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Type-preserving compilation

Compilation is type-preserving compilation when each intermediate
language is explicitly typed, and each compilation phase transforms a
typed program into a typed program in the next intermediate language.

Why preserve types during compilation?

• it can help debug the compiler;

• types can be used to drive optimizations;

• types can be used to produce proof-carrying code;

• proving that types are preserved can be the first step towards
proving that the semantics is preserved [Chlipala, 2007].
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Type-preserving compilation

A classic paper by Morrisett et al. [1999] shows how to go from
System F to Typed Assembly Language, while preserving types along
the way. Its main passes are:

• CPS conversion fixes the order of evaluation, names intermediate
computations, and makes all function calls tail calls;

• closure conversion makes environments and closures explicit, and
produces a program where all functions are closed;

• allocation and initialization of tuples is made explicit;

• the calling convention is made explicit, and variables are replaced
with (an unbounded number of) machine registers.
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Translating types

In general, a type-preserving compilation phase involves not only a
translation of terms, mapping t to JtK, but also a translation of
types, mapping T to JTK, with the property:

Γ ` t : T implies JΓK ` JtK : JTK

The translation of types carries a lot of information: examining it is
often enough to guess what the translation of terms will be.
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Source and target

In the following,

• the source calculus has unary λ-abstractions, which can have free
variables;

• the target calculus has binary λ-abstractions, which must be
closed.
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Variants of closure conversion

There are at least two variants of closure conversion:

• in the closure-passing variant, the closure and the environment
are a single memory block;

• in the environment-passing variant, the environment is a separate
block, to which the closure points.

The impact of this choice on the term translations is minor.

Its impact on the type translations is more important: the
closure-passing variant requires more type-theoretic machinery.
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Closure-passing closure conversion

The closure-passing variant is as follows:

Jλx.tK = let code = λ(c, x).
let ( , x1, . . . , xn) = c in
JtK

in (code, x1, . . . , xn)

Jt1 t2K = let c = Jt1K in
let code = proj0 c in
code (c, Jt2K)

where {x1, . . . , xn} = fv(λx.t).

Note that the layout of the environment must be known only at the
closure allocation site, not at the call site.

(The variables code and c must be suitably fresh.)
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Environment-passing closure conversion

The environment-passing variant is as follows:

Jλx.tK = let code = λ(env, x).
let (x1, . . . , xn) = env in
JtK

in (code, (x1, . . . , xn))

Jt1 t2K = let (code, env) = Jt1K in
code (env, Jt2K)

where {x1, . . . , xn} = fv(λx.t).
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Towards type-preserving closure conversion

Let us first focus on the environment-passing variant.

How can closure conversion be made type-preserving?

The key issue is to find a sensible definition of the type translation.
In particular, what is the translation of a function type, JT1 → T2K?
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Towards type-preserving closure conversion

Let us examine the closure allocation code again:

Jλx.tK = let code = λ(env, x).
let (x1, . . . , xn) = env in
JtK

in (code, (x1, . . . , xn))

Suppose Γ ` λx.t : T1 → T2.

Suppose, without loss of generality, dom(Γ) = fv(λx.t) = {x1, . . . , xn}.

Overloading notation, if Γ is x1 : T1; . . . ; xn : Tn, write JΓK for the tuple
type T1 × . . . × Tn.

By hypothesis, we have JΓK; x : JT1K ` JtK : JT2K, so env has type JΓK,
code has type (JΓK × JT1K) → JT2K, and the entire closure has type
((JΓK × JT1K) → JT2K) × JΓK.

Now, what should be the definition of JT1 → T2K?
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A weakening rule

(Parenthesis.)

In order to support the hypothesis dom(Γ) = fv(λx.t) at every
λ-abstraction, it is possible to introduce a weakening rule:

Weakening

Γ1; Γ2 ` t : T x # t

Γ1; x : T
′; Γ2 ` t : T

If the weakening rule is applied eagerly at every λ-abstraction, then
the hypothesis is met, and closures have minimal environments.
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Towards a type translation

Can we adopt this as a definition?

JT1 → T2K = ((JΓK × JT1K) → JT2K) × JΓK

Naturally not. This definition is mathematically ill-formed: we cannot
use Γ out of the blue.

Hmm... Do we really need to have a uniform translation of types?
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Towards a type translation

Yes, we do. We need a uniform a translation of types, not just
because it is nice to have one, but because it describes a uniform
calling convention.

If closures with distinct environment sizes or layouts receive distinct
types, then we will be unable to translate this well-typed code:

if . . . then λx.x + y else λx.x

Furthermore, we want function invocations to be translated uniformly,
without knowledge of the size and layout of the closure’s environment.

So, what could be the definition of JT1 → T2K?
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The type translation

The only sensible solution is:

JT1 → T2K = ∃X.((X × JT1K) → JT2K) × X

An existential quantification over the type of the environment
abstracts away the differences in size and layout.

Enough information is retained to ensure that the application of the
code to the environment is valid: this is expressed by letting the
variable X occur twice on the right-hand side.
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The type translation

The existential quantification also provides a form of security. The
caller cannot do anything with the environment except pass it as an
argument to the code. In particular, it cannot inspect or modify the
environment.

For instance, in the source language, the following coding style
guarantees that x remain even, no matter how f is used:

let f = let x = ref 0 in λ().x := x + 2; !x

After closure conversion, the reference x is reachable via the closure
of f . A malicious, untyped client could write an odd value to x.
However, a well-typed client is unable to do so.

This encoding is fully abstract: it preserves (a typed version of)
observational equivalence [Ahmed and Blume, 2008].

17 / 60



Contents

Towards typed closure conversion

Existential types

Typed closure conversion

Bibliography

18 / 60



Existential types

One can extend System F with existential types, in addition to
universals:

T ::= . . . | ∃X.T

As in the case of universals, there are type-passing and type-erasing
interpretations of the terms and typing rules... and in the latter
interpretation, there are explicit and implicit versions.

Let’s just look at the type-erasing interpretation, with an explicit
notation for introducing and eliminating existential types.
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Existential types in explicit style

Here is how the existential quantifier is introduced and eliminated:

Pack
Γ ` t : [X 7� T ′]T

Γ ` pack t as ∃X.T : ∃X.T

Unpack

Γ ` t1 : ∃X.T1 X # T2
Γ; X; x : T1 ` t2 : T2

Γ ` let X, x = unpack t1 in t2 : T2
TAbs
Γ; X ` t : T

Γ ` ΛX.t : ∀X.T

TApp

Γ ` t : ∀X.T
Γ ` t T ′ : [X 7� T ′]T


Note the duality between universals and existentials. A somewhat
imperfect duality, since existentials have a rather complex elimination
form...
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On existential elimination

It would be nice to have a simpler elimination form, perhaps like this:

Γ ` t : ∃X.T X # Γ

Γ ` unpack t : T

Informally, this could mean that, it t has type T for some unknown X,
then it has type T , where X is “fresh”...

Why is this broken?

We can immediately universally quantify over X, and conclude that t
has type ∀X.T . This is nonsense!

Removing the premise X # Γ would make the rule even more permissive,
so it wouldn’t help.
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On existential elimination

A correct elimination rule must force the existential package to be
used in a way that does not rely on the value of X.

Hence, the elimination rule must have control over the user of the
package – that is, over the term t2.

Unpack

Γ ` t1 : ∃X.T1 X # T2
Γ; X; x : T1 ` t2 : T2

Γ ` let X, x = unpack t1 in t2 : T2

The restriction X # T2 prevents writing “let X, x = unpack t1 in x”, which
would be equivalent to the unsound “unpack t” of the previous slide.

The fact that X is bound within t2 forces it to be treated abstractly.
In fact, t2 must be bla-bla-bla-bla in X...
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On existential elimination

In fact, t2 must be polymorphic in X. The rule could be written:

Unpack

Γ ` t1 : ∃X.T1 X # T2
Γ ` ΛX.λx.t2 : ∀X.T1 → T2

Γ ` let X, x = unpack t1 in t2 : T2

or:

Unpack

Γ ` t1 : ∃X.T1 X # T2
Γ ` t2 : ∀X.T1 → T2

Γ ` unpack t1 t2 : T2

One could even view “unpack∃X.T ” as a constant, equipped with an
appropriate type:

unpack∃X.T : ∃X.T → ∀Y.((∀X.(T → Y )) → Y )

The variable Y , which stands for T2, is bound prior to X, so it
naturally cannot be instantiated to a type that refers to X. This
reflects the side condition X # T2.
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On existential introduction

Pack
Γ ` t : [X 7� T ′]T

Γ ` pack t as ∃X.T : ∃X.T

If desired, “pack∃X.T ” could also be viewed as a constant:

pack∃X.T : ∀X.(T → ∃X.T )
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Summary of existentials

In summary, System F with existential types can also be presented as
follows:

pack∃X.T : ∀X.(T → ∃X.T )
unpack∃X.T : ∃X.T → ∀Y.((∀X.(T → Y )) → Y )

These can be read as follows:

• for any X, if you have a T , then, for some X, you have a T ;

• if, for some X, you have a T , then, (for any Y ,) if you wish to
obtain a Y out of it, then you must present a function which, for
any X, obtains a Y out of a T .

This is somewhat reminiscent of ordinary first-order logic: ∃x.F is
equivalent to, and can be defined as, ¬(∀x.¬F). Is there an encoding
of existential types into universal types? What is it?
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Encoding existentials into universals

The type translation is double negation:

J∃X.TK = ∀Y.((∀X.(JTK → Y )) → Y ) if Y # T

The term translation is:

Jpack∃X.TK : ∀X.(JTK → J∃X.TK)
= ?

ΛX.λx : JTK.ΛY.λk : ∀X.(JTK → Y ).k X x

Junpack∃X.TK : J∃X.TK → ∀Y.((∀X.(JTK → Y )) → Y )
= ?

λx : J∃X.TK.x

There was little choice, if the translation was to be type-preserving.

What is the computational content of this encoding?

A continuation-passing transform.

This encoding is due to Reynolds [1983].
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Iso-existential types in ML

What if one wished to extend ML with existential types?

Full type inference for existential types is undecidable, just like type
inference for universals.

However, introducing existential types in ML is easy if one is willing to
rely on user-supplied annotations that indicate where to pack and
unpack.
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Iso-existential types in ML

This iso-existential approach was suggested by Läufer and
Odersky [1994].

Iso-existential types are explicitly declared:

D ~X ≈ ∃Ȳ .T if ftv(T ) ⊆ X̄ ∪ Ȳ and X̄ # Ȳ

This introduces two constants, with the following type schemes:

packD : ∀X̄Ȳ .T → D ~X
unpackD : ∀X̄Z.D ~X → (∀Ȳ .(T → Z)) → Z

(Compare with basic iso-recursive types, where Ȳ = ∅.)
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Iso-existential types in ML

I cut a few corners on the previous slide. The “type scheme:”

∀X̄Z.D ~X → (∀Ȳ .(T → Z)) → Z

is in fact not an ML type scheme. How could we address this?

A solution is to make unpackD a binary construct (rather than a
constant), with an ad hoc typing rule:

UnpackD

Γ ` t1 : D ~T Ȳ # ~T, T2
Γ ` t2 : ∀Ȳ .([~X 7� ~T]T → T2)

Γ ` unpackD t1 t2 : T2
where D ~X ≈ ∃Ȳ .T

We have seen a version of this rule in System F earlier; this in an
ML version. The term t2 must be polymorphic, which Gen can prove.
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Iso-existential types in ML

Iso-existential types are perfectly compatible with ML type inference.

The constant packD admits an ML type scheme, so it is unproblematic.

The construct unpackD leads to this constraint generation rule:

JunpackD t1 t2 : T2K = ∃X̄.
(

Jt1 : D ~XK
∀Ȳ .Jt2 : T → T2K

)
where D ~X ≈ ∃Ȳ .T and, w.l.o.g., X̄Ȳ # t1, t2, T2.

Again, a universally quantified constraint appears where polymorphism
is required.
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Iso-existential types in ML

In practice, Läufer and Odersky suggest fusing iso-existential types
with algebraic data types.

The (somewhat bizarre) Haskell syntax for this is:

data D ~X = forall Ȳ .` T

where ` is a data constructor. The elimination construct becomes:

Jcase t1 of ` x → t2 : T2K = ∃X̄.
(

Jt1 : D ~XK
∀Ȳ .def x : T in Jt2 : T2K

)
where, w.l.o.g., X̄Ȳ # t1, t2, T2.
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An example

Define Any ≈ ∃Y.Y . An attempt to extract the raw contents of a
package fails:

JunpackAny t1 (λx.x) : T2K = Jt1 : AnyK ∧ ∀Y.Jλx.x : Y → T2K

 ∀Y.Y = T2
≡ false

(Recall that Y # T2.)
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An example

Define
D X ≈ ∃Y.(Y → X) × Y

A client that regards Y as abstract succeeds:

JunpackD t1 (λ(f, y).f y) : TK
= ∃X.(Jt1 : D XK ∧ ∀Y.Jλ(f, y).f y : ((Y → X) × Y ) → TK)
≡ ∃X.(Jt1 : D XK ∧ ∀Y.def f : Y → X; y : Y in Jf y : TK)
≡ ∃X.(Jt1 : D XK ∧ ∀Y.T = X)
≡ ∃X.(Jt1 : D XK ∧ T = X)
≡ Jt1 : D TK
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Uses of existential types

Mitchell and Plotkin [1988] note that existential types offer a means
of explaining abstract types. For instance, the type:

∃stack.{empty : stack;
push : int × stack → stack;
pop : stack → option (int × stack)}

specifies an abstract implementation of integer stacks.

Unfortunately, it was soon noticed that the elimination rule is too
awkward, and that existential types alone do not allow designing
module systems (ATTAPL, Chapter 8).
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Typed closure conversion

Everything is now set up to prove that

Γ ` t : T implies JΓK ` JtK : JTK.
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Environment-passing closure conversion

Assume Γ ` λx.t : T1 → T2 and dom(Γ) = {x1, . . . , xn} = fv(λx.t).

Jλx.tK = let code = λ(env, x). env : JΓK; x : JT1K
let (x1, . . . , xn) = env in this installs JΓK
JtK JtK : JT2K

in code : (JΓK × JT1K) → JT2K
pack (code, (x1, . . . , xn)) ∃X.((X × JT1K) → JT2K) × X

= JT1 → T2K

We find JΓK ` Jλx.tK : JT1 → T2K, as desired.
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Environment-passing closure conversion

Assume Γ ` t1 : T1 → T2 and Γ ` t2 : T1.

Jt1 t2K = let X, (code, env) = unpack Jt1K in code : (X × JT1K) → JT2K
code (env, Jt2K) env : X

(X # JT2K)

We find JΓK ` Jt1 t2K : JT2K, as desired.
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Environment-passing closure conversion

Recursive functions can be translated in this way, known as the
“fix-code” variant [Morrisett and Harper, 1998]:

Jµf.λx.tK = let rec code (env, x) =
let f = pack (code, env) in
let (x1, . . . , xn) = env in
JtK

in pack (code, (x1, . . . , xn))

where {x1, . . . , xn} = fv(µf.λx.t).

The translation of applications is unchanged: recursive and
non-recursive functions have an identical calling convention.

What is the weak point of this variant?

A new closure is allocated at every call.
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Environment-passing closure conversion

Instead, the “fix-pack” variant [Morrisett and Harper, 1998] uses an
extra field in the environment to store a back pointer to the closure:

Jµf.λx.tK = let code = λ(env, x).
let (f, x1, . . . , xn) = env in
JtK

in
let rec c = pack (code, (c, x1, . . . , xn)) in
c

where {x1, . . . , xn} = fv(µf.λx.t).

This requires general, recursively-defined values. Closures are now cyclic
data structures.
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Closure-passing closure conversion

Now, recall that the closure-passing variant is as follows:

Jλx.tK = let code = λ(c, x).
let ( , x1, . . . , xn) = c in
JtK

in (code, x1, . . . , xn)

Jt1 t2K = let c = Jt1K in
let code = proj0 c in
code (c, Jt2K)

where {x1, . . . , xn} = fv(λx.t).

How could we typecheck this? What are the difficulties?
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Closure-passing closure conversion

There are two difficulties:

• a closure is a tuple, whose first field should be exposed (it is the
code pointer), while the number and types of the remaining fields
should be abstract;

• the first field of the closure contains a function that expects the
closure itself as its first argument.

What type-theoretic mechanisms could we use to describe this?

• existential quantification over the tail of a tuple (a.k.a. a row);

• recursive types.
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Some more type-theoretic machinery

The syntax of types is extended:

T ::= . . . | Π R | ∃ρ.T | µX.T
R ::= . . . | ρ | ε | (T ;R)

The corresponding typing rules are omitted.
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Closure-passing closure conversion

The type translation is now somewhat more involved:

JT1 → T2K
= ∃ρ. ρ describes the environment

µX. X is the concrete type of the closure

Π ((X × JT1K) → JT2K; ρ) a tuple that begins with the code pointer

and continues with the environment
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Closure-passing closure conversion

We can now typecheck this untyped code: – exercise!

Jλx.tK = let code = λ(c, x).
let ( , x1, . . . , xn) = c in
JtK

in (code, x1, . . . , xn)

Jt1 t2K = let c = Jt1K in
let code = proj0 c in
code (c, Jt2K)

where {x1, . . . , xn} = fv(λx.t).
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Closure-passing closure conversion

In the closure-passing variant, recursive functions are translated as
follows:

Jµf.λx.tK = let code = λ(c, x).
let f = c in
let ( , x1, . . . , xn) = c in
JtK

in (code, x1, . . . , xn)

where {x1, . . . , xn} = fv(µf.λx.t).

Again, this untyped code can be typechecked. – exercise!

No extra field or extra work is required to store or construct a
representation of the free variable f : the closure itself plays this role.
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Moral of the story

Type-preserving compilation is rather fun. (Yes, really!)

It forces compiler writers to make the structure of the compiled
program fully explicit, in type-theoretic terms.

In practice, building explicit type derivations, ensuring that they remain
small and can be efficiently typechecked, can be a lot of work.
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