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Overloading Why?

Naming convenience
Avoid suffixing similar names by type information: numerical operations
(e.g. plus int, plus float, . . . ); Printing functions; numerical values?

Type dependent functions or ad hoc polymorphism
A function defined on τ [α] for all α may have an implementation
depending on the type of α. For instance, a marshaling function of
∀α.α → string executes different code for each base type α.

These definitions may be completely ad hoc (unrelated) for each type, or
polytypic, i.e. depending solely on its structure (is it a sum, a product,
etc.?) and derived mechanically for all types from the base cases.

A typical example of a a polytypic function is the generation of random
values for for arbitrary types (e.g. as used in Quickcheck for Haskell).
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Overloading How?

Common to all forms of overloading
At some program point (static context), an overloaded symbol u has
several visible definitions a1, . . . an.

In a given runtime, only one of them should be used.
Determining which one is called overloading resolution.

Main differences
How is overloading resolved? (see next slide)

Is resolution done up to subtyping?

Are overloading definitions primitive, automatic, or user-definable?

What are the restrictions in the way definitions can be combined?

Can the definitions overlap? (then how is overlapping resolved)
Can overloading be on the return type?

Can overloading definitions have a local scope?
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Overloading Resolution strategies

Static resolution
If every overloaded symbol can be statically replaced by its
implementation at the appropriate type.

This has very limited expressiveness, indeed.

Dynamic resolution
Pass types at runtime and dispatch on the runtime type (typecase).

Pass the appropriate implementations at runtime as extra arguments,
eventually grouped in dictionaries.
(Alternatively, one may pass runtime information that designates the
appropriate implementation in a global structure.)

Tag values with their types (or an approximation of their types) and
dispatch on the tags of values. (Requires support from the runtime.)
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Overloading Static resolution

In SML
Definitions are primitive (numerical operators, record access).

Typechecking fails if overloading cannot be resolved at outermost
let-definitions. For example, let twice x = x + x is rejected in SML,
because + could be addition on either integers or floats.

In Java
Overloading is not primitive but automatically generated by subtyping.
When a class extends another one and a method is redefined, the older
definition is still visible, hence the method is overloaded.

Overloading may always be resolved non-ambiguously based on subtyping
by choosing the most specific definition whenever several ones match.

However, at runtime an argument may have a subtype of the type known
at compile time, and perhaps a more specific definition could have been
used if overloading were resolved dynamically.
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Overloading Static resolution

Limits
Static overloading does not fit well with first-class functions and
polymorphism.

Indeed, functions such as λ(x) x + x are rejected and must therefore be
manually specialized at every type for which + is defined.

The solution is indeed to use some form of dynamic overloading that
allows to delay resolution of overloaded symbols at least until polymorphic
functions have been sufficiently specialized.
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Overloading Dynamic resolution

Runtime type dispatch

Use an explicitly typed calculus (i.e. Church style System F)

Add a typecase function.

Type matching may be expensive, unless type patterns are restricted.

By default one pays even when overloading is not used.

Monomorphization may be used to reduce type matching statically.

Pass unresolved implementations as extra arguments

Abstract over unresolved overloaded symbols and pass them later
when then can be resolved.

This can be done based on the typing derivation.

Then types may be erased (Curry’s style System F)

Monomorphisation or other simplifications may reduce the number of
abstractions and applications introduced by overloading resolution.
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Dynamic overloading Example

Untyped code

let rec plus = (+)
and plus = (+.)
and plus = λ(x , y) λ(x ′, y ′) (plus x x ′, plus y y ′) in

let twice = λ(x) plus x x in
twice (1, 0.5)
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Church style System F with type matching

Syntax

a ::= a
∣

∣ λ(x) a
∣

∣ a (a)
∣

∣ Λ(α) a
∣

∣ a (τ) System F
| match τ with 〈π1 ⇒ a1 . . . | πn ⇒ an〉 Typecase

π ::= τ
∣

∣ ∃(α)π Type patterns

Reduction: as in System F, plus the redex:

τ = τi [τ̄
′

i /ᾱi ]

match τ with 〈π1 ⇒ a1 . . . | ∃(ᾱi )τi ⇒ ai . . . | πn ⇒ an〉 ai [τ̄
′

i /ᾱi ]

Typing rules: as in System F, plus...

Γ ⊢ τ Γ, ᾱi ⊢ τi Γ, ᾱi ⊢ ai : τ ′

Γ ⊢ match τ with 〈π1 ⇒ a1 . . . | ∃(ᾱi)τi ⇒ ai . . . | πn ⇒ an〉 ai : τ ′
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Church style System F with type matching

Soundness for System F with type matching.

Subject-reduction holds

Progress: the type system does not ensure exhaustiveness of type
matching. Hence, progress does not hold in this version. This can be
fixed by either:

enforcing the user to provide a default case, in case of mismatch, e.g.

using a construction, such as match s with 〈π ⇒ a | a〉
enriching types to be able to check for exhaustiveness.

Non determinism
The reduction is non deterministic.

We may restrict typechecking to disallow overlapping definitions.

We may change the semantics to give priority to the first match, or to
the best match (the most precise matching pattern).
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Overloading with typecase Example

The dynamic semantics is correct,
but type matching could fail!

let rec plus =
Λ(α )

match α with 〈
| int ⇒ (+)
| float ⇒ (+.)
| ∃(β , γ ) β × γ ⇒

λ(x , y : β × γ) λ(x ′, y ′ : β × γ) plus β x x ′, plus γ y y ′

〉 in
let twice = Λ(α ) λ(x : α) plus α x x in
twice (int × float) (1, 0.5)
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Overloading with typecase Example

The domain may be restricted by a type constraint

let rec plus =
Λ(α〈Plus α〉)

match α with 〈
| int ⇒ (+)
| float ⇒ (+.)
| ∃(β〈Plus β〉, γ〈Plus γ〉) β × γ ⇒

λ(x , y : β × γ) λ(x ′, y ′ : β × γ) plus β x x ′, plus γ y y ′

〉 in
let twice = Λ(α〈Plus α〉) λ(x : α) plus α x x in
twice (int × float) (1, 0.5)
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Overloading with typecase Example

The predicate Plus α is defined by induction

Plus int; Plus float;
Plus α ⇒ Plus β ⇒ Plus (α × β)
let rec plus =

Λ(α〈Plus α〉)
match α with 〈
| int ⇒ (+)
| float ⇒ (+.)
| ∃(β〈Plus β〉, γ〈Plus γ〉) β × γ ⇒

λ(x , y : β × γ) λ(x ′, y ′ : β × γ) plus β x x ′, plus γ y y ′

〉 in
let twice = Λ(α〈Plus α〉) λ(x : α) plus α x x in
twice (int × float) (1, 0.5)
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Typecase Typing rules

Verifying the predicate
Clauses are restricted forms of horn clauses. For instance, given the
context Γ equal to

Plus int; Plus float; Plus α ⇒ Plus β ⇒ Plus (α × β)

We can infer:
Plus (int × float)

(and it would be easy to build a witness of the proof) p× pint pfloat

The inference rules can also be read backward for proof search: for
example, to prove Plus (int × float), a unique rule applies, leaving with the
two subgoals Plus int and Plus float that happens to be axioms.
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Dictionary passing Running Example

In fact, Plus (int × float) proves that plus is defined for type float. We
may thus partially apply plus to int × float, and reduce it.
We get (using strong β-reduction on types):

plus (int × float) 
λ(x , y : int × float) λ(x ′, y ′ : int × float) plus int x y , plus float x ′ y ′

 

λ(x , y : int × float) λ(x ′, y ′ : int × float) (+) x y , (+.) x ′ y ′

Unfortunately, this reduction duplicates code. Thus, we abstract each
definition of plus other what only depend on types: If plus∃(β,γ)β×γ is

Λ(β) Λ(γ) λ(plusβ : β → β → β) λ(plusγ : γ → γ → γ)
λ(x , y : β × γ) λ(x ′, y ′ : β × γ) plusβ x y , plusγ x ′ y ′

then the last branch is equal to plus∃(β,γ)β×γ β γ (plus β) (plus γ) and is

plus (int × float) plus∃(β,γ)β×γ int float (plus int) (plusfloat)

built by passing arguments to existing functions, without code duplication.
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Dictionary passing Running example

We recursively define all implementations, abstracting unresolved
overloaded symbols away; derived implementations are build when
they can be resolved by application of basic implementations.

let rec plus int= (+)
and plusfloat= (+.)
and plus∃βγ.β×γ=

Λ(β) Λ(γ)
λ(plusβ : β → β → β) λ(plusγ : γ → γ → γ)

λ(x : β) λ(y : γ) plusβ x , plusγ y in

let twice =
Λ(α)

λ(plusα: α → α → α) λ(x : α) plusα x x in

let plus int×float= plus∃(β,γ)β×γ int float plus int plusfloat in

twice plus int×float (1, 0.5)
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Dictionary passing Running example

We recursively define all implementations, abstracting unresolved
overloaded symbols away; derived implementations are build when
they can be resolved by application of basic implementations.

let plus int= (+) in
let plusfloat= (+.) in Definitions are non-recursive
let plus∃βγ.β×γ=

Λ(β) Λ(γ)
λ(plusβ : β → β → β) λ(plusγ : γ → γ → γ)

λ(x : β) λ(y : γ) plusβ x , plusγ y in

let twice =
Λ(α)

λ(plusα: α → α → α) λ(x : α) plusα x x in

let plus int×float= plus∃(β,γ)β×γ int float plus int plusfloat in

twice plus int×float (1, 0.5)
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Dictionary passing Example

After type inference, before translation

def Plus α = plus : α → α → α in
let rec plus: int → int → int = (+)

and plus: float → float → float = (+.)
and plus: ∀β〈Plus β〉 ∀γ〈Plus γ〉 (β × γ) → (β × γ) → (β × γ) =

Λ(β〈Plus β〉) Λ(γ〈Plus γ〉)
λ(x , y : β × γ) λ(x ′, y ′ : β × γ) plus β x x ′, plus γ y y ′ in

let twice =
Λ(α〈Plus α〉)

λ(x : α) plus α x x in
twice (int × float) (1, 0.5)
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Dictionary passing Example

Alternatively, inlining the constraint

let rec plus: int → int → int = (+)
and plus: float → float → float = (+.)
and plus: ∀β〈plus : β → β → β〉 ∀γ〈plus : γ → γ → γ〉

(β × γ) → (β × γ) → (β × γ) =
Λ(β〈plus : β → β → β〉) Λ(γ〈plus : γ → γ → γ〉)

λ(x , y : β × γ) λ(x ′, y ′ : β × γ) plus β x x ′, plus γ y y ′ in

let twice =
Λ(α〈plus : α → α → α〉)

λ(x : α) plus α x x in
twice plus(int×float) (1, 0.5)
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Dictionary passing Example

Alternatively, inlining the constraint

let rec plus: int → int → int = (+)
and plus: float → float → float = (+.)
and plus: ∀β〈plus : β → β → β〉 ∀γ〈plus : γ → γ → γ〉

(β × γ) → (β × γ) → (β × γ) =

λ(x , y ) λ(x ′, y ′ ) plus x x ′, plus y y ′ in

let twice =

λ(x ) plus x x in
twice (1, 0.5)

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 〈1〉19 / 45



Generalities Implementation OML Qualified types Type classes Design space

1 Generalities

2 Implementation strategies

3 System Oml

4 Qualified types

5 Type classes

6 Design space
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System Oml A restrictive form of overloading

See Odersky et al. (1995)

Characteristics
System Oml is a simple but monolithic system for overloading

Its specification is concise.
It is not a framework as opposed to other proposals.

Non overlapping definitions, hence (quasi)-untyped semantics and
principal types.

Single argument resolution.

Dictionary passing semantics.

Overloaded definitions of need not have a common type scheme.
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System Oml Syntax

We distinguish overloaded symbols u from other variables. Expressions are
as usual, but a program p starts with a sequence of toplevel overloaded
definitions def u : σ = v in p

x ::= z | u Symbols
v ::= x | λ(z) a Value forms
a ::= v | a a | let z = a in a Expressions
p ::= a | def u : σ = v in p Overloaded definitions

Although given in sequence, overloaded definitions

def u1 : s1 = v1 in . . . def un : sn = vn in a

should be understood as if recursively defined:

let rec u1 : s1 = v1 and . . . un : sn = vn in a

The notation reflects more the way they will be compiled, by abstracted
over all unresolved overloading symbols.

Note that overloaded definitions are values.
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System Oml Type constraints

Types are as in ML. However, each polymorphic variable of a type scheme
is restricted by a (possibly empty) constraint.

Type constraints ρα are record-like types whose labels are (distinct)
overloaded labels. Intuitively, a constraint for α specifies the types of
overloaded symbols that can be applied to a value of type α.

τ ::= α | τ → τ | c(τ̄) types

ρα ::= ∅ | u : α → τ ; ρα α-constraints
σ ::= τ | ∀α〈ρα〉 σ type schemes

When ρα is empty we recover ML type schemes.
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System Oml Overloaded definitions

Type schemes of overloaded definitions
They must be closed and of the form σc

∀α1〈ρα1〉 . . . ∀αn〈ραn〉 c(ᾱ′

1 . . . α′

2) → τ

where α′
1 . . . α′

n is a permutation of α1 . . . αn. This ensures that

The result type is fully determined by the first argument.
(This helps having principle types and a deterministic semantics)

The definition is parametric in all values of domain in ∃(ᾱ)c(ᾱ).
This facilitates overloading resolution, coverage checking, and type
inference.
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System Oml Typing rules

Typing contexts
Γ ::= z : σ | u : σ

Typing judgments Γ ⊢ a : σ contain the ML typing rules
Var

x : σ ∈ Γ

Γ ⊢ x : σ

Let

Γ ⊢ a : σ Γ, x : σ ⊢ a′ : τ

Γ ⊢ let x = a in a′ : τ

Arrow-Intro

x /∈ Γ Γ, x : τ ⊢ a : τ ′

Γ ⊢ λ(x) a : τ → τ ′

Arrow-Elim

Γ ⊢ a1 : τ2 → τ2 Γ ⊢ a2 : τ2

Γ ⊢ a2 a1 : τ1
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System Oml Typing rules

Overloaded definitions
Def

Γ ⊢ u # σπ Γ ⊢ a : σπ Γ, u : σπ ⊢ p : σ

Γ ⊢ def u : σπ = a in p : σ

We write Γ ⊢ u # σπ to mean that σ′ and σπ do not have the same
toplevel type constructor for all u : σ′ ∈ Γ, which implies in particular that
they are not overlapping.
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System Oml Typing rules

Introduction and elimination of polymorphism
All-Intro

Γ, ρα ⊢ v : σ

Γ ⊢ ∀α〈ρα〉 σ

All-Elim

Γ ⊢ ∀α〈ρα〉 σ Γ ⊢ ρα[τ/α]

Γ ⊢ a : σ[τ/α]

As in ML, we restrict generalization to value expressions.

Overloaded symbols
Var-Over

u : σ ∈ Γ

Γ ⊢ u : σ

This rules allows to retrieve overloaded symbols that are either provided by
overloaded definitions, or assumptions introduced by constrained
polymorphism All-Intro (and discharged at some All-Elim).
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Typing Example

See Translation to ML which contains withing the translation an example
of typing.
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System Oml Compilation to ML

Judgment Γ ⊢ p : σ ⊲ M
We compile a program p into an ML expression M (a particular case
expressions of the source language) based on the typing derivation. The
definition of the translation is by an instrumenting the typing rules.

Easy cases
Var

z : σ ∈ Γ

Γ ⊢ x : σ ⊲ x

Let

Γ ⊢ a : σ ⊲ M Γ, x : σ ⊢ a′ : τ ⊲ M′

Γ ⊢ let x = a in a′ : τ ⊲ let x = M in M′

Arrow-Intro

x /∈ Γ Γ, x : τ ⊢ a : τ ′ ⊲ M

Γ ⊢ λ(x) a : τ → τ ′ ⊲ λ(x) M

Arrow-Elim

Γ ⊢ a1 : τ2 → τ1 ⊲ M1

Γ ⊢ a2 : τ2 ⊲ M2

Γ ⊢ a1 a2 : τ1 ⊲ M1 M2
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System Oml Compilation to ML

Introducing and using overloaded definitions
Def

Γ ⊢ u # σπ

Γ ⊢ a : σπ ⊲ Mπ Γ, u : σπ ⊢ p : σ ⊲ M

Γ ⊢ def u : σπ = a in p : σ ⊲ let xu
σπ

= Mπ in M

Var-Over

u : σ ∈ Γ

Γ ⊢ u : σ ⊲ xu
σ

Introducing and using polymorphism
All-Intro

Γ, u1 : τ1, . . . un : τn ⊢ a : σ ⊲ M α /∈ Γ

Γ ⊢ ∀α〈u1 : τ1, . . . un : τn〉 σ ⊲ λ(xu
τ1

) . . . λ(xu
τn

) M

All-Elim

Γ ⊢ a : ∀α〈u1 : τ1, . . . un : τn〉 σ ⊲ M Γ ⊢ (u1 : τ1, . . . un : τn)[τ/α]

Γ ⊢ a : σ[τ/α] ⊲ M xu1

τ1[τ/α] . . . xun

τn[τ/α]
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Compilation of Oml Example

The previous example, twice
The typing derivation is as follows. We write τ3 for τ → τ → τ , Γ for
x : α, plus: α3, and Γ0 for some non conflicting context.

Γ0Γ ⊢ plus : α3 ⊲ xplus
α3 Γ0Γ ⊢ x : α ⊲ x

Γ0Γ ⊢ plus x x : α ⊲ xplus
α3 x x

Γ0, plus: α3 ⊢ λ(x) plus x x : α → α ⊲ λ(x) xplus
α3 x x

Γ0 ⊢ λ(x) plus x x : ∀α〈plus: α3〉 α → α ⊲ λ(xplus
α3 ) λ(x) xplus

α3 x x
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Compilation of Oml Example (Cont.)

Let Γ0 stand for

plus: int3, plus: float3, plus: ∀β〈plus : β3〉 ∀γ〈plus: γ3〉 (β × γ)3

and Γ1 be Γ0, twice : ∀α〈plus: α3〉 α → α. We have the following
derivation:

All-Elim

Γ1 ⊢ plus: ∀β〈plus : β3〉 ∀γ〈plus: γ3〉 (β × γ)3 ⊲ xplus
σ

Γ1 ⊢ plus: int3 ⊲ xplus
int3 Γ1 ⊢ plus: float3 ⊲ xplus

float3

Γ1 ⊢ plus: (int × float)3 ⊲ xplus
σ xplus

int3 xplus
float3

Therefore
All-Elim

Γ1 ⊢ twice : (int × float)2 ⊲ twice (xplus
σ xplus

int3 xplus
float3)

Γ1 ⊢ twice (1, 0.5) : (int × float) ⊲ twice (xplus
σ xplus

int3 xplus
float3) (1, 0.5)
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Properties

Type preservation
The translation is type preserving. This result is easy to establish.

Coherence
The translation is based on derivations and returns different programs for
different derivations. Does the semantics depend on the typing derivation?

Fortunately, this is not the case. Two translations of the same program
based on two different typing derivations are observationally equivalent.
We say that the semantics is coherent.

This result is difficult and tedious and has in fact only be proved for
different versions of the language. So far, it is only a conjecture for Oml.
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System Oml Type inference

Principal types
There are principal types in ML, thanks to the restriction on the type
schemes of overloaded functions.

Monolithic type inference
Principal types can be inferred by solving unification constraints on the fly
as in Damas-Milner. The main difference with ML is to treat applications
of overloaded functions by generating a fresh type variable with a type
constraint that is stored in the context as overloaded assumptions.

The non-overlapping of typing assumptions on overloaded variables implies
that the assumptions may have to transformed when a variable is
instantiated during unification: two assumptions may be merged triggering
further unifications, or may have to be resolved, which removes them from
the context, but perhaps introduces other assumptions in the context.
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Qualified types

See Jones (1992)

A general framework
Qualified types are a general framework for inferring types of partial
functions. Overloading is just a particular case of qualified types.

The idea is to introduce predicates that restrict the set of types a variable
may range over. For instance, Plus α, which we have used above means
that α can only be instantiated at the type τ for such that there is a
definition for plus of type τ → τ → τ .

The framework allows to gather predicate type constraints (much as
system Oml does for overloaded definitions) but to solve them
indepedently. It can also be parametrized by the way constraints are
solved. This introduces more flexibility and allows to internalize
simplification and optimization of constraints. This is an important
difference between qualified types and system Oml.
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Types classes

Overloading definitions are more structured

They are grouped into type classes.

A type class defines a set of identifiers that belong to that class.

An instance of a type class provides, for a specific type, definitions for
all elements of the class.

A type class may have default definitions, which can be used by
default when defining instances. Default definitions are not
overloaded definitions, but defaults for overloaded definitions when
taking instances of that class.

Type classes are more convenient to use than plain unstructured
overloading and keep types more concise.
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Module-based overloading

Modules can be used instead type classes to group overloaded definitions.

A type component distinguishes the type at which overloaded
instances are provided.

Basic instances are basic modules.

Derived instances are defined as functors.

Such modules can be declared as overloading their definitions.

The basic overloaded mechanism is then used to resolved overloaded
names.

Functor application is implicitly used to generate derived instances.

The advantage of module-based overloading over type classes is that
modules already organize name scoping and type abstraction.

However, the underlying overloading engine is the basically the same.
See Dreyer et al. (2007)
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Problems and challenges

Simplification and optimizations
Because generalization and instantiation induces additional abstractions
and applications, it is important to use them as little as necessary, while
retaining principal types. This constrats with ML where it does not matter.
(Coherence implies that the semantics does not depend on the derivation,
but the efficiency does, indeed.)

Efficiency of implementation techniques
The pros and cons of the different implementation techniques are
well-understood, but they is no available detailed comparison of their
respective performance, with different optimization techniques.
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Remaining problems and challenges

Overlapping instances
The semantics depend on types. This does not work well with type
inference. Type inference (checking coverage) may also become expensive
or even undecidable.

Overloaded on return types
The semantics depends on types and type inference.

Local overloading
There is a potential conflict with escaping resolution: An overloaded
symbol with a local implementation can either be resolved immediately or
left generic to be resolved later, perhaps with another implementation.

Some explicit information may be required when introduction new
overloaded scopes for disambiguation.
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Remaining problems and challenges

Design space
Because some restrictions must be imposed, there are many variations in
the design space.

See Jones et al. (1997)
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Ideas to bring back home

Overloading is quite useful
Just static overloading may significantly enlighten the notations

Static overloading is too strong a restriction and often frustating.

Dynamic overloading enables polytypic programmaing

Overloading is well-understood
Long, very possitive experience in Haskell.

Perhaps, more restrictive forms would be acceptable.

Require some compromises
On the overlapping definitions: the semantics depends on
typechecking; typechecking may also become hard.

There is still place for other, perhaps better compromises.
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