An exercise on Light Affine Logic

November 24, 2006

Notations: The lambda-calculus application will be denoted (t)u. We will write Aziao.t for Axy.Azo.t,
and (¢) uy ... up for (... ((¢) u1)...upn).

We recall that the type of Church integers in F (resp. in LAL, Light Affine Logic) is N = Va.(a — ) —
(o — @) (resp. NFAL =Val(a — a) — §(a — «)). The Church integer for n is written n.

Exercise:

We consider the lamda-terms t = Amsz.(s)(s)(m)sz and v = An.(n) t 0. A type derivation for these two
terms in intuitionnistic second-order logic sequent-calculus (system F) is given below (the first few rules of
the two derivations, in particular the subderivation of F 0 : N, have been omitted for simplification).

Using these two derivations, give derivations in LAL for ¢ and u with respectively conclusion type N1AL —
NLAL and NLAL N §NLAL'

What do these two terms compute? Could we have given type NYAL — NLAL t6 term u?

yra—a,s1ia—a,syia—a,ria b o(s1)(s2)(y)x: a

yra—a,s1:a—a,s:a—a bk Ar(s)(s2)(y)ra— «a s3

3
m:(a—a)—(a—a),si:a—a,s:a—a,s3:a—a b Ax.(s1)(s2)(m)ssz: o — «
m:N,s1:a—a,8:a—aq,83:a—a b Ax.(s1)(s2)(m)ssx: a — «
m:N,s:a—a F Ax.(s)(s)(m)sz:a— «
m:N F Asz.(s)(s)(m)sz : (@ — a) — (@ — )
m:N F Asz.(s)(s)(m)sx : N
F Amsz.(s)(s)(m)sx : N — N
FO:N z:N F z: N
y:N—N F (y)0: N Ft:N—>N
n:(N—-N)—-(N—->N)F (n)t0: N
n:N F (n)t0: N
F An.(n)t0: N —>N



CORRECTION

We basically need to add ! and § rules in the derivations in such a way that:
e the contraction rules are correct (that is to say applied to formulas of the form !A),

e the conclusion of the derivation is the expected one.

Two suitable decorations of the derivations with !, § rules are given below. Note that in the first derivation:
a ! or § rule must be applied before the contraction on the variables s;, so as to give s; and s3 type (o — «);
moreover it can only be a § rule, since there is more than one formula on the Lh.s. of the sequent.

yra—oa,s1:a—-oq,s2:a—oar:a k- (s1)(s2)(y)x:a
yra—oa,s1:a—oaq,s2:a—oaxr:a b Ar.(s1)(s2)(y)r:a—oa
y:8§(a—oa),st:l(a—oa)s:(a—oa) F Azx.(s1)(s2)(y)z : §(a — &) s3:l(a—oa) F s3:l(a—a)
m: ! (a—o a) —o §la—a),s1:(a—oa),s: (a—oa)ss:!(a—oa) F Azx.(s1)(s2)(m)ssz : §(a — &)
m: NME s (o —oa),ss: (a—oa),ss:(a—a) F Az.(s1)(s2)(m)ssz : §(a —o )
m: NFAL s l(a — a) F Az.(s)(s)(m)sz : §(a — @)
m: NFAY F Asz.(s)(s)(m)sz : (o — a) —o §(a —o a)
m: NFAL b Xsz.(s)(s)(m)sz : NEAL
F Amsz.(s)(s)(m)sz : NFAE o NEAE

F 0: NEAL z: NEAL |- 5. NLAL
R (NLAL —5 NLAL) - (y)Q . NLAL [ (NLAL —5 NLAL)
Yy §(NLAL —5 NLAL) - (y)Q . §NLAL [ !(NLAL 5 NLAL)
n: !(NLAL 5 NLAL) N §(NLAL N NLAL) - (n) to: §NLAL
n: NEAL = (n)t0:§NEAL
F An.(n)tQ: NEAL o gNLAL

The term ¢ computes the function adding 2 to an integer. The term wu, given an integer n, iterates n
times t starting from 0, hence it computes the doubling function on Church integers.

Note that if we could type term t with type NFAL —o NEAL then it could be iterated just as term u.
However the iteration of the doubling function would give the exponentiation function on unary integers,
which is not PTIME. Hence such a typing for ¢ is not possible because it would contradict the PTIME
soundness result for LAL.



