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Two presentations

Two presentations of type inference for Damas and Milner’s type
system are possible:

• one of Milner’s classic algorithms [1978], W or J; see my old
course notes for details [Pottier, 2002, §3.3];

• a constraint-based presentation [Pottier and Rémy, 2005];

I prefer the latter, but review the former first.
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Preliminaries

This algorithm expects a pair Γ ` t, produces a type T , and uses two
global variables, V and ϕ.

V is an infinite fresh supply of type variables:

fresh = do X ∈ V
do V ← V \ {X}
return X

ϕ is a substitution (of types for type variables), initially the identity.
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The algorithm

Here is the algorithm in monadic style:

J(Γ ` x) = let ∀X1 . . . Xn.T = Γ(x)
do X′1, . . . , X

′
n = fresh, . . . , fresh

return [Xi 7� X′i ]
n
i=1(T ) – take a fresh instance

J(Γ ` λx.t1) = do X = fresh
do T1 = J(Γ; x : X ` t1)
return X → T1 – form an arrow type

. . .
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The algorithm

. . .
J(Γ ` t1 t2) = do T1 = J(Γ ` t1)

do T2 = J(Γ ` t2)
do X = fresh
do ϕ← mgu(ϕ(T1) = ϕ(T2 → X)) ◦ ϕ
return X – solve T1 = T2 → X

J(Γ ` let x = t1 in t2) = do T1 = J(Γ ` t1)
let σ = ∀ ftv(ϕ(Γ)).ϕ(T1) – generalize
return J(Γ; x : σ ` t2)

(∀X̄.T quantifies over all type variables other than X̄.)
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Correctness

Theorem (Correctness)

If J(Γ ` t) terminates in state (ϕ, V ) and returns T , then
ϕ(Γ) ` t : ϕ(T ) is a valid judgement.

7 / 122



Completeness

Theorem (Completeness)

Let Γ be an environment. Let (ϕ0, V0) be a state that satisfies the
algorithm’s invariant. Let θ0 and T0 be such that θ0ϕ0(Γ) ` t : T0 is a
judgement. Then, the execution of J(Γ ` t) out of the initial state
(ϕ0, V0) succeeds. Let (ϕ1, V1) be its final state and T1 be its result.
Then, there exists a substitution θ1 such that θ0ϕ0 and θ1ϕ1 coincide
outside V0 and such that T0 equals θ1ϕ1(T1).
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Excerpt of proof

Proof.

[...] We have
θ1ϕ1(γ) = θ1ψϕ

′
2(γ) = θ′′2ϕ

′
2(γ).

Since α is fresh for γ and ϕ′2, we can pursue with

θ′′2ϕ
′
2(γ) = θ′2ϕ

′
2(γ) = θ′1ϕ

′
1(γ) = θ0ϕ0(γ).

Thus, θ1ϕ1 and θ0ϕ0 coincide outside V0 [...]
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Terminology: relative typings

A typing (Γ′, T ) is relative to Γ if and only if its first component Γ′ is
an instance of Γ.

A typing of t is principal relative to Γ if and only if it is relative to Γ
and every typing of t relative to Γ is an instance of it.
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Relative principal typings

Corollary (Relative principal typings)

The execution of J(Γ ` t) succeeds if and only if t admits a typing
relative to Γ.

Furthermore, if ϕ1 and T1 are the algorithm’s results, then
(ϕ1(Γ), ϕ1(T1)) is a typing of t and is principal relative to Γ.

This is also known as the principal types property.

See [Jim, 1995, Wells, 2002] for more details on principal typings
and principal types.
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Some weaknesses

Algorithm J mixes generation and solving of equations. This lack of
modularity leads to several weaknesses:

• proofs are more difficult;

• correctness and efficiency concerns are not clearly separated;

• generalizations, such as the introduction of subtyping, are not
easy.
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Some weaknesses

Algorithm J works with substitutions, instead of constraints.

Substitutions are an approximation to solved forms for unification
constraints.

Working with substitutions means using most general unifiers,
composition, and restriction.

Working with constraints means using equations, conjunction, and
existential quantification.
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Road map

Type inference for Damas and Milner’s type system involves slightly
more than first-order unification: there is also generalization and
instantiation of type schemes.

So, the constraint language must be enriched.

I proceed in two steps:

• still within simply-typed λ-calculus, I present a variation of the
constraint language;

• building on this variation, I introduce polymorphism.
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A variation on constraints

How about letting the constraint solver, instead of the constraint
generator, deal with environment access and lookup?

Let’s enrich the syntax of constraints:

C ::= . . . | x = T | def x : T in C

The idea is to interpret constraints in such a way as to validate the
equivalence law:

def x : T in C ≡ [x 7� T]C

The def form is an explicit substitution form.
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A variation on constraints

More precisely, here is the new interpretation of constraints.

As before, a valuation φ maps type variables X to ground types.

In addition, a valuation ψ maps variables x to ground types.

The satisfaction judgement now takes the form φ, ψ ` C. The new
rules of interest are:

ψx = φT

φ, ψ ` x = T

φ, ψ[x 7� φT] ` C
φ, ψ ` def x : T in C

(All other rules are modified to just transport ψ.)
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A variation on constraints

Constraint generation is now a mapping of an expression t and a type
T to a constraint Jt : TK. There is no longer a need for the
parameter Γ.

Jx : TK = x = T

Jλx.t : TK = ∃X1X2.(def x : X1 in Jt : X2K ∧ X1 → X2 = T )
if X1, X2 # t, T

Jt1 t2 : TK = ∃X.(Jt1 : X → TK ∧ Jt2 : XK)
if X # t1, t2, T

Look ma, no environments!
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A variation on constraints

Theorem (Soundness and completeness)

Let fv(t) = dom(Γ). Then, φ, φΓ ` Jt : TK if and only if φΓ ` t : φT .

Corollary

Let fv(t) = ∅. Then, t is well-typed if and only if ∃X.Jt : XK ≡ true.
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Summary

This variation shows that there is freedom in the design of the
constraint language, and that altering this design can shift work from
the constraint generator to the constraint solver, or vice-versa.
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Enriching constraints

To permit polymorphism, we must extend the syntax of constraints so
that a variable x denotes not just a ground type, but a set of ground
types.

However, these sets cannot be represented as type schemes ∀X̄.T ,
because constructing these simplified forms requires constraint solving.

To avoid mingling constraint generation and constraint solving, we use
type schemes that incorporate constraints: constrained type schemes.
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Enriching constraints

The syntax of constraints and of constrained type schemes is:

C ::= T = T | C ∧ C | ∃X.C
| x � T
| ς � T
| def x : ς in C

ς ::= ∀X̄[C].T

x � T and ς � T are instantiation constraints. The latter form is
introduced so as to make the syntax stable under substitutions of
constrained type schemes for variables.

As before, def x : ς in C is an explicit substitution form.
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Enriching constraints

The idea is to interpret constraints in such a way as to validate the
equivalence laws:

def x : ς in C ≡ [x 7� ς]C

(∀X̄[C].T ) � T ′ ≡ ∃X̄.(C ∧ T = T ′) if X̄ # T ′

Using these laws, a closed constraint can be rewritten to a unification
constraint (with a possibly exponential increase in size).

The new constructs do not add much expressive power. They add just
enough to allow a stand-alone formulation of constraint generation.
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Interpreting constraints

A type variable X still denotes a ground type.

A variable x now denotes a set of ground types.

Instantiation constraints are interpreted as set membership.

ψx 3 φT
φ, ψ ` x � T

(
ψ
φ)ς 3 φT

φ, ψ ` ς � T

φ, ψ[x 7� (
ψ
φ)ς] ` C

φ, ψ ` def x : ς in C
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Interpreting constrained type schemes

The interpretation of ∀X̄[C].T under φ and ψ is the set of all φ′T ,
where φ and φ′ coincide outside X̄ and where φ′ and ψ satisfy C.

(
ψ
φ)(∀X̄[C].T ) = {φ

′T | (φ′ \ X̄ = φ \ X̄) ∧ (φ′, ψ ` C)}

For instance, the interpretation of ∀X[∃Y.X = Y → Z].X → X under φ
and ψ is the set of all ground types of the form
(t→ φZ)→ (t→ φZ), where t ranges over ground types.

This is also the interpretation of ∀Y.(Y → Z)→ (Y → Z). Every
constrained type scheme is equivalent to a standard type scheme.

25 / 122



A derived form

In the following, I use a variant of the def construct:

let x : ς in C ≡ def x : ς in ((∃X.x � X) ∧ C)

It would be equivalent to provide a direct interpretation of it:

(
ψ
φ)ς 6= ∅ φ, ψ[x 7� (

ψ
φ)ς] ` C

φ, ψ ` let x : ς in C
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Constraint generation

Constraint generation is now as follows:

Jx : TK = x � T

Jλx.t : TK = ∃X1X2.(def x : X1 in Jt : X2K ∧ X1 → X2 = T )
if X1, X2 # t, T

Jt1 t2 : TK = ∃X.(Jt1 : X → TK ∧ Jt2 : XK)
if X # t1, t2, T

Jlet x = t1 in t2 : TK = let x : Lt1M in Jt2 : TK

LtM = ∀X[Jt : XK].X

LtM is a principal constrained type scheme for t: its intended
interpretation is the set of all ground types that t admits.
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Properties of constraint generation

Lemma

∃X.(Jt : XK ∧ X = T ) ≡ Jt : TK if X # T .

Lemma

LtM � T ≡ Jt : TK.

Lemma

[x 7� Lt1M]Jt2 : TK ≡ J[x 7� t1]t2 : TK.

Lemma

Jlet x = t1 in t2 : TK ≡ Jt1; [x 7� t1]t2 : TK.

The constraint associated with a let construct is equivalent to the
constraint associated with its let-normal form.
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Complexity

Lemma

The size of Jt : TK is linear in the sum of the sizes of t and T .

Constraint generation can be implemented in linear time and space.
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Soundness and completeness

The statement keeps its previous form, back but Γ now contains
Damas-Milner type schemes.

Theorem (Soundness and completeness)

Let fv(t) = dom(Γ). Then, φ, φΓ ` Jt : TK if and only if φΓ ` t : φT .
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Summary

Note that

• constraint generation has linear complexity;

• constraint generation and constraint solving are separate;

• the constraint language remains small as the programming
language grows.

This makes constraints suitable for use in an efficient and modular
implementation.
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An initial environment

Let Γ0 stand for assoc : ∀XY.X → list (X × Y )→ Y .

We take Γ0 to be the initial environment, so that the constraints
considered next are implicitly wrapped within the context def Γ0 in [].
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A code fragment

Let t stand for the term

λx.λl1.λl2.
let assocx = assoc x in
(assocx l1, assocx l2)

One anticipates that assocx receives a polymorphic type scheme, which
is instantiated twice at different types...
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The generated constraint

Let Γ stand for x : X0; l1 : X1; l2 : X2. Then, the constraint Jt : XK is
(with a few minor simplifications):

∃X0X1X2Y.



X = X0 → X1 → X2 → Y
def Γ in

let assocx : ∀Z1[∃Z2.
(

assoc � Z2 → Z1
x � Z2

)
].Z1 in

∃Y1Y2.
(
Y = Y1 × Y2
∀i ∃Z2.(assocx � Z2 → Yi ∧ li � Z2)

)


(The index i ranges over {1,2}.)
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Simplification

Constraint solving can be viewed as a rewriting process that exploits
equivalence laws. Because equivalence is, by construction, a congruence,
rewriting is permitted within an arbitrary context.

For instance, environment access is allowed by the law

let x : ς in C[x � T] ≡ let x : ς in C[ς � T]

where C is a context that does not bind x.
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Simplification, continued

Thus, within the context def Γ0; Γ in [], the constraint:(
assoc � Z2 → Z1

x � Z2

)
is equivalent to:(

∃XY.(X → list (X × Y )→ Y = Z2 → Z1)
X0 = Z2

)
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Simplification, continued

By first-order unification, the constraint:

∃Z2.(∃XY.(X → list (X × Y )→ Y = Z2 → Z1) ∧ X0 = Z2)

simplifies down successively to:

∃Z2.(∃XY.(X = Z2 ∧ list (X × Y )→ Y = Z1) ∧ X0 = Z2)

∃Z2.(∃Y.(list (Z2 × Y )→ Y = Z1) ∧ X0 = Z2)

∃Y.(list (X0 × Y )→ Y = Z1)
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Simplification, continued

The constrained type scheme:

∀Z1[∃Z2.(assoc � Z2 → Z1 ∧ x � Z2)].Z1

is thus equivalent to:

∀Z1[∃Y.(list (X0 × Y )→ Y = Z1)].Z1

which can also be written:

∀Z1Y [list (X0 × Y )→ Y = Z1].Z1

∀Y.list (X0 × Y )→ Y
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Simplification, continued

The initial constraint has now been simplified down to:

∃X0X1X2Y.


X = X0 → X1 → X2 → Y
def Γ in

let assocx : ∀Y.list (X0 × Y )→ Y in

∃Y1Y2.
(
Y = Y1 × Y2
∀i ∃Z2.(assocx � Z2 → Yi ∧ li � Z2)

)


The simplification work spent on assocx’s type scheme was well worth
the trouble, because we are now going to duplicate the simplified type
scheme.
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Simplification, continued

The sub-constraint:

∃Z2.(assocx � Z2 → Yi ∧ li � Z2)

where i ∈ {1,2}, is rewritten:

∃Z2.(∃Y.(list (X0 × Y )→ Y = Z2 → Yi) ∧ Xi = Z2)

∃Y.(list (X0 × Y )→ Y = Xi → Yi)

∃Y.(list (X0 × Y ) = Xi ∧ Y = Yi)

list (X0 × Yi) = Xi
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Simplification, continued

The initial constraint has now been simplified down to:

∃X0X1X2Y.


X = X0 → X1 → X2 → Y
def Γ in

let assocx : ∀Y.list (X0 × Y )→ Y in

∃Y1Y2.
(
Y = Y1 × Y2
∀i list (X0 × Yi) = Xi

)


Now, the context def Γ in let assocx : . . . in [] can be dropped, because
the constraint that it applies to contains no occurrences of assoc, x,
l1, or l2.

42 / 122



Simplification, continued

The constraint becomes:

∃X0X1X2Y.

 X = X0 → X1 → X2 → Y

∃Y1Y2.
(
Y = Y1 × Y2
∀i list (X0 × Yi) = Xi

) 
that is:

∃X0X1X2YY1Y2.

 X = X0 → X1 → X2 → Y
Y = Y1 × Y2
∀i list (X0 × Yi) = Xi


and, by eliminating a few auxiliary variables:

∃X0Y1Y2. (X = X0 → list (X0 × Y1)→ list (X0 × Y2)→ Y1 × Y2)
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Simplification, the end

We have shown the following equivalence between constraints:

def Γ0 in Jt : XK
≡ ∃X0Y1Y2. (X = X0 → list (X0 × Y1)→ list (X0 × Y2)→ Y1 × Y2)

That is, the principal type scheme of t relative to Γ0 is

∀X0Y1Y2.X0 → list (X0 × Y1)→ list (X0 × Y2)→ Y1 × Y2
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Rewriting strategies

Again, constraint solving can be explained in terms of a small-step
rewrite system. Again, one checks that every step is
meaning-preserving, that the system is normalizing, and that every
normal form is either literally “false” or satisfiable.

Different constraint solving strategies lead to different behaviors in
terms of complexity, error explanation, etc.

See ATTAPL for details on constraint solving
[Pottier and Rémy, 2005]. See Jones [1999] for a different
presentation of type inference, in the context of Haskell.
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Rewriting strategies

In all reasonable strategies, the left-hand side of a let constraint is
simplified before the let form is expanded away.

This corresponds, in Algorithm J, to computing a principal type
scheme before examining the right-hand side of a let construct.
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Complexity

Type inference for ML is DEXPTIME-complete
[Kfoury et al., 1990, Mairson, 1990], so any constraint solver has
exponential complexity.

Nevertheless, under the hypotheses that types have bounded size and
let forms have bounded left-nesting depth, constraints can be solved
in linear time [McAllester, 2003].

This explains why ML type inference works well in practice.
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On type annotations

Damas and Milner’s type system has principal types: at least in the
core language, no type information is required.

This is very lightweight, but a bit extreme: sometimes, it is useful to
write types down, and use them as machine-checked documentation.
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Syntax for type annotations

Let us, then, allow programmers to annotate a term with a type:

t ::= . . . | (t : T )

Typing and constraint generation are obvious:

Annot
Γ ` t : T

Γ ` (t : T ) : T
J(t : T ) : T ′K = Jt : TK ∧ T = T ′

Type annotations are erased prior to runtime, so the operational
semantics is not affected. (Why is erasure sound?)
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Type annotations are restrictive

The constraint J(t : T ) : T ′K implies the constraint Jt : T ′K.

That is, in terms of type inference, type annotations are restrictive:
they lead to a principal type that is less general, and possibly even
to ill-typedness.

For instance, λx.x has principal type scheme ∀X.X → X, whereas
(λx.x : int→ int) has principal type scheme int→ int.
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Type variables within type annotations?

Does it make sense for a type annotation to contain a type variable,
as in, say:

(λx.x : X → X)
(λx.x + 1 : X → X)

let f = (λx.x : X → X) in (f 0, f true)

If so, what does it mean?

Short answer: it does not mean anything, because X is unbound.
“There is no such thing as a free variable” (Alan Perlis).
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Type variables within type annotations?

Does it make sense for a type annotation to contain a type variable,
as in, say:

(λx.x : X → X)
(λx.x + 1 : X → X)

let f = (λx.x : X → X) in (f 0, f true)

If so, what does it mean?

Short answer: it does not mean anything, because X is unbound.
“There is no such thing as a free variable” (Alan Perlis).
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How and where

A longer answer is, it is necessary to specify how and where type
variables are bound.
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How

How is X bound?

If X is existentially bound, or flexible, then both (λx.x : X → X) and
(λx.x + 1 : X → X) should be well-typed.

If it is universally bound, or rigid, only the former should be well-typed.
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Where

Where is X bound?

If X is bound within the left-hand side of this “let” construct, then
this code:

let f = (λx.x : X → X) in (f 0, f true)

should be well-typed.

On the other hand, if X is bound outside this “let” form, then this
code should be ill-typed, since no single ground value of X is suitable.
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Binding type variables

Let’s allow programmers to explicitly bind type variables:

t ::= . . . | ∃X̄.t | ∀X̄.t

It now makes sense for a type annotation (t : T ) to contain free type
variables.

Terms t can now contain free type variables, so some side conditions
have to be updated (e.g., X̄ # Γ, t in Gen).
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Binding type variables

The typing rules are as follows:

Exists

Γ ` [~X 7� ~T]t : T

Γ ` ∃X̄.t : T

Forall
Γ ` t : T X̄ # Γ

Γ ` ∀X̄.t : ∀X̄.T


Gen
Γ ` t : T X̄ # Γ, t

Γ ` t : ∀X̄.T


Again, these constructs are erased prior to runtime. (Why is this
sound?)
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Constraint generation: existential case

Constraint generation for the existential form is straightforward:

J(∃X̄.t) : TK = ∃X̄.Jt : TK if X̄ # T

The type annotations inside t contain free occurrences of X̄. Thus, the
constraint Jt : TK contains such occurrences as well. They are bound
by the existential quantifier.
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Constraint generation: existential case

For instance, the expression:

λx1.λx2.∃X.((x1 : X), (x2 : X))

has principal type scheme ∀X.X → X → X × X. Indeed, the generated
constraint contains the pattern:

∃X.(Jx1 : XK ∧ Jx2 : XK ∧ . . .)

which requires x1 and x2 to share a common (unspecified) type.
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Constraint generation: universal case

A term t has type scheme, say, ∀X.X → X if and only if t has type
X → X for every instance of X, or, equivalently, for an abstract X.

To express this in terms of constraints, we introduce universal
quantification in the constraint language:

C ::= . . . | ∀X.C

Its interpretation is standard.

The need for universal quantification arises when polymorphism is
required by the programmer, as opposed to inferred by the system.
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Constraint generation: universal case

Constraint generation for the universal form is somewhat more subtle.
A naı̈ve definition fails:

J∀X̄.t : TK = ∀X̄.Jt : TK if X̄ # T

This requires T to be simultaneously equal to all of the types that t
assumes when X̄ varies.

For instance, with this incorrect definition, one would have:

J∀X.(λx.x : X → X) : int→ intK = ∀X.J(λx.x : X → X) : int→ intK
≡ ∀X.(Jλx.x : X → XK ∧ X = int)
≡ ∀X.(true ∧ X = int)
≡ false
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Constraint generation: universal case

A correct definition is:

J∀X̄.t : TK = ∀X̄.∃Z.Jt : ZK ∧ ∃X̄.Jt : TK

This requires t to be well-typed for all instances of X̄ and requires T
to be a valid type for t under some instance of X̄.

A problem with this definition is...

The term t is duplicated! This can lead to exponential complexity.
Fortunately, this can be avoided modulo a slight extension of the
constraint language [Pottier and Rémy, 2003, p. 112].
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Constraint generation: universal case

A correct definition is:

J∀X̄.t : TK = ∀X̄.∃Z.Jt : ZK ∧ ∃X̄.Jt : TK

This requires t to be well-typed for all instances of X̄ and requires T
to be a valid type for t under some instance of X̄.

A problem with this definition is...

The term t is duplicated! This can lead to exponential complexity.
Fortunately, this can be avoided modulo a slight extension of the
constraint language [Pottier and Rémy, 2003, p. 112].
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Type schemes as annotations

Annotating a term with a type scheme, rather than just a type, is
now just syntactic sugar:

(t : ∀X̄.T ) stands for ∀X̄.(t : T ) if X̄ # t

In that particular case, constraint generation is in fact simpler:

J(t : ∀X̄.T ) : T ′K ≡ ∀X̄.Jt : TK ∧ (∀X̄.T ) � T ′

(Exercise: check this equivalence.)
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Examples

A correct example:

J(∃X.(λx.x + 1 : X → X)) : int→ intK
= ∃X.J(λx.x + 1 : X → X) : int→ intK
≡ ∃X.(X = int)
≡ true

The system infers that X must be int. Because X is a local type
variable, it does not appear in the final constraint.
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Examples

An incorrect example:

J(∀X.(λx.x + 1 : X → X)) : int→ intK
 ∀X.∃Z.J(λx.x + 1 : X → X) : ZK
≡ ∀X.∃Z.(X = int ∧ X → X = Z)
≡ ∀X.X = int
≡ false

The system checks that X is used in an abstract way, which is not
the case here, since the code implicitly assumes that X is int.
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Examples

A correct example:

J(∀X.(λx.x : X → X)) : int→ intK
= ∀X.∃Z.J(λx.x : X → X) : ZK ∧ ∃X.J(λx.x : X → X) : int→ intK
≡ ∀X.∃Z.X → X = Z ∧ ∃X.X = int
≡ true

The system checks that X is used in an abstract way, which is indeed
the case here.

It also checks that, if X is appropriately instantiated, the code
admits the expected type int→ int.
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Examples

An incorrect example:

J∃X.(let f = (λx.x : X → X) in (f 0, f true)) : ZK
≡ ∃X.(let f : X → X in ∃Z1Z2.(f � int→ Z1 ∧ f � bool→ Z2 ∧ Z1 × Z2 = Z))
≡ ∃XZ1Z2.(X → X = int→ Z1 ∧ X → X = bool→ Z2 ∧ Z1 × Z2 = Z)
 ∃X.(X = int ∧ X = bool)
≡ false

X is bound outside the let construct; f receives the monotype X → X.
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Examples

A correct example:

Jlet f = ∃X.(λx.x : X → X) in (f 0, f true) : ZK
≡ let f : ∀Y [∃X.(X → X = Y )].Y in

∃Z1Z2.(f � int→ Z1 ∧ f � bool→ Z2 ∧ Z1 × Z2 = Z)
≡ let f : ∀X.X → X in

∃Z1Z2.(. . .)
≡ ∃Z1Z2.(int = Z1 ∧ bool = Z2 ∧ Z1 × Z2 = Z)
≡ int × bool = Z

X is bound within the let construct; the term ∃X.(λx.x : X → X) has
the same principal type scheme as λx.x, namely ∀X.X → X; f receives
the type scheme ∀X.X → X.
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Type annotations in the real world

For historical reasons, in Objective Caml, type variables are not
explicitly bound. (In my opinion, that’s bad!) They are implicitly
existentially bound at the nearest enclosing toplevel let construct.

In Standard ML, type variables are implicitly universally bound at the
nearest enclosing toplevel let construct.

In Glasgow Haskell, type variables are implicitly existentially bound
within patterns: ‘A pattern type signature brings into scope any type
variables free in the signature that are not already in
scope’ [Peyton Jones and Shields, 2004].

Constraints help understand these varied design choices uniformly.
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Monomorphic recursion

Recall the typing rule for recursive functions (November 25, 2008):

FixAbs
Γ; f : T ` λx.t : T
Γ ` µf.λx.t : T

It leads to the following derived typing rule:

LetRec
Γ; f : T1 ` λx.t1 : T1 X̄ # Γ, t1

Γ; f : ∀X̄.T1 ` t2 : T2

Γ ` let rec f x = t1 in t2 : T2

Any comments?
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Monomorphic recursion

These rules require occurences of f to have monomorphic type within
the recursive definition (that is, within λx.t1).

This is visible also in terms of type inference. The constraint

Jlet rec f x = t1 in t2 : TK

is equivalent to

let f : ∀XY [let f : X → Y ; x : X in Jt1 : YK].X → Y in Jt2 : TK
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Monomorphic recursion

This is problematic in some situations, most particularly when defining
functions over nested algebraic data types
[Bird and Meertens, 1998, Okasaki, 1999].
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Polymorphic recursion

This problem is solved by introducing polymorphic recursion, that is, by
allowing µ-bound variables to receive a polymorphic type scheme:

FixAbsPoly

Γ; f : S ` λx.t : S
Γ ` µf.λx.t : S

LetRecPoly

Γ; f : S ` λx.t1 : S Γ; f : S ` t2 : T

Γ ` let rec f x = t1 in t2 : T

This extension is due to Mycroft [1984].
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Polymorphic recursion

Polymorphic recursion alters, to some extent, Damas and Milner’s type
system.

Now, not only let-bound, but also µ-bound variables receive type
schemes. The type system is no longer equivalent, up to reduction to
let-normal form, to simply-typed λ-calculus.

This has two consequences:

• monomorphization, a technique employed in some ML compilers
[Tolmach and Oliva, 1998, Cejtin et al., 2007], is no longer
possible;

• type inference becomes problematic!
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Polymorphic recursion

Type inference for ML with polymorphic recursion is undecidable
[Henglein, 1993]. It is equivalent to the undecidable problem of
semi-unification.
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Polymorphic recursion

Yet, type inference in the presence of polymorphic recursion can be
made simple. (How?)

By relying on a mandatory type annotation. The rules become:

FixAbsPoly

Γ; f : S ` λx.t : S
Γ ` µ(f : S).λx.t : S

LetRecPoly

Γ; f : S ` λx.t1 : S Γ; f : S ` t2 : T

Γ ` let rec (f : S) = λx.t1 in t2 : T

The type scheme S no longer has to be guessed.
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Polymorphic recursion

The constraint generation rule becomes:

Jlet rec (f : S) = λx.t1 in t2 : TK = ?

let f : S in (Jλx.t1 : SK ∧ Jt2 : TK)

It is clear that f receives type scheme S both inside and outside of
the recursive definition.
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Polymorphic recursion

The constraint generation rule becomes:

Jlet rec (f : S) = λx.t1 in t2 : TK =

?

let f : S in (Jλx.t1 : SK ∧ Jt2 : TK)

It is clear that f receives type scheme S both inside and outside of
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Unification under a mixed prefix

We extend the basic unification algorithm with support for universal
quantification.

The solved forms are unchanged: universal quantifiers are always
eliminated.
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Unification under a mixed prefix

In short, in order to reduce ∀X̄.C to a solved form, where C is itself a
solved form:

• if a rigid variable is equated with a constructed type, fail;

• if two rigid variables are equated, fail;

• if a free variable dominates a rigid variable, fail;

• otherwise, one can decompose C as ∃Ȳ .(C1 ∧ C2), where X̄Ȳ # C1
and ∃Ȳ .C2 ≡ true; in that case, ∀X̄.C reduces to just C1.

See [Pottier and Rémy, 2003, p. 109] for details.
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Examples

Objective Caml implements a form of unification under a mixed prefix:

$ ocaml

# let module M : sig val id : ’a -> ’a end

= struct let id x = x + 1 end

in M.id;;

Values do not match: val id : int -> int

is not included in val id : ’a -> ’a

This example gives rise to a constraint of the form ∀X.X = int.
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Examples

Here is another example:

$ ocaml

# let r = ref (fun x -> x) in

let module M : sig val id : ’a -> ’a end

= struct let id = !r end

in M.id;;

Values do not match: val id : ’_a -> ’_a

is not included in val id : ’a -> ’a

This example gives rise to a constraint of the form ∃Y.∀X.X = Y .
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Recursive types

Product and sum types alone do not allow describing data structures
of unbounded size, such as lists and trees.

Indeed, if the grammar of types is T ::= unit | T × T | T + T , then it is
clear that every type describes a finite set of values.

For every k, the type of lists of length at most k is expressible using
this grammar. However, the type of lists of unbounded length is not.
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Equi- versus iso-recursive types

The following definition is inherently recursive:

“A list is either empty or a pair of an element and a list.”

We need something like this:

list X � unit + X × list X

But what does � stand for? Is it equality, or some kind of
isomorphism?
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Equi- versus iso-recursive types

There are two standard approaches to recursive types, dubbed the
equi-recursive and iso-recursive approaches.

In the equi-recursive approach, a recursive type is equal to its
unfolding.

In the iso-recursive approach, a recursive type and its unfolding are
related via explicit coercions.
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Equi-recursive types

In the equi-recursive approach, the usual syntax of types:

T ::= X | F ~T

is no longer interpreted inductively. Instead, types are the regular
trees built on top of this signature.
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Finite syntax for equi-recursive types

If desired, it is possible to use finite syntax for recursive types:

T ::= X | µX.(F ~T )

I do not allow the seemingly more general µX.T , because µX.X is
meaningless, and µX.Y or µX.µY.T are useless. If I write µX.T , it should
be understood that T is contractive, that is, T is a type constructor
application.

For instance, the type of lists of elements of type X is:

µY.(unit + X × Y )

94 / 122



Finite syntax for equi-recursive types

Each type in this syntax denotes a unique regular tree, sometimes
known as its infinite unfolding. Conversely, every regular tree can be
expressed in this notation (possibly in more than one way).

If one builds a type-checker on top of this finite syntax, then one
must be able to decide whether two types are equal, that is, have
identical infinite unfoldings.

This can be done efficiently by unification.
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Finite syntax for equi-recursive types

One can also prove [Brandt and Henglein, 1998] that equality is the
least congruence generated by the following two rules:

Fold/Unfold

µX.T = [X 7� µX.T]T

Uniqueness

T1 = [X 7� T1]T T2 = [X 7� T2]T

T1 = T2

In both rules, T must be contractive.

This axiomatization does not directly lead to an efficient algorithm for
deciding equality, though.

96 / 122



Type soundness for equi-recursive types

In the presence of equi-recursive types, structural induction on types
is no longer permitted – but we never used it anyway.

It remains true that F ~T1 = F ~T2 implies ~T1 = ~T2 – this was used in
our Subject Reduction proofs.

It remains true that F1 ~T1 = F2 ~T2 implies F1 = F2 – this was used in
our Progress proofs.

So, the reasoning that leads to type soundness is unaffected.
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Type inference for equi-recursive types

How is type inference adapted for equi-recursive types?

The syntax of constraints is unchanged: they remain systems of
equations between finite first-order types, without µ’s. Their
interpretation changes: they are now interpreted in a universe of
regular trees.

As a result,

• constraint generation is unchanged;

• constraint solving is adapted by removing the occurs check.

98 / 122



Type inference for equi-recursive types

Here is a function that measures the length of a list:

µlength.λxs.case xs of
λ().0

8 λ(x, xs).1 + length xs

Type inference gives rise to the cyclic equation:

Y = unit + X × Y

where length has type Y → int.
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Type inference for equi-recursive types

That is, length has principal type scheme:

∀X.(µY.unit + X × Y )→ int

or, equivalently, principal constrained type scheme:

∀X[Y = unit + X × Y ].Y → int

The cyclic equation that characterizes lists was never provided by the
programmer, but was inferred.
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Type inference for equi-recursive types

Objective Caml implements equi-recursive types upon explicit request:

$ ocaml -rectypes

# type (’a, ’b) sum = Left of ’a | Right of ’b;;

type (’a, ’b) sum = Left of ’a | Right of ’b

# let rec length xs =

match xs with

| Left () -> 0

| Right (x, xs) -> 1 + length xs

;;

val length : ((unit, ’b * ’a) sum as ’a) -> int = <fun>

Quiz: why is -rectypes only an option?
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Drawbacks of equi-recursive types

Equi-recursive types are simple and powerful. In practice, however, they
are perhaps too expressive:

$ ocaml -rectypes

# let rec map f = function

| [] -> []

| x :: xs -> map f x :: map f xs;;

val map : ’a -> (’b list as ’b) -> (’c list as ’c) = <fun>

# map (fun x -> x + 1) [ 1; 2 ];;

This expression has type int but is used with type ’a list as ’a

# map () [[];[[]]];;

- : ’a list as ’a = [[]; [[]]]

Equi-recursive types allow this nonsensical version of map to be
accepted, thus delaying the detection of a programmer error.
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Half a pint of equi-recursive types

Quiz: why is this accepted?

$ ledit ocaml

# let f x = x#hello x;;

val f : (< hello : ’a -> ’b; .. > as ’a) -> ’b = <fun>
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Iso-recursive types

In the iso-recursive approach, the user is allowed to introduce new
type constructors D via (possibly mutually recursive) declarations:

D~X ≈ T (where ftv(T ) ⊆ X̄)

Each such declaration adds two new term constants, whose semantics
is the identity:

foldD : ∀X̄.T → D~X
unfoldD : ∀X̄.D ~X → T
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Iso-recursive lists

A parameterized, iso-recursive type of lists is:

list X ≈ unit + X × list X

The empty list is:
foldlist (inj1 ()) : ∀X.list X

A function that measures the length of a list is: µlength.λxs.case (unfoldlist xs) of
λ().0

8 λ(x, xs).1 + length xs

 : ∀X.list X → int

One folds upon construction and unfolds upon deconstruction.
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Type inference for iso-recursive types

In the iso-recursive approach, types remain finite. The type list X is
just an application of a type constructor to a type variable.

As a result, type inference is unaffected. The occurs check remains.
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Algebraic data types

Algebraic data types result of the fusion of iso-recursive types with
structural, labelled products and sums.

This suppresses the verbosity of explicit folds and unfolds as well as
the fragility and inconvenience of numeric indices – instead, named
record fields and data constructors are used.

For instance,

foldlist (inj1 ()) is replaced with Nil ()
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Algebraic data type declarations

An algebraic data type constructor D is introduced via a record type
or variant type definition:

D~X ≈
∏
`∈L

` : T` or D~X ≈
∑
`∈L

` : T`

L denotes a finite set of record labels or data constructors.

Algebraic data type definitions can be mutually recursive.
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Effects of a record type declaration

The record type definition D~X ≈
∏
`∈L ` : T` introduces syntax for

constructing and destructing records:

t ::= . . . | {` = t`}`∈L | t.`

The typing rules are:

Record

∀` ∈ L, Γ ` t` : [~X 7� ~T]T`

Γ ` {` = t`}`∈L : D ~T

Get

Γ ` t : D ~T
Γ ` t.` : [~X 7� ~T]T`
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Effects of a variant type declaration

The variant type definition D~X ≈
∑
`∈L ` : T` introduces this syntax:

t ::= . . . | ` t | case t of [v`]`∈L

The typing rules are:

Data

Γ ` t : [~X 7� ~T]T`

Γ ` ` t : D ~T

Case

Γ ` t : D ~T
∀` ∈ L, Γ ` v` : [~X 7� ~T]T` → T

Γ ` case t of [v`]`∈L : T
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An example: lists

Here is an algebraic data type of lists:

list X ≈ Nil : unit + Cons : X × list X

This gives rise to:

Γ ` Nil () : list T
Γ ` t1 : T Γ ` t2 : list T

Γ ` Cons (t1, t2) : list T

Γ ` t : list T1
Γ ` v1 : unit→ T2 Γ ` v2 : T1 × list T1 → T2

Γ ` case t of (Nil : v1 8 Cons : v2) : T2
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An example: lists

A function that measures the length of a list is: µlength.λxs.case xs of
Nil : λ().0

8 Cons : λ(x, xs).1 + length xs

 : ∀X.list X → int
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A word on mutable fields

In Objective Caml, a record field can be marked mutable. This
introduces extra syntax for writing this field:

Set

Γ ` t1 : D ~T Γ ` t2 : [~X 7� ~T]T`

Γ ` t1.`← t2 : unit

This also makes {` = t`}`∈L a memory allocation expression, not a
value, so, due the value restriction, the type of such an expression
can never be generalized.
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