
An exercise on Light Affine Logic

November 24, 2006

Notations: The lambda-calculus application will be denoted (t)u. We will write λx1x2.t for λx1.λx2.t,
and (t) u1 . . . un for (. . . ((t) u1) . . . un).

We recall that the type of Church integers in F (resp. in LAL, Light Affine Logic) is N = ∀α.(α → α) →
(α → α) (resp. NLAL = ∀α.!(α → α) → §(α → α)). The Church integer for n is written n.

Exercise:

We consider the lamda-terms t = λmsx.(s)(s)(m)sx and u = λn.(n) t 0. A type derivation for these two
terms in intuitionnistic second-order logic sequent-calculus (system F) is given below (the first few rules of
the two derivations, in particular the subderivation of ⊢ 0 : N , have been omitted for simplification).

Using these two derivations, give derivations in LAL for t and u with respectively conclusion type NLAL
⊸

NLAL and NLAL → §NLAL.
What do these two terms compute? Could we have given type NLAL → NLAL to term u?

y : α → α, s1 : α → α, s2 : α → α, x : α ⊢ (s1)(s2)(y)x : α

y : α → α, s1 : α → α, s2 : α → α ⊢ λx.(s1)(s2)(y)x : α → α s3 : α → α ⊢ s3 : α → α

m : (α → α) → (α → α), s1 : α → α, s2 : α → α, s3 : α → α ⊢ λx.(s1)(s2)(m)s3x : α → α

m : N, s1 : α → α, s2 : α → α, s3 : α → α ⊢ λx.(s1)(s2)(m)s3x : α → α

m : N, s : α → α ⊢ λx.(s)(s)(m)sx : α → α

m : N ⊢ λsx.(s)(s)(m)sx : (α → α) → (α → α)

m : N ⊢ λsx.(s)(s)(m)sx : N

⊢ λmsx.(s)(s)(m)sx : N → N

⊢ 0 : N z : N ⊢ z : N

y : N → N ⊢ (y)0 : N ⊢ t : N → N

n : (N → N) → (N → N) ⊢ (n) t 0 : N

n : N ⊢ (n) t 0 : N

⊢ λn.(n) t 0 : N → N

1



CORRECTION

We basically need to add ! and § rules in the derivations in such a way that:

• the contraction rules are correct (that is to say applied to formulas of the form !A),

• the conclusion of the derivation is the expected one.

Two suitable decorations of the derivations with !, § rules are given below. Note that in the first derivation:
a ! or § rule must be applied before the contraction on the variables si, so as to give s1 and s2 type !(α ⊸ α);
moreover it can only be a § rule, since there is more than one formula on the l.h.s. of the sequent.

y : α ⊸ α, s1 : α ⊸ α, s2 : α ⊸ α, x : α ⊢ (s1)(s2)(y)x : α

y : α ⊸ α, s1 : α ⊸ α, s2 : α ⊸ α, x : α ⊢ λx.(s1)(s2)(y)x : α ⊸ α

y : §(α ⊸ α), s1 : !(α ⊸ α), s2 : !(α ⊸ α) ⊢ λx.(s1)(s2)(y)x : §(α ⊸ α) s3 : !(α ⊸ α) ⊢ s3 : !(α ⊸ α)

m : !(α ⊸ α) ⊸ §(α ⊸ α), s1 : !(α ⊸ α), s2 : !(α ⊸ α), s3 : !(α ⊸ α) ⊢ λx.(s1)(s2)(m)s3x : §(α ⊸ α)

m : NLAL, s1 : !(α ⊸ α), s2 : !(α ⊸ α), s3 : !(α ⊸ α) ⊢ λx.(s1)(s2)(m)s3x : §(α ⊸ α)

m : NLAL, s : !(α ⊸ α) ⊢ λx.(s)(s)(m)sx : §(α ⊸ α)

m : NLAL ⊢ λsx.(s)(s)(m)sx : !(α ⊸ α) ⊸ §(α ⊸ α)

m : NLAL ⊢ λsx.(s)(s)(m)sx : NLAL

⊢ λmsx.(s)(s)(m)sx : NLAL
⊸ NLAL

⊢ 0 : NLAL z : NLAL ⊢ z : NLAL

y : (NLAL
⊸ NLAL) ⊢ (y)0 : NLAL

y : §(NLAL
⊸ NLAL) ⊢ (y)0 : §NLAL

⊢ t : (NLAL
⊸ NLAL)

⊢ t : !(NLAL
⊸ NLAL)

n : !(NLAL
⊸ NLAL) ⊸ §(NLAL

⊸ NLAL) ⊢ (n) t 0 : §NLAL

n : NLAL ⊢ (n) t 0 : §NLAL

⊢ λn.(n) t 0 : NLAL
⊸ §NLAL

The term t computes the function adding 2 to an integer. The term u, given an integer n, iterates n

times t starting from 0, hence it computes the doubling function on Church integers.
Note that if we could type term t with type NLAL

⊸ NLAL, then it could be iterated just as term u.
However the iteration of the doubling function would give the exponentiation function on unary integers,
which is not PTIME. Hence such a typing for t is not possible because it would contradict the PTIME
soundness result for LAL.

2


