPrice)*] defines a view
containing only this year’s books that do not have price element.

Not very innovative but useful properties

G. Castagna Types and Patterns for Querying XML 18/28

Use these types as usual: static detection of errors, partial
correctness, schema specification

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

2. Informative error messages

List of books of a given year, stripped of the Editors and Price

Returns the following error message:
Error at chars 81-83:

select <book year=y>(t@a) from
This expression should have type:
[Title (Editor+|Author+) Price?]
but its inferred type is:
[Title Author+ | Title]
which is not a subtype, as shown by the sample:

[<title>[]]

G. Castagna Types and Patterns for Querying XML 19/28

In case of error return a sample value in the difference of the
inferred type and the expected one

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

2. Informative error messages

List of books of a given year, stripped of the Editors and Price

Returns the following error message:
Error at chars 81-83:

select <book year=y>(t@a) from
This expression should have type:
[Title (Editor+|Author+) Price?]
but its inferred type is:
[Title Author+ | Title]
which is not a subtype, as shown by the sample:

[<title>[]]

G. Castagna Types and Patterns for Querying XML 19/28

In case of error return a sample value in the difference of the
inferred type and the expected one

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

2. Informative error messages

List of books of a given year, stripped of the Editors and Price

fun onlyAuthors (year:Int,books:[Book*]):[Book*] =
select <book year=y>(t@a) from
<book year=y>[(t::Title | a::Author |)+] in books

where int of(y) = year

Returns the following error message:
Error at chars 81-83:

select <book year=y>(t@a) from
This expression should have type:
[Title (Editor+|Author+) Price?]
but its inferred type is:
[Title Author+ | Title]
which is not a subtype, as shown by the sample:

[<title>[]]

G. Castagna Types and Patterns for Querying XML 19/28

type Book = <book year=String>[Title (Author+|Editor+) Price?]

In case of error return a sample value in the difference of the
inferred type and the expected one

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

2. Informative error messages

List of books of a given year, stripped of the Editors and Price

fun onlyAuthors (year:Int,books:[Book*]):[Book*] =
select <book year=y>(t@a) from
<book year=y>[(t::Title | a::Author |)+] in books

where int of(y) = year

Returns the following error message:
Error at chars 81-83:

select <book year=y>(t@a) from
This expression should have type:
[Title (Editor+|Author+) Price?]
but its inferred type is:
[Title Author+ | Title]
which is not a subtype, as shown by the sample:

[<title>[]]

G. Castagna Types and Patterns for Querying XML 19/28

type Book = <book year=String>[Title (Author+|Editor+) Price?]

In case of error return a sample value in the difference of the
inferred type and the expected one

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

2. Informative error messages

List of books of a given year, stripped of the Editors and Price

fun onlyAuthors (year:Int,books:[Book*]):[Book*] =
select <book year=y>(t@a) from
<book year=y>[(t::Title | a::Author |)+] in books

where int of(y) = year

Returns the following error message:
Error at chars 81-83:

select <book year=y>(t@a) from
This expression should have type:
[Title (Editor+|Author+) Price?]
but its inferred type is:
[Title Author+ | Title]
which is not a subtype, as shown by the sample:

[<title>[]]

G. Castagna Types and Patterns for Querying XML 19/28

type Book = <book year=String>[Title (Author+|Editor+) Price?]

In case of error return a sample value in the difference of the
inferred type and the expected one

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

2. Informative error messages

List of books of a given year, stripped of the Editors and Price

fun onlyAuthors (year:Int,books:[Book*]):[Book*] =
select <book year=y>(t@a) from
<book year=y>[(t::Title | a::Author |)+] in books

where int of(y) = year

Returns the following error message:
Error at chars 81-83:

select <book year=y>(t@a) from
This expression should have type:
[Title (Editor+|Author+) Price?]
but its inferred type is:
[Title Author+ | Title]
which is not a subtype, as shown by the sample:

[<title>[]]

G. Castagna Types and Patterns for Querying XML 19/28

type Book = <book year=String>[Title (Author+|Editor+) Price?]

In case of error return a sample value in the difference of the
inferred type and the expected one

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

2. Informative error messages

List of books of a given year, stripped of the Editors and Price

fun onlyAuthors (year:Int,books:[Book*]):[Book*] =
select <book year=y>(t@a) from
<book year=y>[(t::Title | a::Author |)+] in books

where int of(y) = year

Returns the following error message:
Error at chars 81-83:

select <book year=y>(t@a) from
This expression should have type:
[Title (Editor+|Author+) Price?]
but its inferred type is:
[Title Author+ | Title]
which is not a subtype, as shown by the sample:

[<title>[]]

G. Castagna Types and Patterns for Querying XML 19/28

type Book = <book year=String>[Title (Author+|Editor+) Price?]

In case of error return a sample value in the difference of the
inferred type and the expected one

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

2. Informative error messages

List of books of a given year, stripped of the Editors and Price

fun onlyAuthors (year:Int,books:[Book*]):[Book*] =
select <book year=y>(t@a) from
<book year=y>[(t::Title | a::Author |)+] in books

where int of(y) = year

Returns the following error message:
Error at chars 81-83:

select <book year=y>(t@a) from
This expression should have type:
[Title (Editor+|Author+) Price?]
but its inferred type is:
[Title Author+ | Title]
which is not a subtype, as shown by the sample:

[<title>[]]

G. Castagna Types and Patterns for Querying XML 19/28

type Book = <book year=String>[Title (Author+|Editor+) Price?]

In case of error return a sample value in the difference of the
inferred type and the expected one

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

2. Informative error messages

List of books of a given year, stripped of the Editors and Price

fun onlyAuthors (year:Int,books:[Book*]):[Book*] =
select <book year=y>(t@a) from
<book year=y>[t::Title a::Author+++ *] in books

where int of(y) = year

Returns the following error message:
Error at chars 81-83:

select <book year=y>(t@a) from
This expression should have type:
[Title (Editor+|Author+) Price?]
but its inferred type is:
[Title Author+ | Title]
which is not a subtype, as shown by the sample:

[<title>[]]

G. Castagna Types and Patterns for Querying XML 19/28

type Book = <book year=String>[Title (Author+|Editor+) Price?]

In case of error return a sample value in the difference of the
inferred type and the expected one

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

3. Error mining

fun extract(x:[Book*]) =
select (z,y) from
<book ..>[z::Title y::(<author> |<edtor>)+ *] in x

Despite the typo the function is well-typed:
- no typing rule is violated
- the pattern is not useless, it can match authors

They are not regexp-patterns specific:
bibs/book/(title|prize)

Such errors are not always typos: they can be conceptual errors.

G. Castagna Types and Patterns for Querying XML 20/28

Spot subtle errors that elude current type checking technology

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

3. Error mining

fun extract(x:[Book*]) =
select (z,y) from
<book ..>[z::Title y::(<author> |<edtor>)+ *] in x

Despite the typo the function is well-typed:
- no typing rule is violated
- the pattern is not useless, it can match authors

They are not regexp-patterns specific:
bibs/book/(title|prize)

Such errors are not always typos: they can be conceptual errors.

G. Castagna Types and Patterns for Querying XML 20/28

Spot subtle errors that elude current type checking technology

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

3. Error mining

fun extract(x:[Book*]) =
select (z,y) from
<book ..>[z::Title y::(<author> |<edtor>)+ *] in x

Despite the typo the function is well-typed:
- no typing rule is violated
- the pattern is not useless, it can match authors

They are not regexp-patterns specific:
bibs/book/(title|prize)

Such errors are not always typos: they can be conceptual errors.

G. Castagna Types and Patterns for Querying XML 20/28

Spot subtle errors that elude current type checking technology

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

3. Error mining

fun extract(x:[Book*]) =
select (z,y) from
<book ..>[z::Title y::(<author> |<edtor>)+ *] in x

Despite the typo the function is well-typed:
- no typing rule is violated
- the pattern is not useless, it can match authors

They are not regexp-patterns specific:
bibs/book/(title|prize)

Such errors are not always typos: they can be conceptual errors.

G. Castagna Types and Patterns for Querying XML 20/28

Spot subtle errors that elude current type checking technology

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

3. Error mining

fun extract(x:[Book*]) =
select (z,y) from
<book ..>[z::Title y::(<author> |<edtor>)+ *] in x

Despite the typo the function is well-typed:
- no typing rule is violated
- the pattern is not useless, it can match authors

They are not regexp-patterns specific:
bibs/book/(title|prize)

Such errors are not always typos: they can be conceptual errors.

G. Castagna Types and Patterns for Querying XML 20/28

Spot subtle errors that elude current type checking technology

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

3. Error mining

fun extract(x:[Book*]) =
select (z,y) from
<book ..>[z::Title y::(<author> |<edtor>)+ *] in x

Despite the typo the function is well-typed:
- no typing rule is violated
- the pattern is not useless, it can match authors

They are not regexp-patterns specific:
bibs/book/(title|prize)

Such errors are not always typos: they can be conceptual errors.

G. Castagna Types and Patterns for Querying XML 20/28

Spot subtle errors that elude current type checking technology

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

3. Error mining

fun extract(x:[Book*]) =
select (z,y) from
<book ..>[z::Title y::(<author> |<edtor>)+ *] in x

Despite the typo the function is well-typed:
- no typing rule is violated
- the pattern is not useless, it can match authors

They are not regexp-patterns specific:
bibs/book/(title|prize)

Such errors are not always typos: they can be conceptual errors.

G. Castagna Types and Patterns for Querying XML 20/28

Spot subtle errors that elude current type checking technology

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

3. Error mining

fun extract(x:[Book*]) =
select (z,y) from
<book ..>[z::Title y::(<author> |<edtor>)+ *] in x

Despite the typo the function is well-typed:
- no typing rule is violated
- the pattern is not useless, it can match authors

They are not regexp-patterns specific:
bibs/book/(title|prize)

Such errors are not always typos: they can be conceptual errors.

Can be formally characterised and statically detected by the
types/patterns presented here and integrated in current reg-
exp type-checkers with no overhead

G. Castagna Types and Patterns for Querying XML 20/28

Spot subtle errors that elude current type checking technology

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

4. Efficient execution

Idea: if types tell you that something cannot happen, don’t test it.

type A = <a>[A*]
type B = [B*]

fun check(x : A|B) = match x with A -> 1 | B -> 0

fun check(x : A|B) = match x with <a> -> 1 | -> 0

No backtracking.

Whole parts of the matched data are not checked

G. Castagna Types and Patterns for Querying XML 21/28

Use static type information to perform an optimal set of tests

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

4. Efficient execution

Idea: if types tell you that something cannot happen, don’t test it.

type A = <a>[A*]
type B = [B*]

fun check(x : A|B) = match x with A -> 1 | B -> 0

fun check(x : A|B) = match x with <a> -> 1 | -> 0

No backtracking.

Whole parts of the matched data are not checked

G. Castagna Types and Patterns for Querying XML 21/28

Use static type information to perform an optimal set of tests

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

4. Efficient execution

Idea: if types tell you that something cannot happen, don’t test it.

type A = <a>[A*]
type B = [B*]

fun check(x : A|B) = match x with A -> 1 | B -> 0

fun check(x : A|B) = match x with <a> -> 1 | -> 0

No backtracking.

Whole parts of the matched data are not checked

G. Castagna Types and Patterns for Querying XML 21/28

Use static type information to perform an optimal set of tests

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

4. Efficient execution

Idea: if types tell you that something cannot happen, don’t test it.

type A = <a>[A*]
type B = [B*]

fun check(x : A|B) = match x with A -> 1 | B -> 0

fun check(x : A|B) = match x with <a> -> 1 | -> 0

No backtracking.

Whole parts of the matched data are not checked

G. Castagna Types and Patterns for Querying XML 21/28

Use static type information to perform an optimal set of tests

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

4. Efficient execution

Idea: if types tell you that something cannot happen, don’t test it.

type A = <a>[A*]
type B = [B*]

fun check(x : A|B) = match x with A -> 1 | B -> 0

fun check(x : A|B) = match x with <a> -> 1 | -> 0

No backtracking.

Whole parts of the matched data are not checked

G. Castagna Types and Patterns for Querying XML 21/28

Use static type information to perform an optimal set of tests

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

4. Efficient execution

Idea: if types tell you that something cannot happen, don’t test it.

type A = <a>[A*]
type B = [B*]

fun check(x : A|B) = match x with A -> 1 | B -> 0

fun check(x : A|B) = match x with <a> -> 1 | -> 0

No backtracking.

Whole parts of the matched data are not checked

G. Castagna Types and Patterns for Querying XML 21/28

Use static type information to perform an optimal set of tests

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

4. Efficient execution

Idea: if types tell you that something cannot happen, don’t test it.

type A = <a>[A*]
type B = [B*]

fun check(x : A|B) = match x with A -> 1 | B -> 0

fun check(x : A|B) = match x with <a> -> 1 | -> 0

No backtracking.

Whole parts of the matched data are not checked

G. Castagna Types and Patterns for Querying XML 21/28

Use static type information to perform an optimal set of tests

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

4. Efficient execution

Idea: if types tell you that something cannot happen, don’t test it.

type A = <a>[A*]
type B = [B*]

fun check(x : A|B) = match x with A -> 1 | B -> 0

fun check(x : A|B) = match x with <a> -> 1 | -> 0

No backtracking.

Whole parts of the matched data are not checked

G. Castagna Types and Patterns for Querying XML 21/28

Use static type information to perform an optimal set of tests

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

4. Efficient execution

Idea: if types tell you that something cannot happen, don’t test it.

type A = <a>[A*]
type B = [B*]

fun check(x : A|B) = match x with A -> 1 | B -> 0

fun check(x : A|B) = match x with <a> -> 1 | -> 0

No backtracking.

Whole parts of the matched data are not checked

Computing the optimal solution requires to fully exploit inter-
sections and differences of types

G. Castagna Types and Patterns for Querying XML 21/28

Use static type information to perform an optimal set of tests

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

5. Logical pattern-specific optimisation of queries

G. Castagna Types and Patterns for Querying XML 22/28

Transform the from clauses so as to capture in a single pattern
as much information as possible

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

5. Logical pattern-specific optimisation of queries

1 merge distinct patterns that work on a common sequence,

2 transform where clauses into patterns,

3 transform paths into nested pattern-based selections, then merge.

G. Castagna Types and Patterns for Querying XML 22/28

Transform the from clauses so as to capture in a single pattern
as much information as possible

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

5. Logical pattern-specific optimisation of queries

1 merge distinct patterns that work on a common sequence,

2 transform where clauses into patterns,

3 transform paths into nested pattern-based selections, then merge.

G. Castagna Types and Patterns for Querying XML 22/28

Transform the from clauses so as to capture in a single pattern
as much information as possible

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

5. Logical pattern-specific optimisation of queries

1 merge distinct patterns that work on a common sequence,

2 transform where clauses into patterns,

3 transform paths into nested pattern-based selections, then merge.

G. Castagna Types and Patterns for Querying XML 22/28

Transform the from clauses so as to capture in a single pattern
as much information as possible

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

5. Logical pattern-specific optimisation of queries

select <book year=y>[t] from
b in bibs/book,
p in b/price,
t in b/title,
y in b/@year

where p = <price>"69.99"

optimised as

select <book year=y> t from
<bib>[b::Book*] in bibs,
<book year=y>[t::Title + <price>"69.99"] in b

G. Castagna Types and Patterns for Querying XML 22/28

Transform the from clauses so as to capture in a single pattern
as much information as possible

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

5. Logical pattern-specific optimisation of queries

select <book year=y>[t] from
b in bibs/book,
p in b/price,
t in b/title,
y in b/@year

where p = <price>"69.99"

optimised as

select <book year=y> t from
<bib>[b::Book*] in bibs,
<book year=y>[t::Title + <price>"69.99"] in b

G. Castagna Types and Patterns for Querying XML 22/28

Transform the from clauses so as to capture in a single pattern
as much information as possible

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

5. Logical pattern-specific optimisation of queries

select <book year=y>[t] from
b in bibs/book,
p in b/price,
t in b/title,
y in b/@year

where p = <price>"69.99"

optimised as

select <book year=y> t from
<bib>[b::Book*] in bibs,
<book year=y>[t::Title + <price>"69.99"] in b

These optimisations are orthogonal to the classical optimisa-
tions: they sum up and bring a further gain of performance

G. Castagna Types and Patterns for Querying XML 22/28

Transform the from clauses so as to capture in a single pattern
as much information as possible

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

6. Pattern matches as building blocks for iterators

G. Castagna Types and Patterns for Querying XML 23/28

Build regexp of “pattern matches” for user-defined iterators

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

6. Pattern matches as building blocks for iterators

In XML processing it is important to allow the programmer to
define her/his own iterators.

XML complex structure makes virtually impossible for a lan-
guage to provide a set of iterators covering all possible cases

Iterators programmed in the language are far less precisely
typed than built-in operators (require massive usage of casting).

This may explain why there is less consensus on iterators than
on extractors.

G. Castagna Types and Patterns for Querying XML 23/28

Build regexp of “pattern matches” for user-defined iterators

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

6. Pattern matches as building blocks for iterators

In XML processing it is important to allow the programmer to
define her/his own iterators.

XML complex structure makes virtually impossible for a lan-
guage to provide a set of iterators covering all possible cases

Iterators programmed in the language are far less precisely
typed than built-in operators (require massive usage of casting).

This may explain why there is less consensus on iterators than
on extractors.

G. Castagna Types and Patterns for Querying XML 23/28

Build regexp of “pattern matches” for user-defined iterators

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

6. Pattern matches as building blocks for iterators

In XML processing it is important to allow the programmer to
define her/his own iterators.

XML complex structure makes virtually impossible for a lan-
guage to provide a set of iterators covering all possible cases

Iterators programmed in the language are far less precisely
typed than built-in operators (require massive usage of casting).

This may explain why there is less consensus on iterators than
on extractors.

G. Castagna Types and Patterns for Querying XML 23/28

Build regexp of “pattern matches” for user-defined iterators

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

6. Pattern matches as building blocks for iterators

In XML processing it is important to allow the programmer to
define her/his own iterators.

XML complex structure makes virtually impossible for a lan-
guage to provide a set of iterators covering all possible cases

Iterators programmed in the language are far less precisely
typed than built-in operators (require massive usage of casting).

This may explain why there is less consensus on iterators than
on extractors.

G. Castagna Types and Patterns for Querying XML 23/28

Build regexp of “pattern matches” for user-defined iterators

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

6. Pattern matches as building blocks for iterators

In XML processing it is important to allow the programmer to
define her/his own iterators.

XML complex structure makes virtually impossible for a lan-
guage to provide a set of iterators covering all possible cases

Iterators programmed in the language are far less precisely
typed than built-in operators (require massive usage of casting).

This may explain why there is less consensus on iterators than
on extractors.

How to define new iterators?

G. Castagna Types and Patterns for Querying XML 23/28

Build regexp of “pattern matches” for user-defined iterators

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

6. Pattern matches as building blocks for iterators

Hosoya’s smart idea: Define regular expression over pattern-
matches “p -> e” (rather than over patterns).

select e from p in e ′ = filter[(p->e| ->[])*](e ′)

map e with p1->e1|...|pn->en = filter[(p1->e1|...|pn->en)*](e)

match e with p1->e1|...|pn->en = filter[p1->e1|...|pn->en]([e])

In-depth iterators are obtained by recursive filters

If instead of regexp we use the core-algebra, then it is possible
to define more powerful iterators.

G. Castagna Types and Patterns for Querying XML 23/28

Build regexp of “pattern matches” for user-defined iterators

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

6. Pattern matches as building blocks for iterators

Hosoya’s smart idea: Define regular expression over pattern-
matches “p -> e” (rather than over patterns).

select e from p in e ′ = filter[(p->e| ->[])*](e ′)

map e with p1->e1|...|pn->en = filter[(p1->e1|...|pn->en)*](e)

match e with p1->e1|...|pn->en = filter[p1->e1|...|pn->en]([e])

In-depth iterators are obtained by recursive filters

If instead of regexp we use the core-algebra, then it is possible
to define more powerful iterators.

G. Castagna Types and Patterns for Querying XML 23/28

Build regexp of “pattern matches” for user-defined iterators

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

6. Pattern matches as building blocks for iterators

Hosoya’s smart idea: Define regular expression over pattern-
matches “p -> e” (rather than over patterns).

select e from p in e ′ = filter[(p->e| ->[])*](e ′)

map e with p1->e1|...|pn->en = filter[(p1->e1|...|pn->en)*](e)

match e with p1->e1|...|pn->en = filter[p1->e1|...|pn->en]([e])

In-depth iterators are obtained by recursive filters

If instead of regexp we use the core-algebra, then it is possible
to define more powerful iterators.

G. Castagna Types and Patterns for Querying XML 23/28

Build regexp of “pattern matches” for user-defined iterators

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

6. Pattern matches as building blocks for iterators

Hosoya’s smart idea: Define regular expression over pattern-
matches “p -> e” (rather than over patterns).

select e from p in e ′ = filter[(p->e| ->[])*](e ′)

map e with p1->e1|...|pn->en = filter[(p1->e1|...|pn->en)*](e)

match e with p1->e1|...|pn->en = filter[p1->e1|...|pn->en]([e])

In-depth iterators are obtained by recursive filters

If instead of regexp we use the core-algebra, then it is possible
to define more powerful iterators.

G. Castagna Types and Patterns for Querying XML 23/28

Build regexp of “pattern matches” for user-defined iterators

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

6. Pattern matches as building blocks for iterators

Hosoya’s smart idea: Define regular expression over pattern-
matches “p -> e” (rather than over patterns).

select e from p in e ′ = filter[(p->e| ->[])*](e ′)

map e with p1->e1|...|pn->en = filter[(p1->e1|...|pn->en)*](e)

match e with p1->e1|...|pn->en = filter[p1->e1|...|pn->en]([e])

In-depth iterators are obtained by recursive filters

If instead of regexp we use the core-algebra, then it is possible
to define more powerful iterators.

G. Castagna Types and Patterns for Querying XML 23/28

Build regexp of “pattern matches” for user-defined iterators

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

6. Pattern matches as building blocks for iterators

Hosoya’s smart idea: Define regular expression over pattern-
matches “p -> e” (rather than over patterns).

select e from p in e ′ = filter[(p->e| ->[])*](e ′)

map e with p1->e1|...|pn->en = filter[(p1->e1|...|pn->en)*](e)

match e with p1->e1|...|pn->en = filter[p1->e1|...|pn->en]([e])

In-depth iterators are obtained by recursive filters

If instead of regexp we use the core-algebra, then it is possible
to define more powerful iterators.

G. Castagna Types and Patterns for Querying XML 23/28

Build regexp of “pattern matches” for user-defined iterators

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

6. Pattern matches as building blocks for iterators

Hosoya’s smart idea: Define regular expression over pattern-
matches “p -> e” (rather than over patterns).

select e from p in e ′ = filter[(p->e| ->[])*](e ′)

map e with p1->e1|...|pn->en = filter[(p1->e1|...|pn->en)*](e)

match e with p1->e1|...|pn->en = filter[p1->e1|...|pn->en]([e])

In-depth iterators are obtained by recursive filters

If instead of regexp we use the core-algebra, then it is possible
to define more powerful iterators.

G. Castagna Types and Patterns for Querying XML 23/28

Build regexp of “pattern matches” for user-defined iterators

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

6. Pattern matches as building blocks for iterators

Hosoya’s smart idea: Define regular expression over pattern-
matches “p -> e” (rather than over patterns).

select e from p in e ′ = filter[(p->e| ->[])*](e ′)

map e with p1->e1|...|pn->en = filter[(p1->e1|...|pn->en)*](e)

match e with p1->e1|...|pn->en = filter[p1->e1|...|pn->en]([e])

In-depth iterators are obtained by recursive filters

If instead of regexp we use the core-algebra, then it is possible
to define more powerful iterators.

G. Castagna Types and Patterns for Querying XML 23/28

Build regexp of “pattern matches” for user-defined iterators

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

6. Pattern matches as building blocks for iterators

Hosoya’s smart idea: Define regular expression over pattern-
matches “p -> e” (rather than over patterns).

select e from p in e ′ = filter[(p->e| ->[])*](e ′)

map e with p1->e1|...|pn->en = filter[(p1->e1|...|pn->en)*](e)

match e with p1->e1|...|pn->en = filter[p1->e1|...|pn->en]([e])

In-depth iterators are obtained by recursive filters

If instead of regexp we use the core-algebra, then it is possible
to define more powerful iterators.

G. Castagna Types and Patterns for Querying XML 23/28

Build regexp of “pattern matches” for user-defined iterators

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

6. Pattern matches as building blocks for iterators

Hosoya’s smart idea: Define regular expression over pattern-
matches “p -> e” (rather than over patterns).

select e from p in e ′ = filter[(p->e| ->[])*](e ′)

map e with p1->e1|...|pn->en = filter[(p1->e1|...|pn->en)*](e)

match e with p1->e1|...|pn->en = filter[p1->e1|...|pn->en]([e])

In-depth iterators are obtained by recursive filters

If instead of regexp we use the core-algebra, then it is possible
to define more powerful iterators.

Type precision obtained by specific typing, as for patterns.

G. Castagna Types and Patterns for Querying XML 23/28

Build regexp of “pattern matches” for user-defined iterators

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

7. Type/pattern-based pruning to optimise memory usage

Given a query q execute it on documents in which parts not
necessary to evaluate q are pruned. Recently adopted in main
memory XML query engines, e.g. [Marian-Siméon], [Bressan et al.].

We can start from the optimal compilation of patterns: Compile
patterns in order to have as many “ ” wildcards as possible

fun check(x : A|B) = match x with A -> 1 | B -> 0

compiled as

fun check(x : A|B) = match x with <a> -> 1 | -> 0

G. Castagna Types and Patterns for Querying XML 24/28

Use type analysis to determine which parts of an XML data
need not to be loaded in main memory

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

7. Type/pattern-based pruning to optimise memory usage

Given a query q execute it on documents in which parts not
necessary to evaluate q are pruned. Recently adopted in main
memory XML query engines, e.g. [Marian-Siméon], [Bressan et al.].

We can start from the optimal compilation of patterns: Compile
patterns in order to have as many “ ” wildcards as possible

fun check(x : A|B) = match x with A -> 1 | B -> 0

compiled as

fun check(x : A|B) = match x with <a> -> 1 | -> 0

G. Castagna Types and Patterns for Querying XML 24/28

Use type analysis to determine which parts of an XML data
need not to be loaded in main memory

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

7. Type/pattern-based pruning to optimise memory usage

Given a query q execute it on documents in which parts not
necessary to evaluate q are pruned. Recently adopted in main
memory XML query engines, e.g. [Marian-Siméon], [Bressan et al.].

We can start from the optimal compilation of patterns: Compile
patterns in order to have as many “ ” wildcards as possible

fun check(x : A|B) = match x with A -> 1 | B -> 0

compiled as

fun check(x : A|B) = match x with <a> -> 1 | -> 0

G. Castagna Types and Patterns for Querying XML 24/28

Use type analysis to determine which parts of an XML data
need not to be loaded in main memory

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

7. Type/pattern-based pruning to optimise memory usage

Given a query q execute it on documents in which parts not
necessary to evaluate q are pruned. Recently adopted in main
memory XML query engines, e.g. [Marian-Siméon], [Bressan et al.].

We can start from the optimal compilation of patterns: Compile
patterns in order to have as many “ ” wildcards as possible

fun check(x : A|B) = match x with A -> 1 | B -> 0

compiled as

fun check(x : A|B) = match x with <a> -> 1 | -> 0

G. Castagna Types and Patterns for Querying XML 24/28

Use type analysis to determine which parts of an XML data
need not to be loaded in main memory

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

7. Type/pattern-based pruning to optimise memory usage

Given a query q execute it on documents in which parts not
necessary to evaluate q are pruned. Recently adopted in main
memory XML query engines, e.g. [Marian-Siméon], [Bressan et al.].

We can start from the optimal compilation of patterns: Compile
patterns in order to have as many “ ” wildcards as possible

fun check(x : A|B) = match x with A -> 1 | B -> 0

compiled as

fun check(x : A|B) = match x with <a> -> 1 | -> 0

G. Castagna Types and Patterns for Querying XML 24/28

Use type analysis to determine which parts of an XML data
need not to be loaded in main memory

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

7. Type/pattern-based pruning to optimise memory usage

Given a query q execute it on documents in which parts not
necessary to evaluate q are pruned. Recently adopted in main
memory XML query engines, e.g. [Marian-Siméon], [Bressan et al.].

We can start from the optimal compilation of patterns: Compile
patterns in order to have as many “ ” wildcards as possible

fun check(x : A|B) = match x with A -> 1 | B -> 0

compiled as

fun check(x : A|B) = match x with <a> -> 1 | -> 0

G. Castagna Types and Patterns for Querying XML 24/28

Use type analysis to determine which parts of an XML data
need not to be loaded in main memory

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

7. Type/pattern-based pruning to optimise memory usage

Given a query q execute it on documents in which parts not
necessary to evaluate q are pruned. Recently adopted in main
memory XML query engines, e.g. [Marian-Siméon], [Bressan et al.].

We can start from the optimal compilation of patterns: Compile
patterns in order to have as many “ ” wildcards as possible

fun check(x : A|B) = match x with A -> 1 | B -> 0

compiled as

fun check(x : A|B) = match x with <a> -> 1 | -> 0

G. Castagna Types and Patterns for Querying XML 24/28

Use type analysis to determine which parts of an XML data
need not to be loaded in main memory

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

7. Type/pattern-based pruning to optimise memory usage

Given a query q execute it on documents in which parts not
necessary to evaluate q are pruned. Recently adopted in main
memory XML query engines, e.g. [Marian-Siméon], [Bressan et al.].

We can start from the optimal compilation of patterns: Compile
patterns in order to have as many “ ” wildcards as possible

fun check(x : A|B) = match x with A -> 1 | B -> 0

compiled as

fun check(x : A|B) = match x with <a> -> 1 | -> 0

Data matched by wildcards “ ” not in the scope of a capture
variable are not necessary to the evaluation. Use boolean type
constructors to determine the program data-need.

G. Castagna Types and Patterns for Querying XML 24/28

Use type analysis to determine which parts of an XML data
need not to be loaded in main memory

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

7. Type/pattern-based pruning to optimise memory usage

Given a query q execute it on documents in which parts not
necessary to evaluate q are pruned. Recently adopted in main
memory XML query engines, e.g. [Marian-Siméon], [Bressan et al.].

We can start from the optimal compilation of patterns: Compile
patterns in order to have as many “ ” wildcards as possible

fun check(x : A|B) = match x with A -> 1 | B -> 0

compiled as

fun check(x : A|B) = match x with <a> -> 1 | -> 0

Data matched by wildcards “ ” not in the scope of a capture
variable are not necessary to the evaluation. Use boolean type
constructors to determine the program data-need.

G. Castagna Types and Patterns for Querying XML 24/28

Use type analysis to determine which parts of an XML data
need not to be loaded in main memory

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

8. Type-based query optimisation

Data description is more precise:
E.g. in IMDB there are constraints such as:

If a show-element contains season-elements,
then its type-attribute is "TV Series".

Transformation description is more precise:
Exact type inference for pattern variables.
Finer type inference for queries:

for bibs/book/(title|author|editor)
infer type [(Title (Author+|Editor+))*]
rather than [(Title|Author|Editor)*]

DTD/Schema already used to optimise access to XML
data on disk. It should be possible to use also the precision
of regexp types to optimise secondary memory queries.

G. Castagna Types and Patterns for Querying XML 25/28

Use the precision of the type system in query optimisation

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

8. Type-based query optimisation

Data description is more precise:
E.g. in IMDB there are constraints such as:

If a show-element contains season-elements,
then its type-attribute is "TV Series".

Transformation description is more precise:
Exact type inference for pattern variables.
Finer type inference for queries:

for bibs/book/(title|author|editor)
infer type [(Title (Author+|Editor+))*]
rather than [(Title|Author|Editor)*]

DTD/Schema already used to optimise access to XML
data on disk. It should be possible to use also the precision
of regexp types to optimise secondary memory queries.

G. Castagna Types and Patterns for Querying XML 25/28

Use the precision of the type system in query optimisation

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

8. Type-based query optimisation

Data description is more precise:
E.g. in IMDB there are constraints such as:

If a show-element contains season-elements,
then its type-attribute is "TV Series".

Transformation description is more precise:
Exact type inference for pattern variables.
Finer type inference for queries:

for bibs/book/(title|author|editor)
infer type [(Title (Author+|Editor+))*]
rather than [(Title|Author|Editor)*]

DTD/Schema already used to optimise access to XML
data on disk. It should be possible to use also the precision
of regexp types to optimise secondary memory queries.

G. Castagna Types and Patterns for Querying XML 25/28

Use the precision of the type system in query optimisation

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

8. Type-based query optimisation

Data description is more precise:
E.g. in IMDB there are constraints such as:

If a show-element contains season-elements,
then its type-attribute is "TV Series".

Transformation description is more precise:
Exact type inference for pattern variables.
Finer type inference for queries:

for bibs/book/(title|author|editor)
infer type [(Title (Author+|Editor+))*]
rather than [(Title|Author|Editor)*]

DTD/Schema already used to optimise access to XML
data on disk. It should be possible to use also the precision
of regexp types to optimise secondary memory queries.

G. Castagna Types and Patterns for Querying XML 25/28

Use the precision of the type system in query optimisation

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

8. Type-based query optimisation

Data description is more precise:
E.g. in IMDB there are constraints such as:

If a show-element contains season-elements,
then its type-attribute is "TV Series".

Transformation description is more precise:
Exact type inference for pattern variables.
Finer type inference for queries:

for bibs/book/(title|author|editor)
infer type [(Title (Author+|Editor+))*]
rather than [(Title|Author|Editor)*]

DTD/Schema already used to optimise access to XML
data on disk. It should be possible to use also the precision
of regexp types to optimise secondary memory queries.

G. Castagna Types and Patterns for Querying XML 25/28

Use the precision of the type system in query optimisation

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

8. Type-based query optimisation

Data description is more precise:
E.g. in IMDB there are constraints such as:

If a show-element contains season-elements,
then its type-attribute is "TV Series".

Transformation description is more precise:
Exact type inference for pattern variables.
Finer type inference for queries:

for bibs/book/(title|author|editor)
infer type [(Title (Author+|Editor+))*]
rather than [(Title|Author|Editor)*]

DTD/Schema already used to optimise access to XML
data on disk. It should be possible to use also the precision
of regexp types to optimise secondary memory queries.

G. Castagna Types and Patterns for Querying XML 25/28

Use the precision of the type system in query optimisation

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

8. Type-based query optimisation

Data description is more precise:
E.g. in IMDB there are constraints such as:

If a show-element contains season-elements,
then its type-attribute is "TV Series".

Transformation description is more precise:
Exact type inference for pattern variables.
Finer type inference for queries:

for bibs/book/(title|author|editor)
infer type [(Title (Author+|Editor+))*]
rather than [(Title|Author|Editor)*]

DTD/Schema already used to optimise access to XML
data on disk. It should be possible to use also the precision
of regexp types to optimise secondary memory queries.

G. Castagna Types and Patterns for Querying XML 25/28

bibs : <bib>[(<book year=String>[Title (Author+|Editor+) Price?])*]

Use the precision of the type system in query optimisation

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

8. Type-based query optimisation

Data description is more precise:
E.g. in IMDB there are constraints such as:

If a show-element contains season-elements,
then its type-attribute is "TV Series".

Transformation description is more precise:
Exact type inference for pattern variables.
Finer type inference for queries:

for bibs/book/(title|author|editor)
infer type [(Title (Author+|Editor+))*]
rather than [(Title|Author|Editor)*]

DTD/Schema already used to optimise access to XML
data on disk. It should be possible to use also the precision
of regexp types to optimise secondary memory queries.

G. Castagna Types and Patterns for Querying XML 25/28

bibs : <bib>[(<book year=String>[Title (Author+|Editor+) Price?])*]

Use the precision of the type system in query optimisation

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

8. Type-based query optimisation

Data description is more precise:
E.g. in IMDB there are constraints such as:

If a show-element contains season-elements,
then its type-attribute is "TV Series".

Transformation description is more precise:
Exact type inference for pattern variables.
Finer type inference for queries:

for bibs/book/(title|author|editor)
infer type [(Title (Author+|Editor+))*]
rather than [(Title|Author|Editor)*]

DTD/Schema already used to optimise access to XML
data on disk. It should be possible to use also the precision
of regexp types to optimise secondary memory queries.

G. Castagna Types and Patterns for Querying XML 25/28

bibs : <bib>[(<book year=String>[Title (Author+|Editor+) Price?])*]

Use the precision of the type system in query optimisation

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

8. Type-based query optimisation

Data description is more precise:
E.g. in IMDB there are constraints such as:

If a show-element contains season-elements,
then its type-attribute is "TV Series".

Transformation description is more precise:
Exact type inference for pattern variables.
Finer type inference for queries:

for bibs/book/(title|author|editor)
infer type [(Title (Author+|Editor+))*]
rather than [(Title|Author|Editor)*]

DTD/Schema already used to optimise access to XML
data on disk. It should be possible to use also the precision
of regexp types to optimise secondary memory queries.

G. Castagna Types and Patterns for Querying XML 25/28

Use the precision of the type system in query optimisation

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

8. Type-based query optimisation

Data description is more precise:
E.g. in IMDB there are constraints such as:

If a show-element contains season-elements,
then its type-attribute is "TV Series".

Transformation description is more precise:
Exact type inference for pattern variables.
Finer type inference for queries:

for bibs/book/(title|author|editor)
infer type [(Title (Author+|Editor+))*]
rather than [(Title|Author|Editor)*]

DTD/Schema already used to optimise access to XML
data on disk. It should be possible to use also the precision
of regexp types to optimise secondary memory queries.

G. Castagna Types and Patterns for Querying XML 25/28

Use the precision of the type system in query optimisation

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Conclusion

G. Castagna Types and Patterns for Querying XML 26/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Conclusion

Regexp patterns start from two simple ideas:
Use the same constructors for types and value
Define patterns as types with capture variables

Tightly connected with boolean combinators,
make several aspects programmer-friendly:

Semantic types are set of values, and unions, intersections,
and differences behave set-theoretically.
Concepts are easier for the programmer (e.g. subtyping)
Informative error messages.
Precise and powerful specification language

Several benefits:
Types yield highly efficient runtime: in main memory it
outperforms efficiency-oriented XQuery processors such as
Qizx and Qexo [XMark and XQuery Use Cases benchmarks].
High precision in typing queries, iterators, complex transformations.
Multiple usages without the need of introducing new specific
formalisms (error mining, data pruning, logical optimisations,
constraint specifications,. . .)

G. Castagna Types and Patterns for Querying XML 27/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Conclusion

Regexp patterns start from two simple ideas:
Use the same constructors for types and value
Define patterns as types with capture variables

Tightly connected with boolean combinators,
make several aspects programmer-friendly:

Semantic types are set of values, and unions, intersections,
and differences behave set-theoretically.
Concepts are easier for the programmer (e.g. subtyping)
Informative error messages.
Precise and powerful specification language

Several benefits:
Types yield highly efficient runtime: in main memory it
outperforms efficiency-oriented XQuery processors such as
Qizx and Qexo [XMark and XQuery Use Cases benchmarks].
High precision in typing queries, iterators, complex transformations.
Multiple usages without the need of introducing new specific
formalisms (error mining, data pruning, logical optimisations,
constraint specifications,. . .)

G. Castagna Types and Patterns for Querying XML 27/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Conclusion

Regexp patterns start from two simple ideas:
Use the same constructors for types and value
Define patterns as types with capture variables

Tightly connected with boolean combinators,
make several aspects programmer-friendly:

Semantic types are set of values, and unions, intersections,
and differences behave set-theoretically.
Concepts are easier for the programmer (e.g. subtyping)
Informative error messages.
Precise and powerful specification language

Several benefits:
Types yield highly efficient runtime: in main memory it
outperforms efficiency-oriented XQuery processors such as
Qizx and Qexo [XMark and XQuery Use Cases benchmarks].
High precision in typing queries, iterators, complex transformations.
Multiple usages without the need of introducing new specific
formalisms (error mining, data pruning, logical optimisations,
constraint specifications,. . .)

G. Castagna Types and Patterns for Querying XML 27/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Conclusion

Regexp patterns start from two simple ideas:
Use the same constructors for types and value
Define patterns as types with capture variables

Tightly connected with boolean combinators,
make several aspects programmer-friendly:

Semantic types are set of values, and unions, intersections,
and differences behave set-theoretically.
Concepts are easier for the programmer (e.g. subtyping)
Informative error messages.
Precise and powerful specification language

Several benefits:
Types yield highly efficient runtime: in main memory it
outperforms efficiency-oriented XQuery processors such as
Qizx and Qexo [XMark and XQuery Use Cases benchmarks].
High precision in typing queries, iterators, complex transformations.
Multiple usages without the need of introducing new specific
formalisms (error mining, data pruning, logical optimisations,
constraint specifications,. . .)

G. Castagna Types and Patterns for Querying XML 27/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Conclusion

Regexp patterns start from two simple ideas:
Use the same constructors for types and value
Define patterns as types with capture variables

Tightly connected with boolean combinators,
make several aspects programmer-friendly:

Semantic types are set of values, and unions, intersections,
and differences behave set-theoretically.
Concepts are easier for the programmer (e.g. subtyping)
Informative error messages.
Precise and powerful specification language

Several benefits:
Types yield highly efficient runtime: in main memory it
outperforms efficiency-oriented XQuery processors such as
Qizx and Qexo [XMark and XQuery Use Cases benchmarks].
High precision in typing queries, iterators, complex transformations.
Multiple usages without the need of introducing new specific
formalisms (error mining, data pruning, logical optimisations,
constraint specifications,. . .)

G. Castagna Types and Patterns for Querying XML 27/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Conclusion

Regexp patterns start from two simple ideas:
Use the same constructors for types and value
Define patterns as types with capture variables

Tightly connected with boolean combinators,
make several aspects programmer-friendly:

Semantic types are set of values, and unions, intersections,
and differences behave set-theoretically.
Concepts are easier for the programmer (e.g. subtyping)
Informative error messages.
Precise and powerful specification language

Several benefits:
Types yield highly efficient runtime: in main memory it
outperforms efficiency-oriented XQuery processors such as
Qizx and Qexo [XMark and XQuery Use Cases benchmarks].
High precision in typing queries, iterators, complex transformations.
Multiple usages without the need of introducing new specific
formalisms (error mining, data pruning, logical optimisations,
constraint specifications,. . .)

G. Castagna Types and Patterns for Querying XML 27/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Conclusion

Regexp patterns start from two simple ideas:
Use the same constructors for types and value
Define patterns as types with capture variables

Tightly connected with boolean combinators,
make several aspects programmer-friendly:

Semantic types are set of values, and unions, intersections,
and differences behave set-theoretically.
Concepts are easier for the programmer (e.g. subtyping)
Informative error messages.
Precise and powerful specification language

Several benefits:
Types yield highly efficient runtime: in main memory it
outperforms efficiency-oriented XQuery processors such as
Qizx and Qexo [XMark and XQuery Use Cases benchmarks].
High precision in typing queries, iterators, complex transformations.
Multiple usages without the need of introducing new specific
formalisms (error mining, data pruning, logical optimisations,
constraint specifications,. . .)

G. Castagna Types and Patterns for Querying XML 27/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Conclusion

Regexp patterns start from two simple ideas:
Use the same constructors for types and value
Define patterns as types with capture variables

Tightly connected with boolean combinators,
make several aspects programmer-friendly:

Semantic types are set of values, and unions, intersections,
and differences behave set-theoretically.
Concepts are easier for the programmer (e.g. subtyping)
Informative error messages.
Precise and powerful specification language

Several benefits:
Types yield highly efficient runtime: in main memory it
outperforms efficiency-oriented XQuery processors such as
Qizx and Qexo [XMark and XQuery Use Cases benchmarks].
High precision in typing queries, iterators, complex transformations.
Multiple usages without the need of introducing new specific
formalisms (error mining, data pruning, logical optimisations,
constraint specifications,. . .)

G. Castagna Types and Patterns for Querying XML 27/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Conclusion

Regexp patterns start from two simple ideas:
Use the same constructors for types and value
Define patterns as types with capture variables

Tightly connected with boolean combinators,
make several aspects programmer-friendly:

Semantic types are set of values, and unions, intersections,
and differences behave set-theoretically.
Concepts are easier for the programmer (e.g. subtyping)
Informative error messages.
Precise and powerful specification language

Several benefits:
Types yield highly efficient runtime: in main memory it
outperforms efficiency-oriented XQuery processors such as
Qizx and Qexo [XMark and XQuery Use Cases benchmarks].
High precision in typing queries, iterators, complex transformations.
Multiple usages without the need of introducing new specific
formalisms (error mining, data pruning, logical optimisations,
constraint specifications,. . .)

G. Castagna Types and Patterns for Querying XML 27/28

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Conclusion

. . . but that’s not enough

Regexp are good for horizontal exploration but not for vertical
one. Should be integrated with path-like primitives, extended
to iterators, endowed with more friendly QBE-like interfaces,
. . .

I tried to give an idea about the kind of research that is
pursued on XML in the programming language community
but much other research goes on (security, distribution,
integration in mainstream languages, streaming, . . .)

A good place to start from is PLAN-X, ACM SIGPLAN
Workshop on Programming Languages Technologies for XML.

To try all this install CDuce
http://www.cduce.org

(on Linux, yum/apt-get install cduce)

G. Castagna Types and Patterns for Querying XML 28/28

http://www.cduce.org

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Conclusion

. . . but that’s not enough

Regexp are good for horizontal exploration but not for vertical
one. Should be integrated with path-like primitives, extended
to iterators, endowed with more friendly QBE-like interfaces,
. . .

I tried to give an idea about the kind of research that is
pursued on XML in the programming language community
but much other research goes on (security, distribution,
integration in mainstream languages, streaming, . . .)

A good place to start from is PLAN-X, ACM SIGPLAN
Workshop on Programming Languages Technologies for XML.

To try all this install CDuce
http://www.cduce.org

(on Linux, yum/apt-get install cduce)

G. Castagna Types and Patterns for Querying XML 28/28

http://www.cduce.org

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Conclusion

. . . but that’s not enough

Regexp are good for horizontal exploration but not for vertical
one. Should be integrated with path-like primitives, extended
to iterators, endowed with more friendly QBE-like interfaces,
. . .

I tried to give an idea about the kind of research that is
pursued on XML in the programming language community
but much other research goes on (security, distribution,
integration in mainstream languages, streaming, . . .)

A good place to start from is PLAN-X, ACM SIGPLAN
Workshop on Programming Languages Technologies for XML.

To try all this install CDuce
http://www.cduce.org

(on Linux, yum/apt-get install cduce)

G. Castagna Types and Patterns for Querying XML 28/28

http://www.cduce.org

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Conclusion

. . . but that’s not enough

Regexp are good for horizontal exploration but not for vertical
one. Should be integrated with path-like primitives, extended
to iterators, endowed with more friendly QBE-like interfaces,
. . .

I tried to give an idea about the kind of research that is
pursued on XML in the programming language community
but much other research goes on (security, distribution,
integration in mainstream languages, streaming, . . .)

A good place to start from is PLAN-X, ACM SIGPLAN
Workshop on Programming Languages Technologies for XML.

To try all this install CDuce
http://www.cduce.org

(on Linux, yum/apt-get install cduce)

G. Castagna Types and Patterns for Querying XML 28/28

http://www.cduce.org

1. Introduction 2. XML regexp types/patterns 3. Properties of regexp types/patterns 4. Conclusion
MPRI::

MPRI: Cours de sous-typage

Conclusion

. . . but that’s not enough

Regexp are good for horizontal exploration but not for vertical
one. Should be integrated with path-like primitives, extended
to iterators, endowed with more friendly QBE-like interfaces,
. . .

I tried to give an idea about the kind of research that is
pursued on XML in the programming language community
but much other research goes on (security, distribution,
integration in mainstream languages, streaming, . . .)

A good place to start from is PLAN-X, ACM SIGPLAN
Workshop on Programming Languages Technologies for XML.

To try all this install CDuce
http://www.cduce.org

(on Linux, yum/apt-get install cduce)

G. Castagna Types and Patterns for Querying XML 28/28

http://www.cduce.org

	Introduction
	Regular expression Types and Patterns for XML: an overview
	Eight good reasons to consider regular types and patterns
	Conclusion

