Logique – TD n°3

Déduction naturelle

Exercice 1: Encore un peu de logique minimale de Hilbert

- 1°) Montrer formellement que si $\vdash \alpha$ alors $\vdash \gamma_1 \rightarrow \ldots \rightarrow \gamma_n \rightarrow \alpha$.
- 2°) Montrer formellement que $\vdash \gamma \rightarrow \ldots \rightarrow \gamma$.

Rappels de cours : Déduction naturelle minimale

Les formules de déduction naturelle minimale sont construites avec le connecteur binaire \rightarrow , comme pour la logique minimale de Hilbert. Ses jugements sont de la forme $\Gamma \vdash \varphi$, où φ est une formule et Γ , appelé l'*antécédent*, un ensemble de formules.

Il n'y a en déduction naturelle qu'un axiome :

$$\frac{}{\Gamma, \alpha \vdash \alpha}$$
 (hyp

et deux règles : une d'introduction de la flèche et une d'élimination de la flèche :

$$\frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha {\to} \beta} \, ({\to} {-} {\rm I}) \qquad \qquad \frac{\Gamma \vdash \alpha {\to} \beta \quad \Gamma \vdash \alpha}{\Gamma \vdash \beta} \, ({\to} {-} {\rm E})$$

Exercice 2 : La déduction naturelle, c'est plus facile que Hilbert

Montrer en déduction naturelle les assertions suivantes :

$$-1: \vdash \alpha \rightarrow \alpha$$

- **K**:
$$\vdash \alpha \rightarrow \beta \rightarrow \alpha$$

$$- S: \vdash (\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \gamma$$

$$- B: \vdash (\beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \gamma$$

$$-\vdash (\alpha \rightarrow \beta \rightarrow \gamma \rightarrow \delta) \rightarrow (\beta \rightarrow \alpha) \rightarrow (\beta \rightarrow \gamma) \rightarrow \beta \rightarrow \delta$$

Exercice 3: Affaiblissement

Montrer la règle suivante, dite d'affaiblissement :

$$\frac{\Gamma \vdash \varphi}{\Gamma, \Delta \vdash \varphi}$$
 (aff.)

Exercice 4 : L'inverse de la règle d'introduction de la flèche

Montrer que si $\Gamma \vdash \alpha \rightarrow \beta$ alors $\Gamma, \alpha \vdash \beta$.

Exercice 5: Théorème de déduction

Généraliser le théorème de déduction du td précédent, toujours dans la logique de Hilbert.

Exercice 6 : Equivalence des logiques minimales de Hilbert et de déduction naturelle

Montrer que $\Gamma \vdash_N \alpha$ si et seulement si $\vdash_H \gamma_1 \rightarrow \ldots \rightarrow \gamma_n \rightarrow \alpha$ où les γ_i sont les éléments de Γ .

Rappels de cours : Déduction naturelle intuitionniste

On rajoute le connecteur nullaire \bot et les connecteurs binaires \lor et \land . Il n'y a toujours $\frac{1}{\Gamma, \alpha \vdash \alpha}$ (hyp) qu'un axiome:

et, pour chaque connecteur, il y a des règles d'introduction et d'élimination :

$$\frac{\Gamma \vdash \bot}{\Gamma \vdash \alpha} \text{ (ef.q.s.)} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \text{ (\rightarrow-I)} \qquad \frac{\Gamma \vdash \alpha \to \beta \quad \Gamma \vdash \alpha}{\Gamma \vdash \beta} \text{ (\rightarrow-E)}$$

$$\frac{\Gamma \vdash \alpha \quad \Gamma \vdash \beta}{\Gamma \vdash \alpha \land \beta} \text{ (\land-I)} \qquad \frac{\Gamma \vdash \alpha \land \beta}{\Gamma \vdash \alpha} \text{ (\land-E-1)} \qquad \frac{\Gamma \vdash \alpha \land \beta}{\Gamma \vdash \beta} \text{ (\land-E-2)}$$

$$\frac{\Gamma \vdash \alpha \lor \beta \quad \Gamma, \alpha \vdash \gamma \quad \Gamma, \beta \vdash \gamma}{\Gamma \vdash \gamma} \text{ (\lor-E)} \qquad \frac{\Gamma \vdash \alpha}{\Gamma \vdash \alpha \lor \beta} \text{ (\lor-I-1)} \qquad \frac{\Gamma \vdash \beta}{\Gamma \vdash \alpha \lor \beta} \text{ (\lor-I-2)}$$

Exercice 7 : Quelques démonstrations en déduction naturelle

$$- \vdash \alpha \lor \beta \rightarrow \beta \lor \alpha$$

$$- \vdash (\alpha \rightarrow \beta) \rightarrow (\alpha \lor \gamma) \rightarrow (\beta \lor \gamma)$$

$$- \vdash \alpha \lor (\beta \land \gamma) \rightarrow (\alpha \lor \beta) \land (\alpha \lor \gamma)$$

$$- \vdash p \land (q \land r) \rightarrow (p \land q) \land r$$

$$- \vdash p \lor (q \land r) \rightarrow (p \lor q) \land (p \lor r)$$

$$-\vdash (p\lor \neg p) \rightarrow (((p\rightarrow q)\rightarrow p)\rightarrow p)$$

$$- \vdash (p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$$

-
$$\vdash (p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$$

- Montrer que la règle suivante est correcte en DN : $\frac{\Gamma \vdash \neg q \quad \Gamma \vdash q}{\Gamma \vdash p}$

Rappels de cours : Logique classique

On enlève à la déduction naturelle la règle e.f.q.s. et on rajoute la règle de reductio ad absurdum:

$$\frac{\Gamma, \neg \alpha \vdash \bot}{\Gamma \vdash \alpha} (r.a.a.)$$

Exercice 8 : Déduction naturelle classique

Montrer en déduction naturelle classique les assertions suivantes :

$$\vdash \neg \neg p \rightarrow p \qquad \qquad \frac{\Gamma \vdash \bot}{\Gamma \vdash p} \bot E \qquad \qquad \frac{\Gamma, \neg p \vdash p}{\Gamma \vdash p}$$

$$\vdash p \lor \neg p \qquad \qquad \frac{\Gamma \vdash \neg q \rightarrow \neg p}{\Gamma \vdash p \rightarrow q} \text{ contrap} \qquad \vdash ((p \rightarrow q) \rightarrow p) \rightarrow p$$

$$\frac{\Gamma, \neg p \lor \neg q \vdash r}{\Gamma, \neg (p \land q) \vdash r} \qquad \qquad \frac{\Gamma, \neg p, \neg q \vdash r}{\Gamma, \neg (p \lor q) \vdash r} \qquad \qquad \frac{\Gamma, p, \neg q \vdash r}{\Gamma, \neg (p \rightarrow q) \vdash r}$$