Langages formels

Paul Gastin

LSV (Cachan)

Paul.Gastin@lsv.ens-cachan.fr

Magistère 2006

Plan

Introduction

Langages reconnaissables

Fonctions séquentielles

Automates d'arbres

Grammaires

Langages algébriques

Automates à pile

Analyse syntaxique

Motivations

Définition :

- 1. Description et analyse (lexicale et syntaxique) des langages (programmation, naturels, . . .)
- 2. Modèles de calcul
- 3. Abstractions mathématiques simples de phénomènes complexes dans le but de
 - Prouver des propriétés.
 - Concevoir des algorithmes permettant de tester des propriétés ou de résoudre des problèmes.
- 4. Types de données

Plan

Introduction

- 2 Langages reconnaissables
 - Mots
 - Langages
 - Automates déterministes
 - Automates non déterministes
 - Automates avec ε -transitions
 - Propriétés de fermeture
 - Langages rationnels
 - Critères de reconnaissabilité
 - Minimisation
 - Morphismes et congruences

Fonctions séquentielles

Automates d'arbres

Bibliographie

[1] Luc Albert, Paul Gastin, Bruno Petazzoni, Antoine Petit, Nicolas Puech et Pascal Weil.

Cours et exercices d'informatique. Vuibert, 1998.

[2] Jean-Michel Autebert. Théorie des langages et des automates. Masson. 1994.

- [3] John E. Hopcroft et Jeffrey D. Ullman. Introduction to automata theory, languages and computation. Addison-Wesley, 1979.
- [4] Jacques Sakarovitch. Éléments de théorie des automates. Vuibert informatique, 2003.
- [5] Jacques Stern.
 Fondements mathématiques de l'informatique.
 Mc Graw Hill, 1990.

Mots

```
A ou \Sigma: alphabet (ensemble fini).
u \in \Sigma^*: mot = suite finie de lettres.
· : concaténation associative.
\varepsilon ou 1 : mot vide, neutre pour la concaténation.
(\Sigma^*, \cdot): monoïde libre engendré par \Sigma.
|u|: longueur du mot u.
|\cdot|: \Sigma^* \to \mathbb{N} est le morphisme défini par |a| = 1 pour a \in \Sigma.
|u|_a: nombre de a dans le mot u.
\tilde{u}: miroir du mot u.
```

Mots

Ordres partiels:

- u préfixe de v si $\exists u'$, v = uu'
- u suffixe de v si $\exists u'$, v = u'u
- u facteur de v si $\exists u', u'', v = u'uu''$
- u sous-mot de v si $v=v_0u_1v_1u_1\cdots u_nv_n$ avec $u_i,v_i\in \Sigma^*$ et $u=u_1u_2\cdots u_n$

Théorème : Higman

L'ordre sous-mot est un *bon* ordre, i.e. (de toute suite infinie on peut extraire une sous-suite infinie croissante) (ou tout ensemble de mots a un nombre fini d'éléments minimaux)

Langages

 ${\rm Langage} = {\rm sous\text{-}ensemble} \ {\rm de} \ \Sigma^*.$

Exemples.

Opérations sur les langages : soient $K, L \subseteq \Sigma^*$

Ensemblistes: union, intersection, complément, différence, ...

Concaténation : $K \cdot L = \{u \cdot v \mid u \in K \text{ et } v \in L\}$

La concaténation est associative et distributive par rapport à l'union.

$$|K \cdot L| \le |K| \cdot |L|$$

notion de multiplicité, d'ambiguïté

Langages

$$\begin{array}{l} \text{It\'eration}: \ L^0 = \{\varepsilon\}, \ L^{n+1} = L^n \cdot L = L \cdot L^n, \\ L^* = \bigcup_{n \geq 0} L^n, \ L^+ = \bigcup_{n > 0} L^n. \\ \text{Exemples}: \ \Sigma^n, \ \Sigma^*, \ (\Sigma^2)^*. \end{array}$$

Quotients :
$$K^{-1} \cdot L = \{v \in \Sigma^* \mid \exists u \in K, u \cdot v \in L\}$$

$$L \cdot K^{-1} = \{u \in \Sigma^* \mid \exists v \in K, u \cdot v \in L\}$$

Automates déterministes

Définition : Automate déterministe

$$\mathcal{A} = (Q, \delta, i, F)$$

Q ensemble *fini* d'états, $i \in Q$ état initial, $F \subseteq Q$ états finaux, $\delta: Q \times \Sigma \to Q$ fonction de transition (totale ou partielle).

Exemples.

Calcul de
$$\mathcal A$$
 sur un mot $u=a_1\cdots a_n$: $q_0\xrightarrow{u}q_n$

$$q_0 \xrightarrow{a_1} q_1 \cdots q_{n-1} \xrightarrow{a_n} q_n$$

avec
$$q_i = \delta(q_{i-1}, a_i)$$
 pour tout $0 < i \le n$.

Généralisation de δ à $Q \times \Sigma^*$:

$$\delta(q,\varepsilon)=q$$
.

$$\delta(q, u \cdot a) = \delta(\delta(q, u), a)$$
 si $u \in \Sigma^*$ et $a \in \Sigma$.

Automates déterministes

Langage accepté (reconnu) par \mathcal{A} : $\mathcal{L}(\mathcal{A}) = \{u \in \Sigma^* \mid \delta(i,u) \in F\}$. Exemples.

Définition: Reconnaissables

Un langage $L\subseteq \Sigma^*$ est *reconnaissable*, s'il existe un automate fini $\mathcal A$ tel que $L=\mathcal L(\mathcal A)$.

On note $\operatorname{Rec}(\Sigma^*)$ la famille des langages reconnaissables sur Σ^* .

Automates non déterministes

Exemple : automate non déterministe pour $\Sigma^* \cdot \{aba\}$

Définition : Automate non déterministe

$$\mathcal{A} = (Q, T, I, F)$$

Q ensemble fini d'états, $I \subseteq Q$ états initiaux, $F \subseteq Q$ états finaux,

 $T \subseteq Q \times \Sigma \times Q$ ensemble des transitions.

On utilise aussi $\delta: Q \times \Sigma \to 2^Q$.

Calcul de $\mathcal A$ sur un mot $u = a_1 \cdots a_n : q_0 \xrightarrow{a_1} q_1 \cdots q_{n-1} \xrightarrow{a_n} q_n$ avec $(q_{i-1}, a_i, q_i) \in T$ pour tout $0 < i \le n$.

Langage accepté (reconnu) par ${\cal A}$:

 $\mathcal{L}(\mathcal{A}) = \{ u \in \Sigma^* \mid \exists \ i \xrightarrow{u} f \text{ calcul de } \mathcal{A} \text{ avec } i \in I \text{ et } f \in F \}.$

Automates non déterministes

Théorème : Déterminisation

Soit $\mathcal A$ un automate non déterministe. On peut construire un automate déterministe $\mathcal B$ qui reconnaît le même langage $(\mathcal L(\mathcal A)=\mathcal L(\mathcal B))$.

Preuve

Automate des parties

Exemple : automate déterministe pour $\Sigma^* \cdot \{aba\}$

On appelle déterminisé de ${\cal A}$ l'automate des parties émondé.

Exercices:

- 1. Donner un automate non déterministe avec n états pour $L = \sum^* a \sum^{n-2}$.
- 2. Montrer que tout automate déterministe reconnaissant ce langage L a au moins 2^{n-1} états.
- 3. Donner un automate non déterministe à n états tel que tout automate déterministe reconnaissant le même langage a au moins $2^n 1$ états.

Automates non déterministes

Un automate (D ou ND) est *complet* si $\forall p \in Q, \ \forall a \in \Sigma, \ \delta(p,a) \neq \emptyset$. On peut toujours compléter un automate.

Un automate (D ou ND) est émondé si tout état $q \in Q$ est

- lacktriangle accessible d'un état initial : $\exists i \in I$, $\exists u \in \Sigma^*$ tels que $i \xrightarrow{u} q$,
- co-accessible d'un état final : $\exists f \in F$, $\exists u \in \Sigma^*$ tels que $q \xrightarrow{u} f$

On peut calculer l'ensemble $\mathrm{Acc}(I)$ des états accessibles à partir de I et l'ensemble $\mathrm{coAcc}(F)$ des états co-accessibles des états finaux.

Corollaire:

Soit A un automate.

- 1. On peut construire \mathcal{B} émondé qui reconnaît le même langage.
- 2. On peut décider si $\mathcal{L}(\mathcal{A}) = \emptyset$.

Automates avec ε -transitions

Exemple.

Définition : Automate avec ε -transitions

$$\mathcal{A} = (Q, T, I, F)$$

Q ensemble fini d'états, $I\subseteq Q$ états initiaux, $F\subseteq Q$ états finaux, $T\subseteq Q\times (\Sigma\cup\{\varepsilon\})\times Q$ ensemble des transitions.

Un calcul de \mathcal{A} est une suite $q_0 \xrightarrow{a_1} q_1 \cdots q_{n-1} \xrightarrow{a_n} q_n$ avec $(q_{i-1}, a_i, q_i) \in T$ pour tout $0 < i \le n$.

Ce calcul reconnaît le mot $u = a_1 \cdots a_n$ (les ε disparaissent).

Remarque : Soit \mathcal{A} un automate. On peut construire un automate sans ε -transition \mathcal{B} qui reconnaît le même langage.

Décision

Presque tout est décidable sur les langages reconnaissables donnés par des automates.

Définition :

Problème du vide : étant donné un automate fini A, décider si $\mathcal{L}(A) = \emptyset$.

Problème du mot : étant donnés un mot $w \in \Sigma^*$ et un automate \mathcal{A} , décider si $w \in \mathcal{L}(\mathcal{A})$.

Théorème : vide et mot

Le problème du vide et le problème du mot sont décidables en **NLOGSPACE** pour les langages reconnaissables donnés par automates (déterministe ou non, avec ou sans ε -transitions).

Preuve

C'est de l'accessibilité.

Opérations ensemblistes

Proposition:

La famille $\operatorname{Rec}(\Sigma^*)$ est fermée par les opérations ensemblistes (union, complément, ...).

Preuve

Union: construction non déterministe.

Intersection: produit d'automates (préserve le déterminisme).

Complément : utilise la déterminisation.

Corollaire:

On peut décider de l'égalité ou de l'inclusion de langages reconnaissables.

Plus précisément, soient $L_1, L_2 \in \operatorname{Rec}(\Sigma^*)$ donnés par deux automates A_1 et A_2 .

On peut décider si $L_1 \subseteq L_2$.

Opérations liées à la concaténation

Proposition:

 $\operatorname{Rec}(\Sigma^*)$ est fermée par concaténation et itération.

Concaténation:

Méthode 1 : union disjointe des automates et ajout de transitions.

Méthode 2 : fusion d'états.

On suppose que les automates ont un seul état initial sans transition entrante et un seul état final sans transition sortante.

Itération:

Méthode 1 : ajout de transitions. Ajouter un état pour reconnaître le mot vide.

Méthode 2 : ajout d' ε -transitions.

Si $L \subseteq \Sigma^*$, on note

- $\Pr(L) = \{ u \in \Sigma^* \mid \exists v \in \Sigma^*, \ uv \in L \},$
- $Suff(L) = \{ v \in \Sigma^* \mid \exists u \in \Sigma^*, \ uv \in L \},$
- $\operatorname{Fact}(L) = \{ v \in \Sigma^* \mid \exists u, w \in \Sigma^*, \ uvw \in L \}.$

Proposition:

 $\operatorname{Rec}(\Sigma^*)$ est fermée par préfixe, suffixe, facteur.

Preuve

Modification des états initiaux et/ou finaux.

Proposition:

La famille $\operatorname{Rec}(\Sigma^*)$ est fermée par quotients gauches et droits :

Soit $L \in \operatorname{Rec}(\Sigma^*)$ et $K \subseteq \Sigma^*$ arbitraire.

Les langages $K^{-1} \cdot L$ et $L \cdot K^{-1}$ sont reconnaissables.

Preuve

Modification des états initiaux et/ou finaux.

Exercice:

Montrer que si de plus K est reconnaissable, alors on peut effectivement calculer les nouveaux états initiaux/finaux.

Morphismes

Soient A et B deux alphabets et $f: A^* \to B^*$ un morphisme.

Pour $L\subseteq A^*$, on note $f(L)=\{f(u)\in B^*\mid u\in L\}.$

Pour $L\subseteq B^*$, on note $f^{-1}(L)=\{u\in A^*\mid f(u)\in L\}.$

Proposition:

La famille des langages reconnaissables est fermée par morphisme et morphisme inverse.

- 1. Si $L \in \text{Rec}(A^*)$ et $f: A^* \to B^*$ est un morphisme alors $f(L) \in \text{Rec}(B^*)$.
- 2. Si $L \in \text{Rec}(B^*)$ et $f: A^* \to B^*$ est un morphisme alors $f^{-1}(L) \in \text{Rec}(A^*)$.

Preuve

Modification des transitions de l'automate.

Définition : Substitutions

Une substitution est définie par une application $\sigma:A\to \mathcal{P}(B^*)$. Elle s'étend en un morphisme $\sigma:A^*\to \mathcal{P}(B^*)$ défini par

$$\sigma(\varepsilon) = \{\varepsilon\}$$
 et $\sigma(a_1 \cdots a_n) = \sigma(a_1) \cdots \sigma(a_n)$.

Pour
$$L\subseteq A^*$$
, on note $\sigma(L)=\bigcup_{u\in L}\sigma(u)$.
Pour $L\subseteq B^*$, on note $\sigma^{-1}(L)=\{u\in A^*\mid \sigma(u)\cap L\neq\emptyset\}$.

Une substitution est *rationnelle* (ou *reconnaissable*) si elle est définie par une application $\sigma: A \to \operatorname{Rec}(B^*)$.

Proposition:

La famille des langages reconnaissables est fermée par substitution rationnelle et substitution rationnelle inverse.

- 1. Si $L \in \text{Rec}(A^*)$ et $\sigma : A \to \text{Rec}(B^*)$ est une substitution rationnelle alors $\sigma(L) \in \text{Rec}(B^*)$.
- 2. Si $L \in \text{Rec}(B^*)$ et $\sigma: A \to \text{Rec}(B^*)$ est une substitution rationnelle alors $\sigma^{-1}(L) \in \text{Rec}(A^*)$.

Preuve

- 1. On remplace des transitions par des automates.
- 2. Plus difficile.

Syntaxe pour représenter des langages.

Soit Σ un alphabet et $\underline{\Sigma}$ une copie de Σ . Une ER est un mot sur l'alphabet $\underline{\Sigma} \cup \{(,),+,\cdot,*,\underline{\emptyset}\}$

Définition : Syntaxe

L'ensemble des ER est défini par

 $\mathsf{B}:\,\underline{\emptyset}\,\,\mathrm{et}\,\,\underline{a}\,\,\mathrm{pour}\,\,a\in\Sigma\,\,\mathrm{sont}\,\,\mathrm{des}\,\,\mathsf{ER,}$

I : Si E et F sont des ER alors (E+F), $(E\cdot F)$ et (E^*) aussi.

On note \mathcal{E} l'ensemble des expressions rationnelles.

Définition : Sémantique

On définit $\mathcal{L}: \mathcal{E} \to \mathcal{P}(\Sigma^*)$ par

B: $\mathcal{L}(\underline{\emptyset}) = \emptyset$ et $\mathcal{L}(\underline{a}) = \{a\}$ pour $a \in \Sigma$,

I: $\mathcal{L}((E+F)) = \mathcal{L}(E) \cup \mathcal{L}(F)$, $\mathcal{L}((E \cdot F)) = \mathcal{L}(E) \cdot \mathcal{L}(F)$ et

 $\mathcal{L}((E^*)) = \mathcal{L}(E)^*.$

Un langage $L \subseteq \Sigma^*$ est rationnel s'il existe une ER E telle que $L = \mathcal{L}(E)$. On note $\mathrm{Rat}(\Sigma^*)$ l'ensemble des langages rationnels sur l'alphabet Σ .

Remarque : $\operatorname{Rat}(\Sigma^*)$ est la plus petite famille de langages de Σ^* contenant \emptyset et $\{a\}$ pour $a\in\Sigma$ et fermée par union, concaténation, itération.

Définition :

Deux ER E et F sont équivalentes (noté $E \equiv F$) si $\mathcal{L}(E) = \mathcal{L}(F)$.

Exemples : commutativité, associativité, distributivité, . . .

Peut-on trouver un système de règles de réécriture caractérisant l'équivalence des ER ?

Oui, mais il n'existe pas de système fini.

Comment décider de l'équivalence de deux ER ?

On va utiliser le théorème de Kleene.

Abus de notation :

- On ne souligne pas les lettres de Σ : $((a+b)^*)$.
- On enlève les parenthèses inutiles : $(aa + bb)^* + (aab)^*$.
- On confond langage rationnel et expression rationnelle.

Théorème : Kleene, 1936

 $\operatorname{Rec}(\Sigma^*) = \operatorname{Rat}(\Sigma^*)$

Preuve

 \supseteq : les langages \emptyset et $\{a\}$ pour $a \in \Sigma$ sont reconnaissables et la famille $\operatorname{Rec}(\Sigma^*)$ est fermée par union, concaténation, itération.

: Algorithme de McNaughton-Yamada.

Corollaire:

L'équivalence des expressions rationnelles est décidable.

Preuve

Il suffit de l'inclusion $Rat(\Sigma^*) \subseteq Rec(\Sigma^*)$.

Y a-t-il des langages non reconnaissables ?

Oui, par un argument de cardinalité.

Comment montrer qu'un langage n'est pas reconnaissable ?

Exemples.

- 1. $L_1 = \{a^n b^n \mid n \ge 0\},\$
- 2. $L_2 = \{u \in \Sigma^* \mid |u|_a = |u|_b\},\$
- 3. $L_3 = L_2 \setminus (\Sigma^*(a^3 + b^3)\Sigma^*)$

Preuves: à la main (par l'absurde).

Lemme: itération

Soit $L \in \operatorname{Rec}(\Sigma^*)$. Il existe $N \geq 0$ tel que pour tout $w \in L$,

- 1. si $|w| \ge N$ alors $\exists u_1, u_2, u_3 \in \Sigma^*$ tels que $w = u_1 u_2 u_3, \ u_2 \ne \varepsilon$ et $u_1 u_2^* u_3 \subseteq L$.
- 2. si $w=w_1w_2w_3$ avec $|w_2|\geq N$ alors $\exists u_1,u_2,u_3\in \Sigma^*$ tels que $w_2=u_1u_2u_3$, $u_2\neq \varepsilon$ et $w_1u_1u_2^*u_3w_3\subseteq L$.
- 3. Si $0 \le i_0 < i_1 < \dots < i_N \le |w|$ (positions marquées dans w) alors il existe $0 \le j < k \le N$ tels que si on écrit $w = u_1u_2u_3$ avec $|u_1| = i_j$ et $|u_1u_2| = i_k$ alors $u_1u_2^*u_3 \subseteq L$.

Preuve

Sur l'automate qui reconnaît L.

Application à L_1 , L_2 , L_3 et aux palindromes $L_4 = \{u \in \Sigma^* \mid u = \tilde{u}\}.$

Le critère (2) est strictement plus fort que le critère (1) : $K_1 = \{b^p a^n \mid p > 0 \text{ et } n \text{ est premier}\} \cup \{a\}^*$ satisfait (1) mais pas (2).

Le critère (3) est strictement plus fort que le critère (2) :

 $K_2 = \{(ab)^n (cd)^n \mid n \ge 0\} \cup \Sigma^* \{aa, bb, cc, dd, ac\} \Sigma^*$ satisfait (2) mais pas (3).

Le critère (3) n'est pas suffisant :

 $K_3 = \{udv \mid u, v \in \{a, b, c\}^* \text{ et soit } u \neq v \text{ soit } u \text{ ou } v \text{ contient un carré} \}$ satisfait (3) mais n'est pas reconnaissable.

Pour montrer qu'un langage n'est pas reconnaissable, on peut aussi utiliser les propriétés de clôture.

Exemples : Sachant que L_1 n'est pas reconnaissable.

- ► $L_2 \cap a^*b^* = L_1$. Donc L_2 n'est pas reconnaissable.
- ▶ Soit $f: \Sigma^* \to \Sigma^*$ défini par f(a) = aab et f(b) = abb. On a $f^{-1}(L_3) = L2$. Donc L_3 n'est pas reconnaissable.
- ▶ $L_5 = \{u \in \Sigma^* \mid |u|_a \neq |u|_b\} = \overline{L_2}$. Donc L_5 n'est pas reconnaissable.

Il y a une infinité d'automates pour un langage donné.

Exemple : automates D ou ND pour a^{*} .

Questions:

- Y a-t-il un automate canonique ?
- Y a-t-il unicité d'un automate minimal en nombre d'états ?
- Y a-t-il un lien structurel entre deux automates qui reconnaissent le même langage?

Définition : Morphismes d'automates DC

Soient $\mathcal{A}=(Q,\delta,i,F)$ et $\mathcal{A}'=(Q',\delta',i',F')$ deux automates déterministes complets. Une application $\varphi:Q\to Q'$ est un *morphisme* si δ_a

- $\forall q \in Q, \ \forall a \in \Sigma, \ \varphi(\delta(q, a)) = \delta'(\varphi(q), a),$
- $\varphi(i) = i',$
- ho $\varphi^{-1}(F')=F$, i.e., $q\in F\Longleftrightarrow \varphi(q)\in F'$.

 $\downarrow \qquad \qquad \downarrow \varphi$

 $Q' \xrightarrow{\delta'_a} Q'$

 ${\mathcal A}$ et ${\mathcal A}'$ sont isomorphes s'il existe un morphisme bijectif de ${\mathcal A}$ vers ${\mathcal A}'$.

Remarque 1 : Deux automates DC sont isomorphes s'ils ne diffèrent que par le nom des états.

Remarque 2 : Si $\varphi: \mathcal{A} \to \mathcal{A}'$ est un morphisme bijectif, alors $\varphi^{-1}: \mathcal{A}' \to \mathcal{A}$ est aussi un morphisme.

Remarque 3 : Si $\varphi: \mathcal{A} \to \mathcal{A}'$ et $\psi: \mathcal{A}' \to \mathcal{A}''$ sont des morphismes, alors $\psi \circ \varphi: \mathcal{A} \to \mathcal{A}''$ est un morphisme.

Définition : Congruence sur les automates

Soit \mathcal{A} un automate DC. Une relation d'équivalence \sim sur Q est une congruence si

- $\forall p, q \in Q, \forall a \in \Sigma, p \sim q \text{ implique } \delta(p, a) \sim \delta(q, a),$
- ▶ F est saturé par \sim , i.e., $\forall p \in F$, $[p] = \{q \in Q \mid p \sim q\} \subseteq F$.

Le quotient de \mathcal{A} par \sim est $\mathcal{A}_{\sim}=(Q/\sim,\delta_{\sim},[i],F/\sim)$ où δ_{\sim} est définie par $\delta_{\sim}([p], a) = [\delta(p, a)].$

Remarque: $[-]: A \to A/\sim$ est un morphisme surjectif.

Proposition:

Soient \mathcal{A} et \mathcal{A}' deux automates DC. Il existe un morphisme surjectif $\varphi: \mathcal{A} \to \mathcal{A}'$ si et seulement si \mathcal{A}' est isomorphe à un quotient de \mathcal{A} . Dans ce cas, on note $\mathcal{A}' \prec \mathcal{A}$ et on a $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$.

Remarque: \leq est un ordre partiel sur les automates DC.

But: Soit $L \in \text{Rec}\Sigma^*$. Montrer qu'il existe un unique (à isomorphisme près) automate minimal pour \leq parmi les automates DC reconnaissant L.

Définition : Équivalence de Nérode

Soit $A = (Q, \delta, i, F)$ un automate DC.

Pour $p \in Q$, on note $\mathcal{L}(\mathcal{A},p) = \{u \in \Sigma^* \mid \delta(p,u) \in F\}.$

L'équivalence de Nérode \sim sur Q est définie par

$$p \sim q$$
 ssi $\mathcal{L}(\mathcal{A}, p) = \mathcal{L}(\mathcal{A}, q)$.

Remarque : On sait décider si $p \sim q$.

Proposition:

L'équivalence de Nérode est une congruence.

L'automate quotient \mathcal{A}_{\sim} est appelé automate de Nérode.

On a $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_{\sim})$ (Proposition 3)

On va voir que l'automate de Nérode est minimal (si Q = Acc(i)).

Problème : comment le calculer efficacement ?

Pour $n\geq 0$, on note $\Sigma^{\leq n}=\Sigma^0\cup\Sigma^1\cup\cdots\cup\Sigma^n$ et on définit l'équivalence \sim_n sur Q par

$$p \sim_n q$$
 ssi $\mathcal{L}(\mathcal{A}, p) \cap \Sigma^{\leq n} = \mathcal{L}(\mathcal{A}, q) \cap \Sigma^{\leq n}$.

Remarque 1 : \sim_0 a pour classes d'équivalence F et $Q \setminus F$.

Remarque 2 : \sim_{n+1} est plus fine que \sim_n , i.e., $p \sim_{n+1} q \Longrightarrow p \sim_n q$.

Remarque 3 : $\sim = \bigcap_{n \geq 0} \sim_n$, i.e., $p \sim q$ ssi $\forall n \geq 0$, $p \sim_n q$.

Proposition: 5

- $p \sim_{n+1} q$ ssi $p \sim_n q$ et $\forall a \in \Sigma$, $\delta(p, a) \sim_n \delta(q, a)$.
- Si $\sim_n = \sim_{n+1}$ alors $\sim = \sim_n$.
- $ightharpoonup \sim = \sim_{|Q|-2} \text{ si } \emptyset \neq F \neq Q \text{ et } \sim = \sim_1 \text{ sinon}.$

On utilise la Proposition 5 pour calculer l'équivalence de Nérode par raffinements successifs.

Minimisation

Définition : Résiduels

Soient $u\in \Sigma^*$ et $L\subseteq \Sigma^*$. Le résiduel de L par u est le quotient $u^{-1}L=\{v\in \Sigma^*\mid uv\in L\}.$

Définition : Automate des résiduels

Soit $L\subseteq \Sigma^*$. L'automate des résiduels de L est $\mathcal{R}(L)=(Q_L,\delta_L,i_L,F_L)$ défini par

- $Q_L = \{u^{-1}L \mid u \in \Sigma^*\},$
- $i_L = L = \varepsilon^{-1}L$,
- $F_L = \{u^{-1}L \mid \varepsilon \in u^{-1}L\} = \{u^{-1}L \mid u \in L\}.$

Théorème :

L est reconnaissable ssi L a un nombre fini de résiduels.

Minimisation

Théorème :

Soit $\mathcal{A}=(Q,\delta,i,F)$ un automate DCA (déterministe, complet et accessible, i.e., $Q=\mathrm{Acc}(i)$) reconnaissant $L\subseteq \Sigma^*$.

L'automate $\mathcal{R}(L)$ est isomorphe à l'automate de Nérode \mathcal{A}_{\sim} de \mathcal{A} .

Corollaire : Soit $L \in \operatorname{Rec}(\Sigma^*)$.

- 1. L'automate des résiduels de L est minimal pour l'ordre quotient (\preceq) parmi les automates DCA qui reconnaissent L.
 - 2. Soit $\mathcal A$ un automate DC reconnaissant L avec un nombre minimal d'états. $\mathcal A$ est isomorphe à $\mathcal R(L)$.
 - 3. On calcule l'automate minimal de L avec l'équivalence de Nérode à partir de n'importe quel automate DCA qui reconnaît L.
 - 4. On peut décider de l'égalité de langages reconnaissables ($\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{B})$ avec \mathcal{A} et \mathcal{B} automates DCA) en testant *l'égalité* des automates minimaux associés ($\mathcal{A}_{\sim} = \mathcal{B}_{\sim}$).

Exercice:

Calculer l'automate minimal par l'algorithme d'Hopcroft de raffinement de partitions en $\mathcal{O}(n\log(n))$ (l'algo naïf est en $\mathcal{O}(n^2)$ avec n=|Q|).

Morphismes

Définition : Reconnaissance par morphisme

- $\varphi: \Sigma^* \to M \text{ morphisme dans un monoïde fini } M. \\ L \subseteq \Sigma^* \text{ est } \operatorname{reconnu} \text{ par } \varphi \text{ si } L = \varphi^{-1}(\varphi(L)).$
- ▶ $L \subseteq \Sigma^*$ est reconnu par un monoïde fini M s'il existe un morphisme $\varphi: \Sigma^* \to M$ qui reconnaît L.
- $L\subseteq \Sigma^*$ est reconnaissable par morphisme s'il existe un monoïde fini qui reconnaît L.

Définition : Monoïde de transitions

Soit $\mathcal{A} = (Q, \Sigma, \delta, i, F)$ un automate déterministe complet.

Le monoïde de transitions de $\mathcal A$ est le sous monoïde de $(Q^Q,*)$ engendré par les applications $\delta_a:Q\to Q$ $(a\in\Sigma)$ définies par $\delta_a(q)=\delta(q,a)$ et avec la loi de composition interne $f*g=g\circ f$.

Proposition:

Le monoïde de transitions de A reconnaît $\mathcal{L}(A)$.

Morphismes

Théorème :

Soit $L\subseteq \Sigma^*$. L est reconnaissable par morphisme ssi L est reconnaissable par automate.

Corollaire:

 $\operatorname{Rec}(\Sigma^*)$ est fermée par morphisme inverse.

Exemple:

Si L est reconnaissable alors $\sqrt{L} = \{v \in \Sigma^* \mid v^2 \in L\}$ est aussi reconnaissable.

Exercices:

- 1. Montrer que $\operatorname{Rec}(\Sigma^*)$ est fermée par union, intersection, complémentaire.
- 2. Montrer que $\operatorname{Rec}(\Sigma^*)$ est fermée par quotients. Si $L \in \operatorname{Rec}(\Sigma^*)$ et $K \subseteq \Sigma^*$ alors $K^{-1}L$ et LK^{-1} sont reconnaissables.
- 3. Montrer que $Rec(\Sigma^*)$ est fermée par concaténation (plus difficile).

Congruences

Définition :

Soit $L \subseteq \Sigma^*$ et \equiv une congruence sur Σ^* .

Le langage L est saturé par \equiv si $\forall u \in \Sigma^*$, $\forall v \in L$, $u \equiv v$ implique $u \in L$.

Théorème:

Soit $L \subseteq \Sigma^*$. L est reconnaissable ssi L est saturé par une congruence d'index fini.

Définition : Congruence syntaxique

Soit $L \subseteq \Sigma^*$.

$$u \equiv_L v$$
 si $\forall x, y \in$

 $u \equiv_L v$ si $\forall x, y \in \Sigma^*, xuy \in L \iff xvy \in L$.

Théorème :

Soit $L \subseteq \Sigma^*$.

- $ightharpoonup \equiv_L$ sature L.
- $ightharpoonup \equiv_L$ est la plus *grossière* congruence qui sature L.
- ▶ L est reconnaissable ssi \equiv_L est d'index fini.

Monoide syntaxique

Définition : Monoide syntaxique

Soit $L \subseteq \Sigma^*$. $M_L = \Sigma^* / \equiv_L$.

Théorème:

Soit $L \subseteq \Sigma^*$.

- $lacktriangleq M_L$ divise (est quotient d'un sous-monoïde) tout monoïde qui reconnaît L.
- $ightharpoonup M_L$ est le monoïde de transitions de l'automate minimal de L.

Corollaire:

On peut effectivement calculer le monoïde syntaxique d'un langage reconnaissable.

Exercice: Congruence à droite

- 1. Montrer que $L\subseteq \Sigma^*$ est reconnaissable ssi il est saturé par une congruence à droite d'index fini
- 2. Soit $u \equiv_L^r v$ si $\forall y \in \Sigma^*$, $uy \in L \iff vy \in L$. Montrer que \equiv_L^r est la congruence à droite la plus grossière qui sature L.
- 3. Faire le lien entre \equiv^r_L et l'automate minimal de L

Apériodiques et sans étoile

Définition : Sans étoile

La famille des langages sans étoile est la plus petite famille qui contient les langages finis et qui est fermée par union, concaténation et complémentaire.

Exemple : Le langage $(ab)^*$ est sans étoile.

Définition : Apériodique

- ▶ Un monoïde fini M est apériodique si il existe $n \ge 0$ tel que pour tout $x \in M$ on a $x^n = x^{n+1}$.
- ▶ Un langage est apériodique s'il peut être reconnu par un monoïde apériodique.

Théorème : Schützenberger

Un langage est sans étoile si et seulement si son monoïde syntaxique est apériodique.

Exemple : Le langage $(aa)^*$ n'est pas sans étoile.

Exercice:

Montrer que le langage $((a + cb^*a)c^*b)^*$ est sans étoile.

Plan

Introduction

Langages reconnaissables

- Fonctions séquentielles
 - Définitions et exemples
 - Composition
 - Normalisation
 - Résiduels et minimisation

Automates d'arbres

Grammaires

Langages algébriques

Automates à pile

Bibliographie

- [6] Jean Berstel. Transduction and context free languages. Teubner, 1979.
- [7] Jean-Éric Pin.

 Automates finis et applications.

 Polycopié du cours à l'École Polytechnique, 2004.
- [8] Jacques Sakarovitch. Éléments de théorie des automates. Vuibert informatique, 2003.

Automates séquentiels purs

Définition : Automates séquentiels purs (Mealy machine)

$$\mathcal{A}=(Q,A,B,q_0,\delta,arphi)$$
 où

- Q ensemble fini d'états et $q_0 \in Q$ état initial,
- ▶ A et B alphabets d'entrée et de sortie,
- $\delta: Q \times A \rightarrow Q$ fonction partielle de transition,
- $\varphi: Q \times A \to B^*$ fonction partielle de sortie avec $dom(\varphi) = dom(\delta)$.

Définition : Sémantique : $[A] : A^* \to B^*$

On étend δ et φ à $Q \times A^*$ par

- $\delta(q,\varepsilon) = q \text{ et } \varphi(q,\varepsilon) = \varepsilon$
- $\delta(q, ua) = \delta(\delta(q, u), a)$ et $\varphi(q, ua) = \varphi(q, u)\varphi(\delta(q, u), a)$

et la sémantique de $\mathcal A$ est la fonction $\mathit{partielle} \ \llbracket \mathcal A \rrbracket : A^* \to B^*$ définie par

 $\blacktriangleright \ \llbracket \mathcal{A} \rrbracket(u) = \varphi(q_0, u).$

Noter que $[A](\varepsilon) = \varepsilon$

fonctions séquentielles pures

Définition : fonctions séquentielles pures

Une fonction $f:A^*\to B^*$ est séquentielle pure s'il existe un automate séquentiel pur $\mathcal A$ qui la réalise : $f=[\![\mathcal A]\!]$.

Exemples:

- 1. Transformation d'un texte en majuscules.
- 2. Remplacement d'une séquence d'espaces ou tabulations par un seul espace.
- 3. Codage et décodage avec le code préfixe définie par

$$\begin{array}{lll} a\mapsto 0000 & c\mapsto 001 & e\mapsto 011 & g\mapsto 11 \\ b\mapsto 0001 & d\mapsto 010 & f\mapsto 10 & \end{array}$$

4. Division par 3 d'un entier écrit en binaire en commençant par le bit de poids fort. Qu'en est-il si on commence avec le bit de poids faible ?

Automates séquentiels

Définition : Automates séquentiels

$$\mathcal{A} = (Q, A, B, q_0, \delta, \varphi, m, \rho)$$
 où
 $\mathcal{A} = (Q, A, B, q_0, \delta, \varphi)$ est un automate séquentiel pur,

- ▶ $m \in B^*$ est le préfixe initial,
- $ho: Q \to Q$ est la fonction partielle finale.

La sémantique de
$$\mathcal A$$
 est la fonction partielle $[\![\mathcal A]\!]:A^*\to B^*$ définie par

• $[\![A]\!](u) = m\varphi(q_0, u)\rho(\delta(q_0, u)).$ On appelle état final un état dans $dom(\rho)$.

Exemples:

- 1. La fonction $f: A^* \to A^*$ définie par $f(u) = u(ab)^{-1}$.
- 2. Addition de deux entiers écrits en binaire en commençant par le bit de poids faible.
- 3. La multiplication par 3 d'un entier écrit en binaire en commençant par le bit de poids faible.
- 4. Le décodage par un code à délai de déchiffrage borné.

Ces fonctions sont-elles séquentielles pures ?

fonctions séquentielles

Définition : fonctions séquentielles

Une fonction $f:A^*\to B^*$ est séquentielle s'il existe un automate séquentiel $\mathcal A$ qui la réalise : $f=[\![\mathcal A]\!].$

Lemme:

Une fonction séquentielle peut être réalisée par un automate séquentiel ayant un préfixe initial vide $(m=\varepsilon)$.

Produit en couronne

Définition : Produit en couronne

Soient $\mathcal{A}=(Q,A,B,q_0,\delta,\varphi,m,\rho)$ et $\mathcal{A}'=(Q',B,C,q_0',\delta',\varphi',m',\rho')$ deux automates séquentiels.

Le produit en couronne $\mathcal{A}'\circ\mathcal{A}=(Q'',A,C,q_0'',\delta'',\varphi'',m'',\rho'')$ est défini par

- $Q'' = Q \times Q'$, $q_0'' = (q_0, \delta'(q_0', m))$ et $m'' = m' \varphi'(q_0', m)$,
- $\qquad \qquad \delta''((p,p'),a) = (\delta(p,a),\delta'(p',\varphi(p,a))),$
- $\qquad \varphi''((p,p'),a) = \varphi'(p',\varphi(p,a)),$
- $\rho''((p,p')) = \varphi'(p',\rho(p))\rho'(\delta'(p',\rho(p))).$

Exemple: Multiplication par 5

Dans cet exemple, $A=C=\{0,1\}$, $B=\{0,1\}^2$ et les mots représentent des entiers codés en binaire en commençant par le bit de poids faible.

On considère les fonctions séquentielles $f:A^*\to B^*$ et $g:B^*\to C^*$ définies par f(n)=(n,4n), i.e., f(u)=(u,00u) et g(n,m)=n+m.

La fonction $g \circ f$ code la multiplication par 5.

Construire les automates séquentiels réalisant f et g et leur produit en couronne.

Composition

Lemme : Extension à A^*

Pour tout $u \in A^*$, on a

- $\delta''((p,p'),u) = (\delta(p,u),\delta'(p',\varphi(p,u))),$
- $\varphi''((p,p'),u) = \varphi'(p',\varphi(p,u)),$

Théorème : Composition

Soient $f: A^* \to B^*$ et $g: B^* \to C^*$ deux fonctions partielles.

- 1. Si f et g sont séquentielles alors $g \circ f : A^* \to C^*$ est aussi séquentielle.
- 2. Si f et g sont séquentielles pures alors $g \circ f$ est aussi séquentielle pure.

Preuve

- 1. Si f et g sont réalisées par $\mathcal A$ et $\mathcal A'$ alors $g\circ f$ est réalisée par $\mathcal A'\circ \mathcal A.$
- 2. Si \mathcal{A} et \mathcal{A}' sont purs alors $\mathcal{A}' \circ \mathcal{A}$ est pur.

Fonct. séquentielles et lang. rationnels

Définition : Fonction caractéristique

Soit $L\subseteq A^*$ un langage. La fonction caractéristique de L est la fonction totale $\mathbf{1}_L:A^*\to\{0,1\}$ définie par $\mathbf{1}_L(u)=1$ si et seulement si $u\in L$.

Théorème:

Un langage $L\subseteq A^*$ est rationnel si et seulement si sa fonction caractéristique $\mathbf{1}_L$ est séquentielle.

Corollaire: Image inverse

Soient $f: A^* \to B^*$ une fonction séquentielle.

Si $L \subseteq B^*$ est rationnel alors $f^{-1}(L)$ est rationnel.

Théorème : Image directe

Soient $f: A^* \to B^*$ une fonction séquentielle.

Si $L \subseteq A^*$ est rationnel alors f(L) est rationnel.

$$B^* \cup \{\mathbf{0}\}$$

Définition : 0 : élément maximal et absorbant.

- ▶ Soit $0 \notin B$ un nouvel élément.
- ▶ On étend la concaténation de B^* en faisant de $\mathbf{0}$ un élément absorbant : $w \cdot \mathbf{0} = \mathbf{0} \cdot w = \mathbf{0}$ pour tout $w \in B^* \cup \{\mathbf{0}\}$.
- ▶ On étend l'ordre préfixe de B^* en faisant de $\mathbf{0}$ un élément maximal : $w \leq \mathbf{0}$ pour tout $w \in B^* \cup \{\mathbf{0}\}$.
- ▶ Tout sous ensemble $X \subseteq B^* \cup \{\mathbf{0}\}$ admet un plus grand préfixe commun, i.e., une borne inférieure pour l'ordre préfixe. Cette borne inférieure est notée $\bigwedge X$. Noter que $\bigwedge \emptyset = \mathbf{0}$.

Fonctions totales dans $B^* \cup \{0\}$

Définition : Fonction totale

On étend une fonction partielle $f:A^*\to B^*$ en une fonction totale $\hat{f}:A^*\to B^*\cup\{\mathbf{0}\}$ en posant $\hat{f}(u)=f(u)$ si $u\in\mathrm{dom}(f)$ et $\hat{f}(u)=\mathbf{0}$ sinon. Noter que pour tout $X\subseteq A^*$, on a $\bigwedge f(X)=\bigwedge \hat{f}(X)$.

Proposition : Automate séquentiel total

Si la fonction $f:A^*\to B^*$ est séquentielle (partielle) alors la fonction $\hat{f}:A^*\to B^*\cup \{\mathbf{0}\}$ est séquentielle (totale).

Preuve

Il suffit de compléter l'automate $\mathcal{A}=(Q,A,B,q_0,\delta,\varphi,m,\rho)$ réalisant f en ajoutant au besoin un état puits, et de remplacer ρ par $\hat{\rho}$.

Dans la suite, on confondra f et \hat{f} .

Normalisation

Exemple:

Donner un automate séquentiel réalisant la fonction $f:A^*\to A^*$ définie par $f(a^{2n}b)=(ab)^na$.

Cet automate devra sortir les lettres du résultat le plus rapidement possible.

Définition : Automate normalisé

Intuitivement, un automate est normalisé s'il écrit son résultat au plus tôt.

Soit $\mathcal{A}=(Q,A,B,q_0,\delta,\varphi,m,\rho)$ un automate séquentiel et $p\in Q$ un état de $\mathcal{A}.$

On définit $\mathcal{A}_p = (Q, A, B, p, \delta, \varphi, \varepsilon, \rho)$ et $m_p = \bigwedge \llbracket \mathcal{A}_p \rrbracket (A^*)$.

L'automate $\mathcal A$ est normalisé si pour tout $p\in Q$, $m_p=\varepsilon.$

Proposition: Normalisation

Tout automate séquentiel émondé est équivalent à un automate séquentiel émondé et normalisé ayant les mêmes états et la même fonction de transition.

Proposition: Effectivité

Étant donné un automate séquentiel \mathcal{A} , on peut calculer les m_p en temps quadratique.

Séquentielle et séquentielle pure

Définition:

Une fonction partielle $f:A^* \to B^*$ préserve les préfixes si

- ▶ son domaine est préfixiel : $u \le v$ et $v \in dom(f)$ implique $u \in dom(f)$,
- et elle est croissante : $u \le v$ et $v \in dom(f)$ implique $f(u) \le f(v)$.

Proposition:

- 1. Une fonction séquentielle pure préserve les préfixes.
- 2. Soit $f: A^* \to B^*$ une fonction séquentielle. Si $f(\varepsilon) = \varepsilon$ et f préserve les préfixes alors f est séquentielle pure.

Preuve

L'automate normalisé d'une fonction séquentielle f qui préserve les préfixes et telle que $f(\varepsilon) = \varepsilon$ est un automate séquentiel pur.

Résiduels

Définition : Résiduels

Soit $f:A^*\to B^*\cup\{\mathbf{0}\}$ une fonction totale et soit $u\in A^*$.

Le résiduel $f_u:A^*\to B^*\cup\{\mathbf{0}\}$ est défini par $f_u(v)=(\bigwedge f(uA^*))^{-1}f(uv)$ avec la convention $w^{-1}\mathbf{0}=\mathbf{0}$ pour tout $w\in B^*\cup\{\mathbf{0}\}.$

 $\bigwedge f(uA^*)$ représente tout ce qu'on peut sortir si on sait que la donnée commence par u. Le résiduel $f_u(v)$ est donc ce qui reste à sortir si la donnée est uv.

Exemple:

- 1. Calculer les résiduels de la fonction $f:A^*\to A^*\cup\{\mathbf{0}\}$ définie par $f(w)=w(ab)^{-1}$.
- 2. Calculer les résiduels de la fonction $f: A^* \to A^*$ définie par f(w) = ww.
- 3. Calculer les résiduels de la fonction *multiplication par 5* où les entiers sont codés en binaire en commençant avec le bit de poids faible.

Résiduels

Théorème : Caractérisation par résiduels

Une fonction $f:A^*\to B^*\cup\{\mathbf{0}\}$ est séquentielle si et seulement si elle a un nombre fini de résiduels.

Lemme:

Soit $A = (Q, A, B, q_0, \delta, \varphi, m, \rho)$ un automate normalisé et complet.

Si
$$u \in A^*$$
 et $p = \delta(q_0, u)$ alors $f_u = [\![\mathcal{A}_p]\!]$.

On en déduit qu'une fonction séquentielle a un nombre fini de résiduels.

Automate des résiduels

Réciproquement, Supposons $Q = \{f_u \mid u \in A^*\}$ fini.

L'automate des résiduels est $\mathcal{A}=(Q,A,B,q_0,\delta,\varphi,m,\rho)$ où

- $q_0 = f_{\varepsilon}$ et $m = \bigwedge f(A^*)$,
- $\delta(f_u, a) = f_{ua},$
- $\varphi(f_u, a) = \bigwedge f_u(aA^*)$,
- $\rho(f_u) = f_u(\varepsilon).$

Lemme:

- 1. Soient $u, v, w \in A^*$. On a $f_{uv}(w) = (\bigwedge f_u(vA^*))^{-1} f_u(vw)$.
- 2. La fonction de transition δ est bien définie et $\delta(f_u, v) = f_{uv}$.
- 3. Soient $u, v \in A^*$. On a $\varphi(f_u, v) = \bigwedge f_u(vA^*)$.
- 4. Soit $u \in A^*$. On a $f_u = [A_{f_u}]$.
- 5. f = [A].
- 6. L'automate des résiduels est normalisé, accessible et complet.

Minimisation

Théorème : Automate minimal

Soit $f:A^* \to B^* \cup \{0\}$ une fonction séquentielle.

L'automate des résiduels de f, noté \mathcal{R}_f , est minimal parmi les automates normalisés et complets qui réalisent f.

Construction de l'automate minimal

Soit $\mathcal{A} = (Q, A, B, q_0, \delta, \varphi, m, \rho)$ un automate réalisant une fonction f.

- émonder l'automate
- normaliser l'automate
- quotienter l'automate par l'équivalence définie par $p \sim q$ si $[\![\mathcal{A}_p]\!] = [\![\mathcal{A}_q]\!]$.

Cette équivalence se calcule par raffinement :

- $p \sim_0 q \text{ si } \rho(p) = \rho(q).$
- $ightharpoonup p \sim_{n+1} q \text{ si } p \sim_n q \text{ et } \forall a \in A, \ \delta(p,a) \sim_n \delta(q,a) \text{ et } \varphi(p,a) = \varphi(q,a).$

Exemple:

Minimiser l'automate naturel de $f: A^* \to A^* \cup \{\mathbf{0}\}$ définie par $f(w) = w(ab)^{-1}$.

Plan

Introduction

Langages reconnaissables

Fonctions séquentielles

- Automates d'arbres
 - Arbres
 - Automates d'arbres
 - Termes
 - Ascendant / Descendant
 - Déterminisme
 - Lemme d'itération

Grammaires

Langages algébriques

Référence

TATA

Tree Automata Techniques and Applications

Hubert Comon, Max Dauchet, Remi Gilleron, Florent Jacquemard, Denis Lugiez, Sophie Tison, Marc Tommasi.

http://www.grappa.univ-lille3.fr/tata/

Arbres

Définition : Arbres

Soit $A_p = \{d_1, \dots, d_p\}$ un alphabet ordonné $d_1 \prec \dots \prec d_p$.

Un arbre étiqueté dans Σ et d'arité (au plus) p est une fonction partielle $t:A_p^*\to \Sigma$ dont le domaine est un langage $\mathrm{dom}(t)\subseteq A_p^*$

- fermé par préfixe : $u \le v$ et $v \in dom(t)$ implique $u \in dom(t)$,
- ▶ fermé par frère aîné : $d_i \prec d_j$ et $ud_j \in dom(t)$ implique $ud_i \in dom(T)$.

On note $T_p(\Sigma)$ l'ensemble des arbres d'arité au plus p sur l'alphabet Σ .

Exemples:

1. Arbre représentant l'expression logique

$$((x \longrightarrow y) \land (\neg y \lor \neg z)) \land (z \lor \neg x)$$

2. Arbre représentant le programme

lire a; lire b;
$$q := 0$$
; $r := a$;
Tant que $b \le r$ faire
 $q := q+1$; $r := r-b$
Fin tant que

Arbres

Définition : Terminologie

La racine de l'arbre est le mot vide $\varepsilon \in dom(t)$.

Un nœud de l'arbre est un élément $u \in dom(t)$.

Une feuille de l'arbre est un nœud $u \in dom(t)$ tel que $ud_1 \notin dom(t)$.

La frontière ${\rm Fr}(t)$ (ou mot des feuilles) de l'arbre t est la concaténation des étiquettes des feuilles de t.

L'arité d'un nœud $u\in \mathrm{dom}(t)$ est le plus grand entier k tel que $ud_k\in \mathrm{dom}(t)$ (k=0 si u est une feuille).

Les fils d'un nœud $u \in dom(t)$ d'arité k sont les nœuds $ud_1, \ldots, ud_k \in dom(t)$.

Automates d'arbres

Définition : Automate

Un automate d'arbres est un quadruplet $\mathcal{A} = (Q, \Sigma, \delta, F)$ où

- Q est un ensemble fini d'états
- Σ est un alphabet fini
- $\delta \subseteq \bigcup_p Q^p \times \Sigma \times Q$ est l'ensemble fini des transitions
- $F \subseteq Q$ est l'ensemble des états finaux.

Définition : Calcul, langage

- Un calcul de l'automate \mathcal{A} sur un Σ -arbre t est un Q-arbre ρ ayant même domaine que t et tel que pour tout $u \in \mathrm{dom}(t)$ d'arité n, on a $(\rho(u \cdot d_1), \ldots, \rho(u \cdot d_n), t(u), \rho(u)) \in \delta$.
- ▶ Le calcul est acceptant si $\rho(\varepsilon) \in F$.
- $\mathcal{L}(\mathcal{A})$ est l'ensemble des Σ -arbres acceptés par \mathcal{A} .
- Un langage d'arbre est reconnaissable s'il existe un automate d'arbres qui l'accepte.

Automates d'arbres

Exemples: Donner des automates pour les langages d'arbres suivants:

- 1. L'ensemble des arbres d'arité au plus p dont les étiquettes de toutes les branches sont dans un langage rationnel fixé $L\subseteq \Sigma^*$.
- 2. L'ensemble des arbres d'arité au plus p dont au moins une branche est étiquetée par un mot d'un langage rationnel fixé $L\subseteq \Sigma^*$.
- 3. L'ensemble des arbres d'arité au plus p ayant un nombre pair de noeuds internes.
- 4. L'ensemble des arbres sur $\Sigma = \{a, b, c\}$ dont les noeuds internes sont d'arités 2 et étiquetés par c et la frontière est dans $(ab)^*$.

Termes

Définition:

- $ightharpoonup \mathcal{F}$ un ensemble fini de symboles de fonctions avec arités.
- On note \mathcal{F}_p les symboles d'arité p.
- $ightharpoonup \mathcal{X}$ un ensemble de variables (arité 0) disjoint de \mathcal{F}_0 .
- ullet $T(\mathcal{F},\mathcal{X})$ ensemble des termes sur \mathcal{F} et \mathcal{X} défini inductivement par :
 - $ightharpoonup \mathcal{F}_0 \cup \mathcal{X} \subseteq T(\mathcal{F}, \mathcal{X}),$
 - ▶ si $f \in \mathcal{F}_n$ $(n \ge 1)$ et $t_1, \ldots, t_n \in T(\mathcal{F}, \mathcal{X})$ alors $f(t_1, \ldots, t_n) \in T(\mathcal{F}, \mathcal{X})$

Remarque : on peut aussi utiliser une notation suffixe ou infixe parenthésée.

- ▶ Free(t) est l'ensemble des variables de t.
- ullet $T(\mathcal{F})$ l'ensemble des termes qui ne contiennent pas de variable (termes clos).
- lackbox Un terme t est linéaire s'il contient au plus une occurrence de chaque variable.
- ▶ Hauteur : H(x) = 0 pour $x \in \mathcal{X}$ et H(f) = 1 pour $f \in \mathcal{F}_0$ et $H(f(t_1, \ldots, t_n)) = 1 + \max(H(t_1), \ldots, H(t_n))$.
- ▶ Taille : |x|=0 pour $x\in\mathcal{X}$ et |f|=1 pour $f\in\mathcal{F}_0$ et $|f(t_1,\ldots,t_n)|=1+|t_1|+\cdots+|t_n|$.

Termes

Exemple: Expressions logiques

$$\mathcal{F}_2 = \{\land, \lor\}, \ \mathcal{F}_1 = \{\lnot\}, \ \mathcal{F}_0 = \{\top, \bot\}, \ \mathcal{X} = \{p, q, r\}$$

$$\wedge (\vee (\neg (p),q), \vee (\neg (q),r)) = (\neg p \vee q) \wedge (\neg q \vee r)$$

Exemple: Expressions arithmétiques

$$\mathcal{F}_2 = \{+,-,\times,/,\ldots\}\text{, } \mathcal{F}_1 = \{\sin,\cos,\ln,!,\ldots\}\text{,}$$

$$\mathcal{F}_0 = \{0, \dots, 9\}$$
 et $\mathcal{X} = \{x, y, \dots\}$.

$$+(3, \times(2, !(x))) = 3 + (2 \times x!)$$

Arbres et termes

Un terme est un arbre

Un terme peut être vu comme un arbre t étiqueté dans $\mathcal{F} \cup \mathcal{X}$ tel que

- ▶ si $u \in dom(t)$ et $t(u) \in \mathcal{F}_n$ alors u est d'arité n.
- ▶ si $u \in dom(t)$ et $t(u) \in \mathcal{X}$ alors u est une feuille.

La hauteur d'un terme est la hauteur de l'arbre qui le représente.

La taille d'un terme est le nombre de noeuds de l'arbre qui le représente.

Exemples:

- 1. Soit $\mathcal F$ un ensemble fini de symboles de fonctions avec arités et $\mathcal X$ un ensemble fini de variables. Le langage d'arbres $T(\mathcal F,\mathcal X)$ est reconnaissable.
- 2. Considérons $\mathcal{F}_2 = \{\land, \lor\}$, $\mathcal{F}_1 = \{\neg\}$, $\mathcal{F}_0 = \{\top, \bot\}$ et $\mathcal{X} = \emptyset$. L'ensemble des formules closes du calcul propositionnel qui s'évaluent à *vrai* est reconnaissable.
- 3. Considérons $\mathcal{F}_2 = \{ \land, \lor \}$, $\mathcal{F}_1 = \{ \neg \}$, $\mathcal{F}_0 = \{ \top, \bot \}$ et $\mathcal{X} = \{ p_1, \ldots, p_n \}$ fini. L'ensemble des formules *satisfaisables* du calcul propositionnel est reconnaissable.

Arbres et termes

Un arbre est la projection d'un terme

```
Soit t\in T_p(\Sigma) un \Sigma-arbre d'arité au plus p.
Soit \mathcal{F}=\biguplus_{0\leq i\leq p}\Sigma_i où \Sigma_i est une copie de \Sigma.
Soit t' l'arbre ayant même domaine que t et tel que si u\in\mathrm{dom}(t) est d'arité i et t(u)=f alors t'(u)=f_i est la copie de f dans \Sigma_i. t'\in T(\mathcal{F}) est un terme clos et t est le projeté de t'.
```

Substitutions

Définition:

- Une substitution σ est une application d'un sous-ensemble fini de $\mathcal X$ dans $T(\mathcal F,\mathcal X).$
- Si $\sigma = [t_1/x_1, \dots, t_n/x_n]$ est une substitution et t un terme alors $\sigma(t) = t[t_1/x_1, \dots, t_n/x_n]$ est défini inductivement par :
 - $\sigma(x_i) = t_i \text{ pour } 1 < i < n,$
 - $\sigma(f) = f \text{ pour } f \in \mathcal{F}_0 \cup \mathcal{X} \setminus \{x_1, \dots, x_n\}$
 - ullet $\sigma(f(s_1,\ldots,s_k))=f(\sigma(s_1),\ldots,\sigma(s_k))$ pour $f\in\mathcal{F}_k$, $k\geq 1$.

On dit que $t[t_1/x_1, \ldots, t_n/x_n]$ est une *instance* de t.

- La substitution $\sigma = [t_1/x_1, \dots, t_n/x_n]$ est *close* si chaque t_i est clos.
- ▶ Si t_1, t_2 sont clos, alors $t[t_1/x_1, t_2/x_2] = t[t_1/x_1][t_2/x_2]$. En général, $t[t_1/x_1, t_2/x_2] \neq t[t_1/x_1][t_2/x_2]$.

Exemple: Instances d'un terme

Soit \mathcal{F} un ensemble fini de symboles de fonctions avec arités et \mathcal{X} un ensemble fini de variables. Soit $s=f(g(x),f(y,a))\in T(\mathcal{F},\mathcal{X})$.

L'ensemble des arbres $t \in T(\mathcal{F})$ qui sont instances de s est reconnaissable.

Généraliser à l'ensemble des instances d'un ensemble fini de termes linéaires.

Vision ascendante

Définition : calcul ascendant

Soit $\mathcal{A} = (Q, \Sigma, \delta, F)$ un automate d'arbres.

On voit δ comme une fonction $\delta: \bigcup_p Q^p \times \Sigma \to 2^Q$.

L'étiquetage d'un calcul est construit à partir des feuilles en remontant vers la racine.

Exemples:

- 1. Évaluation d'une expression logique close.
- 2. Instances du terme $s = f(g(x), f(y, a)) \in T(\mathcal{F}, \mathcal{X})$.

Définition : Déterminisme ascendant

Un automate $\mathcal{A}=(Q,\Sigma,\delta,F)$ est déterministe ascendant si $\delta:\bigcup_p Q^p\times\Sigma\to Q$ est une fonction (partielle si \mathcal{A} n'est pas complet).

Exercice:

Parmi les langages reconnaissables vus précédemment, quels sont ceux qui sont déterministes ascendants ?

Vision descendante

Définition : calcul descendant

Soit $\mathcal{A} = (Q, \Sigma, \delta, I)$ un automate d'arbres.

On voit δ comme une fonction $\delta: Q \times \Sigma \to 2^{\bigcup_p Q^p}$.

L'étiquetage d'un calcul est construit à partir de la racine en descendant vers les feuilles. L'étiquette de la racine doit être dans I.

On dit que I est l'ensemble des états initiaux.

Exemples:

- 1. Instances du terme $s = f(g(x), f(y, a)) \in T(\mathcal{F}, \mathcal{X})$.
- 2. Évaluation d'une expression logique close.

Définition : Déterminisme descendant

Un automate $\mathcal{A} = (Q, \Sigma, \delta, I)$ est déterministe descendant s'il a un seul état initial et si $\delta: Q \times \Sigma \to \bigcup_p Q^p$ est une fonction (partielle si \mathcal{A} n'est pas complet).

Exercice:

Parmi les langages reconnaissables vus précédemment, quels sont ceux qui sont déterministes descendants?

Automates déterministes

Théorème : Déterminisation

Soit \mathcal{A} un automate d'arbres. On peut effectivement construire un automate déterministe ascendant \mathcal{B} tel que $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{B})$.

Théorème : Clôture

La classe des langages d'arbres reconnaissables est effectivement close par union, intersection et complémentaire.

Proposition:

La classe des langages d'arbres reconnaissables par un automate déterministe descendant est strictement incluse dans la classe des langages d'arbres reconnaissables. Exemple : le langage $\{f(a,b), f(b,a)\}$ n'est pas déterministe descendant.

Automates avec ε -transitions

Définition : ε -transitions

- L'automate peut avoir des transitions du type $p \xrightarrow{\varepsilon} q : \delta_{\varepsilon} \subseteq Q \times Q$.
- Il faut changer la définition des calculs. Vision ascendante avec $\delta:\bigcup_p Q_p \times \Sigma \to 2^Q$

$$\delta'(q_1,\ldots,q_p,a) = \delta_{\varepsilon}^*(\delta(q_1,\ldots,q_p,a))$$

- On peut éliminer les ε -transitions
- les ε-transitions peuvent être utiles dans les preuves et les constructions sur les automates d'arbres

Concaténation d'arbres

Définition : Arbre à trou

Un Σ -arbre à trou t est un $(\Sigma \cup \{\Box\})$ -arbre ayant un unique noeud étiqueté \Box et ce noeud doit être une feuille : $t: A^* \to \Sigma \cup \{\Box\}, t^{-1}(\Box) = \{u\}$ et u est une feuille. On note $T_{\square}(\Sigma)$ l'ensemble des Σ -arbres à trou.

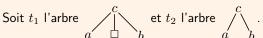
Définition : Concaténation

Soit t un Σ -arbre avec un trou en u et soit t' un Σ -arbre (avec ou sans trou). La concaténation $t \cdot t'$ est le Σ -arbre (avec ou sans trou) défini par

$$v \mapsto \begin{cases} t(v) & \text{si } u \leq v \\ t'(u^{-1}v) & \text{si } u \leq v \end{cases}$$

L'ensemble $T_{\square}(\Sigma)$ est un monoïde avec comme élément neutre \square .

Exemple:



Le langage $L = t_1^* t_2$ est reconnaissable.

Remarque : le langage Fr(L) des mots de feuilles de L est $\{a^nb^n \mid n>0\}$.

Lemme d'itération

Lemme : itération (pumping) pour les termes

Soit L un langage d'arbres reconnaissable.

 $\exists n \geq 0, \ \forall t \in L$, si H(t) > n alors $\exists t_1, t_2 \in T_{\square}(\Sigma), \ \exists t_3 \in T(\Sigma)$ tels que

- ▶ $t_2 \neq \Box$, $t = t_1 \cdot t_2 \cdot t_3$, $t_1(t_2)^* t_3 \subseteq L$,
- ▶ La somme des profondeurs de \square dans t_1 et t_2 est inférieure à n.

Exemples:

- $L = \{f(g^n(a), g^n(a)) \mid n > 0\}$ n'est pas reconnaissable.
- L'ensemble des instances de f(x,x) n'est pas reconnaissable.
- Associativité. Soit $\mathcal{F}_2 = \{f\}$

Soit
$$\mathcal{F}_2 = \{f\}$$
 et $\mathcal{F}_0 = \{a, b\}$.

Un langage $L\subseteq T(\mathcal{F})$ est associativement clos si il est fermé par la congruence engendrée par f(f(x,y),z)=f(x,f(y,z)).

Soit
$$t_1 = f(f(a, \square), b)$$
 et $t_2 = f(a, b)$.

La clôture associative de $t_1^*t_2$ n'est pas reconnaissable.

Congruences

Définition:

Soient $a \in \Sigma$ et $t_1, \ldots, t_n \in T(\Sigma)$. L'arbre $t = a(t_1, \ldots, t_n)$ est défini par

- $dom(t) = \{\varepsilon\} \cup \bigcup_{i=1}^n dom(t_i),$
- $t(\varepsilon) = a$ et la racine de t est d'arité n,
- ▶ $t(d_i v) = t_i(v)$ pour $1 \le i \le n$ et $v \in dom(t_i)$.

Définition : Congruence

Une relation d'équivalence \equiv sur $T_p(\Sigma)$ est une congruence si pour tous $a \in \Sigma$, et $t_1, \ldots, t_n, s_1, \ldots, s_n \in T_p(\Sigma)$ avec $n \leq p$ on a

$$(\forall 1 \le i \le n, \ s_i \equiv t_i) \Longrightarrow a(s_1, \dots, s_n) \equiv a(t_1, \dots, t_n)$$

Proposition:

Une relation d'équivalence \equiv sur $T_p(\Sigma)$ est une congruence si et seulement si pour tout $r \in T_{p,\square}(\Sigma)$ et tous $s,t \in T_p(\Sigma)$, on a $s \equiv t$ implique $r \cdot s \approx r \cdot t$.

Congruence syntaxique

Définition : Congruence syntaxique

La congruence syntaxique \equiv_L d'un langage $L\subseteq T_p(\Sigma)$ est définie par $r\equiv_L t$ si pour tout $r\in T_{p,\square}(\Sigma)$, $r\cdot s\in L$ ssi $r\cdot t\in L$.

Théorème : Myhill-Nerode

Soit $L \subseteq T_p(\Sigma)$. Les conditions suivantes sont équivalentes :

- 1. L est reconnaissable,
- 2. L est saturé par une congruence d'index fini,
- 3. la congruence syntaxique \equiv_L est d'index fini.

Automate minimal

Définition :

Soit $L\subseteq T_p(\Sigma)$. L'automate $\mathcal{A}_L=(Q_L,\Sigma,\delta_L,F_L)$ est défini par :

- ▶ Q_L est l'ensemble des classes d'équivalences pour \equiv_L , (on note simplement [t] la classe d'équivalence de t pour \equiv_L)
- $\delta_L([t_1],\ldots,[t_n],a)=[a(t_1,\ldots,t_n)],$
- ▶ $F_L = \{[t] \mid t \in L\}.$

Proposition: automate minimal

Soit $L \subseteq T_p(\Sigma)$ un langage reconnaissable.

- 1. L'automate A_L est déterministe, accessible et complet.
- 2. L'automate A_L est quotient de tout automate DAC reconnaissant L.
- 3. A_L est l'unique (à isomorphisme près) automate minimal reconnaissant L.

Équivalence de Nerode

Définition:

Soit $\mathcal{A}=(Q,\Sigma,\delta,F)$ un automate DAC reconnaissant $L\subseteq T_p(\Sigma)$. On définit les équivalences \sim et $(\sim_n)_{n\geq 0}$ sur Q par :

- $q \sim_0 q' \text{ si } q, q' \in F \text{ ou } q, q' \notin F$
- $\begin{array}{c} \bullet \quad q \sim_{n+1} q' \text{ si } q \sim_n q' \text{ et } \forall a \in \Sigma \text{ et } \forall q_1, \ldots, q_{i-1}, q_{i+1}, \ldots, q_m \in Q \text{ on a} \\ \delta(q_1, \ldots, q_{i-1}, q, q_{i+1}, \ldots, q_m, a) \sim_n \delta(q_1, \ldots, q_{i-1}, q', q_{i+1}, \ldots, q_m, a) \end{array}$

Proposition:

Soit $\mathcal{A}=(Q,\Sigma,\delta,F)$ un automate DAC reconnaissant $L\subseteq T_p(\Sigma)$.

- 1. $\sim = \bigcap_{n>0} \sim_n = \sim_{|Q|}$.
- 2. $\sim = \equiv_L$.
- 3. A_L est le quotient de A par \sim .

Exercices

Exercice: Morphisme

Montrer que $L\subseteq T(\mathcal{F})$ est reconnaissable ssi il existe une \mathcal{F} -algèbre finie $A(\mathcal{F})$ telle que $L=\varphi^{-1}(\varphi(L))$ où $\varphi:T(\mathcal{F})\to A(\mathcal{F})$ est le morphisme canonique.

Exercice : Problèmes de décision et complexité

Lire la section 7 du chapitre 1 du TATA.

Plan

Introduction

Langages reconnaissables

Fonctions séquentielles

Automates d'arbres

- Grammaires
 - Type 0 : générale
 - Type 1 : contextuelle (context-sensitive)
 - Type 2 : hors contexte (context-free, algébrique)
 - Grammaires linéaires
 - Hiérarchie de Chomsky

Langages algébriques

Bibliographie

- [9] Jean-Michel Autebert. Théorie des langages et des automates. Masson, 1994.
- [10] Jean-Michel Autebert, Jean Berstel et Luc Boasson. Context-Free Languages and Pushdown Automata. Handbook of Formal Languages, Vol. 1, Springer, 1997.
- [11] Jean Berstel.

 Transduction and context free languages.
 Teubner, 1979.
- [12] John E. Hopcroft et Jeffrey D. Ullman.

 Introduction to automata theory, languages and computation.

 Addison-Wesley, 1979.
- [13] Jacques Stern.

 Fondements mathématiques de l'informatique.

 Mc Graw Hill, 1990.

Grammaires de type 0

Définition : Grammaires générales (type 0)

$$G = (\Sigma, V, P, S)$$
 où

- $ightharpoonup \Sigma$ est l'alphabet terminal
- V est l'alphabet non terminal (variables)
- ▶ $S \in V$ est l'axiome (variable initiale)
- ▶ $P \subseteq (\Sigma \cup V)^* \times (\Sigma \cup V)^*$ est un ensemble **fini** de règles ou productions.

Exemple : Une grammaire pour $\{a^{2^n} \mid n > 0\}$

$$S \rightarrow ACaB$$
 $Ca \rightarrow aaC$ $CB \rightarrow DB$ $CB \rightarrow E$ $aD \rightarrow Da$ $AD \rightarrow AC$ $aE \rightarrow Ea$ $AE \rightarrow \varepsilon$

Définition : Dérivation

 $\alpha \in (\Sigma \cup V)^* \text{ se dérive en } \beta \in (\Sigma \cup V)^*, \text{ noté } \alpha \to \beta, \text{ s'il existe } (\alpha_2,\beta_2) \in P \text{ tel que } \alpha = \alpha_1\alpha_2\alpha_3 \text{ et } \beta = \alpha_1\beta_2\alpha_3.$

On note $\stackrel{*}{\rightarrow}$ la clôture réflexive et transitive de \rightarrow .

Grammaires de type 0

Définition : Langage engendré

Soit $G = (\Sigma, V, P, S)$ une grammaire et $\alpha \in (\Sigma \cup V)^*$.

Le langage engendré par α est $\mathcal{L}_G(\alpha) = \{u \in \Sigma^* \mid \alpha \xrightarrow{*} u\}.$

Le langage élargi engendré par α est $\widehat{\mathcal{L}}_G(\alpha) = \{\beta \in (\Sigma \cup V)^* \mid \alpha \xrightarrow{*} \beta\}.$

Le langage engendré par G est $L_G(S)$.

Un langage est de type 0 s'il peut être engendré par une grammaire de type 0.

Théorème: Type 0 [16, Thm 9.3 & 9.4]

Un langage $L \subseteq \Sigma^*$ est de type 0 ssi il est récursivement énumérable.

Grammaires contextuelles

Définition : Grammaire contextuelle (type 1, context-sensitive)

Une grammaire $G=(\Sigma,V,P,S)$ est contextuelle si toute règle $(\alpha,\beta)\in P$ vérifie $|\alpha|\leq |\beta|.$

Un langage est de type 1 (ou contextuel) s'il peut être engendré par une grammaire contextuelle.

Exemple : Une grammaire contextuelle pour $\{a^{2^n} \mid n > 0\}$

Remarque:

Le langage engendré par une grammaire contextuelle est propre.

Si on veut engendrer le mot vide on peut ajouter $\hat{S} \to S + \varepsilon$.

Grammaires contextuelles

Définition : Forme normale

Une grammaire $G=(\Sigma,V,P,S)$ contextuelle est en forme normale si toute règle est de la forme $(\alpha_1 X \alpha_2, \alpha_1 \beta \alpha_2)$ avec $X \in V$ et $\beta \neq \varepsilon$.

Théorème : Forme normale [9, Prop. 2, p. 156]

Tout langage de type 1 est engendré par une grammaire contextuelle en forme normale.

Théorème: Type 1 [16, Thm 9.5 & 9.6]

Un langage est de type 1 ssi il est accepté par une machine de Turing en espace linéaire.

Les langages contextuels sont strictement inclus dans les langages récursifs.

Théorème : indécidabilité du vide

On ne peut pas décider si une grammaire contextuelle engendre un langage vide.

Grammaires contextuelles

Exercices:

- 1. Montrer que $\{a^{n^2} \mid n > 0\}$ est contextuel.
- 2. Montrer que $\{ww \mid w \in \{a,b\}^+\}$ est contextuel.
- 3. Montrer que le problème du mot est décidable en PSPACE pour les langages contextuels.

Problème du mot : étant donnés un mot w et une grammaire sous contexte G qui engendre un langage L, décider si $w \in L$.

Grammaires algébriques

Définition : Grammaire hors contexte ou algébrique ou de type 2

Une grammaire $G = (\Sigma, V, P, S)$ est hors contexte ou algébrique si $P \subseteq V \times (\Sigma \cup V)^*$ (sous ensemble *fini*).

Un langage est de type 2 (ou hors contexte ou algébrique) s'il peut être engendré par une grammaire hors contexte.

On note Alg la famille des langages algébriques.

Exemples:

- 1. Le langage $\{a^nb^n \mid n \geq 0\}$ est algébrique.
- 2. Expressions complètement parenthésées.

Grammaires algébriques

Lemme: fondamental

Soit $G=(\Sigma,V,P,S)$ une grammaire algébrique, $\alpha_1,\alpha_2,\beta\in(\Sigma\cup V)^*$ et $n\geq 0$.

$$\alpha_1\alpha_2 \xrightarrow{n} \beta \quad \Longleftrightarrow \quad \alpha_1 \xrightarrow{n_1} \beta_1, \alpha_2 \xrightarrow{n_2} \beta_2 \text{ avec } \beta = \beta_1\beta_2 \text{ et } n = n_1 + n_2$$

Exercice: Langage de Dyck

Soit $\Sigma_n=\{a_1,\ldots,a_n\}\cup\{\bar{a}_1,\ldots,\bar{a}_n\}$ l'alphabet formé de n paires de parenthèses. Un mot $w\in\Sigma_n^*$ est bien parenthésés'il est équivalent au mot vide dans la congruence engendrée par $a_i\bar{a}_i\equiv\varepsilon$ pour $1\leq i\leq n$.

Montrer que le langage de Dyck $D_n^*=\{w\in \Sigma_n^*\mid w\equiv \varepsilon\}$ est engendré par la grammaire $S\to a_1S\bar{a}_1S+\cdots+a_nS\bar{a}_nS+\varepsilon.$

Grammaires linéaires

Définition : Grammaire linéaire

La grammaire $G = (\Sigma, V, P, S)$ est

- ▶ linéaire si $P \subseteq V \times (\Sigma^* \cup \Sigma^* V \Sigma^*)$,
- ▶ linéaire gauche si $P \subseteq V \times (\Sigma^* \cup V\Sigma^*)$,
- ▶ linéaire droite si $P \subseteq V \times (\Sigma^* \cup \Sigma^* V)$.

Un langage est linéaire s'il peut être engendré par une grammaire linéaire.

On note Lin la famille des langages linéaires.

Exemples:

- Le langage $\{a^nb^n \mid n \geq 0\}$ est linéaire.
- Le langage $\{a^nb^nc^p \mid n, p \ge 0\}$ est linéaire.

Proposition:

Un langage est rationnel si et seulement si il peut être engendré par une grammaire linéaire gauche (ou droite).

Hiérarchie de Chomsky

Théorème : Chomsky

- 1. Les langages réguliers (type 3) sont strictement contenus dans les langages algébriques (type 2).
- 2. Les langages algébriques propres (type 2) sont strictement contenus dans les langages contextuels (type 1).
- 3. les langages contextuels (type 1) sont strictement contenus dans les langages récursifs.
- 4. les langages récursifs sont strictement contenus dans les langages récursivement énumérables (type 0).

Plan

Introduction

Langages reconnaissables

Fonctions séquentielles

Automates d'arbres

Grammaires

- 6 Langages algébriques
 - Arbres de dérivation
 - Propriétés de clôture
 - Formes normales
 - Problèmes sur les langages algébriques

Automates à pile

Arbres (rappel)

Définition : Arbres

Soit $A_p = \{d_1, \dots, d_p\}$ un alphabet ordonné $d_1 \prec \dots \prec d_p$.

Un arbre étiqueté dans Z et d'arité (au plus) p est une fonction partielle $t:A_p^*\to Z$ dont le domaine est un langage $\mathrm{dom}(t)\subseteq A_p^*$

- ▶ fermé par préfixe : $u \le v$ et $v \in dom(t)$ implique $u \in dom(t)$,
- ▶ fermé par frère aîné : $d_i \prec d_j$ et $ud_j \in dom(t)$ implique $ud_i \in dom(T)$.

Définition : Terminologie

La racine de l'arbre est le mot vide $\varepsilon \in dom(t)$.

Un nœud de l'arbre est un élément $u \in dom(t)$.

Une feuille de l'arbre est un nœud $u \in dom(t)$ tel que $ud_1 \notin dom(t)$.

La frontière ${\rm Fr}(t)$ (ou mot des feuilles) de l'arbre t est la concaténation des étiquettes des feuilles de t.

L'arité d'un nœud $u \in dom(t)$ est le plus grand entier k tel que $ud_k \in dom(t)$ (k = 0 si u est une feuille).

Les fils d'un nœud $u \in \text{dom}(t)$ d'arité k sont les nœuds $ud_1, \dots, ud_k \in \text{dom}(t)$.

Arbres de dérivation

Définition :

Soit $G = (\Sigma, V, P, S)$ une grammaire.

Un arbre de dérivation pour G est un arbre t étiqueté dans $V \cup \Sigma$ tel que

- chaque feuille est étiquetée par une variable ou un terminal,
- ▶ chaque nœud interne n est étiqueté par une variable x et si les fils de n portent les étiquettes $\alpha_1, \ldots, \alpha_k$ alors $(x, \alpha_1 \cdots \alpha_k) \in P$.

Exemple:

Arbres de dérivation pour les expressions.

Mise en évidence des priorités ou de l'associativité G ou D.

Proposition:

Soit $G = (\Sigma, V, P, S)$ une grammaire et $x \in V$.

 $\widehat{\mathcal{L}}_G(x)$ est l'ensemble des mots $\alpha \in (\Sigma \cup V^*)$ tels qu'il existe un arbre de dérivation de racine x et de frontière α .

Arbres de dérivation

Remarques:

- ▶ À chaque dérivation, on peut associer de façon unique un arbre de dérivation.
- Si la grammaire est linéaire, il y a bijection entre dérivations et arbres de dérivations.
- 2 dérivations sont équivalentes si elles sont associées au même arbre de dérivation.
- ▶ Une dérivation est *gauche* si on dérive toujours le non terminal le plus à gauche.
- ▶ Il y a bijection entre dérivations gauches et arbres de dérivation.

Ambiguïté

Définition : Ambiguïté

- Une grammaire est ambiguë s'il existe deux arbres de dérivations (distincts) de même racine et de même frontière.
- ► Un langage algébrique est non ambigu s'il existe une grammaire non ambiguë qui l'engendre.

Exemples:

- La grammaire $S \to SS + aSb + \varepsilon$ est ambiguë mais elle engendre un langage non ambigu.
- La grammaire $S \to E + E \mid E \times E \mid a \mid b \mid c$ est ambiguë et engendre un langage rationnel.

Proposition:

Tout langage rationnel peut être engendré par une grammaire linéaire droite non ambiguë.

Ambiguïté

Exercice: if then else

Montrer que la grammaire suivante est ambiguë.

$$S \rightarrow \mbox{if } c \mbox{ then } S \mbox{ else } S \mid \mbox{if } c \mbox{ then } S \mid a$$

Montrer que le langage engendré n'est pas ambigu.

Grammaires et automates d'arbres

Théorème : du feuillage

- ightharpoonup Soit L un langage d'arbres reconnaissable. Le langage ${\rm Fr}(L)$ des frontières des arbres de L est algébrique.
- Soit L' un langage algébrique propre ($\varepsilon \notin L'$). Il existe un langage d'arbres reconnaissable L tel que $L' = \operatorname{Fr}(L)$.

Théorème : Bar-Hillel, Perles, Shamir ou Lemme d'itération

Soit $L \in \mathrm{Alg}$, il existe $N \geq 0$ tel que pour tout $w \in L$, si $|w| \geq N$ alors on peut trouver une factorisation $w = \alpha u \beta v \gamma$ avec |uv| > 0 et $|u\beta v| < N$ et $\alpha u^n \beta v^n \gamma \in L$ pour tout $n \geq 0$.

Exemple:

Le langage $L_1 = \{a^n b^n c^n \mid n \ge 0\}$ n'est pas algébrique.

Corollaire:

Les familles Alg et Lin ne sont pas fermées par intersection ou complémentaire.

Lemme d'Ogden

Plus fort que le théorème de Bar-Hillel, Perles, Shamir.

Lemme : Ogden

Soit $G=(\Sigma,V,P,S)$ une grammaire. Il existe un entier $N\in\mathbb{N}$ tel que pour tout $x\in V$ et $w\in \widehat{L}_G(x)$ contenant au moins N lettres distinguées, il existe $y\in V$ et $\alpha,u,\beta,v,\gamma\in(\Sigma\cup V^*)$ tels que

- $w = \alpha u \beta v \gamma$,
- $x \xrightarrow{*} \alpha y \gamma, y \xrightarrow{*} uyv, y \xrightarrow{*} \beta,$
- $u\beta v$ contient moins de N lettres distinguées,
- ▶ soit α, u, β soit β, v, γ contiennent des lettres distiguées.

Lemme d'Ogden

Exemple:

Le langage $L_2=\{a^nb^nc^pd^p\mid n,p\geq 0\}$ est algébrique mais pas linéaire.

Corollaire:

La famille Lin n'est pas fermée par concaténation ou itération.

Exemple:

Le langage $L_3=\{a^nb^nc^p\mid n,p>0\}\cup\{a^nb^pc^p\mid n,p>0\}$ est linéaire et (inhéremment) ambigu.

Corollaire:

Les langages non ambigus ne sont pas fermés par union.

Propriétés de clôture

Proposition:

- 1. La famille Alg est fermée par concaténation, itération.
- 2. La famille Alg est fermée par substitution algébrique.
- 3. Les familles Alg et Lin sont fermées par union et miroir.
- 4. Les familles Alg et Lin sont fermées par intersection avec un rationnel.
- 5. Les familles Alg et Lin sont fermées par morphisme.
- 6. Les familles Alg et Lin sont fermées par projection inverse.
- 7. Les familles Alg et Lin sont fermées par morphisme inverse.

Définition : Substitutions algébriques

Une substitution $\sigma: A \to \mathcal{P}(B^*)$ est algébrique si $\forall a \in A$, $\sigma(a) \in Alg$

Définition : Projection

Soit $B\subseteq A$ deux alphabets. La projection de A sur B est le morphisme $\pi:A^*\to B^*$ défini par $\pi(a)=\begin{cases} a & \text{si } a\in B\\ \varepsilon & \text{sinon.} \end{cases}$

Propriétés de clôture

Définition : Transduction rationnelle

Une transduction rationnelle (TR) $\tau:A^*\to \mathcal{P}(B^*)$ est la composée d'un morphisme inverse, d'une intersection avec un rationnel et d'un morphisme.

$$C^* \xrightarrow{\bigcap K} C^*$$

$$\varphi^{-1} \downarrow \psi$$

$$A^* \xrightarrow{\tau} B^*$$

Soient A,B,C trois alphabets, $K\in \mathrm{Rat}(C^*)$ et $\varphi:C^*\to A^*$ et $\psi:C^*\to B^*$ deux morphismes. L'application $\tau:A^*\to \mathcal{P}(B^*)$ définie par $\tau(a)=\psi(\varphi^{-1}(a)\cap K)$ est une TR.

Proposition:

Les familles Alg et Lin sont fermées par TR.

Propriétés de clôture

Théorème : Chomsky et Schützenberger

Les propositions suivantes sont équivalentes :

- 1. L est algébrique.
- 2. Il existe une TR τ telle que $L = \tau(D_2^*)$.
- 3. Il existe un entier n, un rationnel K et un morphisme alphabétique ψ tels que $L = \psi(D_n^* \cap K)$.

Corollaire:

Les langages non ambigus ne sont pas fermés par morphisme.

Théorème : Elgot et Mezei, 1965

La composée de deux TR est encore une TR.

Théorème: Nivat, 1968

Une application $\tau:A^*\to \mathcal{P}(B^*)$ est une TR si et seulement si son graphe $\{(u,v)\mid v\in \tau(u)\}$

est une relation rationnelle (i.e., un langage rationnel de $A^* \times B^*$).

Formes normales

Définition: Grammaires réduites

La grammaire $G=(\Sigma,V,P,S)$ est réduite si toute variable $x\in V$ est

- ▶ productive : $\mathcal{L}_G(x) \neq \emptyset$, i.e., $\exists x \xrightarrow{*} u \in \Sigma^*$, et
- ▶ accessible : il existe une dérivation $S \xrightarrow{*} \alpha x \beta$ avec $\alpha, \beta \in (\Sigma \cup V)^*$.

Lemme:

Soit $G = (\Sigma, V, P, S)$ une grammaire.

- 1. On peut calculer l'ensemble des variables productives de G (PTIME).
- 2. On peut décider si $\mathcal{L}_G(S) = \emptyset$ (PTIME).
- 3. On peut calculer l'ensemble des variables accessibles de G (PTIME).

Corollaire :

Soit $G=(\Sigma,V,P,S)$ une grammaire telle que $\mathcal{L}_G(S)\neq\emptyset$. On peut effectivement calculer une grammaire réduite équivalente $G'=(\Sigma,V',P',S)$ ($\mathcal{L}_G(S)=\mathcal{L}_{G'}(S)$). Preuve : Restreindre aux variables productives, puis aux variables accessibles.

Formes normales

Définition: Grammaires propres

La grammaire $G=(\Sigma,V,P,S)$ est propre si elle ne contient pas de règle de la forme $x \to \varepsilon$ ou $x \to y$ avec $x,y \in V$.

Un langage $L \subseteq \Sigma^*$ est propre si $\varepsilon \notin L$.

Lemme:

Soit $G = (\Sigma, V, P, S)$ une grammaire.

On peut calculer l'ensemble des variables x telles que $\varepsilon \in \mathcal{L}_G(x)$ (PTIME).

Proposition:

Soit $G = (\Sigma, V, P, S)$ une grammaire.

On peut construire une grammaire propre G' qui engendre $\mathcal{L}_G(S)\setminus\{\varepsilon\}$ (PTIME).

Remarque : la réduction d'une grammaire propre est une grammaire propre.

Corollaire:

On peut décider si un mot $u \in \Sigma^*$ est engendré par une grammaire G.

Naïvement on a un algorithme EXPTIME mais ce problème est dans PTIME (cf. HU, p. 139).

Formes normales

Définition : Forme normale de Chomsky

Une grammaire $G=(\Sigma,V,P,S)$ est en forme normale de Chomsky

- 1. faible si $P \subseteq V \times (V^* \cup \Sigma \cup \{\varepsilon\})$
- 2. forte si $P \subseteq V \times (V^2 \cup \Sigma \cup \{\varepsilon\})$

Proposition:

Soit $G = (\Sigma, V, P, S)$ une grammaire.

On peut effectivement construire une grammaire équivalente G' en forme normale de Chomsky faible ou forte (PTIME).

Remarque : La réduction d'une grammaire en FNC est encore en FNC.

Remarque: La mise en FNC d'une grammaire propre est une grammaire propre.

Corollaire:

Soit $G = (\Sigma, V, P, S)$ une grammaire.

On peut décider si $\mathcal{L}_G(S)$ est fini (PTIME).

Forme normale de Greibach

Définition :

La grammaire $G=(\Sigma,V,P)$ est en

FNG (forme normale de Greibach)

FNPG (presque Greibach)

FNGQ (Greibach quadratique)

 $\mathsf{si}\ P \subseteq V \times \Sigma V^*$

si $P \subseteq V \times \Sigma(V \cup \Sigma)^*$

si $P \subseteq V \times (\Sigma \cup \Sigma V \cup \Sigma V^2)$

Remarque : on passe trivialement d'une FNPG à une FNG.

Théorème:

Soit $G = (\Sigma, V, P)$ une grammaire propre.

On peut construire $G' = (\Sigma, V', P')$ en FNG équivalente à G,

i.e., $V \subseteq V'$ et $\mathcal{L}_G(x) = \mathcal{L}_{G'}(x)$ pour tout $x \in V$.

La difficulté est d'éliminer la récursivité gauche des règles.

Forme normale de Greibach

Lemme:

Soit $x \in V$ et $x \to x\alpha + \beta$ les règles issues de x:

 α ensemble fini de mots de $(V \cup \Sigma)^+$,

 β ensemble fini de mots de $\Sigma(V \cup \Sigma)^* \cup (V \setminus \{x\})(V \cup \Sigma)^+$.

si on remplace les règles $x \to x\alpha + \beta$ par $x \to \beta + \beta x'$ et $x' \to \alpha + \alpha x'$, on obtient une grammaire G' équivalente à G.

Preuve

On montre par récurrence sur $m\in\mathbb{N}$ que pour tout $y\in V$ et $w\in\Sigma^*$,

$$y \xrightarrow{m} w$$
 dans G ssi $y \xrightarrow{m} w$ dans G'

Exemples:

1.
$$\begin{cases} x_1 \to x_1 b + a \\ x_2 \to x_1 b + a x_2 \end{cases}$$

2.
$$\begin{cases} x_1 \to x_1(x_1 + x_2) + (x_2a + b) \\ x_2 \to x_1x_2 + x_2x_1 + a \end{cases}$$

Problèmes décidables

Proposition:

Soit G une grammaire algébrique.

- ightharpoonup On peut décider si le langage engendré par G est vide, fini ou infini (PTIME).
- \triangleright On peut décider si un mot est engendré par G (PTIME).

Problèmes indécidables

Proposition:

Soient L,L' deux langages algébriques et R un langage rationnel. Les problèmes suivants sont indécidables :

- $L \cap L' = \emptyset$?
- $L = \Sigma^*$?
- L = L'?
- $L \subseteq L'$?
- $ightharpoonup R \subseteq L$?
- $L \subseteq R$?
- ightharpoonup L est-il rationnel ?
- ightharpoonup L est-il ambigu ?
- $ightharpoonup \overline{L}$ est-il algébrique ?
- $L \cap L'$ est-il algébrique ?

Plan

Introduction

Langages reconnaissables

Fonctions séquentielles

Automates d'arbres

Grammaires

Langages algébriques

- Automates à pile
 - Définition et exemples
 - Modes de reconnaissance
 - Lien avec les langages algébriques
 - Langages déterministes

Automates à pile

Définition : $\mathcal{A} = (Q, \Sigma, Z, T, q_0, z_0, F)$ où

- Q ensemble fini d'états
- Σ alphabet d'entrée
- ightharpoonup Z alphabet de pile
- ▶ $T \subseteq Q \times Z \times (\Sigma \cup \{\varepsilon\}) \times Q \times Z^*$ ensemble fini de transitions
- $(q_0, z_0) \in Q \times Z$ configuration initiale
- $F \subseteq Q$ acceptation par état final.

Définition : Système de transitions (infini) associé

- $T = (Q \times Z^*, T', (q_0, z_0)) \text{ avec } T' = \{(p, hz) \xrightarrow{x} (q, hu) \mid (p, z, x, q, u) \in T\}.$
- ▶ Une configuration de \mathcal{A} est un état $(p,h) \in Q \times Z^*$ de \mathcal{T} .
- $\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \exists (q_0, z_0) \xrightarrow{w} (q, h) \text{ dans } \mathcal{T} \text{ avec } q \in F \}.$

Exemples:

- $L_1 = \{a^n b^n c^p \mid n, p > 0\} \text{ et } L_2 = \{a^n b^p c^p \mid n, p > 0\}$
- $L = L_1 \cup L_2$ (non déterministe)

Automates à pile

Exercices:

- 1. Montrer que le langage $\{w\tilde{w}\mid w\in\Sigma^*\}$ et son complémentaire peuvent être acceptés par un automate à pile.
- 2. Montrer que le complémentaire du langage $\{ww \mid w \in \Sigma^*\}$ peut être accepté par un automate à pile.
- 3. Soit $\mathcal{A}=(Q,\Sigma,Z,T,q_0,z_0,F)$ un automate à pile. Montrer qu'on peut construire un automate à pile équivalent \mathcal{A}' tel que $T'\subseteq Q'\times Z'\times (\Sigma\cup\{\varepsilon\})\times Q'\times Z^{\leq 2}.$
- 4. Soit \mathcal{A} un automate à pile. Montrer qu'on peut construire un automate à pile équivalent \mathcal{A}' tel que les mouvements de la pile sont uniquement du type *push* ou *pop*.
- 5. Soit $\mathcal{A}=(Q,\Sigma,Z,T,q_0,z_0,F)$ un automate à pile. Pour $(p,x,q)\in Q\times Z\times Q$, on note $\mathcal{L}(p,x,q)=\{h\in Z^*\mid \exists (p,x)\xrightarrow{*}(q,h)\}$ l'ensemble des mots de pile dans l'état q accessibles à partir de (p,x). Montrer que les langages $\mathcal{L}(p,x,q)$ sont rationnels.

Acceptation par pile vide

Définition :

Soit $\mathcal{A} = (Q, \Sigma, Z, T, q_0, z_0)$ un automate à pile.

Le langage accepté par ${\mathcal A}$ par pile vide est

$$\mathcal{L}_e(\mathcal{A}) = \{ w \in \Sigma^* \mid \exists (q_0, z_0) \xrightarrow{w} (q, \varepsilon) \text{ dans } \mathcal{T} \}.$$

Exemple:

$$L = \{a^n b^n \mid n \ge 0\}.$$

Proposition : équivalence pile vide / état final

- Soit \mathcal{A} un automate à pile acceptant par état final, on peut construire un automate à pile \mathcal{A}' acceptant par pile vide tel que $\mathcal{L}(\mathcal{A}) = \mathcal{L}_e(\mathcal{A}')$.
- Soit \mathcal{A} un automate à pile acceptant par pile vide, on peut construire un automate à pile \mathcal{A}' acceptant par état final tel que $\mathcal{L}_e(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$.

Exercice:

Montrer l'équivalence avec l'acceptation par pile vide ET état final.

Acceptation par sommet de pile

Définition:

Soit $A = (Q, \Sigma, Z, T, q_0, z_0, Z')$ un automate à pile avec $Z' \subseteq Z$. Le langage accepté par A par sommet de pile est

$$\mathcal{L}_z(\mathcal{A}) = \{ w \in \Sigma^* \mid \exists (q_0, z_0) \xrightarrow{w} (q, hz) \text{ dans } \mathcal{T} \text{ avec } z \in Z' \}.$$

Exemple:

$$L = \{a^n b^n \mid n \ge 0\}.$$

Exercice:

Comparer l'acceptation par sommet de pile avec les autres modes d'acceptation.

Automates à pile et grammaires

Proposition:

Soit $\mathcal{A}=(Q,\Sigma,Z,T,q_0,z_0)$ un automate à pile reconnaissant par pile vide. On peut construire une grammaire G qui engendre $\mathcal{L}(\mathcal{A})$.

De plus, si A est temps-réel (pas d' ε -transition) alors G est en FNG.

Proposition:

Soit $G = (\Sigma, V, P, S)$ une grammaire. On peut construire un automate à pile simple (un seul état) \mathcal{A} qui accepte $L_G(S)$ par pile vide.

De plus, si G est en FNPG alors on peut construire un tel \mathcal{A} temps-réel.

Si G est en FNGQ alors on peut construire un tel \mathcal{A} standardisé ($T \subseteq Z \times \Sigma \times Z^{\leq 2}$).

Calculs d'accessibilité

Exercice:

Soit $\mathcal{A}=(Q,\Sigma,Z,T,q_0,z_0,F)$ un automate à pile. Montrer qu'on peut effectivement calculer les ensembles suivants :

1.
$$X = \{(p, x, q) \in Q \times Z \times Q \mid \exists (p, x) \xrightarrow{*} (q, \varepsilon)\}$$

2.
$$Y = \{(p, x, q, y) \in Q \times Z \times Q \times Z \mid \exists (p, x) \xrightarrow{*} (q, hy)\}$$

3.
$$V = \{(p, x) \in Q \times Z \mid \exists (p, x) \Rightarrow\}$$

4.
$$W = \{(p, x, q, y) \in Q \times Z \times Q \times Z \mid \exists (p, x) \xrightarrow{} (q, y)\}$$

5.
$$X' = \{(p, x, q) \in Q \times Z \times Q \mid \exists (p, x) \xrightarrow{\varepsilon} (q, \varepsilon)\}$$

6.
$$Y' = \{(p, x, q, y) \in Q \times Z \times Q \times Z \mid \exists (p, x) \xrightarrow{\varepsilon} (q, hy)\}$$

7.
$$V' = \{(p, x) \in Q \times Z \mid \exists (p, x) \xrightarrow{\varepsilon} \}$$

8.
$$W' = \{(p, x, q, y) \in Q \times Z \times Q \times Z \mid \exists (p, x) \xrightarrow{\varepsilon} (q, y)\}$$

Définition : Automate à pile déterministe

 $\mathcal{A} = (Q, \Sigma, Z, T, q_0, z_0, F)$ est déterministe si

- $\qquad \forall (p,z,a) \in Q \times Z \times (\Sigma \cup \{\varepsilon\}), \quad |T(p,z,a)| \leq 1,$
- $\blacktriangleright \ \forall (p,z,a) \in Q \times Z \times \Sigma, \quad T(p,z,\varepsilon) \neq \emptyset \Longrightarrow T(p,z,a) = \emptyset$

Un langage $L\subseteq \Sigma^*$ est $d\acute{e}terministe$ s'il existe un automate à pile déterministe qui accepte L par état final.

Exemples:

- 1. $\{a^nba^n\mid n\geq 0\}$ peut être accepté par un automate D+TR mais pas par un automate D+S car il n'est pas fermé par préfixe.
- 2. D_n^* peut être accepté par un automate D+TR mais pas par un automate D+S.
- 3. Le langage $\{a^nb^pca^n\mid n,p>0\}\cup\{a^nb^pdb^p\mid n,p>0\}$ est déterministe mais pas D+TR.
- 4. Le langage $\{a^nb^n\mid n>0\}\cup\{a^nb^{2n}\mid n>0\}$ est non ambigu mais pas déterministe.

Exercice:

Montrer que le langage $\{a^nba^n\mid n\geq 0\}$ peut être accepté par *pile vide* par un automate D+TR+S.

Proposition:

Un langage L est déterministe et préfixe $(L \cap L\Sigma^+ = \emptyset)$ ssi il existe un automate déterministe qui accepte L par pile vide.

Exercice:

Donner un automate à pile déterministe qui accepte par pile vide le langage $\{a^nb^pca^n\mid n,p>0\}\cup\{a^nb^pdb^p\mid n,p>0\}.$

Exercice:

Montrer que pour les automates à pile déterministes, l'acceptation par pile vide est équivalente à l'acceptation par pile vide ET état final.

Exercice:

Montrer que D_n^* peut être accepté par sommet de pile par un automate D+TR+S.

Complémentaire

Théorème : Les déterministes sont fermés par complémentaire.

Soit $\mathcal{A} = (Q, \Sigma, Z, T, q_0, z_0, F)$ un automate à pile déterministe, on peut effectivement construire un automate à pile déterministe \mathcal{A}' qui reconnaît $\Sigma^* \setminus \mathcal{L}(\mathcal{A})$.

Il y a deux difficultés principales :

- 1. Un automate déterministe peut se bloquer (deadlock) ou entrer dans un ε -calcul infini (livelock). Dans ce cas il y a des mots qui n'admettent aucun calcul dans l'automate.
- 2. Même avec un automate déterministe, un mot peut avoir plusieurs calculs $(\varepsilon$ -transitions à la fin) certains réussis et d'autres non.

Blocage

Définition : Blocage

Un automate à pile $\mathcal{A}=(Q,\Sigma,Z,T,q_0,z_0)$ est sans blocage si pour toute configuration accessible (p,α) et pour toute lettre $a\in\Sigma$ il existe un calcul $(p,\alpha)\stackrel{\varepsilon}{\twoheadrightarrow}\stackrel{a}{\longrightarrow}$.

Proposition : Critère d'absence de blocage

Un automate déterministe est sans blocage si et seulement si pour toute configuration accessible (p,α) on a

- 1. $\alpha \neq \varepsilon$, et donc on peut écrire $\alpha = \beta x$ avec $x \in Z$,
- 2. $(p,x) \xrightarrow{\varepsilon} \text{ou } \forall a \in \Sigma$, $(p,x) \xrightarrow{a}$,
- 3. $(p,x) \xrightarrow{\varepsilon}$.

Exercice : Montrer que ce critère est décidable.

Remarque:

Si \mathcal{A} est sans blocage alors chaque mot $w \in \Sigma^*$ a un unique calcul maximal (et fini) $(q_0, z_0) \xrightarrow[*]{w} (p, \alpha) \xrightarrow{\tilde{\mathcal{P}}} \mathsf{dans} \ \mathcal{A}.$

Blocage

Proposition: Suppression des blocages

Soit $\mathcal{A}=(Q,\Sigma,Z,T,q_0,z_0,F)$ un automate à pile déterministe, on peut effectivement construire un automate à pile déterministe sans blocage $\mathcal{A}'=(Q',\Sigma,Z',T',q_0',z_0',F')$ qui reconnaît le même langage.

Preuve

- $ightharpoonup Q'=Q\uplus\{q_0',d,f\}$, $F'=F\uplus\{f\}$, $Z'=Z\uplus\{\bot\}$, $z_0'=\bot$ et
- $(q'_0,\bot) \xrightarrow{\varepsilon} (q_0,\bot z_0)$, et $(p,\bot) \xrightarrow{a} (d,\bot)$ pour $p \in Q'$ et $a \in \Sigma$,
- ▶ Si pour $a \in \Sigma$ on a $(p,x) \xrightarrow{a} (q,\alpha) \in T$ alors $(p,x) \xrightarrow{a} (q,\alpha) \in T'$,
- ▶ Si pour $a \in \Sigma$ on a $(p,x) \not\xrightarrow{q}$ et $(p,x) \not\xrightarrow{\tilde{\gamma}}$ dans \mathcal{A} alors $(p,x) \xrightarrow{a} (d,x) \in T'$,
- $\qquad \qquad \mathbf{Si} \ (p,x) \xrightarrow{\varepsilon} (q,\alpha) \in T \ \text{et} \ (p,x) \xrightarrow{\underline{\varepsilon}} \mathsf{alors} \ (p,x) \xrightarrow{\varepsilon} (q,\alpha) \in T',$
- $\blacktriangleright \ \, \mathsf{Si} \, \left(p,x \right) \xrightarrow{\varepsilon} \mathsf{et} \, \exists \, \left(p,x \right) \xrightarrow{\varepsilon} \left(q,\alpha \right) \, \mathsf{avec} \, \, q \in F \, \, \mathsf{alors} \, \left(p,x \right) \xrightarrow{\varepsilon} \left(f,x \right) \in T',$
- $\blacktriangleright \ \, \mathsf{Si} \, \left(p,x \right) \xrightarrow[\ \]{\varepsilon} \mathsf{et} \, \, \forall \, \left(p,x \right) \xrightarrow[\ \ast \]{\varepsilon} \left(q,\alpha \right) \Longrightarrow q \notin F \, \, \mathsf{alors} \, \left(p,x \right) \xrightarrow[\ \ \varepsilon \]{\varepsilon} \left(d,x \right) \in T'.$
- \bullet $(d,x) \xrightarrow{a} (d,x)$ et $(f,x) \xrightarrow{a} (d,x)$ pour $x \in Z'$ et $a \in \Sigma$,

Exercice: Montrer que cette construction est effective.

Proposition:

Soit $\mathcal{A}=(Q,\Sigma,Z,T,q_0,z_0,F)$ un automate à pile déterministe, on peut effectivement construire un automate à pile déterministe \mathcal{A}' qui reconnaît $\Sigma^*\setminus\mathcal{L}(\mathcal{A})$.

Proposition:

Soit $\mathcal{A}=(Q,\Sigma,Z,T,q_0,z_0,F)$ un automate à pile déterministe, on peut effectivement construire un automate à pile déterministe équivalent \mathcal{A}' tel qu'on ne puisse pas faire d' ε -transition à partir d'un état final de \mathcal{A}' .

Proposition:

Tout langage déterministe est non ambigu.

Exercice:

Soit $\mathcal{A}=(Q,\Sigma,Z,T,q_0,z_0,F,K)$ un automate à pile déterministe reconnaissant par sommet de pile et état final (une configuration $(q,\alpha z)$ est acceptante si $(q,z)\in K\subseteq Q\times Z$). Montrer qu'on peut effectivement construire un automate à pile déterministe équivalent reconnaissant par état final.

Exercice:

Soit $\mathcal A$ un automate à pile déterministe. Montrer qu'on peut effectivement construire un automate à pile déterministe qui reconnaît le même langage et dont les ε -transitions sont uniquement effaçantes : $(p,x) \stackrel{\varepsilon}{\longrightarrow} (q,\varepsilon)$.

Proposition : Décidabilité et indécidabilité

On ne peut pas décider si un langage algébrique est déterministe.

Soient L, L' deux langages déterministes et R un langage rationnel.

Les problèmes suivants sont décidables :

- L = R?
- $ightharpoonup R \subseteq L$?
- ightharpoonup L est-il rationnel ?
- L = L'?

Les problèmes suivants sont indécidables :

- $L \cap L' = \emptyset$?
- $L \subseteq L'$?
- ▶ $L \cap L'$ est-il algébrique ?
- ▶ $L \cap L'$ est-il déterministe ?
- $ightharpoonup L \cup L'$ est-il déterministe ?

Plan

Introduction

Langages reconnaissables

Fonctions séquentielles

Automates d'arbres

Grammaires

Langages algébriques

Automates à pile

- 8 Analyse syntaxique
 - Analyse descendante (LL)
 - Analyse ascendante (LR)

Bibliographie

- [14] Alfred V. Aho, Ravi Sethi et Jeffrey D. Ullman. Compilers: principles, techniques and tools. Addison-Wesley, 1986.
- [15] Alfred V. Aho et Jeffrey D. Ullman.

 The theory of parsing, translation, and compiling. Volume I: Parsing.

 Prentice-Hall, 1972.
- [16] John E. Hopcroft et Jeffrey D. Ullman. Introduction to automata theory, languages and computation. Addison-Wesley, 1979.

Application à l'analyse syntaxique

Buts:

- ► Savoir si un programme est syntaxiquement correct.
- ► Construire l'arbre de dérivation pour piloter la génération du code.

Formalisation:

- Un programme est un mot $w \in \Sigma^*$ (Σ est l'alphabet ASCII). L'ensemble des programmes syntaxiquement corrects forme un langage $L \subset \Sigma^*$.
 - Ce langage est algébrique : la syntaxe du langage de programmation est définie par une grammaire $G = (\Sigma, V, P, S)$.
- Pour tester si un programme w est syntaxiquement correct, il faut résoudre le problème du mot : est-ce que $w \in \mathcal{L}_G(S)$?
- L'arbre de dérivation est donné par la suite des règles utilisées lors d'une dérivation gauche (ou droite).

Application à l'analyse syntaxique

Résultats :

On sait décider si $w \in \mathcal{L}_G(S)$

- en testant toutes les dérivations de longueur au plus 2|w| si la grammaire est propre.
- en lisant le mot si on a un automate à pile déterministe complet.

Ceci se fait en temps linéaire par rapport à |w| si l'automate est temps réel ou si les ε -transitions ne font que dépiler.

Problèmes:

- ► Efficacité de l'algorithme.
- La grammaire qui définit la syntaxe du langage de programmation peut être non déterministe ou ambiguë.

Analyse descendante (LL)

Définition :

Soit $G = (\Sigma, V, P, S)$ une grammaire.

On construit l'automate à pile simple non déterministe qui accepte par pile vide : $\mathcal{A} = (\Sigma, \Sigma \cup V, T, S)$ où les transitions de T sont des

- expansions : $\{(x, \varepsilon, \tilde{\alpha}) \mid (x, \alpha) \in P\}$ ou
- vérifications : $\{(a, a, \varepsilon) \mid a \in \Sigma\}$.

Exemple:

1. $G_1: S \to aSb + ab$.

2.
$$G_2: \left\{ \begin{array}{ll} E & \rightarrow & E+T \mid T \\ T & \rightarrow & T*F \mid F \\ F & \rightarrow & (E) \mid a \mid b \mid c \end{array} \right.$$

Définition :

Analyse LL: \begin{cases} L : le mot est lu de gauche à droite. L : on construit une dérivation gauche.

Analyse descendante (LL)

Problème:

L'automate ainsi obtenu est en général non déterministe.

Solutions:

- Si la grammaire n'est pas récursive à gauche $(x \xrightarrow{+} x\alpha)$, on peut construire un analyseur récursif avec backtracking. Mais l'analyseur obtenu n'est pas efficace.
- ▶ Pour lever le non déterminisme de l'automate on s'autorise à regarder les k prochaines lettres du mot.

Exemple:

- 1. On peut lever le non déterminisme de l'automate associé à la grammaire G_1 en regardant les 2 prochaines lettres.
- 2. On ne peut pas lever le non déterminisme de l'automate associé à la grammaire G_2 en regardant les k prochaines lettres.

Analyse descendante $First_k$

Définition: Trunc et First

- $\qquad \qquad \text{Pour } w \in \Sigma^* \text{ et } k \geq 0 \text{, on d\'efinit } \mathrm{Trunc}_k(w) = \begin{cases} w & \text{si } |w| \leq k \\ w[k] & \text{sinon.} \end{cases}$
- ▶ Soit $G = (\Sigma, V, P, S)$ une grammaire algébrique, $\alpha \in (\Sigma \cup V)^*$ et $k \ge 0$,

$$\operatorname{First}_k(\alpha) = \operatorname{Trunc}_k(\mathcal{L}_G(\alpha))$$

Remarque:

$$\operatorname{First}_k(\alpha\beta) = \operatorname{Trunc}_k(\operatorname{First}_k(\alpha) \cdot \operatorname{First}_k(\beta))$$

Exemple:

Calculer $First_2(E)$ pour la grammaire G_2 .

Calcul de $First_k$

Définition : Algorithme de calcul pour First_k

On suppose k>0 et toutes les variables de la grammaire ${\cal G}$ productives.

Pour $m \geq 0$ et $\alpha \in (\Sigma \cup V)^*$, on définit $X_m(\alpha)$ par :

- ightharpoonup si $a \in \Sigma$ alors $X_m(a) = \{a\}$,
- ightharpoonup si $x \in V$ alors $X_0(x) = \emptyset$ et $X_{m+1}(x) = \bigcup_{x \to \alpha \in P} X_m(\alpha)$
- si $\alpha = \alpha_1 \cdots \alpha_n$ avec $\alpha_i \in \Sigma \cup V$ alors $X_m(\alpha) = \operatorname{Trunc}_k(X_m(\alpha_1) \cdots X_m(\alpha_n)).$
 - Remarque: on obtient en particulier $X_m(\varepsilon) = \{\varepsilon\}$ pour $m \ge 0$.

Proposition: Point fixe

- 1. $X_m(\alpha) \subseteq X_{m+1}(\alpha)$
- 2. $X_m(\alpha) \subseteq \operatorname{First}_k(\alpha)$
- 3. Si $\alpha \xrightarrow{m} w \in \Sigma^*$ alors $w[k] \in X_m(\alpha)$.
- 4. First_k(α) = $\bigcup_{m>0} X_m(\alpha)$

Ceci fournit donc un algorithme pour calculer $\operatorname{First}_k(\alpha)$.

Analyse descendante LL(k)

Définition : LL(k)

Une grammaire $G=(\Sigma,V,P,S)$ est $\mathrm{LL}(k)$ si pour toute dérivation $S\overset{*}{\to}\gamma x\delta$ avec $x\in V$ et pour toutes règles $x\to \alpha$ et $x\to \beta$ avec $\alpha\neq \beta$, on a

$$\operatorname{First}_k(\alpha\delta) \cap \operatorname{First}_k(\beta\delta) = \emptyset.$$

Remarque : on peut se restreindre aux dérivations gauches avec $\gamma \in \Sigma^*$.

Exemple:

- 1. La grammaire G_1 est LL(2) mais pas LL(1).
- 2. La grammaire G_2 n'est pas LL(k).

Exercice:

- Montrer que si l'automate expansion/vérification associé à une grammaire est déterministe, alors la grammaire est LL(0).
- Montrer que si G est en FNPG et que pour toutes règles $x \to a\alpha$ et $x \to b\beta$ avec $a,b \in \Sigma$ on a $a \neq b$ ou $\alpha = \beta$, alors G est $\mathrm{LL}(1)$.
 - Montrer que la réciproque est fausse.

Analyse descendante LL(k)

Remarques:

- Etant donné une grammaire G et un entier k, on peut décider si G est $\mathrm{LL}(k)$.
- Étant donné une grammaire G, on ne peut pas décider s'il existe un entier k tel que G soit $\mathrm{LL}(k)$.
- Étant donné une grammaire G, on ne peut pas décider s'il existe une grammaire équivalente qui soit LL(1).

Exemple:

On peut transformer la grammaire G_2 en une grammaire $\mathrm{LL}(1)$ équivalente. Il suffit de supprimer la récursivité gauche.

$$G_2' = \left\{ \begin{array}{cccc} E & \rightarrow & TE' & E' & \rightarrow & +TE' \mid \varepsilon \\ T & \rightarrow & FT' & T' & \rightarrow & *FT' \mid \varepsilon \\ F & \rightarrow & (E) \mid a \mid b \mid c \end{array} \right.$$

Follow

Définition : Follow

Soit $G = (\Sigma, V, P, S)$ une grammaire algébrique, $x \in V$ et $k \ge 0$,

$$Follow_k(x) = \{ w \in \Sigma^* \mid \exists S \xrightarrow{*} \gamma x \delta \text{ avec } w \in First_k(\delta) \}$$

Remarque : on peut se restreindre aux dérivations gauches avec $\gamma \in \Sigma^*$.

Exemple:

Calculer $Follow_1(x)$ pour chaque variable x de la grammaire G'_2 .

Calcul de $Follow_k$

Définition : Algorithme de calcul pour $Follow_k$

On suppose toutes les variables de la grammaire ${\cal G}$ accessibles.

Pour $m \geq 0$ et $x \in V$, on définit $Y_m(x)$ par :

•
$$Y_0(S) = \{\varepsilon\}$$
 et $Y_0(x) = \emptyset$ si $x \neq S$

$$Y_{m+1}(x) = Y_m(x) \cup \bigcup_{y \to \alpha x \beta \in P} \operatorname{Trunc}_k(\operatorname{First}_k(\beta) Y_m(y))$$

Proposition: Point fixe

- 1. $Y_m(x) \subseteq Y_{m+1}(x)$
- 2. $Y_m(x) \subseteq \text{Follow}_k(x)$
- 3. Si $S \xrightarrow{m} \gamma x \delta$ alors $\operatorname{First}_k(\delta) \subseteq Y_m(x)$.
- 4. Follow_k $(x) = \bigcup_{m>0} Y_m(x)$

Ceci fournit donc un algorithme pour calculer $\operatorname{Follow}_k(\alpha)$.

Fortement LL

Définition : Fortement LL(k)

Une grammaire $G=(\Sigma,V,P,S)$ est fortement $\mathrm{LL}(k)$ si pour toutes règles $x\to \alpha$ et $x\to \beta$ avec $\alpha\neq \beta$, on a

$$\operatorname{First}_k(\alpha \operatorname{Follow}_k(x)) \cap \operatorname{First}_k(\beta \operatorname{Follow}_k(x)) = \emptyset$$

ou encore

$$\operatorname{Trunc}_k(\operatorname{First}_k(\alpha)\operatorname{Follow}_k(x)) \cap \operatorname{Trunc}_k(\operatorname{First}_k(\beta)\operatorname{Follow}_k(x)) = \emptyset.$$

Exemple:

- 1. La grammaire G_1 est fortement LL(2).
- 2. La grammaire G'_2 est fortement LL(1).

Fortement LL

Proposition:

Si une grammaire G est fortement LL(k) alors elle est LL(k).

Exemple:

La grammaire

$$G_3 = \left\{ \begin{array}{ccc} S & \to & axaa \mid bxba \\ x & \to & b \mid \varepsilon \end{array} \right.$$

est LL(2) mais pas fortement LL(2).

Proposition:

Une grammaire est LL(1) si et seulement si elle est fortement LL(1).

Table d'analyse LL

Définition : Table d'analyse LL(k)

Soit G une grammaire fortement LL(k).

On définit M(x,v) pour $x\in \Sigma\cup V$ et $v\in \Sigma^{\leq k}$ par

$$M(x,v) = \begin{cases} x \xrightarrow{x} \varepsilon & \text{ si } x \in \Sigma \text{ et } v \in x\Sigma^*, \\ x \xrightarrow{\varepsilon} \tilde{\alpha} & \text{ si } x \in V \text{ et } v \in \mathrm{First}_k(\alpha\mathrm{Follow}_k(x)), \\ \mathrm{erreur} & \mathrm{sinon.} \end{cases}$$

Exemple:

Construire la table d'analyse LL(1) de la grammaire G'_2 .

Analyseur LL

Définition : Analyseur LL(k)

Soit G une grammaire fortement LL(k).

L'analyseur $\mathrm{LL}(k)$ de G est l'automate à pile simple déterministe qui accepte par pile vide, qui regarde k lettres à l'avance (lookahead) et dont les transitions sont données par la table d'analyse de G.

Proposition : Correction

Soit G une grammaire fortement LL(k).

L'analyseur LL(k) de G accepte exactement $\mathcal{L}_G(S)$.

Exercice:

Transformer l'analyseur $\mathrm{LL}(k)$ de G en un automate à pile déterministe classique (sans lookahead).