
Proof Search and
Computation

Lecture Notes
Draft: December 19, 2006

Notes developed during Miller’s lectures in “Logique Linéaire et paradigmes
logiques du calcul” at the MPRI during 2004 / 2005 / 2006 / 2007 as well
as the PhD the course taught by the author at IT University of Copenhagen
during 31 May - 2 June 2006.

c© Dale Miller
INRIA-Futurs and Laboratoire d’Informatique (LIX)
Ecole Polytechnique
Rue de Saclay
91128 PALAISEAU Cedex FRANCE

dale.miller at inria.fr

Contents

1 Introduction . 1
1.1 Roles for logic in the specification of computations 1
1.2 The proof search as an approach to logic programming 2

2 Preliminaries . 3
2.1 Syntactic expressions as λ-expressions . 3
2.2 Types . 4
2.3 Signatures and terms . 5
2.4 Formulas . 6
2.5 Sequents . 7
2.6 Inference rules . 8
2.7 Sequent calculus proofs . 11
2.8 Permutations of inference rules . 12
2.9 Cut-elimination and its consequences . 13
2.10 Additional readings . 15

3 Classical and Intuitionistic Logics . 17
3.1 First-order formulas . 17
3.2 Inference rules . 18
3.3 The initial rule . 21
3.4 The cut rule . 22
3.5 Choices when doing proof search . 24
3.6 Dynamics and change during of proof search 25

4 Horn and hereditary Harrop formulas . 27
4.1 Goal-directed search . 27
4.2 Horn clauses . 29
4.3 Hereditary Harrop formulas . 32
4.4 Backchaining . 33
4.5 Dynamics of proof search for fohc . 35
4.6 Examples of fohc logic programs . 36

VIII Contents

4.7 Dynamics of proof search for fohh . 39
4.8 Examples of fohh logic programs . 39
4.9 Limitation to fohc and fohh logic programs 41

5 Proof Search in Linear Logic . 45
5.1 Sequent calculus proof for linear logic . 45
5.2 Intuitionistic Linear Logic . 48
5.3 Embedding fohh into intuitionistic linear logic 53
5.4 Multiple conclusion uniform proofs . 54
5.5 Focused proofs . 56

6 Linear Logic Programming . 59
6.1 Toggling a switch . 59
6.2 Permuting a list . 60
6.3 Lazy splitting of contexts . 61
6.4 Context management in theorem provers 61
6.5 Multiset rewriting . 63
6.6 Examples in Forum . 65
6.7 Asynchronous Communications . 65

7 Solutions to Selected Exercises . 67

References . 71

Preface

This monograph investigates the use of “proof search” to specify computation.
In particular, we develop various normal forms of cut-free proofs in classical,
intuitionistic, and linear logics and explore how searching for such normal
forms can be exploited to justify and enrich the logic programming paradigm.
We are not particularly concerned here with more general issues involved with
the search for proofs that takes place in, say, automated deduction.

We keep the scope of this volume purposely narrow and will not attempt
to cite the entire literature or even a significant fraction of it. In particular,
only a few references we cite have been published after 1996.

This study is largely self-contained. The reader should be familiar with
the basic syntactic properties of the λ-calculus because it is used to encode
syntactic objects. No background in the formal representation of proofs is
needed although it could serve to be useful in the earliest chapters.

Illustrating proof theoretic concepts using by presenting examples of logic
programs is central to this text. Some familiarity of Prolog is useful for un-
derstanding some of our initial examples: it also likely that a in-depth un-
derstanding of Prolog can be a barrier to understanding the full role of logic
we explore for developing computation. When we present examples of logic
programs, we shall use syntactic conventions of λProlog instead of Prolog.

1

Introduction

Since logic can be applied to computing and logic programming in a number
of ways, it is worth providing an overview of the roles that logic often plays,
if only to help us see the particular niche that is our focus here.

1.1 Roles for logic in the specification of computations

In the specification of computational systems, logics are generally used in one
of two approaches. In the computation-as-model approach, computations are
encoded as mathematical structures, containing such items as nodes, transi-
tions, and state. Logic is used in an external sense to make statements about
those structures. That is, computations are used as models for logical ex-
pressions. Intensional operators, such as the modals of temporal and dynamic
logics or the triples of Hoare logic, are often employed to express propositions
about the change in state. This use of logic to represent and reason about
computation is probably the oldest and most broadly successful use of logic
for representing computation.

The computation-as-deduction approach, uses directly pieces of logic’s syn-
tax (such as formulas, terms, types, and proofs) as elements of the specified
computation. In this much more rarefied setting, there are two rather different
approaches to how computation is modeled.

The proof normalization approach views the state of a computation as a
proof term and the process of computing as normalization (know variously
as β-reduction or cut-elimination). Functional programming can be explained
using proof-normalization as its theoretical basis [ML82] and has been used
to justify the design of new functional programming languages [Abr93].

The proof search approach views the state of a computation as a sequent (a
structured collection of formulas) and the process of computing as the process
of searching for a proof of a sequent: the changes that take place in sequents
capture the dynamics of computation. Logic programming can be explained
using proof search as its theoretical basis [MNPS91] and has been used to

2 1 Introduction

justify the design of new logic programming languages, some of which are
discussed later.

The divisions proposed above are informal and suggestive: such a classifi-
cation is helpful in pointing out different sets of concerns represented by these
two broad approaches (reductions, confluence, etc, versus unification, back-
tracking search, etc). Of course, a real advance in computation logic might
allow us merge or reorganize this classification.

1.2 The proof search as an approach to logic
programming

The term proof search as it is used in this text has a number of parallel
with the term logic programming. In the late 1980’s and early 1990’s, the
proof theory for classical, intuitionistic, and linear logic was used to motivate
the design of logic programming languages that significantly extended the
expressive strength of those languages based on first-order Horn clauses. In
principle, proof search in higher-order intuitionistic logic allows for abstrac-
tions such as modular programming and higher-order programming as well
as providing declarative treatments of data-structures that contained binders.
When embracing linear logic as well, such logic programming languages can
encode aspects of the imperative and concurrent programming paradigms. Be-
sides presenting the proof theory justifications for the design of some of these
richer logic programming languages, we shall also present numerous examples
of programming in these languages.

2

Preliminaries

In matters of the presentation of the syntax of terms and formulas, we follow
Alonzo Church’s Simple Theory of Types [Chu40] since it provides a simple
means to integrate propositional logic, (multi-sorted) first-order logic, and a
higher-order logic all within the same framework.

2.1 Syntactic expressions as λ-expressions

The untyped λ-calculus will serve as our most primitive notion of syntactic
expression, allowing us to uniformly represent types, terms, formulas, and se-
quents. While the untyped λ-calculus is rather complex, we shall limit our
use of it to β-normal expressions: in this case, much of that complexity disap-
pears. In fact, we shall rely mostly on those β-normal forms that can be given
a simple type. To reinforce our use of the untyped λ-calculus for representing
only syntax (and not functional programs intended for computation), we shall
refer to untyped λ-terms as untyped λ-expressions.

One advantage in choosing λ-expressions as a starting point is that they
provide us with a universal notion of binding and substitution that all syntac-
tic objects directly inherit. We shall assume that the reader is familiar with
the most basic notions behind the untyped λ-calculus. We review a few such
notions here.

We shall assume the existence of a fixed and denumerably infinite set of
tokens, which are primitive syntactic expressions. There are two other means
for building other syntactic expressions, following the usual formation rules of
the λ-term. Given two syntactic structures, say M and N , their application is
(MN) (applications is thus the infix juxtaposition operation and it associates
to the left). Given a syntactic structure M and a token x, the abstraction of
x over M is (λx.M). Here, the token x is a bound variable with scope M .

The usual notions of free and bound variables are assumed, as is the con-
cept of alphabetic conversion of bound variables (via the α-conversion rule):
we identify two syntactic expressions up to α-conversion. A term is β-normal

4 2 Preliminaries

if it is of the form λx1 . . . λxn.(ht1 . . . tm) where n,m ≥ 0, h, x1, . . . , xn are
tokens, and the terms t1, . . . , tm are all in β-normal form. In this case, we call
the list x1, . . . , xn the binder, the token h the head, and the list t1, . . . , tm the
arguments of the term. Reduction following the β-rule replaces a β-redex, that
is, a subexpression of the form (λx.M)N , with the capture avoiding substitu-
tion of N for x in M . Reduction following the η-rule replaces a subexpression
of the form λx(Mx) with M , provided that x is not free in M . When we
use the terms β-conversion and βη-conversion, we shall always assume the
α-conversion rule is implicit.

Our main use of β-reduction will be to formalize substitution. In particular,
the notation M [N/x] denotes the β-normal form of (λx.M)N .

Exercise 1. Is there an expression N such that (λx.w)[N/w] is equal to λy.y
(modulo α-conversion, of course)?

2.2 Types

The token o is reserved and is used as the type of formulas (to be defined in
Section 2.4). This type must not be confused with a type for boolean values:
objects of type o are syntactic expressions. Let S be a fixed, non-empty set of
tokens that does not contain o. The types in S ∪ {o} are primitive types (also
called sorts). The set of types is the smallest set of expressions that contains
the primitive types and is closed under the construction of “arrow types”,
denoted by the binary, infix symbol →. The Greek letters τ and σ are used
as syntactic variables ranging over types. The type constructor → associates
to the right: read τ1 → τ2 → τ3 as τ1 → (τ2 → τ3). (Using the terminology of
Section 2.1, → is a token now declared with a specific role and the expression
τ1 → τ2 is the infix presentation of the expression ((→ τ1)τ2).)

Let τ be the type τ1 → · · · → τn → τ0 where τ0 ∈ S ∪ {o} and n ≥ 0. The
types τ1, . . . , τn are the argument types of τ while the type τ0 is the target type
of τ . If n = 0 then τ is τ0 and the set of argument types is empty. The order
of a type τ is defined as follows: If τ is primitive then τ has order 0; otherwise,
the order of τ is one greater than the maximum order of the argument types
of τ . If ord(τ) denotes the order of type expression τ then the following two
clauses define ord(·).

ord(τ) = 0 provided τ ∈ S ∪ {o}
ord(τ1 → τ2) = max(ord(τ1) + 1, ord(τ2))

Notice that τ has order 0 or 1 if and only if all the argument types of τ are
primitive types. We say, however, that τ is a first-order type if the order of
τ is either 0 or 1 and that no argument type of τ is o. The target type of a
first-order type may be o.

2.3 Signatures and terms 5

2.3 Signatures and terms

Signatures are used to formally declare that certain tokens are of a certain
type. In particular, a signature (over S) is a set Σ (possibly empty) of pairs,
written as x: τ , where τ is a type and x is a token. We require a signature to
be functional in the sense that for every token x, if x: τ and x: σ are members
of Σ then τ = σ. More generally, we use signatures in judgments such as
Σ −− t: τ where the variables in Σ are considered bindings over the entire
judgment. Here also, t is a term and τ is a type. If we provided a more literal
encoding of such a typing judgment as an untyped λ-expression, the judgment,
for example, x : τ1, y : τ2 −− t: τ could be encoded as the λ-expression

loc τ1 (λx. loc τ2 (λy. − (: x τ)))

where loc is a token introduced to indicate that a binder is added to a judg-
ment, − is a token used to separate the binders from the target judgment,
and : is a token used to pair a term with a type. Thus, two judgments are
identified if they differ by systematic renames of declared tokens. We shall not
generally care to be so literal in our encodings of judgments, but it is usual
to see at least once.

If we were to allow non-normal λ-terms to have types, then the proof
system including the following three rules

Γ, x: t −− x: t
Σ −− t: σ → τ Σ −− s:σ

Σ −− (ts): τ
Σ, x: τ −− M : σ

Σ −− (λx.M): τ → σ

would suffice. We shall, instead, adopt the inference rules in Figure 2.1 as
formal definition of the proof system for typing, since it gives types only to
β-normal terms. If the judgment Σ −− t: τ is provable then we say that t is a
Σ-term of type τ .

Γ, x: t −− x: t

Σ −− N : σ Σ, x: σ′ −− M : τ

Σ, f : σ → σ′ −− M [(fN)/x]: τ

Σ, x: τ −− M : σ

Σ −− (λx.M): τ → σ

Fig. 2.1. Typing judgment for Σ-terms of type τ .

Exercise 2. Prove that if t is a Σ-term of type τ , then t is β-normal.

Exercise 3. Fix a set of sorts S and a signature Σ over S. Prove that if there
are primitive types τ and τ ′ such that Σ −− t: τ and Σ −− t: τ ′, then τ = τ ′.
Show that this statement is not true if we allow τ and τ ′ to be non-primitive.

Exercise 4. Fix a set of sorts S and a signature Σ over S. Prove that if t is
a Σ-term of type τ and τ is primitive then the binder of t is empty, the head
of t is given a type, say, τ1 → · · · → τm → τ0 and for i = 1, . . . , m, the ith

argument of t is a Σ-term of type τi.

6 2 Preliminaries

2.4 Formulas

Important constants to declare when presenting a logic are those denoting the
connectives and quantifiers. These logical constants are declared by a signature
in which all token are declared a type that has target type o. These constants
are generally fixed for a given logic. For example, in Chapter 3, classical and
intuitionistic logics are considered using the following signature for declaring
the logical constants.

{>: o, ⊥: o, ∧: o → o → o, ∨: o → o → o, ⊃: o → o → o} ∪
{∀τ : (τ → o) → o | τ ∈ S} ∪ {∃τ : (τ → o) → o | τ ∈ S}

Notice that this signature contains types of order 0, 1, and 2. We will follow
the usual conventions in writing expressions with these symbols: The binary
symbols ∧, ∨, and ⊃ are written in infix notions with ∧ and ∨ associating
to the left and ⊃ associating to the right and ∧ has higher priority than ∨
which has higher priority than ⊃. The expressions ∀τλx.B and ∃τλx.B are
abbreviated as ∀τx.B and ∃τx.B, respectively, or as simply ∀x.B and ∃x.B if
the value of the type subscript is not important or can easily be inferred from
context.

After fixing the declaration of logical constants, say Σ0, we fix the set
of non-logical symbols, say Σ. Such symbols may be used as constants or
variables depending on the context. Let c: τ1 → · · · → τn → τ0 ∈ Σ1, where τ0

is a primitive type and n ≥ 0. If τ0 is o, then c is a predicate symbol of arity
n. If τ0 ∈ S (i.e., τ is not o), then c is a function symbol of arity n; if n = 0,
we also say that c is an individual symbol.

A Σ0 ∪Σ-term of type o is also called a Σ0 ∪Σ-formula, or more usually
either a Σ-formula (since Σ0 is usually fixed) or just a formula (if Σ is un-
derstood). Notice that in this presentation of logic, formulas are special cases
of terms.

A logic is propositional if all the logical constants have types that are order
0 or 1. A logic is first-order if all the logical constants have types that are order
0, 1, or 2. If a logic contains constants with order greater than 2, the logic is
said to be a higher-order logic.

A signature is propositional if all its constants are of type o. A signature is
first-order if all its constants are of first-order type. If Σ0 is the declaration for
a propositional logic and Σ is a propositional signature, then a Σ0∪Σ-formula
is a propositional formula. Similarly, if Σ0 is the declaration for a first-order
logic and Σ is a first-order signature, then a Σ0 ∪ Σ-formula is a first-order
formula. If Σ0 is the declaration for a higher-order logic and Σ is a signature,
then a Σ0 ∪Σ-formula is a higher-order formula.

Assume that Σ0 declares logical connectives for a first-order logic and that
Σ is a first-order signature. Let τ be a primitive type different from o. A first-
order term t of type τ is either a token of type τ or it is of the form (f t1 . . . tn)
where f is a function symbol of type τ1 → · · · → τn → τ and, for i = 1, . . . , n,

2.5 Sequents 7

ti is a term of type τi. In the latter case, f is the head and t1, . . . , tn are the
arguments of this term. Similarly, a first-order formula either has a logical
symbol as its head, in which case, it is said to be non-atomic, or a non-logical
symbol at its head, in which case it is atomic.

2.5 Sequents

We shall not attempt to define completely the notion of sequent, inference
rule, and proof. Rather we outline of number of characteristics that we shall
find common in the sequent calculi examined in this text.

Proof are seldom of a single formula but more generally of judgments
that relate various formulas. Example judgments might be that the formula
B follows from the assumptions in Γ or that one of the formulas in ∆ is
provable. Sequents are intended to collect together such formulas in such a
judgment and to allow reasoning steps to be applied to formulas within a
surrounding context. Typically, sequents are constructed in many ways: we
outline here the few major differences in sequents that we shall study here.

Sequents will contain the special symbol −. Collections of formulas in
sequents will be either lists or multisets or sets. Sequents can also be one-
sided or two-sided. One-sided sequents are usually written as − ∆ and two-
sided sequents are usually written as Γ − ∆, where Γ and ∆ are one of the
three kinds of collections of formulas mentioned above. Sometimes we shall
see multiple collections of formulas, separated by a semicolon, on both the left
and right sides of sequents; for example, Γ ;Γ − ∆;∆′ and − ∆; ∆′; ∆. In the
two-sided sequent Σ: Γ − ∆, we shall say that Γ is this sequent’s antecedent
or left-hand side and that ∆ is its succedent or right-hand side.

When sequents are used for quantificational logic, they will also have a
signature prefixing the sequent, such as, Σ: − ∆ and Σ:Γ − ∆ in order
to declare certain symbols appearing in quantificational sequents (usually, so
called, eigenvariables). Sequents will also satisfy the following property with
respect to any prefixed signature: If ΣL is the signature declaring a logical
constants and ΣC is the signature declaring non-logical constants, then all
formulas in any list or multiset or set in a sequent prefixed with Σ will be a
ΣL ∪ΣC ∪Σ-formula.

When presenting a particular notion of sequents, say, for example Σ;Γ −
∆, we will specify that Γ and ∆ are either lists, multisets, or sets of formulas.
In order to encode such objects into λ-expressions, we can do the follow-
ing. First, introduce constructors for an empty collection, singleton collec-
tion, and union of collections. Enforcing various equalities on these construc-
tors yield lists (associativity, identity), multisets (associativity, commutativity,
identity), and sets (associativity, commutativity, idempotency, identity). The
exact details of such an encoding are not particularly important here. We do
note the following issues with respect to matching expressions with schematic

8 2 Preliminaries

variables. For example, let B denote a formula and let Γ and Γ ′ denote col-
lections of formulas. Considering what it means to match the expression B, Γ ′

and Γ ′, Γ ′′ to a given collection, which we assume to contain n ≥ 0 formulas.
If the given collection is a list, then B,Γ ′ matches if the list is non-empty

and B is the first formula and Γ ′ is the remaining list. The expression Γ ′, Γ ′′

matches if Γ ′ is some prefix and Γ ′′ is the remaining suffix of that list: there
are n + 1 possible matches.

If the given collection is a multiset then B, Γ ′ matches if the multiset is
non-empty and B is a formula in the multiset and Γ ′ is the multiset resulting
in deleting one occurrence of B. The expression Γ ′, Γ ′′ matches if the multiset
union of Γ ′ and Γ ′′ is Γ : there can be as many as 2n possible matches since
each member of Γ can be placed in either Γ ′ or Γ ′′.

If the given collection is a set then B,Γ ′ matches if the set is non-empty
and B is a formula in the set and Γ ′ is either the given set or the set resulting
from removing B from the set. The expression Γ ′, Γ ′′ matches if the set union
of Γ ′ and Γ ′′ is Γ : there can be as many as 3n possible matches, since each
member of Γ can be placed in either Γ ′ or Γ ′′ or in both.

2.6 Inference rules

Inference rules will have a single sequent as a conclusion and zero or more
sequents as premises. Of the numerous inference rules used in present various
sequent calculus, three board classes of rules can be identified. These are the
structural rules, the identity rules, and the introduction rules.

Since sequents describe relationships among formulas, the natural of a
context in which a formula is located is an important element of that for-
mula’s meaning and role in proof. In order to analyze in detail the interplay
between a formula and its context, it is sometimes desirable to not hide the
structural differences between lists, multisets, and sets within some equality
theory for the constructors of such collections, as described in the preceding
section. Instead, one might assume that inference rules are used to permute
items in a context or to replace two occurrences of the same formula with
one occurrences. There are three common structural rules, called exchange,
contraction, and weakening and they are illustrated in Figure 2.2 in both left
and right side versions.

The exchange rules, xL and xR, can be used on lists to exchange any two
consecutive elements: this structural rule does not modify a multisets or sets
context. The contraction rules, cL and cR, can be used on lists and multisets
to replace two occurrences of the same formula with one occurrence: this
structural rule does not modify sets context. The weakening rules, wL and
wR, can be used to insert a formula into a context. If used with a list, these
rule inserts the new occurrence only at the end of context: it is simple to write
a version of the weakening rules that allow for inserting a formula into any
position of the list.

2.6 Inference rules 9

Σ: Γ ′, B, C, Γ ′′ − ∆

Σ: Γ ′, C, B, Γ ′′ − ∆
xL

Σ: Γ − ∆′, B, C, ∆′′

Σ: Γ − ∆′, C, B, ∆′′ xR

Σ: Γ, B, B − ∆

Σ: Γ, B − ∆
cL

Σ: Γ − ∆, B, B

Σ: Γ − ∆, B
cR

Σ: Γ − ∆
Σ: Γ, B − ∆

wL
Σ: Γ − ∆

Σ: Γ − ∆, B
wR

Fig. 2.2. Structural rules.

Exercise 5. Let ∆′ be a permutation of the list ∆. Show that a sequence of
xR rules can transform the sequent Σ:Γ − ∆ into the sequent Σ: Γ − ∆′.

The group of identity rules generally contains the initial and the cut rules,
examples of which are displayed in Figure 2.3. Whereas the structural rules
imply properties of the contexts used in forming sequents, the cut and initial
rules explain the meaning of the sequent symbol −. In particular, these two
rules can be seen as stating that − is reflexive and transitive. It is possible
to see these two rules as describing dual aspects of −, although this is easier
to see when more declarative presentations of sequent calculus is are used.
Notice also that these rules contain repeated occurrences of schema variables:
in the initial rule, the variable B is repeated in the conclusion and in the cut
rule, the variable B is repeated in the premise.

It might be natural to refer to an inference rule with zero premises as an
“axiom”. We shall not do this here since the term “axiom” usually refers to
a formula that is accepted as starting point. Since sequents are not formulas,
we use other names for such starting points of sequent calculus proofs.

Σ: B − B
init

Σ: Γ1 − ∆1, B Σ: B, Γ2 − ∆2

Σ: Γ1, Γ2 − ∆1, ∆2
cut

Fig. 2.3. Example of the identity rules: initial and cut.

When an inference rule has two premises, there are two general and nat-
ural ways to relate the contexts in the two premises with the context in the
conclusion. An inference rules is multiplicative if contexts in the premises are
merged to form the context in the conclusion. The cut rule illustrated above
is an example of a multiplicative rule. A rule is additive if the contexts for
both premises and the conclusion are equal. An additive version of the cut
inference rule can be written as

Σ: Γ − ∆,B Σ: B,Γ − ∆

Σ: Γ − ∆

The final group of inference rules that we highlight here are the intro-
duction rules, so called because they introduce one occurrence of a logical

10 2 Preliminaries

connective into the conclusion of the inference rule. Usually, a logical con-
nective is introduced two ways. If the sequents employed are two-sided, then
there is usually a left-introduction rule that introduces the new occurrence of
the connective into a context on the left and a right-introduction rule that
introduces the new occurrence of the connective into a context on the right
of the −. If the sequent is one-sided, then the corresponding left-introduction
rule is usually replaced by a right-introduction for the connective that is its de
Morgan dual (if it has one). Figure 2.4 presents a few examples of introduction
rules for some logical connectives.

Σ: B, Γ − ∆

Σ: B ∧ C, Γ − ∆
∧L

Σ: C, Γ − ∆

Σ: B ∧ C, Γ − ∆
∧L

Σ: Γ − ∆, B Σ: Γ − ∆, C

Σ: Γ − ∆, B ∧ C
∧R

Σ: Γ1 − ∆1, B Σ: C, Γ2 − ∆2

Σ: B ⊃ C, Γ1, Γ2 − ∆1, ∆2
⊃L

Σ: B, Γ − ∆, C

Σ: Γ − ∆, B ⊃ C
⊃R

Σ −− t: τ Σ: Γ, B[t/x] − ∆

Σ: Γ, ∀τx B − ∆
∀L

Σ, y: τ : Γ − ∆, B[y/x]

Σ: Γ − ∆, ∀τx B
∀R

Fig. 2.4. Examples of left and right introduction rules.

Notice that conjunction is given two left introduction rules and one right
introduction rules: this last rule is an example of an additive inference rule.
Implication is given one left and one right introduction rule: the left introduc-
tion rule is an example of a multiplicative rule.

The signature Σ plays a direct role in the specification of the quantifier
rules. In particular, the introduction of the universal quantifier ∀ in the left
uses the signature to determine which are appropriate substitution terms for
the quantifier. The right introduction rule for ∀ changes the signature from
Σ ∪ {c: τ} above the line to Σ below the line. Notice that if we were to think
of signatures as lists of pairs containing distinct variable names, then we must
maintain that the symbol y is not free in any formula in the conclusion of the
rule. If we think of signatures as binding structures within a sequent, then
we view the ∀R as specifying that a sequent-level binding (namely, for y) can
move to a formula-level binding (namely, for x). Such a sequent-level bound
variable is generally called an eigenvariable. By viewing quantifiers as bindings
in formulas and signatures as binders for sequents, then the inference rule ∀R
essentially effects the mobility of a binder: reading this proof down, a binder
moves from the sequent level (the binder for y) to the formula level (the binder
for x). At no point is the binder replaced with a “free variable”. Of course,
this movement of the binder is only allowed if no occurrences of the bound
variable above the line are unbound below the line: thus all occurrences of y
in the upper sequent must appear in the displayed occurrence of B[y/x].

2.7 Sequent calculus proofs 11

The premise Σ −− t: τ for the ∀L rule should actually be written as Σ ∪
ΣC ∪ΣL −− t: τ where ΣL and ΣC are the signatures for the logical and non-
logical constants, respectively. We shall choose to write this condition with
the smaller signature for convenience. Also, one has the choice whether or not
this typing judgment is used as a formal part of the proof (hence, the proof
of the typing judgment is a subproof of a proof of the conclusion to this rule)
or as a side condition, namely, the requirement that premise is provable (in
this case, the proof of that fact is not incorporated into the sequent proof).

Exercise 6. Write the multiplicative version of the ∧R rule and the additive
version of the ⊃L rule. Assume that both the left and right side contexts are
multisets. Show that additive and multiplicative rules can be derived from
one another if weakening and contraction structural rules are used.

2.7 Sequent calculus proofs

Derivations and proofs will not formally be encoded as untyped λ-expressions
(as introduced in Section 2.1). This is largely because at the level of proof the
nature of abstraction does not need to play an important role and, hence, we
shall make use the simpler notion of labeled trees to represent these structures.
This choice is in contrast to the usual Curry-Howard Isomorphism approach to
encoding natural deduction proofs as (typed) λ-expressions. The vocabulary
associated to labeled trees (subtree, leaf, etc) seems a bit more natural here
than that for terms (sub-term, free variable, etc).

Assume that a signature of logical constant ΣL is given and that a collec-
tion of inference rules are specified. Let S be a sequent.

Derivations and proofs will be represented by finite trees with labeled
nodes and edges, containing at least one edge. Nodes are labeled by occur-
rences of inference rules or by two improper rules, open and root. All trees
contain exactly one node labeled root, called the root node. Let N be another
node in the tree. The edge leading from N to the root node is called its out-arc
while the other n ≥ 0 arcs terminating at N are called its in-arcs: in this case,
n is the in-degree of the node N . If N is labeled with open, then N must have
zero in-arcs. If N is labeled by an occurrence of a proper inference rule, the
out-arc must be labeled with the conclusion of the inference rule occurrence
and the in-arcs must be labeled with the premise sequents. Of course, sequent
labels are determined to be equal using the rules of λ-expression.

A derivation for S is such a labeled tree in which the in-arc to the root
is labeled with S. The smallest derivation for S is a tree with two nodes, one
labeled with root and one labeled with open and with the edge between them
labeled with S. A derivation for S without any nodes labeled open is a proof of
S. In these cases, the sequent S is also called the endsequent of the derivation
or the proof.

When we write derivation trees: leaves with no line over them are taken
as ending in an open node. If there is a line, then we assume that there are

12 2 Preliminaries

zero premises: in other words, the tree ends with a proper inference rule that
has an in-degree of zero.

Given a particular sequent calculus proof system, say X , we shall write
Σ: Γ `X ∆ to denote the fact that the sequent Σ:Γ − ∆ has a proof in X .
If Σ is empty, we write just Γ `X ∆. If Γ is also empty, we write `X ∆. If
the proof system is assumed, the subscript X is not written. Thus, ` ∆ will
mean the sequent ·: · − ∆ is provable.

Exercise 7. Let Ξ be a sequent calculus proof containing just cut and initial
inference rules. Show that all cuts can be removed to yield a proof of the same
endsequent. Describe what can be proved using only initial and cut.

2.8 Permutations of inference rules

An important aspect of the structure of a sequent calculus proof system is the
way in which inference rules permute or do not permute.

Assume that the following three inference rules are part of the presentation
of a logic. Here, the left and right hand contexts are assumed to be multisets.

Σ:Γ1 − ∆1, B Σ: C, Γ2 − ∆2

Σ:B ⊃ C, Γ1, Γ2 − ∆1,∆2
⊃L

Σ:B, Γ − ∆,C

Σ: Γ − ∆,B ⊃ C
⊃R

Σ:B, Γ − ∆ Σ: C, Γ − ∆

Σ: B ∨ C, Γ − ∆
∨L

Notice that the ⊃L rule is given in its multiplicative form and the ∨L rule is
given in its additive form. Now consider the following small derivation.

Σ: Γ, p, r − s,∆ Σ:Γ, q, r − s,∆

Σ: Γ, p ∨ q, r − s,∆
∨L

Σ:Γ, p ∨ q − r ⊃ s,∆
⊃R

Here, implication is introduced on the right below a left introduction of a
disjunction. This order of introduction can be switched, as we see in the
following combination of inference rules.

Σ: Γ, p, r − s,∆

Σ: Γ, p − r ⊃ s, ∆
⊃R

Σ: Γ, q, r − s,∆

Σ:Γ, q − r ⊃ s,∆
⊃R

Σ: Γ, p ∨ q − r ⊃ s,∆
∨L

Notice that in this latter proof, we need to have two occurrences of the right
introduction of implication.

Sometimes inference rules can be permuted if additional structural rules
are employed. Consider the following derivation containing two inference rules.

Σ: Γ1, r − ∆1, p Σ: Γ2, q − ∆2, s

Σ:Γ1, Γ2, p ⊃ q, r − ∆1,∆2, s
⊃L

Σ: Γ1, Γ2, p ⊃ q − ∆1,∆2, r ⊃ s
⊃R

2.9 Cut-elimination and its consequences 13

To switch the order of these two inference rules requires introduction some
weakenings and a contraction.

Σ:Γ1, r − ∆1, p

Σ: Γ1, r − ∆1, p, s
wR

Σ: Γ1 − ∆1, p, r ⊃ s
⊃R

Σ: Γ2, q − ∆2, s

Σ: Γ2, q, r − ∆2, s
wL

Σ:Γ2, q − ∆2, r ⊃ s
⊃R

Σ: Γ1, Γ2, p ⊃ q − ∆1,∆2, r ⊃ s, r ⊃ s
⊃L

Σ:Γ1, Γ2, p ⊃ q − ∆1, ∆2, r ⊃ s
cR

If these additional structural rules are not available, then the original two
inference rules cannot be permuted.

As we encounter inference rules for specific logics later, we will first observe
what pairs of inference rules are permutable. Such information is central to
the proof of cut-elimination as well as to the establishment of normal forms
of proofs used to understand the nature of proof search.

2.9 Cut-elimination and its consequences

For most of the sequent proof systems we consider, the cut-elimination theo-
rem holds: that is, a sequent has a proof if and only if it has a cut-free proof
(a proof with no occurrences of the cut rule). This central theorem of sequent
calculus proof systems has a number of consequences, some of which we list
here.

The consistency of a logic is a simple consequence of cut-elimination. In
particular, assume that the sequent · −⊥ has a proof. Since it has a cut-
free proof, that proof must end in a structural rule (since there is usually no
introduction rule for ⊥ on the right). But the structural rules do not yield a
provable sequent, so ⊥ has no proof. In this case, what is explicitly ruled out
by not having the cut rule is the possibility that there is some formula B such
that B and ¬B are provable: that is, that the sequents · − B and B −⊥ are
provable.

The success of proving the cut-elimination theorem also signals that certain
aspects of the logic’s proof system were well designed in the sense that what
the left-hand rule says about a logical connective is complementary to what
the right hand rule says about the same logical connective.

When formulas involve only first-order quantification, a formula occurring
in a sequent in a cut-free proof is always a subformula of some formula of
the endsequent. This is the so-called subformula property of cut-free proofs.
When searching for a proof, one needs only to choose and rearrange subfor-
mulas (which also means choosing instantiations of quantified expressions) in
building a proof. In the higher-order setting, instantiating a predicate vari-
able can result in larger formulas: thus, there is not a simple and meaningful
notion of subformula property. Even in the higher-order setting, however, the
cut elimination theorem can offer many useful structural properties about
provability.

14 2 Preliminaries

If one is attempting to prove theorems that might be mathematically in-
teresting, one discovers that cut (also called modus ponens) actually serves as
the main inference rule: it is a common activity when doing mathematically
motivated proofs to state lemmas and invariants that are not simply subfor-
mulas of one’s intended theorem and then to link them together by a chain of
modus ponens. Eliminating cut in such a proof would necessarily yield a huge
and low-level proof where all lemmas are “in-lined” and reproved at every
instance of their use.

As we have seen, the fact that cuts can be eliminated from proofs is an im-
portant property of a proof system since it can imply that logic’s consistency,
for example.

Cut-free proofs can be huge objects. For example, if one uses the number
of nodes in a proof as a measure of its size, there are cases where cut-free
proofs are hyperexponentially bigger than proofs allowing cut. Thus, sequents
with proof of rather small size can have cut-free proofs that require more
inference rules than atomic particles in the universe. It is almost certainly
the case that if a cut-free proof is actually computed and stored in some
computer memory, the thing that that proof proves is almost certainly not
mathematically interesting. This observation does not disturb us here since we
are not interested in cut-free proofs as ways of describing computation traces
only. For us, cut-free proofs are more akin to Turing machines configurations:
that is, they provide a low-level and detailed history of a computation.

Recording a computation as a cut-free proof can be superior to, say, record-
ing Turing machine configurations since proofs can be reasoned with in rather
deep ways. For example, assume that we have a cut-free proof of the two-sided
sequent P − G for some logic, say, X . As we shall see, in many approaches to
proof search, it is natural to identify the left-hand context P to specification
of a (logic) program and G as the goal or query to be established. A cut-free
proof of such a sequent is then a trace that this goal can be established from
this program. Now assume that we can prove P ′ `+ P where P ′ is some other
logic program and `+ is provability in X+ which is some strengthening of X
in which, say, induction and/or co-induction principles are added (as well as
cut). If the stronger logic satisfies cut-elimination, then we know that P ′ − G
has a cut-free proof in the stronger logic X+. If things have been organized
well, it can then become a simple matter to see that cut-free proofs of such
sequents do not, in fact, make use of the stronger proof principles, and, hence,
P − G has a cut-free proof in X . Thus, using cut-elimination, we have been
able to move from a mathematical proof about programs P and P ′ imme-
diately to the conclusion that whatever goals can be established for P can
be established for P ′. Clearly, the ability to do this kind of direct, logically
principled reason about programs and their computations should be a central
strength of the proof search paradigm for computing.

2.10 Additional readings 15

2.10 Additional readings

Texts for the lambda-calculus: Barendregt, Krivine, ...
The use of untyped λ-expressions is similar to the so-called “Curry-style”

of typed λ-terms: bound variables are not assumed globally to have types but
are provided a type when they are initially bound. This is in contrast to the
Church-style approach where variables have types independently of whether
or not they are bound.

In [Kle52], Kleene presents a detailed analysis of permutability of inference
rules for classical and intuitionistic sequent systems similar to those presented
here.

Proofs of cut-elimination theorem can be found in various places. The
original proof due to Gentzen [Gen69] is still quite readable. See also [Gal86,
GTL89]. Constructive proofs can be given and these result in procedures that
can take a proof and systematically remove cut rules.

The duality of the initial and cut rules is easily seen when one considers
their presentation in the Calculus of Structures [Gug02] or when using linear
logic as a meta-logic for sequent calculus [MP02, MP04]. In both of these
cases, the formal dual of one of these inference rules is the other.

3

Classical and Intuitionistic Logics

3.1 First-order formulas

Formulas in both classical and intuitionistic first-order logic make use of the
same set of logical connectives, namely, ∧ (conjunction), ∨ (disjunction), ⊃
(implication), > (truth), ⊥ (absurdity), ∀τ (universal quantification over type
τ), and ∃τ (existential quantification over type τ). The negation of B, written
¬B, is an abbreviation for the formula B ⊃⊥. The logical constants have type
o, the binary constants have type o → o → o, and the quantifiers ∀τ and ∃τ

have type (τ → o) → o.
We define clausal order of formulas using the following recursion on first-

order formulas.

clausal(A) = 0 provided A is atomic, >, or ⊥
clausal(B1 ∧B2) = max(clausal(B1), clausal(B2))
clausal(B1 ∨B2) = max(clausal(B1), clausal(B2))
clausal(B1 ⊃ B2) = max(clausal(B1) + 1, clausal(B2))

clausal(∀x.B) = clausal(B)
clausal(∃x.B) = clausal(B)

This measure counts the number of times implications are nested to the left
of implications. In particular, clausal(¬B) = clausal(B)+1. The clausal order
of a finite set or multiset of formulas is the maximum clausal order of any
formula in that set or multiset.

The polarity of a subformula occurrence within a formula is defined as
follows. If a subformula C of B occurs to the left of an even number of oc-
currences of implications in B, then C is a positive subformula occurrence of
B. On the other hand, if a subformula C occurs to the left of an odd number
of occurrences of implication in a formula B, then C is a negative subformula
occurrence of B. More formally:

• B is a positive subformula occurrence of B.

18 3 Classical and Intuitionistic Logics

• If C is a positive subformula occurrence of B then C is a positive subfor-
mula occurrence in B ∧ B′, B′ ∧ B, B ∨ B′, B′ ∨ B, B′ ⊃ B, ∀τx.B, and
∃τx.B; C is also a negative subformula occurrence in B ⊃ B′.

• If C is a negative subformula occurrence of B then C is a negative subfor-
mula occurrence in B ∧ B′, B′ ∧ B, B ∨ B′, B′ ∨ B, B′ ⊃ B, ∀τx.B, and
∃τx.B; C is also a positive subformula occurrence in B ⊃ B′.

Signatures are used to introduce both non-logical constants and variables:
the difference between a constant and variable is determined by their use:
variables are tokens that can vary (by being instantiated by terms) while
constants are tokens that do not vary.

3.2 Inference rules

To provide a modular presentation of provability in classical and intuitionistic
logics, we shall use sequents of the form Σ:∆ − Γ , where ∆ is a set of formulas
and Γ is a multiset of formulas.

The rules for introducing the logical connectives are presented in Fig-
ure 3.1, the identity rules are given in Figure 3.2, and the structural rules are
given in Figure 3.3. Since the left-hand side of sequents are sets, no left-hand
side structural rules need to be presented.

Of the four inference rules with two premises,⊃L and cut are multiplicative
rules while ∧R and ∨L are additive.

Provability in classical logic is given using the notion of a C-proof, which
is any proof using inference rules in Figures 3.1, 3.2, and 3.3. Since both
right structural rules are admitted in C-proofs, it is possible to give another
presentation of classical logic in which both the left and right of the sequent
are sets. Provability in intuitionistic logic is given using the notion of a I-proof,
which is any C-proof in which the right-hand side of all sequents contain either
0 or 1 formula.

Let Σ be a given first-order signature over S, let ∆ be a finite set of Σ-
formulas, and let B be a Σ-formula. We write Σ;∆ `C B and Σ; ∆ `I B if
the sequent Σ: ∆ − B has, respectively, a C-proof or an I-proof.

Proposition 3.1 If Σ: ∆ − Γ has an I-proof then that proof does not contain
occurrences of cR and only occurrences of wR of the form

Σ:Γ −
Σ:Γ − B

The notion of provability defined here is not equivalent to the more usual
presentations of classical and intuitionistic logic [Fit69, Gen69, Pra65, Tro73]
in which signatures are not made explicit and substitution terms (the terms
used in ∀L and ∃R) are not constrained to be taken from such signatures. The
main reason they are not equivalent is illustrated by the following example.
Let S be the set {i, o} and consider the sequent

3.2 Inference rules 19

Σ: B, Γ − ∆

Σ: B ∧ C, Γ − ∆
∧L

Σ: C, Γ − ∆

Σ: B ∧ C, Γ − ∆
∧L

Σ: Γ − ∆, B Σ: Γ − ∆, C

Σ: Γ − ∆, B ∧ C
∧R

Σ: B, Γ − ∆ Σ: C, Γ − ∆

Σ: B ∨ C, Γ − ∆
∨L

Σ: Γ − ∆, B

Σ: Γ − ∆, B ∨ C
∨R

Σ: Γ − ∆, C

Σ: Γ − ∆, B ∨ C
∨R

Σ: Γ1 − ∆1, B Σ: C, Γ2 − ∆2

Σ: B ⊃ C, Γ1, Γ2 − ∆1, ∆2
⊃L

Σ: B, Γ − ∆, C

Σ: Γ − ∆, B ⊃ C
⊃R

Σ: Γ, B[t/x] − ∆

Σ: Γ, ∀τx B − ∆
∀L

Σ, c: τ : Γ − ∆, B[c/x]

Σ: Γ − ∆, ∀τx B
∀R

Σ, c: τ : Γ, B[c/x] − ∆

Σ: Γ, ∃τx B − ∆
∃L

Σ: Γ − ∆, B[t/x]

Σ: Γ − ∆, ∃τx B
∃R

Σ: Γ,⊥− ⊥L
Σ: Γ − > >R

Fig. 3.1. Introduction rules.

Σ: Γ, B − B
init

Σ: Γ − ∆1, B Σ: B, Γ − ∆2

Σ: Γ − ∆1, ∆2
cut

Fig. 3.2. Identity rules.

Σ: Γ − ∆
Σ: Γ − ∆, B

wR
Σ: Γ − ∆, B, B

Σ: Γ − ∆, B
cR

Fig. 3.3. Structural rules for the right-hand side only.

{p: i → o}: ∀ix (px) − ∃ix (px).

This sequent has no proof even though ∃ix (px) follows from ∀ix (px) in the
traditional presentations of classical and intuitionistic logics. The reason for
this difference is that there are no {p: i → o}-terms of type i: that is, the type i
is empty in this signature. Thus we need an additional definition: the signature
Σ inhabits the set of primitive types S if for every τ ∈ S different than o,
there is a Σ-term of type τ . When Σ inhabits S, the notions of provability
defined above coincide with the more traditional presentations.

Exercise 8. Provide proofs for each of the following sequents. Provide a C-
proof only if there is no I-proof. Assume that the signature for non-logical
constants is {p: o, q: o, r: i → o, s: i → i → o, a: i, b: i}.
1. p ∧ (p ⊃ q) ∧ (p ∧ q ⊃ r) ⊃ r

20 3 Classical and Intuitionistic Logics

2. (p ⊃ q) ⊃ (¬q ⊃ ¬p)
3. (¬q ⊃ ¬p) ⊃ (p ⊃ q)
4. p ∨ (p ⊃ q)
5. (r a ∧ r b ⊃ q) ⊃ ∃x(r x ⊃ q)
6. ((p ⊃ q) ⊃ p) ⊃ p
7. ∃y∀x(r x ⊃ r y)
8. ∀x∀y(s x y) ⊃ ∀z(s z z)

Exercise 9. A formula of the form B ∨ ¬B is an example of an excluded
middle: B is either true or false, and any third possibility is excluded. Clearly
there is a simple C-proof for any formula of this kind. Take the formulas in
Exercise 8 which have C-proofs but no I-proof and reorganized them into
I-proofs in which appropriate instances of an excluded middle formula are
added to the left-hand context. For example, show that the formula

(r a ∨ ¬r a) ⊃ (r a ∧ r b ⊃ q) ⊃ ∃x(r x ⊃ q)

has an I-proof. Of course, to remove this additional assumption, cut with a
C-proof is needed.

Exercise 10. Assume that the set of sorts S contains the two tokens i and j
and that the only non-logical constant is f : i → j. In particular, assume that
there are no constants of type i declared in the non-logical signature. Is there
an I-proof of

(∃jx>) ∨ (∀iy∃jx>).

Under the same assumption, does the formula

(∃jx>) ∨ (∀jx ⊥)

have a C-proof? An I-proof? Compare the issue of provability for this formula
with the one in Exercise 8(4).

Exercise 11. The multiplicative version of ∧R would be the inference rule

Σ : Γ1 − B,∆1 Σ : Γ2 − C,∆2

Σ : Γ1, Γ2 − B ∧ C, ∆1,∆2

.

Show that a sequent is has an C-proof (resp. I-proof) if and only if it has one in
a proof system that results from replacing ∧R with the multiplicative version.
Show the same but where ∨L is replaced with its multiplicative version

Σ : B,Γ1 − ∆1 Σ : C,Γ2 − ∆2

Σ : B ∨ C,Γ1, Γ2 − ∆1,∆2

.

Exercise 12. Consider adding the following rule

Σ: Γ − B
Σ: Γ − C

Restart

3.3 The initial rule 21

to I-proofs along with the following proviso on how it is used in a proof: on
the path from an occurrence of this rule to the root of the proof, there is a
sequent that contains B in the succedent. Prove that a formula has a C-proof
if and only if it has an I-proof with the Restart rule.

Exercise 13. Show that if we consider C-proofs, then all pairs of inference
rules for propositional connectives (i.e., excluding the quantifiers) permute.

Exercise 14. Not all pairs of quantification introduction rules permute.
Present those pairs of inference rules that do not permute.

Exercise 15. Let A be an atomic formula. Describe all pairs of formulas
〈B,C〉 where B and C are different members of the set

{A,¬A,¬¬A,¬¬¬A}

such that B − C has a C-proof. Make the same list such that B − C has an
I-proof.

Exercise 16. Let Ξ be a proof of Σ: Γ − ∆ and let Γ ′ be a set of Σ-formulas
and ∆′ be a multiset of Σ-formulas. Show that if Ξ is a C-proof, then the
result of adding Γ ′ to all antecedents of every sequent in Ξ and adding ∆′

to all succedents of every sequent in Ξ yields a C-proof of Σ: Γ, Γ ′ − ∆,∆′.
Furthermore, if Ξ is also an I-proof and ∆′ is empty, then the resulting proof
is an I-proof.

Exercise 17. Let Ξ be a C-proof (resp., I-proof) of Σ, x: Γ − ∆ and let t
be a Σ-term. The result of substituting t for the bound variable x in this
sequent and all the bound variables corresponding to x is all other sequents
in Ξ yields a C-proof (resp., I-proof) Ξ ′ of the sequent Σ: Γ [t/x] − ∆[t/x].
The arrangement of inference rules in Ξ and in Ξ ′ are the same.

3.3 The initial rule

An occurrence of the initial rule of the form Σ: Γ, B − B is an atomic initial
if B is an atomic formula. In classical and intuitionistic logic, we can restrict
the initial rule to be atomic initial rules only.

Proposition 3.2 If a sequent has a C-proof (resp, an I-proof) then it has a
C-proof (resp, an I-proof) in which all occurrence of the init rule are atomic
initial rules.

Proof. A simple induction on the structure of B shows that the sequent
Σ: Γ,B − B can be proved by a cut-free proof involving only atomic ini-
tial rules.

22 3 Classical and Intuitionistic Logics

The fact that the initial rules involving non-atomic formulas can be re-
placed by introduction rules and initial rules on subformulas is an important
property of logical connectives that we will always require. Essentially, this
property states that if subformulas are identified via the initial rule then it
is possible to prove that composing those subformulas yields formulas also
identified.

In general, atomic initial rules cannot be removed from proofs. Atoms
are built from non-logical constants, such as predicates and function systems,
and their meaning comes from outside logic. In particular, it is via non-logical
symbols and atomic formulas that we shall eventually specify logic programs
for the purpose of sorting list, representing transition systems, etc. Atoms
provide the plugs for the programmer to provide their own meaning.

Consider defining a third logic, usually called minimal logic, as follows: an
M-proof is any I-proof in which the right-hand side of all sequents contains
exactly one formula. We shall write Σ;∆ `M B if the sequent Σ:∆ − B has
an M-proof.

Exercise 18. Show that Proposition 3.2 does not hold for minimal logic (con-
sider the sequent ⊥−⊥).

The reason for ⊥ to lose this important proof theoretic properties is that
weakening for ⊥ on the right is the proper treatment for ⊥ on the right. As
the following exercise shows, ⊥ is not a real logical connective in minimal
logic.

Exercise 19. Let q be a non-logical symbol of type o, let B be a formula, and
let B′ be the result of replacing all occurrences of q in B with ⊥. Show that
B is provable in intuitionistic logic if and only if B′ is provable in minimal
logic.

3.4 The cut rule

The cut rule can also be restricted to atomic formulas in a manner similar to
that for restricting the initial rule to atomic formulas. For example, consider
a proof which contains the following cut with a conjunctive formula in which
the two occurrences of that conjunction are immediately introduced in the
two subproofs to cut.

Ξ1

Σ: Γ1 − A1, ∆1

Ξ2

Σ: Γ1 − A2, ∆1

Σ: Γ1 − A1 ∧A2,∆1
∧R

Ξ3

Σ: Γ2, Ai − ∆2

Σ: Γ2, A1 ∧A2 − ∆2
∧L

Σ: Γ1, Γ2 − ∆1,∆2
cut

Here, i is either 1 or 2. This part of the proof can be changed locally to

3.4 The cut rule 23

Ξi

Σ: Γ1 − Ai,∆1

Ξ3

Σ:Γ2, Ai − ∆2

Σ: Γ1, Γ2 − ∆1,∆2
cut

In the process of reorganizing the proof in this manner, one of the subproofs
Ξ1 and Ξ2 is discarded and the new occurrence of cut is on a subformula of
A1 ∧A2.

Consider a proof which contains the following cut with an implication in
which the two occurrences of that implication are immediately introduced in
the two subproofs to cut.

Ξ1

Σ: Γ1, A1 − A2,∆1

Σ: Γ1 − A1 ⊃ A2,∆1
⊃R

Ξ2

Σ:Γ2 − A1,∆2

Ξ3

Σ:Γ3, A2 − ∆3

Σ: Γ2, Γ3, A1 ⊃ A2 − ∆2,∆3
⊃L

Σ: Γ1, Γ2, Γ3 − ∆1,∆2,∆3
cut

This part of the proof can be changed locally to

Ξ2

Σ: Γ2 − A1, ∆2

Ξ1

Σ: Γ1, A1 − A2,∆1

Σ: Γ1, Γ2 − ∆1,∆2, A2
cut Ξ3

Σ:Γ3, A2 − ∆3

Σ: Γ1, Γ2, Γ3 − ∆1,∆2,∆3
cut

In the process of reorganizing the proof in this manner, the cut rule occurrence
for A1 ⊃ A2 is replaced by two instances of cut, where each cut is on the
subformula of A1 and A2.

Consider a proof that contains the following cut with > in which the
premise where > is on the right-hand side is proved with the >R.

Σ: Γ1 − >,∆1
>R Ξ

Σ:Γ2,> − ∆2

Σ: Γ1, Γ2 − ∆1,∆2
cut

This proof can be changed to remove this occurrence of cut entirely as follows.
First, the proof Ξ of Σ:Γ2,> − ∆2 can be transformed to a proof Ξ ′ of
Σ: Γ2 − ∆2 by removing the occurrence of > in the endsequent and, hence,
all the other occurrences of> that can be traced to that occurrence. As a result
of Exercise 16, Ξ ′ can be transformed to a proof Ξ ′′ of Σ: Γ1, Γ2 − ∆1,∆2.
The proof Ξ ′′ contains one fewer instances of the cut-rule than the original
displayed proof above.

Consider a proof that contains the following cut with ∀ in which the two
occurrences of that quantifier are immediately introduced in the two subproofs
to cut.

Ξ1

Σ, x: Γ1 − Bx, ∆1

Σ:Γ1 − ∀x.Bx, ∆1
∀R

Ξ2

Σ: Γ2, Bt − ∆2

Σ: Γ2, ∀x.Bx − ∆2
∀L

Σ: Γ1, Γ2 − ∆1,∆2
cut

24 3 Classical and Intuitionistic Logics

Here, t is a Σ-term. By Exercise 17, the proof Ξ1 of Σ, x: Γ1 − Bx,∆1 can
be transformed into a proof Ξ ′

1 of Σ: Γ1 − Bt, ∆1 (notice that x is not free in
any formula of Γ1 and ∆1 nor in the abstraction B). The above instance of
cut can now be rewritten as

Ξ ′
1

Σ:Γ1 − Bt,∆1

Ξ2

Σ:Γ2, Bt − ∆2

Σ: Γ1, Γ2 − ∆1,∆2
cut

Exercise 20. Repeat the above rewriting of cut inference rules when the cut
formula is ⊥, a disjunction, or an existential quantifier.

The above rewriting suggests that each of the logical connectives, in iso-
lation, have been designed well. Each logical connective is given two senses:
introduction on the right provides the means to prove a logical connective;
introduction on the left provides the means to argue from a logical connec-
tive as an assumption. The rewritings above provides a partial justification
that these two means are describing the same connective. Of course, we are
interested to see if all cuts can be removed.

Theorem 1 (Cut-elimination). If a sequent has a C-proof (respectively,
I-proof) then it has a cut-free C-proof (respectively, I-proof).

For the details of the proof, see, for example, [Gen69], [GTL89, Chapter
13], [Gal86, Chapter 6].

Exercise 21. Define a new binary logical connective, say ¦, giving it the left
introduction rules for ∧ but the right introduction rules for ∨. Can cut be
eliminated from proofs involving ¦? Can init be restricted to only atomic
formulas? Consider other mismatches as well.

3.5 Choices when doing proof search

Since we will be considering the use of proof search to support computation,
we should look carefully at the many choices that are available in building a
proof (in a bottom-up fashion) and look for possible means to reduce those
choices for automation even if those choices make logic less amendable for
mathematical (i.e., not automated) proof. We characterize the many choices
in how one searches for proofs as follows.

• It is always possible to use the cut rule to prove any sequent. In that case,
we need to produce a cut-formula (lemma) to be proved on one branch
and to be used on the other.

• The structural rules of contractions and weakening can always be applied
to make additional copies of a formula or to remove formulas.

• There may be many non-atomic formulas in a sequent and we can generally
apply an introduction rule for every one of these formulas.

3.6 Dynamics and change during of proof search 25

• One can also see if a given sequent is initial.

Some of these choices produce sub-choices. For example, choosing the cut
rule requires finding a cut-formula; choosing ∨R requires selecting a disjunct;
choosing ∧L requires selecting a conjunct; choosing ∀L or ∃R requires knowing
a term t to instantiate a quantifier, and using the ⊃L or cut rules require
splitting the set Γ and multiset ∆ into pairs (for which there are exponentially
many splits).

All this freedom in searching for proofs is not, however, needed, and greatly
reducing the sets of choices can still result in complete proof procedures. Many
of these choices can be dealt with as follows.

• Given the cut-elimination proof, we do not need to consider the cut rule
and the problem of selecting a cut-formula. Such a choice forces us to
move into a domain where proofs are more like computation traces than
witnesses of mathematical arguments. But since our goal here is the spec-
ification of computation, we shall generally live inside this choice.

• Often, structural rules can be built into inference rules. For example, weak-
ening on the left is built into the init rule. Also, instead of attempting to
split the context in the ⊃L rule, we can apply contraction to duplicate all
the formulas and then place one copy on the left branch and one copy on
the right branch. Equivalently, we can try to understand when the additive
version of this rule can replace the multiplicative version, in which case,
contexts are copied and not split.

• The problem of determining appropriate substitution terms in the ∀L and
∃R rules is a serious problem whose solution falls outside our investigations
here. When systems based on proof search are implemented, they generally
make use of various techniques, such as employing the so-called “logic
variable” and unification to determine instantiation terms in a lazy fashion.
Although such techniques are completely standard, we shall not discuss
them here.

• The choices between which introduction rule to select can be structured
by first noticing that some introduction rules are invertible: that is, their
premises are provable if and only if their conclusion is provable. Thus,
applying such introduction rules does not lose completeness. While non-
invertible introduction rules represent genuine choices in the search for
proofs, some structure to how these rules are applied can also be described
(see, for example, backchaining in Section 4.4).

3.6 Dynamics and change during of proof search

Within the proof search paradigm, changes to sequents during search repre-
sents the dynamics of search. Thus it is important to understand what kinds
of dynamics are supported by a given logic.

26 3 Classical and Intuitionistic Logics

The following exercises illustrate to what extent sequents can change
within classical and intuitionistic logics.

Exercise 22. Show that a cut-free C-proof Ξ of Σ: Γ − ∆ can be trans-
formed into a proof Ξ ′ of the same sequent such that for every sequent
Σ′: Γ ′ − ∆′ in Ξ ′, we have that Σ ⊆ Σ′, Γ ⊆ Γ ′, and ∆ ⊆ ∆′. (For this
exercise, assume that the initial sequents allowed for C-proofs are of the form
Σ: Γ − ∆ where Γ ∩ ∆ is non-empty.) Furthermore, let n ≥ 0 and assume
that every formula in Γ is of clausal order n or less and every formula in ∆ is
of clausal order n− 1 or less. Then we can also assume that the clausal order
of formulas in ∆′ are n− 1 or less and that Γ ′ is the set union of Γ and a set
Γ ′′ and that the formulas in Γ ′′ have clausal orders of order n− 2 or less.

Exercise 23. Show that a cut-free I-proof Ξ of Σ: Γ − ∆ can be transformed
into a proof Ξ ′ of the same sequent such that for every sequent Σ′: Γ ′ − ∆′

in Ξ ′, we have that Σ ⊆ Σ′ and Γ ⊆ Γ ′. Furthermore, let n ≥ 0 and assume
that every formula in Γ is of clausal order n or less and every formula in ∆ is
of clausal order n− 1 or less. Then we can also assume that the clausal order
of formulas in ∆′ are n− 1 or less and that Γ ′ is the set union of Γ and a set
Γ ′′ and that the formulas in Γ ′′ have clausal orders of order n− 2 or less.

The dynamics of classical logic seems quite weak in the sense that contexts
only grow during proof search. No formulas are required to be forgotten or
dropped. Since the semantics of classical logic are based on notions of “static”
truth, this proof search characterization of classical logic seems appropriate.

Intuitionistic logic has a bit richer dynamics since the antecedents of se-
quents can change significantly since only one formula is keep in the an-
tecedent: contrary to classical logic, antecedent formulas cannot be copied
(using cR) and restarted (Exercise 12). Thus, intuitionistic logic allows for
growing antecedents and more complicated varying succedents. As we shall
see in the next chapter, if we are in a setting where goal-directed proof search
is complete, the dynamics of the succedent is reduced to the changing of one
atomic formula with another. Thus, most of this dynamics occurs within non-
logical context; that is, the dynamics is captured by changes to the terms
within atomic formulas. Constraining such dynamics to non-logical contexts
means that logical reasoning will provide little immediate help in reasoning
about computational dynamics.

4

Horn and hereditary Harrop formulas

4.1 Goal-directed search

One approach to modeling logic programming with sequent calculus involves
seeing logic programs as theories from which deductions are attempted and
goals (also called queries) are formulas whose entailment is attempted from
logic programs. The state of an idealized interpreter can be represented as the
two-sided sequent Σ:P − G, where Σ is the signature that declares current
set of eigenvariables, P is a set of Σ-formulas denoting a program, and G is a
Σ-formula denoting the goal we wish to prove from P.

It also seems natural to also impose that computation should proceed in
the following fashion: when given the program P and a non-atomic goal G,
then the proof should proceed in a fixed fashion to decompose the goal formula
G first and without regard to the program. Thus, the “search semantics” for a
logical connective at the head of a goal is fixed by the logic and is independent
of the program. It is only when attempting a proof of an atomic formula that
the program is consulted so as to provide meaning for the non-logical predicate
constant at the head of that atom. In particular, the following are completely
natural reductions to attempts to prove a goal.

• Reduce an attempt to prove Σ:P − B1 ∧B2 to the attempts to prove the
two sequents Σ:P − B1 and Σ:P − B2.

• Reduce an attempt to prove Σ:P − B1∨B2 to an attempt to prove either
Σ:P − B1 or Σ:P − B2.

• Reduce an attempt to prove Σ:P − ∃τx.B to an attempt to prove Σ:P −
B[t/x], for some Σ-term t of type τ .

• Reduce an attempt to prove Σ:P − B1 ⊃ B2 to an attempt to prove
Σ:P, B1 − B2.

• Reduce an attempt to prove Σ:P − ∀τx.B to an attempt to prove
Σ, c: τ :P − B[c/x], where c is token not in Σ.

• Attempting to prove Σ:P − > yields an immediate success.

28 4 Horn and hereditary Harrop formulas

Clearly, these reduction steps are the bottom-up readings of the right-
introduction rules found in Figure 3.1. This suggests the following definition
to formalize the notion of goal-directed search: a cut-free I-proof is uniform if
every occurrence of a sequent whose succedent contains a non-atomic formula
is the conclusion of an inference figure that introduces its top-level connective.
Searching for uniform proofs is now greatly restricted since building a uni-
form proof means that one applies right-rules when the succedent has logical
constants. We are not allowed to interleave choosing right and left introduc-
tions rules. The definition of uniform proof provides no guidance or possible
restrictions for applying left-introduction rules, although such guidance will
soon appear.

Exercise 24. Show that in a uniform proof, init inference rules are always
atomic and that a sequent is the conclusion of a left rule only if that sequent
has an atomic succedent.

There are provable sequents for which no uniform proof exists. For exam-
ple, let the non-logical constants be {p : o, q : o, r : i → o, a : i, b : i} and let
Σ be an signature. The sequents

Σ: (r a ∧ r b) ⊃ q − ∃ix(r x ⊃ q) and Σ:− p ∨ (p ⊃ q)

have C-proofs but no I-proofs, so clearly they have no uniform proofs. The
two sequents

Σ: p ∨ q − q ∨ p and Σ: ∃ix. r x − ∃ix. r x

have I-proofs but no uniform proofs.
One way to define logic programming, at least from the point-of-view of

logical connectives and quantifiers, is to consider those collections of programs
and goals for which uniform proofs are, in fact, complete. In particular, an
abstract logic programming language is a triple 〈D,G,`〉 such that for all sig-
natures Σ, for all finite sets P of Σ-formulas from D, and all Σ-formulas G
of G, we have ` Σ:P − G if and only if Σ:P − G has a uniform proof.

Both the definition of uniform proof and abstract logic programming lan-
guage are restricted to I-proofs. We shall refer to this as the single-conclusion
version of these notions. Later we present a generalization of them to the
multiple conclusion setting.

A theory ∆ is said to hold the disjunction property if the provability of
Σ: ∆ − B ∨ C implies the provability of either Σ: ∆ − B or Σ: ∆ − C. A
theory ∆ is said to hold the existence property if the provability of Σ: ∆ −
∃τx. B implies the existence of a Σ-term t of type τ such that Σ:∆ − B[t/x] is
provable. Clearly, if uniform proofs are complete for a given theory and notion
of provability, that theory has both the disjunctive and existential properties.
In a sense, when uniform proofs are complete, these properties are satisfied
at all point in building a cut-free proof.

4.2 Horn clauses 29

4.2 Horn clauses

The first approaches to describing the structure of proofs using Horn clauses
were done using resolution refutations. In that setting, Horn clauses were
generally defined as the universal closures of disjunctions of literals (atomic
formulas or their negation) that contain at most one positive literal (an atomic
formula). That is, a clause is a closed formula for the form

∀x1 . . . ∀xn[¬A1 ∨ · · · ∨ ¬Am ∨B1 ∨ · · · ∨Bp],

where n,m, p ≥ 0 and p ≤ 1 . If n = 0 then the quantifier prefix is not
rewritten and if m = p = 0 then the body of the clause is considered to be
⊥. If the clause contained exactly one positive literal (p = 1), it is a positive
Horn clause. If it contained no positive literal (p = 0), it is a negative Horn
clause.

When we shift from the search for refutations to the search for sequent
calculus proofs, it is natural to shift the presentation of Horn clauses to one
of the following. Let τ be some member of S (primitive type) and let A be a
syntactic variable ranging over atomic formulas. Consider the following three,
separate and recursive definitions of the two syntactic categories of program
clauses (definite clause) given by the syntactic variable D and goals given by
the syntactic variable G.

G ::= A | G ∧G

D ::= A | G ⊃ A | ∀τx D. (4.1)

Program clauses in this style presentation are formulas of the form

∀x1 . . . ∀xn(A1 ∧ · · · ∧Am ⊃ A0),

where we adopt the convention that if m = 0 then the implication is not
written. A second, richer definition of these syntactic classes is the following.

G ::= > | A | G ∧G | G ∨G | ∃τx G

D ::= A | G ⊃ D | D ∧D | ∀τx D. (4.2)

Finally, a compact presentation of Horn clauses and goals is possible using
only implication and universal quantification.

G ::= A

D ::= A | A ⊃ D | ∀τx D. (4.3)

This last definition describes a Horn clause as a formula built from impli-
cations and universals such that to the left of an implication there are no
occurrences of logical connectives.

Definition (4.1) above corresponds closely to the definition of Horn clauses
given using disjunction of literals. In this case, positive clauses correspond to

30 4 Horn and hereditary Harrop formulas

the D-formulas. Classical equivalences are needed (not intuitionistic equiva-
lences). Negative clauses are not exactly negations of G formulas since such
G formulas are not allowed to have existential quantifiers (although allowing
such existential quantifiers are allowable, as is done in (4.2).

Let D1 be the set of D-formulas and G1 be the set of G-formulas satisfying
the recursion (4.2).

Exercise 25. Given any of the three presentations of Horn clauses and goals
above, show that the clausal order (see Section 3.1) of a Horn goal is always
0 and of a Horn clause is 0 or 1.

Exercise 26. Let D be a Horn clause using (4.2). Show that there is a set ∆
of Horn clauses using description (4.1) or (4.3) such that D is equivalent to
the conjunction of formulas in D. Show that this rewriting might make the
resulting conjunction exponentially larger than the original clause.

Exercise 27. Let Σ be a signature, let P be a set of Σ-formulas in D1, and
let G be a Σ-formula in G1. Let Ξ be a cut-free C-proof of Σ:P − G. Show
that every sequent in Ξ is of the form Σ:Γ − ∆ such that Γ is a subset of
D1 and ∆ is a subset of G1. Show also that the only inference rules that can
appear in Ξ are cR, wR, init, ∀L, ∧L, ⊃L, ∧R, ∨R, ∃R, and >R.

Exercise 28. Prove that Horn clause programs are always consistent by prov-
ing that for any signature Σ and any finite set of Horn clauses P, the sequent
Σ:P − is not provable. Show that an I-proof of Σ:P − G for a Horn goal G
is also an M-proof.

We first show that in the Horn clause setting, classical provability is con-
servative over intuitionistic logic.

Proposition 4.1 Let Σ be a signature, let P be a set of Σ-formulas in D1,
and let G be a Σ-formula in G1. If Σ:P − G has a C-proof then it has an
I-proof.

Proof. We actually show the following slightly stronger result: If Σ:P − Γ
has a cut-free C-proof then there is a G ∈ Γ such that Σ:P − G has an I-
proof. We prove this by contradiction. That is, assume that there is a sequent
Σ:P − Γ that has a C-proof but for which there is no G ∈ Γ such that
Σ:P − G has an I-proof. Choose Ξ to be such a C-proof of minimal height
over all such sequents Σ:P − Γ .

Now consider the last inference rule of Ξ. Clearly, this rule is not an
identity rule since Ξ is cut-free and since init is an I-proof. It is also not a
structural rule: if the last rule was either wR or cR then the premise sequent
has a C-proof and no formula on the right-hand side of that sequent has an
associated I-proof. But this contradicts the choice of Ξ as having minimal
height.

4.2 Horn clauses 31

Now consider all possible introduction rules that might be the last inference
rule in Ξ (these are enumerated in Exercise 27). If that last rule is ⊃L, then
Ξ has the form

Σ:P1 − ∆1, G Σ: D,P2 − ∆2

Σ: G ⊃ D,P1,P2 − ∆1,∆2
⊃L,

and there is no formula H ∈ ∆1 ∪∆2 such that Σ: G ⊃ D,P1,P2 − H has an
I-proof. Since the premises have shorter C-proofs and since they are composed
of Horn clauses on the left and Horn goals on the right, there must be a formula
H1 ∈ ∆1 ∪ {G} for which Σ:P1 − H1 has an I-proof and a formula H2 ∈ ∆2

for which Σ: D,P2 − H2 has an I-proof. In the case that H1 ∈ ∆1, the sequent
can be weakened to yield an I-proof of Σ: G ⊃ D,P1,P2 − H1 (Exercise 16),
which is a contradiction. Thus, H1 is G and we have an I-proof of Σ:P1 − G.
Putting together this I-proof with the one for Σ:D,P2 − H2 using ⊃L, we
have a I-proof of Σ: G ⊃ D,P1,P2 − H2, which is again a contradiction.

All the remaining cases of introduction rules can be treated in a similar
fashion.

Notice that Exercise 28 is an immediate consequence of the proof of Propo-
sition 4.1.

Proposition 4.2 Let Σ be a signature, let P be a set of Σ-formulas in D1,
and let G be a Σ-formula in G1. If Σ:P − G has an C-proof then it has a
uniform proof.

Proof. By Proposition 4.1, if Σ:P − G has an C-proof, it has an I-proof. Let
Ξ be such an I-proof. By Proposition 3.2, we can also assume that the initial
rules in Ξ are all atomic initial rules. If Ξ is not already a uniform proof, then
there must be a left-introduction rule applied to a sequent with a non-atomic
succedent. In this case, consider an occurrence of a left introduction rule that
has a non-atomic right-hand side and which has premises with minimal height.
At least one of the premises must be a right-introduction rule (the case of wR is
ruled out by Exercise 28). Given the pairs of left and right introduction rules
are can appear in Ξ, it is easy to show that all pairs of right-introduction
rules over left-introduction rules permute and that this process of permuting
terminates. In this way, the proof Ξ can be converted into a uniform proof of
Σ:P − G.

The preceding propositions shows that the triple 〈D1,G1,`〉 is an abstract
logic programming if ` is taken to be `C , `I , or `M . That is, when dealing
with Horn clauses, there is no separation between these three logics. Anyone
of these three abstract logic programming languages will be called fohc (for
first-order Horn clauses).

Note that fohc is a weak logic programming language in the proof theo-
retic sense that there are few logical connectives for which the right and left
behavior exist within uniform proofs. If we use the (4.2) presentation of Horn

32 4 Horn and hereditary Harrop formulas

clauses, then it is only atoms or conjunctions of atoms that are both goals and
program clauses. All the other connectives are either dismissed (such as ⊥) or
are restricted to just half their “meaning”: when a disjunction and existential
quantifier are encountered in proof search, only their right introduction rules
are needed and when implication and universal quantification are encountered,
only their left introduction rules are needed.

4.3 Hereditary Harrop formulas

An extension to Horn clauses that allow implications and universal quantifiers
in goals (and, thus, in the body of program clauses) is called the first-order
hereditary Harrop formulas. Proof search involving such formulas may involve
left and right introduction rules for implications and universal quantifiers
as well as conjunctions (as in the Horn clause case). Parallel to the three
presentations of fohc in Section 4.2, there are the following three presentations
of goals and program clauses for first-order hereditary Harrop formulas.

G ::= A | G ∧G | D ⊃ G | ∀τx.G

D ::= A | G ⊃ A | ∀x.D (4.4)

The definitions of G- and D-formulas are mutually recursive and that a neg-
ative (resp, positive) subformula of a G-formula is a D-formula (G-formula),
and that a negative (positive) subformula of a D-formula is a G-formula (D-
formula). A richer formulation is given by

G ::= > | A | G ∧G | G ∨G | ∃x.G | D ⊃ G | ∀x.G

D ::= A | G ⊃ D | D ∧D | ∀x.D (4.5)

When referring to first-order hereditary Harrop formulas and goals we shall
assume this definition of formulas. We use D2 to denote the set of all such
D-formulas and G2 for the set of all G-formulas. A more compact presentation
can be given as

G ::= A | D ⊃ G | G ∧G | ∀x.G

D ::= A | G ⊃ D | D ∧D | ∀x.D (4.6)

In this presentation, D and G formulas are the same set of formula and there
is no need for a definition that allows for mutual recursion. Thus, hereditary
Harrop formulas are simply the logic of conjunction, implication, and uni-
versal quantification. The propositions that we now present concerning proof
search also tolerate the right-introduction rules for disjunction and existen-
tial quantification (hence, presentation (4.5) is taken as the larger and official
presentation of first-order hereditary Harrop formulas).

The triple 〈D2,G2,`C〉 is not an abstract logic programming language. For
example, the formulas numbered 4, 5, 6, and 7 in Exercise 8 are hereditary
Harrop goals that have classical proofs but no uniform proof.

4.4 Backchaining 33

Exercise 29. Show that Pierce’s formula ((p ⊃ q) ⊃ p) ⊃ p (Exercise 8(6))
is the smallest classical theorem (counting occurrences of logical connectives)
that is composed only of implications and atomic formulas and which has no
uniform proof.

Let fohh denote the triple 〈D2,G2,`I〉 or 〈D2,G2,`M 〉. The following
proposition shows that fohh is an abstract logic programming language.

Proposition 4.3 Let Σ be a signature, let P be a set of Σ-formulas in D2,
and let G be a Σ-formula in G2. If Σ:P − G has an I-proof then it has a
uniform proof.

The proof of this proposition is essentially the same as the proof of Propo-
sition 4.2.

Consider following class of first-order formulas given by

D := A | B ⊃ D | ∀x D | D1 ∧D2.

Here A ranges over atomic formulas and B over arbitrary first-order formulas.
These D-formulas are known as Harrop formulas. Clearly hereditary Harrop
formulas are Harrop formulas.

Exercise 30. Consider the sequent Σ:P − B where P is a set of Harrop for-
mulas and B is an arbitrary formula. Show that Harrop formulas are “uniform
at the root”; that is, if B is non-atomic, then this sequent is intuitionistically
provable if and only if it has a I-proof that ends in a right-introduction rule.
Are uniform proofs complete for such sequents?

4.4 Backchaining

The restriction to uniform proofs provides some structure on how to do right
rules: in the bottom-up search for proofs, right rules are attempted when-
ever the antecedent is non-atomic and left-rules are attempted only when
the succedent is atomic. We now present restrictions on the application of
left-introduction rules which do not result in the loss of completeness.

Consider searching for a proof by applying the following instance of the
⊃L inference rule

Σ:P − G Σ: D,P − A

Σ: G ⊃ D,P − A
⊃L,

where A is an atomic formula. Applying this rule reduces an attempt to prove
the atomic formula A from program P to attempting to prove two things, one
of which is still an attempt to prove A but this time from the (possibly) larger
program P∪{D}. It would seem natural to expect this inference rule was used
because this new instance of D is “directly” useful in helping to solve A. For
example, D could itself be A or some sequence of additional left-rules applied
to D might reduce it to an occurrence of A.

34 4 Horn and hereditary Harrop formulas

Σ:P D−−− A
Σ:P − A

decide
Σ:P A−−− A

init

Σ:P D1−−− A

Σ:P D1∧D2−−− A
∧L

Σ:P D2−−− A

Σ:P D1∧D2−−− A
∧L

Σ:P − G Σ:P D−−− A

Σ:P G⊃D−−− A
⊃L

Σ:P D[t/x]−−− A

Σ:P ∀τ x.D−−− A
∀L

Fig. 4.1. Rules for backchaining. In the decide rule, D is a member of P, and in
the ∀L rule, t is a Σ-term of type τ .

Exercise 31. There is an alternative to backchaining, which is often called
forwardchaining. That is, in the inference rule

Σ:P − G Σ: D,P − A

Σ: G ⊃ D,P − A
⊃L,

the formula D is not restricted to be “immediately” used to prove A but
rather that D is can be used with some other implication in P to derive A.
Enumerate the different uniform proofs of the sequent

p, p ⊃ q, (p ∧ q) ⊃ r − r.

Which of these employ forwardchaining and which backwardchaining?

We can formalize a proof system where left introduction rules are used
in such a fashion via the inference rules present in Figure 4.1. To do so, we
introduce the new sequent arrow Σ:P D−−− A: the plan is that this sequent
should be provable if and only if the sequent Σ:P, D − A is provable. The
formula over the sequent arrow is the only one on which left-introduction
rules may be applied. The decide rule is used to turn the attempt to prove an
atomic formula via the standard two-sided sequent into an attempt to prove
this new three-place sequent.

The sequent Σ:P − G or the sequent Σ:P D−−− A has an O-proof if it
has a proof using the right rules in Figure 3.1 and the rules in Figure 4.1.
The notion Σ:P `O G denotes the proposition that the sequent Σ:P − G
has an O-proof. We shall view this proof system as capturing a high-level
description of the operational semantics of logic programming in intuitionistic
logic. Proof search for an O-proof has three phases. The first phase is the
goal-reduction phase where right rules are used to find a proof of a non-atomic
formula. The second phase is the decide rule in which some program clause D
from the logic program is selected: alternatives to this choice of selection may
well need to be investigated. The third phase is called backchaining and is a
focused application of left-rules and init in which alternatives to the choice of

4.5 Dynamics of proof search for fohc 35

conjunction in the ∧L rule and the choice of term in the ∀L rule may need to
be considered.

Proposition 4.4 Let P be an fohh logic program and G an fohh goal. Then
Σ:P `O G if and only if Σ:P `I G.

Proof. This proof is done by permutation of inference rules. More details
(meaning, the full inductive argument) should be added here. For now, see,
for example [Mil89, Lemma 11], for a similar proof.

The following shows that the polarity of formulas and subformulas are
maintained within cut-free I-proofs.

Proposition 4.5 Let P be an fohh logic program and G an fohh goal and let
Ξ be a cut-free I-proof of Σ:P − G. If Σ′: Γ − B is a sequent in Ξ then Γ
is a fohh logic program and B is an fohh goal formula.

Let ∆ be a finite set of formulas. The set of pairs |∆|Σ is defined to be the
smallest set such that

• if D ∈ ∆ then 〈∅, D〉 ∈ |∆|Σ ,
• if 〈Γ, D1 ∧D2〉 ∈ |∆|Σ then 〈Γ, D1〉 ∈ |∆|Σ and 〈Γ, D2〉 ∈ |∆|Σ ,
• if 〈Γ, G ⊃ D〉 ∈ |∆|Σ then 〈Γ ∪ {G}, D〉 ∈ |∆|Σ , and
• if 〈Γ, ∀τxD〉 ∈ |∆|Σ and t is a Σ-term of type τ then 〈Γ, D[t/x]〉 ∈ |∆|Σ .

Assuming that ∆ is a set of Σ-formulas that are also fohh program clauses,
then whenever 〈Γ, D〉 ∈ |∆|Σ then D is a fohh program clause and Γ is a
finite set of fohh goals.

By using this definition of |∆|Σ , it is possible to describe backchaining as
a single inference rule instead of left-introduction rules. In particular, consider
the proof system O′ that contains the right-introduction rules in Figure 3.1
and the following inference rule

{Σ: ∆ − G | G ∈ Γ}
Σ: ∆ − A

BC
provided A is atomic and 〈Γ, A〉 ∈ |∆|Σ . If ∆
is empty, then this rule has no premises.

The completeness of O′-proofs for intuitionistic provability in the context
of fohh is a simple consequence of the completeness of O-proofs (Proposi-
tion 4.4).

Proposition 4.6 Let P be an fohh logic program and G an fohh goal. Then
Σ:P − G has an O′-proof if and only if Σ:P `I G.

4.5 Dynamics of proof search for fohc

If P is an fohc program and G is an fohc goal, then there are no occurrences
of ⊃R or of ∀R in an O-proof of Σ:P − G. Thus, every sequent occurring

36 4 Horn and hereditary Harrop formulas

in such an O-proof has Σ as its signature and P as its left-hand side. Since
signatures and programs (the left-hand of sequents) remain constant during
the search for proofs in fohc, the logic program is global. During computation,
if a program clause is every needed (via the decide rule), it must be present
at the beginning along with all other clauses that might be needed during the
computation (proof search). Thus, the logic of fohc does not directly support
hierarchical programming in which certain programs are designed to be local
to others or in which code is assembled in modules and certain modules are
“visible” or not to other modules.

The only changeable part of a sequent during proof search is the right-
hand side. Since goal reduction in fohc is invertible (when using definitions
(4.1) or (4.3)), the computational significance of the goal is given by the atoms
to which it decomposes. Thus, as computation progresses, the only essential
change in proof search is with atoms appearing on the right of the sequent ar-
row. Given that we allow first-order term and these can encode rich structures
(such as natural numbers, lists, trees, Turing machine tapes, etc), it is easy to
see that proof search in fohc has sufficient dynamics to encode general com-
putation. Unfortunately, all of that dynamics takes place within non-logical
contents, namely, within atomic formulas. As a result, logical techniques for
analyzing computation via proof search have little direct impact on what can
be said directly about non-logical contexts. Thus, reasoning about properties
of Horn clause programs will benefit little from logical and proof theoretic
analysis.

During a computation, all data structures that are built and represented
using first-order terms are built from the non-logical, fixed signature, and any
items that appear in signature declaration for a given sequent. In the first-
order Horn clause case, neither of these signatures change and as a result, all
data structures that need to be built during proof search must be available and
equally “visible”. Thus, fohc does not directly support a hierarchical notion
of data structures such as is provided in many programming languages via
abstract data types.

Thus computation using fohc is flat and supports no direct support for
program-level abstractions: all the program clauses and every data type con-
structor must be present in the initial, endsequent in order to be used during
computation. No abstractions or hiding mechanisms are available.

4.6 Examples of fohc logic programs

Figure 4.2 presents some examples of Horn clauses, along with two kinds
of declarations. The syntax here is quite natural and follows the λProlog
conventions. To declare members of the set of sorts S, the kind declaration is
used: the expression

kind tok type.

4.6 Examples of fohc logic programs 37

kind nat type.

type z nat.

type s nat -> nat.

type sum nat -> nat -> nat -> o.

type leq, greater nat -> nat -> o.

sum z N N.

sum (s N) M (s P) :- sum N M P.

leq z N.

leq (s N) (s M) :- leq N M.

greater N M :- leq (s M) N.

Fig. 4.2. fohc programs specifying relations over natural numbers.

declares that tok is a token that is to be used as a primitive type. The ex-
pressions

type tok <type expression>.

declares that the non-logical signature should contain the declaration of tok
for the associated type expression. Logic program clauses are the remaining
entries. In such expressions, the infix symbol :- denotes the reverse of ⊃, a
semicolon denotes a disjunctions, a comma (which binds tighter than :- and
the semicolon) denotes a conjunction of goal formulas while & denotes conjunc-
tion for Horn clauses (in this setting, both symbols denote the same logical
connective ∧). Tokens with initial capital letters are universally quantified
with scope around an individual clause (which is terminated by a period).

In Figure 4.2, the symbol nat is declared to be a primitive type and z
and s are used to construct natural numbers via zero and successor. The
symbol sum is declared to be relation of three natural numbers while the
two symbols symbols leq and greater are declared to be binary relations
on natural numbers. The following lines describe the meaning for these three
predicates. For example, if the sum predicate holds for the triple M , N , and
P then N + M = P : this relation is described recursively using the facts that
0+N = N and if N +M = P then (N +1)+M = (P +1). Similarly, relations
describing N ≤ M and N > M are also specified.

Similarly, Figure 4.3 introduces a primitive type for lists (of natural num-
bers) and two constructors for lists, namely, the empty list constructor nil
and the non-empty list constructor, the infix symbol ::. The binary predicate
sumup relates a list of natural numbers with the sum of those numbers. The
binary predicate max relates a list of numbers with the largest number in that
list. The predicate maxx is an auxiliary predicate used to help compute the
max relation.

Exercise 32. Informally describe the predicates specified by Horn clauses in
Figure 4.5.

38 4 Horn and hereditary Harrop formulas

kind list type.

type nil list.

type :: nat -> list -> list.

infixr :: 5.

type sumup, max list -> nat -> o.

type maxx list -> nat -> nat -> o.

sumup nil z.

sumup (N::L) S :- sumup L T, sum N T S.

max L M :- maxx L z M.

maxx nil A A.

maxx (X::L) A M :- leq X A, maxx L A M.

maxx (X::L) A M :- greater X A, maxx L X M.

Fig. 4.3. Specifications of some relation between natural numbers and lists.

kind node type.

type a, b, c, d, e, f node.

type adj, path node -> node -> o.

adj a b & adj b c & adj c d & adj a c & adj e f.

path X X.

path X Z :- adj X Y, path Y Z.

Fig. 4.4. Encoding the adjacency and path relations for a directed graph.

type memb nat -> list -> o.

type append list -> list -> list -> o.

memb X (X::L).

memb X (Y::L) :- memb X L.

append nil L L.

append (X::L) K (X::M) :- append L K M.

type sort list -> list -> o.

type split nat -> list -> list -> list -> o.

split X nil nil nil.

split X (A::L) (A::S) B :- leq A X, split X L S B.

split X (A::L) S (A::B) :- greater A X, split X L S B.

sort nil nil.

sort (X::L) S :- split X L Small Big, sort Small SmallS,

sort Big BigS, append SmallS (X::BigS) S.

Fig. 4.5. More examples of Horn clause programs.

4.8 Examples of fohh logic programs 39

Exercise 33. Take a standard definition of Turing machine and show how to
define an interpreter for a Turing machine in fohc. The specification should
be able to encode the fact that a given machine accepts a given word if and
only if some atomic formula is provable.

4.7 Dynamics of proof search for fohh

Proof search using fohh programs and goals is slightly more dynamic. In par-
ticular, both logic programs and signatures can grow. In this setting, every
sequent in an O-proof of the sequent Σ:P − G is either of the form

Σ, Σ′:P,P ′ − G′ or Σ,Σ′:P,P ′ D−−− A.

Thus, the signature can grown by the addition of Σ′ and the logic program can
grown by the addition of P ′ (a fohh program over Σ ∪ Σ′). More generally,
it follows from Exercise 22 that if the clausal order of P is n ≥ 0 and the
clausal order of G is at most n − 1, then the clausal order of P ′ is at most
n−2. Similarly, it is easy to see that Σ′ declares items only of primitive types
(excluding o).

Since the terms used to instantiate quantifiers in the concluding sequent
of the ∃R and ∀L inference rules range over the signature of that sequent,
more terms are available for instantiation as proof search progresses. These
additional terms include the eigenvariables of the proof that are introduced
by ∀R inference rules. Notice that once an eigenvariable is introduced, it is
not instantiated by the proof search process. As a result, eigenvariable do not
actually vary and, hence, act as locally scoped constants.

Modular programming: Scope extrusion via multiple conclusions.

Exercise 34. If we allow the addition of new non-logical connectives to a
program, then all fohh programs can be reduced to programs of order 2 or
less. [Hint: the inner implication of a formula of order, say 3, can be “defined”
equivalent to a new atomic formula using two way implications.]

Exercise 35. Define the core of an abstract logic programming language
〈D,G,`〉 to be the intersection D ∩ G. What is the core of fohc? Of fohh?

4.8 Examples of fohh logic programs

One might describe a jar as sterile if every germ in it is dead. Consider proving
that if a given jar j is heated then that jar is sterile (given the fact that heating
a jar kills all germs in that jar). A specification of this using fohh is given in
Figure 4.6.

40 4 Horn and hereditary Harrop formulas

kind jar, germ type.

type j jar.

type sterile, heated jar -> o.

type dead germ -> o.

type in germ -> jar -> o.

sterile Y :- all x\ in x Y => dead x.

dead X :- heated Y, in X Y.

heated j.

Fig. 4.6. Heating a jar makes it sterile.

The expression pi x\ denotes universal quantification of the variable x
with scope that extends as far to the right as consistent with parentheses or
the end of the expression. The first of the clauses above could be written as

∀y(∀x(in x y ⊃ dead x) ⊃ sterile y)

Notice that no constructors for type germ are provided in Figure 4.6 and no
explicit assumptions about the binary predicate in is given. Their role in this
specification is hypothetical.

Exercise 36. Construct the O-proof of goal formula (sterile j) from the logic
program in Figure 4.6.

Notice that fohh allows for a simple notion of modular logic programming.
For example, let classify, scanner, and misc name (possibly large) program
clause have some role within a larger programming task (for example, scanner
might contain code to convert a list of characters into a list of tokens prior to
parsing, etc). The goal formula

misc ⊃ ((classify ⊃ G1) ∧ (scanner ⊃ G2) ∧G3)

Attempting a proof of this goal will cause attempts of the three goals G1, G2,
and G3 to be attempted with respect to different programs: misc and classify
are used to prove G1; misc and scanner are used to prove G2; and misc is used
to prove G3. Thus, implicational goals can be used to structure the runtime
environment of a program. For example, the code present in classify is not
available during the proof attempt of G2.

A specification for the binary predicate that relates a list with the reverse
of that list can be given in fohc using the following program clauses:

reverse L K :- rev L nil K.
rev nil L L.
rev (X::M) N L :- rev M (X::N) L.

Here, reverse is a binary relation on lists and the auxiliary predicate rev
is a ternary relation on lists. By moving to fohh, it is possible to write the
following specification instead.

4.9 Limitation to fohc and fohh logic programs 41

reverse L K :- rv nil K => rv L nil.
rv (X::M) N :- rv M (X::N).

Here, the auxiliary predicate rv is a binary predicate on lists. With this second
specification, the use of non-logical context is slightly reduced in the sense that
the atomic formula (rev M K L) in the first specification is encoded using
the logical formula (rv [] L => rv M K) in the second specification. Notice
that the definition of reverse above has clausal order 2. It is possible to specify
reverse with a clause of order 3 as follows in which not only the base case for
rv is assumed in the body of reverse but also the recursive case.

reverse L K :-
(pi X\ pi M\ pi N\ rv (X::M) N :- rv M (X::N)) =>

rv nil K => rv L nil.

Exercise 37. Reversing a pile of papers L can informally be describing as:
start with by allocating an additional empty pile and then systematically
move the top member of the original pile to the top of the newly allocated
pile. When the original pile is empty, the other list is the reverse. Using the
last specification of reverse above, show where in the construction of a proof
of the reverse relation the informal computation actually takes place.

4.9 Limitation to fohc and fohh logic programs

The following two meta-theorems help illustrate some limitations of coding
in both fohc and fohh. The following two propositions can be compared to
the “Pumping Lemmas” for regular languages which help to circumscribe the
expressive power of such languages. The following is similar to the Exercise 16
and implies that weakening is a property of I-proofs (even if weakening on the
left is not an explicit inference rule).

Proposition 4.7 If Σ:Γ `I G and if Σ′ is an extension to the signature Σ
and Γ ′ is a set of Σ′-formulas, then Σ′: Γ ′ `I G.

This proposition is proved by a simple induction on the structure of I-
proofs. Use this Proposition to solve the following two exercises.

Exercise 38. Assume that the set or primitive types and the signature of
non-logicals constants extend those in Figure 4.2. Also assume that a and
maxa are predicates of one argument of sort nat. Show that there is no fohh
program P that satisfies the following specification: for every set k ≥ 1 and
{n1, . . . , nk}, we have A,P `I maxa n if and only if n is the maximum of the
set {n1, . . . , nk} and A is the set of atomic formulas {a n1, . . . , a nk}.

As was illustrated in Figure 4.3, the maximum of a set of numbers can
be computed in fohc if that set of numbers is stored in a list and not in the
logical context as require by this exercise.

42 4 Horn and hereditary Harrop formulas

Exercise 39. Given the encoding of directed graphs as is illustrated in Fig-
ure 4.4, show that it is not possible to specify in fohh a predicate that is true
of two nodes if and only if there is no path between them.

Another property of provable sequents is that one can substitute eigen-
variables with terms and still have a provable sequent.

type subSome j -> i -> i -> i -> o.

subSome X T (c X) T.

subSome X T (c Y) (c Y).

subSome X T (f U) (f W) :- subSome X T U W.

subSome X T (g U V) (g W Y) :- subSome X T U W, subSome X T V Y.

Fig. 4.7. Substitution of some occurrences.

Proposition 4.8 Let τ be a primitive type and let t be a Σ-term of type τ .
If x: τ,Σ: Γ `I G then Σ:Γ ′[t/x] `I G[t/x].

Notice that this proposition can be applied to non-logical constants of
primitive types in the following sense. Consider a non-logical signature, Σ0,
that contains the declaration that c: τ . Let Σ′

0 be the result of removing c: τ
from Σ. Then the sequent Σ:P − G is provable when the non-logical signature
is Σ0 if and only if the sequent c: τ,Σ:P − G is provable when the non-logical
signature is Σ′

0, which (by the above proposition) implies that Σ:P[t/c] −
G[t/c] holds for t a Σ ∪Σ′

0-term of type τ .
To illustrate an application of Proposition 4.8, consider the following type

declarations, where i and j are primitive types.

c: j → i, f : i → i, g: i → i → i

Terms of type i exist only in contexts where constants or variables of type
j are declared. Figure 4.7 contains a specification of predicate subSome such
that (subSome x s t r) is provable if and only if r is the result of substituting
some occurrences of x (actually, of (c x)) in t with s.

Exercise 40. Prove that it is not possible in fohh to write a specification of
subAll such that (subAll x s t r) is provable if and only if r is the result
of substituting all occurrences of x in t with s. Notice that this specification
would need to work in any extension of the non-logical signature (in particular,
for extensions that contain additional constants of type j, which do not occur
in the specification of subAll.

Exercise 41. Write a fohh specification of subOne such that the atom

(subOne x s t r)

4.9 Limitation to fohc and fohh logic programs 43

is provable if and only if r is the result of substituting exactly one occurrences
of x in t with s. One might thing that subAll can be specified using repeated
calls to subOne. Given the previous exercise, this must not be possible. Explain
why.

5

Proof Search in Linear Logic

The analysis of proof search provide in Chapter 4 has the following three
significant problems.

First, that analysis does not extend to all of logic and not even all of
intuitionistic logic. As we have seen, uniform proofs and backchaining provide
an analysis proof search for the {>,∧,⊃, ∀} fragment of intuitionistic logic
and not all of intuitionistic logic.

Second, the analysis did not extend to multiple conclusions sequents, which
is unfortunate since that setting allows for a rich notion of duality via liberal
use of negation and de Morgan dualities. As long as proof search is limited
to single-conclusion sequents, it will be difficult and indirect to make use of
these dualities to reason about logic programs.

Third, the proof search dynamics for our richest logic programming lan-
guage so far, fohh, is rather weak: the left-hand side can only grow during
proof search and while the right-hand side can change, those changes occur
within atomic formula (non-logical context). Richer ways to change sequents
during proof search should make logic programming more expressive and allow
more direct use of logic to reason about the computations specified.

As we shall see in this chapter, linear logic addresses all three of these
limitations.

5.1 Sequent calculus proof for linear logic

A proof system for linear logic is given in Figures 5.1 and 5.2. Notice that
there are no structural rules that apply to all formulas: instead, left-rules
for ! and the right rules for ? provide weakening and contraction only for
formulas marked with those modals, and only one side of the sequent. Without
structural rules, the additive and multiplicative versions of connectives are not
the same. As a result, the classical or intuitionistic conjunction and disjunction
split into two different versions, as is illustrated by the following table.

46 5 Proof Search in Linear Logic

Classical Linear Additive Linear Multiplicative
> > 1
⊥ 0 ⊥
∧ & ⊗
∨ ⊕ ...

............
..................................

Here, 1 is the identity for ⊗, > is the identity for &, ⊥ is the identity for ...
............
.................................. ,

and 0 is the identity for ⊕. We have reused the classical > and ⊥ as linear logic
connectives for no reason other than typographic convenience. Similarly, we
shall also reuse the ∀ and ∃ quantifiers in linear logic since they are essentially
the same quantifiers of classical and intuitionistic logic. Similarly, negation is
written as (·)⊥.

The implication ⊃ also splits into two implications, although we will not
refer to them as either additive or multiplicative. Instead, there is the linear
implication −◦ and the intuitionistic implication ⇒. The linear implication
B −◦ C is defined to be B⊥ ...

............
.................................. C and the intuitionistic implication B ⇒ C is

defined to be ! B −◦ C. The following equivalences, however, do hold.

(p⊗ q)−◦ r ≡ p−◦ q −◦ r (p & q) ⇒ r ≡ p ⇒ q ⇒ r.

(By, B ≡ C we shall mean that the formula (B −◦ C) & (C −◦B) is provable
in linear logic.)

Exercise 42. The modals ! and ? are sometimes called exponentials. Show
that the following relationship between the exponentials and the additive and
multiplicative connectives, inspired by the equation xm+n = xm × xn, holds
in linear logic.

!(B & C) ≡ ! B ⊗ ! C ?(B ⊕ C) ≡ ?B
...

............
.................................. ? C

Should the “0-ary” version of these equivalences: !> ≡ 1 and !0 ≡ ⊥.

Exercise 43. Consider the following set of linear logic connectives:

{>,&,⊥,
...

............
.................................. ,−◦,⇒, ∀, ?}.

Show that this set of connectives is complete in the sense that all other logical
connectives can be written in terms of these. In particular, describe how to
encode

B⊥ 0 1 ! B B ⊕ C B ⊗ C ∃x.B

using the above connectives only. Show also that this set is redundant by
showing definitions for ?B and B

...
............
.................................. C in terms of the remaining connectives.

Exercise 44. Prove the following “curry/uncurry” equivalences.

(B ⊗ C)−◦H ≡ B −◦ C −◦H (∃x.B x)−◦H ≡ ∀x.(B x−◦H)

(B⊕C)−◦H ≡ (B−◦H)&(C−◦H) (! B)−◦H ≡ B ⇒ H 1−◦H ≡ H.

5.1 Sequent calculus proof for linear logic 47

Σ: ∆ − >, Γ
>R

Σ: ∆ − Γ

Σ: ∆,1 − Γ
1L

Σ: − 1
1R

Σ: ∆,0 − Γ
0L

Σ: ∆ − Γ

Σ: ∆ − ⊥, Γ
⊥R

Σ:⊥ − ⊥L

Σ: ∆, Bi − Γ

Σ: ∆, B1 & B2 − Γ
&L (i = 1, 2)

Σ: ∆ − B, Γ Σ: ∆ − C, Γ

Σ: ∆ − B & C, Γ
&R

Σ: ∆ − Bi, Γ

Σ: ∆ − B1 ⊕B2, Γ
⊕R (i = 1, 2)

Σ: ∆, B − Γ Σ: ∆, C − Γ

Σ: ∆, B ⊕ C − Γ
⊕ L

Σ: ∆, B1, B2 − Γ

Σ: ∆, B1 ⊗B2 − Γ
⊗ L

Σ: ∆1 − B, Γ1 Σ: ∆2 − C, Γ2

Σ: ∆1, ∆2 − B ⊗ C, Γ1, Γ2
⊗R

Σ: ∆1, B − Γ1 Σ: ∆2, C − Γ2

Σ: ∆1, ∆2, B
...

............
.................................. C − Γ1, Γ2

...
............
.................................. L

Σ: ∆ − B
...

............
.................................. C, Γ

Σ: ∆ − B, C, Γ

...
............
.................................. R

Σ: ∆ − Γ

Σ: ∆, ! B − Γ
! W

Σ: ∆, ! B, ! B − Γ

Σ: ∆, ! B − Γ
! C

Σ: ∆, B − Γ

Σ: ∆, ! B − Γ
! D

Σ: ∆ − Γ

Σ: ∆ − ? B, Γ
? W

Σ: ∆ − ? B, ? B, Γ

Σ: ∆ − ? B, Γ
? C

Σ: ∆ − B, Γ

Σ: ∆ − ? B, Γ
? D

Σ: ! ∆ − B, ? Γ

Σ: ! ∆ − ! B, ? Γ
! R

Σ: ! ∆, B − ? Γ

Σ: ! ∆, ? B − ? Γ
? L

Σ: ∆, B[t/x] − Γ

Σ: ∆, ∀x.B − Γ
∀L y: τ, Σ: ∆ − B[y/x], Γ

Σ: ∆ − ∀xτ .B, Γ
∀R

Σ: ∆ − B[t/x], Γ

Σ: ∆ − ∃x.BΓ
∃R y: τ, Σ: ∆, B[y/x] − Γ

Σ: ∆, ∃xτ .B − Γ
∃L,

Σ: ∆ − B, Γ

Σ: ∆, B⊥ − Γ
(·)⊥L

Σ: ∆, B − Γ

Σ: ∆ − B⊥, Γ
(·)⊥R

Fig. 5.1. The introduction rules for linear logic.

Σ: B − B
init

Σ: ∆ − B, Γ Σ: ∆′, B − Γ ′

Σ: ∆, ∆′ − Γ, Γ ′
cut

Fig. 5.2. The identity rules for linear logic.

Exercise 45. For reasons that will be presented later, some of the linear logic
connectives are divided into the positive connectives, namely, 1, 0, ⊗, ⊕
and the negative connectives, namely, ⊥, >,

...
............
.................................. , & Verify that the de

Morgan dual of a connective in one division is a connective in the other di-
vision. Let B and C be two formulas for which B ≡ !B and C ≡ ! C. Show
that the following equivalences hold for the positive connectives.

1 ≡ !1 0 ≡ !0 B ⊗ C ≡ !(B ⊗ C) B ⊕ C ≡ !(B ⊕ C)

If instead B and C are two formulas such that B ≡ ?B and C ≡ ?C. Show
that the following equivalences hold for the positive connectives.

⊥ ≡ ?⊥ > ≡ ?> B
...

............
.................................. C ≡ ?(B ...

............
.................................. C) B & C ≡ ?(B & C)

48 5 Proof Search in Linear Logic

Exercise 46. A modal prefix is a finite sequent of zero or more occurrences
of ! and ?. Let π be a modal prefix. Prove that ππB ≡ πB for all formulas B.
Show that there are only seven modal prefixes in LL up to equivalence: the
empty prefix, !, ?, ! ?, ? !, ! ? !, and ? ! ?.

Exercise 47. Consider adding to linear logic a second copy of the tensor, say,
one colored red. Show that you can prove that B⊗C is logically equivalent to
the same formula but with the red version of ⊗. That is, show that the rules
for tensor describe it uniquely. Show that this is true for all logical connectives
and quantifiers of linear logic except for the two modals.

5.2 Intuitionistic Linear Logic

In order to refine the logic programming languages described in Chapter 4, we
first restrict our attention to a subset of linear logic that is single-conclusion.
This, so-called, intuitionistic linear logic fragment does not contain ...

............
.................................. and ?

since both of these connectives have inference rules that require a sequent with
multiple conclusions. We also drop the ⊥ connective since this is a zero-ary
version of the ...

............
.................................. . We shall thus focus, instead, on the linear logic connectives

>, &,⊗,−◦, !, and ∀. Proof rules for these connectives are given in Figures 5.3
and 5.4. Here, the left-hand side of sequents are multisets of formulas. The
structural rules of contraction and weakening are given as the inference rules
!C (for contraction) and !W (for weakening), but they are only available for
formulas on the left of the form ! B. The syntactic variable ! ∆ denotes the
multiset {! C | C ∈ ∆}. We write Σ: ∆ `IL B if the sequent Σ: ∆ − B has a
proof in the proof system of Figure 5.3 and 5.4.

It is easy to see that linear logic, even over just the logical connectives
considered here, is not an abstract logic programming language. For example,
the sequents

a⊗ b − b⊗ a ! a − ! a⊗!a ! a & b − ! a b⊗ (b−◦ ! a) − ! a

are all provable in intuitionistic linear logic but do not have uniform IL-
proofs. The problem here is that ⊗R and ! R do not permute down over all
the left-introduction rules. For this reason, we consider, instead, a fragment
of linear logic that contains neither ! nor ⊗ as connectives. We do this by
making two changes to the formulation of linear logic given in Figures 5.3
and 5.4. First, sequents will be of the form Γ ; ∆ − B where B is a formula, Γ
is a set of formulas, and ∆ is a multiset of formulas. Such sequents have their
context divided into two parts: the unbounded part, Γ , that corresponds to
the left-hand side of intuitionistic sequents, and the bounded part, ∆, which
corresponds to left-hand side of sequents of the purely linear fragment of linear
logic (no !’s). Contraction and weakening are allowed in the unbounded part
of the context, but not in the bounded part. As we show below, the sequent
B1, . . . , Bn; C1, . . . , Cm − B can be mapped to the linear logic sequent

5.2 Intuitionistic Linear Logic 49

Σ: ∆ − > >R
Σ: ∆, Bi − C

Σ: ∆, B1 & B2 − C
&Li

Σ: ∆ − B Σ: ∆ − C

Σ: ∆ − B & C
&R

Σ: ∆1 − B Σ: ∆2, C − E

Σ: ∆1, ∆2, B −◦ C − E
−◦ L

Σ: ∆, B − C

Σ: ∆ − B −◦ C
−◦R

Σ: ∆, B1, B2 − C

Σ: ∆, B1 ⊗B2 − C
⊗ L

Σ: ∆1 − B Σ: ∆2 − C

Σ: ∆1, ∆2 − B ⊗ C
⊗R

Σ: ∆ − C

Σ: ∆, ! B − C
! W

Σ: ∆, ! B, ! B − C

Σ: ∆, ! B − C
! C

Σ: ∆, B − C

Σ: ∆, ! B − C
! D

Σ: ! ∆ − B

Σ: ! ∆ − ! B
! R

Σ: ∆, B[t/x] − C

Σ: ∆, ∀x. − C
∀L y: τ, Σ: ∆ − B[y/x]

Σ: ∆ − ∀xτ .B
∀R

Fig. 5.3. Introduction rules for IL, a fragment of linear logic.

Σ: B − B
init

Σ: ∆ − B Σ: ∆′, B − C

Σ: ∆, ∆′ − C
cut

Fig. 5.4. Identity rules for IL.

! B1, . . . , !Bn, C1, . . . , Cm − B.

Given this style of sequent, it is natural to make a second modification to
linear logic by introducing two kinds of implications: the linear implication,
for which the right-introduction rule adds its assumption to the bounded
part of a context, and the intuitionistic implication (written ⇒), for which
the right-introduction rule adds its assumption to the unbounded part of a
context. Of course, the intended meaning of B ⇒ C is (! B)−◦ C.

Figure 5.5 presents a proof system L for the logic connectives >, &,−◦,⇒,
and ∀. We write Σ: Γ ; ∆ `L B if the sequent Σ:Γ ; ∆ − B has a proof in L.
Notice that the bounded part of the left premise of the ⇒ L inference rule is
empty: this follows from the structure of an IL-proof with an application of
−◦L to a formula of the form !B −◦C. Notice as well that we assume without
loss of generality that the identity inference of this system applies only where
the right-hand side is an atomic formula. This technical restriction is used in
the proof of Proposition 5.2 below.

Figure 5.6 presents the two cut rules for L. Girard’s proof of the cut-
elimination theorem for linear logic [Gir87] can be adjusted to show that
these two cut rules are admissible over `L.

Proposition 5.1 Let B be a formula, Γ a set of formulas, and ∆ a multiset
of formulas, all over the logical constants >, &,−◦,⇒, and ∀. Let B¦ be the
result of repeatedly replacing all occurrences of C1 ⇒ C2 in B with (! C1)−◦C2.
(Applying ¦ to a set or multiset of formulas results in the multiset of ¦ applied
to each member.) Then Γ ;∆ `L B if and only if !(Γ ¦),∆¦ `IL B¦.

50 5 Proof Search in Linear Logic

Σ: Γ ; A − A
init

Σ: Γ, B; ∆, B − C

Σ: Γ, B; ∆ − C
absorb

Σ: Γ ; ∆ − > >R

Σ: Γ ; ∆, Bi − C

Σ: Γ ; ∆, B1 & B2 − C
& L

Σ: Γ ; ∆ − B Σ: Γ ; ∆ − C

Σ: Γ ; ∆ − B & C
& R

Σ: Γ ; ∆1 − B Σ: Γ ; ∆2, C − E

Σ: Γ ; ∆1, ∆2, B −◦ C − E
−◦ L

Σ: Γ ; ∆, B − C

Σ: Γ ; ∆ − B −◦ C
−◦R

Σ: Γ ; ∅ − B Σ: Γ ; ∆, C − E

Σ: Γ ; ∆, B ⇒ C − E
⇒ L

Σ: Γ, B; ∆ − C

Σ: Γ ; ∆ − B ⇒ C
⇒ R

Σ: Γ ; ∆, B[t/x] − C

Σ: Γ ; ∆, ∀x.B − C
∀L y: τ, Σ: Γ ; ∆ − B[y/x]

Σ: Γ ; ∆ − ∀xτ .B
∀R

Fig. 5.5. The L proof system.

Σ: Γ ′; ∆1 − B Σ: Γ ; ∆2, B − C

Σ: Γ ′; ∆1, ∆2 − C
cut

Σ: Γ ′; ∅ − B Σ: Γ, B; ∆ − C

Σ: Γ ′; ∆ − C
cut!

Fig. 5.6. In both forms of the cut rule for L, we require Γ ⊆ Γ ′.

The proof in each direction can be shown by presenting a simple transfor-
mation between proofs in the two proof systems.

Proposition 5.2 Let B be a formula, Γ a set of formulas, and ∆ a multiset
of formulas all over the logical connectives >, &,−◦,⇒, and ∀. The sequent
Γ ; ∆ − B has a proof in L if and only if it has a uniform proof in L.

A proof of this proposition can follow the lines given for fohh (see, for
example, the proof in [HM94]). We shall delay in providing more details to
the proof here since this proposition is a simple consequence of the focusing
result for full linear logic (see Proposition 5.6).

Exercise 48. Given a O-proof of a sequent in fohh, map it into a proof in L.
How are focused formulas in sequents in the O-proof treated in L proofs?

Let N1 be the set of all first-order formulas over the logical connectives
>, &,−◦,⇒, and ∀. It follows immediately from Proposition 5.2 that the triple
〈N1,N1,`L〉 is an abstract logic programming language. (Here, we assume
that formulas in N1 can occur in both the bounded and unbounded parts of
a sequent’s left-hand side.)

As we did in Section 4.4, the left-hand rules can be organized into a
backchaining discipline. As we have done before, we illustrate this by present
two different proof systems: the first using a formula labeling a sequent arrow
to denote the focus of the backchain rule and a second (equivalent) proof sys-
tem where backchaining is described as a single inference rules employing a
simple kind of “completion” of a logic program.

Figure 5.7 contains a formulation of a proof system in which the appli-
cation of the left-introduction rules is on a designated formula from the left

5.2 Intuitionistic Linear Logic 51

Σ:P, D; ∆
D−−− A

Σ:P, D; ∆ − A
decide!

Σ:P; ∆
D−−− A

Σ:P; ∆, D − A
decide

Σ:P; · A−−− A
init

Σ:P; ∆
D1−−− A

Σ:P; ∆
D1&D2−−− A

&L
Σ:P; ∆

D2−−− A

Σ:P; ∆
D1&D2−−− A

&L
Σ:P; ∆

D[t/x]−−− A

Σ:P; ∆
∀τ x.D−−− A

∀L

Σ:P; ∆1 − G Σ:P; ∆2
D−−− A

Σ:P; ∆1, ∆2
G−◦D−−− A

−◦L Σ:P; · − G Σ:P; ∆
D−−− A

Σ:P; ∆
G⇒D−−− A

⇒L

Fig. 5.7. Backchaining in N1: in the ∀L rule, t is a Σ-term of type τ .

(compare these rules to those in Figure 4.1). The new sequent arrow, written

as Σ:P; ∆
D−−− A, is used to display that designated formula on the sequent

arrow. The formula over the sequent arrow is the only one on which left-
introduction rules may be applied. The two decide rules are used to turn the
attempt to prove an atomic formula via the standard two-sided sequent into
an attempt to prove this new three-place sequent.

The sequent Σ:P;∆ − G or the sequent Σ:P; ∆
D−−− A has an O-proof if

it has a proof using the right rules in Figure 5.5 and the rules in Figure 5.7.
The notion Σ:P `O G denotes the proposition that the sequent Σ:P − G
has an O-proof. Notice that while we are reusing the notion of O-proof and
of `O from Section 4.4, there should be no confusion if we do so.

Notice that the rule for −◦L requires splitting the bounded context ∆1, ∆2

into two parts (when reading the rule bottom up). There are, of course, 2n

such splittings if that context has n ≥ 0 formulas.

Exercise 49. Show that an O-proof from Section 4.4 can be mapped to an
O-proof as just defined. What mapping from intuitionistic formulas to linear
logic formulas should be used?

Proposition 5.3 Let P be a finite subset of N1 formulas, let ∆ be a finite
multiset of N1 formulas, let G be an N1 formula. Then Σ:P; ∆ `O G if and
only if Σ:P; ∆ `L G.

For a second (less proof-theoretic) description of backchaining, consider
the following definition. Let the syntactic variable B range over the logical
formulas containing just the connectives >, &,−◦,⇒, and ∀. Then ‖B‖Σ is
the smallest set of triples of the form 〈Γ, ∆, B′〉, where Γ is a set of formulas
and ∆ is a multiset of formulas, such that

1. 〈∅, ∅, B〉 ∈ ‖B‖Σ ,
2. if 〈Γ,∆, B1 & B2〉 ∈ ‖B‖Σ then

〈Γ, ∆, B1〉 ∈ ‖B‖Σ and 〈Γ,∆, B2〉 ∈ ‖B‖Σ ;

52 5 Proof Search in Linear Logic

Σ: Γ ; ∅ − B1 . . . Σ: Γ ; ∅ − Bn Σ: Γ ; ∆1 − C1 . . . Σ: Γ ; ∆m − Cm

Σ: Γ ; ∆1, . . . , ∆m, B − A
BC

provided n, m ≥ 0, A is atomic, and 〈{B1, . . . , Bn}, {C1, . . . , Cm}, A〉 ∈ ‖B‖Σ .

Fig. 5.8. Backchaining for the intuitionistic linear logic fragment N .

3. if 〈Γ,∆, B1 ⇒ B2〉 ∈ ‖B‖Σ then 〈Γ ∪ {B1},∆, B2〉 ∈ ‖B‖Σ ;
4. if 〈Γ,∆, B1 −◦B2〉 ∈ ‖B‖Σ then 〈Γ, ∆] {B1}, B2〉 ∈ ‖B‖Σ ;
5. if 〈Γ,∆, ∀xτ .B′〉 ∈ ‖B‖Σ and t is a Σ-term of type τ , then

〈Γ, ∆,B′[t/x]〉 ∈ ‖B‖Σ .

Let L′ be the proof system that results from replacing the init, −◦L,⇒
L,&L, and ∀L rules in Figure 5.5 with the backchaining inference rule in
Figure 5.8.

Proposition 5.4 Let B be a formula, Γ a set of formulas, and ∆ a multiset
of formulas, all over the logical constants >, &,−◦,⇒, and ∀. The sequent
Σ: Γ ;∆ − B has a proof in L if and only if it has a proof in L′.

A proof of this proposition can follow the lines given for fohh (see, for
example, the proof in [HM94]). We shall delay in providing more details to
the proof here since this proposition is a simple consequence of the focusing
result for full linear logic (see Proposition 5.6).

It is now clear from the O-proof system (Figure 5.7 and with the right-
rules from Figure 5.5) that the dynamics of proof search in this setting has
improved beyond that described for fohh (Section 4.7). In particular, every
sequent in an O-proof of the sequent Σ:P; ∆ − G is either of the form

Σ,Σ′:P,P ′; ∆ − G′ or Σ,Σ′:P,P ′; ∆ D−−− A.

Just as with fohh, the signature can grown by the addition of Σ′ and the
unbounded context can grown by the addition of P ′. The bounded context,
∆, however, can change in much more general and arbitrary ways. Formulas
in the bounded context that were present at the root of a proof maybe not
necessarily be present later (higher) in the proof. As we shall see later, we can
use formulas in the bounded context to represent, say, state of a computation:
a switch that is off but later on, etc.

5.3 Embedding fohh into intuitionistic linear logic 53

5.3 Embedding fohh into intuitionistic linear logic

The abstract logic programming language 〈N1,N1,`L〉 has been also called
Lolli (after the lollipop shape of the −◦). As a programming language, Lolli
is essentially fohh with −◦ added. To make this connection more precise, we
should show how fohh can be embedded into Lolli (since, technically, they use
different sets of connectives). Girard has presented a mapping of intuitionis-
tic logic into linear logic that preserves not only provability but also proofs
[Gir87]. On the fragment of intuitionistic logic containing >, ∧, ⊃, and ∀, the
translation is given by:

(A)0 = A, where A is atomic,
(>)0 = 1,

(B1 ∧B2)0 = (B1)0 & (B2)0,
(B1 ⊃ B2)0 = !(B1)0 −◦ (B2)0,

(∀x.B)0 = ∀x.(B)0.

However, if we are willing to focus attention on only cut-free proofs in intu-
itionistic logic and in linear logic, it is possible to define a “tighter” translation.
Consider the following two translation functions.

(A)+ = (A)− = A, where A is atomic
(>)+ = 1 (>)− = >

(B1 ∧B2)+ = (B1)+ ⊗ (B2)+

(B1 ∧B2)− = (B1)− & (B2)−

(B1 ⊃ B2)+ = (B1)− ⇒ (B2)+

(B1 ⊃ B2)− = (B1)+ −◦ (B2)−

(∀x.B)+ = ∀x.(B)+

(∀x.B)− = ∀x.(B)−

If we allow positive occurrences of ∨ and ∃ within cut-free proofs, as in proofs
involving the hereditary Harrop formulas, we would also need the following
two clauses.

(B1 ∨B2)+ = (B1)+ ⊕ (B2)+

(∃x.B)+ = ∃x.(B)+

Proposition 5.5 Let Σ be a signature, B be a Σ-formula and Γ a set of
Σ-formulas, all over the logical constants >,∧,⊃, and ∀. Define Γ− to be
the multiset {C− | C ∈ Γ}. Then, Σ: Γ `I B if and only if the sequent
Σ: Γ−; ∅ − B+ has a cut-free proof in L′.

This proposition is a consequence of the more general Proposition 5.6.
A consequence of the proof of this proposition is that O-proofs involving

Horn clauses or hereditary Harrop formulas are essentially the same as the L-
proofs of their translations. This suggests how to design the concrete syntax of
a linear logic programming language so that the interpretation of Prolog and
λProlog programs remains unchanged when embedded into this new setting.
For example, the Prolog syntax

54 5 Proof Search in Linear Logic

A0 : − A1, . . . , An

is traditionally intended to denote (the universal closure of) the formula

(A1 ∧ . . . ∧An) ⊃ A0.

Given the negative translation above, such a Horn clause would then be trans-
lated to the linear logic formula

(A1 ⊗ . . .⊗An)−◦A0.

Thus, the comma in Prolog denotes ⊗ and : − denotes the converse of −◦.
For another example, the natural deduction rule for the introduction of

implication, often expressed using the diagram

(A)
...
B

A ⊃ B,

can be written as the following first-order formula for axiomatizing a truth
predicate:

∀A∀B((true(A) ⊃ true(B)) ⊃ true(A imp B)),

where the domain of quantification is over propositional formulas of the object-
language and imp is the object-level implication. This formula is written in
λProlog using the syntax

true (A imp B) :- true A => true B.

Given the above proposition, this formula can be translated to the formula

∀A∀B((true A ⇒ true B)−◦ true (A imp B)),

which means that the λProlog symbol => should denote ⇒. Thus, in the
implication introduction rule displayed above, the meta-level implication rep-
resented as three vertical dots can be interpreted as an intuitionistic implica-
tion while the meta-level implication represented as the horizontal bar can be
interpreted as a linear implication.

5.4 Multiple conclusion uniform proofs

Our proof search analysis so far has been has not addressed the nature of proof
search in multiple conclusion sequent calculi. Notice that with the restriction
to single-conclusion calculi, negation is restricted: an occurrence of B⊥ on the
left of the sequent arrow can only be replaced with an occurrence of B on the
right if the right-hand of the sequent is empty. Thus, the negation B⊥ can

5.4 Multiple conclusion uniform proofs 55

only be used (introduced on the left) if the sequent one is attempting to prove
encodes a negation (a sequent with an empty right-hand side). This kind of
restriction on negation is not imposed in a multi-conclusion sequent calculus:
at any point in searching for a proof of a sequent containing B⊥, that search
can, in principle, continue with B moved to the other side of the sequent
arrow. This switching of sides can be done without regard to the structure of
the rest of the sequent. With restrictions removed from negation, the logical
connectives enjoy rich dualities.

To extend the notion of goal-directed search, the key observation that we
wish to maintain is that goal formulas (right-hand side formulas) are able to be
introduced without any restriction, no matter what other formulas are on the
left or right of the sequent arrow. Thus, we should be able to simultaneously in-
troduce all the logical connectives on the right of the sequent arrow. Although
the sequent calculus cannot deal directly with simultaneous rule application,
reference to permutabilities of inference rules [Kle52] can indirectly address
simultaneity. That is, we can require that if two or more right-introduction
rules can be used to derive a given sequent, then all possible orders of applying
those right-introduction rules can, in fact, be done and the resulting proofs
are all equal modulo permutations of introduction rules.

More precisely: A cut-free sequent proof Ξ is uniform if for every subproof
Ξ ′ of Ξ and for every non-atomic formula occurrence B in the right-hand
side of the end-sequent of Ξ ′, there is a proof Ξ ′′ that is equal to Ξ ′ up to a
permutation of inference rules and is such that the last inference rule in Ξ ′′

introduces the top-level logical connective of B. Clearly this notion of uniform
proof extends the one given in Section 4.1. We similarly extend the notion of
abstract logic programming language to be a triple 〈D,G,`〉 such that for all
sequents with formulas from D on the left and formulas from G on the right,
that sequent as a proof if and only if it has a uniform proof.

In the Section 5.2, N1 was defined to be the set of all first-order formulas
over the logical connectives >, &,−◦,⇒, and ∀. Consider now the set N2 to
be all formulas over these connectives as well as ⊥, ...

............
.................................. , and ?. In Exercise 43 it

was established that this set of connectives is complete for all of linear logic.
In fact, one only needs to add the multiplicative false ⊥ since ? and ...

............
.................................. , can

be defined in terms of the remaining connectives.

?B ≡ (B −◦ ⊥) ⇒ ⊥ and B
...

............
.................................. C ≡ (B −◦ ⊥)−◦ C

The set N2 has been called the (first-order) Forum presentation of linear logic.
The F proof system for Forum, given in Figure 5.9, contains sequents

having the form

Σ: Ψ ; ∆ −→ Γ ; Υ and Σ:Ψ ;∆ B−→ Γ ;Υ,

where Σ is a signature, ∆ is a multiset of formulas, Γ is a list of formulas,
Ψ and Υ are sets of formulas, and B is a formula. All of these formulas are

56 5 Proof Search in Linear Logic

Σ-formulas from N2. The intended meanings of these two sequents in linear
logic are

!Ψ, ∆ − Γ, ? Υ and ! Ψ, ∆, B − Γ, ? Υ,

respectively, where the list Γ is coerced to a multiset. In the proof system of
Figure 5.9, the only right rules are those for sequents of the form Σ: Ψ ; ∆ −→
Γ ; Υ . In fact, the only formula in Γ that can be introduced is the left-most,
non-atomic formula in Γ . This style of selection is specified by using the
syntactic variable A to denote a list of atomic formulas. Thus, the right-hand
side of a sequent matches A, B&C, Γ if it contains a formula that is a top-level
& for which at most atomic formulas can occur to its left. Both A and Γ may
be empty. Left rules are applied only to the formula B that labels the sequent
arrow in Σ:Ψ ;∆ B−→ A;Υ . The notation A1 +A2 matches a list A if A1 and
A2 are lists that can be interleaved to yield A: that is, the order of members
in A1 and A2 is as in A, and (ignoring the order of elements) A denotes the
multiset set union of the multisets represented by A1 and A2.

Given the intended interpretation of sequents in F , the following soundness
theorem can be proved by simple induction on the structure of F proofs.

Theorem 2 (Soundness). If the sequent Σ: Ψ ; ∆ −→ Γ ; Υ has an F proof
then ! Ψ,∆ ` Γ, ? Υ . If the sequent Σ: Ψ ; ∆ B−→ A;Υ has an F proof then
!Ψ, ∆, B ` Γ, ? Υ .

The completeness theorem for Forum and the F proof system is delayed
to the next section.

As a presentation of linear logic, Forum and its proof system F is a
rather odd. First, Forum’s proof system does not contain the cut-rule whereas
most presentation of linear logic are concerned with the dynamics of cut-
elimination. Since we are interested in proof search instead of proof normal-
ization, this dispensing with the cut-rule is understandable. Second, negation
is not a primitive and the de Morgan dual of a logical connective in N2 is not,
in fact, present in N2. Again, most proof systems for linear logic (even the
one in Figure 5.1) are more symmetric in that if they contain a connective,
they also contain its dual. Instead, Forum gives the two implications, −◦ and
⇒, are a central role and, thus, contribute to the asymmetric nature of Forum
specifications. The choice of implications make it easy for Forum to generalize
logic programming based on Horn clauses, hereditary Harrop formulas, and
Lolli. The backchaining rule is also naturally understood as reading an impli-
cation in “reverse”. Although cut is not an inference rule and duality is not a
feature of the logical connectives used in Forum, cut-elimination and duality
will play a significant role in how one reasons about Forum specifications.

5.5 Focused proofs

Completeness of F for full linear logic is essentially a translation of the com-
pleteness of focused proofs [And92], a result that we now present.

5.5 Focused proofs 57

Σ: Ψ ; ∆ −→ A,>, Γ ; Υ
>R

Σ: Ψ ; ∆ −→ A, B, Γ ; Υ Σ: Ψ ; ∆ −→ A, C, Γ ; Υ

Σ: Ψ ; ∆ −→ A, B & C, Γ ; Υ
& R

Σ: Ψ ; ∆ −→ A, Γ ; Υ

Σ: Ψ ; ∆ −→ A,⊥, Γ ; Υ
⊥R

Σ: Ψ ; ∆ −→ A, B, C, Γ ; Υ

Σ: Ψ ; ∆ −→ A, B
...

............
.................................. C, Γ ; Υ

...
............
.................................. R

Σ: Ψ ; B, ∆ −→ A, C, Γ ; Υ

Σ: Ψ ; ∆ −→ A, B −◦ C, Γ ; Υ
−◦ R

Σ: B, Ψ ; ∆ −→ A, C, Γ ; Υ

Σ: Ψ ; ∆ −→ A, B ⇒ C, Γ ; Υ
⇒ R

y: τ, Σ: Ψ ; ∆ −→ A, B[y/x], Γ ; Υ

Σ: Ψ ; ∆ −→ A, ∀τx.B, Γ ; Υ
∀R Σ: Ψ ; ∆ −→ A, Γ ; B, Υ

Σ: Ψ ; ∆ −→ A, ? B, Γ ; Υ
?R

Σ: B, Ψ ; ∆
B−→ A; Υ

Σ: B, Ψ ; ∆ −→ A; Υ
decide !

Σ: Ψ ; ∆ −→ A, B; B, Υ

Σ: Ψ ; ∆ −→ A; B, Υ
decide ?

Σ: Ψ ; ∆
B−→ A; Υ

Σ: Ψ ; B, ∆ −→ A; Υ
decide

Σ: Ψ ; · A−→ A; Υ
initial

Σ: Ψ ; · A−→ ·; A, Υ
initial ?

Σ: Ψ ; · ⊥−→ ·; Υ
⊥L

Σ: Ψ ; ∆
Bi−→ A; Υ

Σ: Ψ ; ∆
B1&B2−→ A; Υ

& Li
Σ: Ψ ; B −→ ·; Υ
Σ: Ψ ; · ? B−→ ·; Υ

? L

Σ: Ψ ; ∆1
B−→ A1; Υ Σ: Ψ ; ∆2

C−→ A2; Υ

Σ: Ψ ; ∆1, ∆2
B

...
............
.................................. C−→ A1 +A2; Υ

...
............
.................................. L

Σ: Ψ ; ∆
B[t/x]−→ A; Υ

Σ: Ψ ; ∆
∀τ x.B−→ A; Υ

∀L

Σ: Ψ ; ∆1 −→ A1, B; Υ Σ: Ψ ; ∆2
C−→ A2; Υ

Σ: Ψ ; ∆1, ∆2
B−◦C−→ A1 +A2; Υ

−◦ L

Σ: Ψ ; · −→ B; Υ Σ: Ψ ; ∆
C−→ A; Υ

Σ: Ψ ; ∆
B⇒C−→ A; Υ

⇒ L

Fig. 5.9. The F proof system. The rule ∀R has the proviso that y is not in the
signature Σ, and the rule ∀L has the proviso that t is a Σ-term of type τ . In &Li,
i = 1 or i = 2.

Let L2 be the set of formulas all of whose logical connectives are from
the list ⊥, ...

............
.................................. , >, &, ?, ∀ (those used in L1 minus the two implications) along

with the duals of these connectives, namely, 1, ⊗, 0, ⊕, !, and ∃. Negations of
atomic formulas are also allowed, and we write B⊥, for non-atomic formula B,
to denote the formula that results from giving negations atomic scope using
the de Morgan dualities of linear logic. (Notice that negation is no longer a
logical connective: it computes de Morgan dual.) A formula is asynchronous
if it has a top-level logical connective that is either ⊥, ...

............
.................................. , >, &, ?, or ∀, and

is synchronous if it has a top-level logical connective that is either 1, ⊗, 0, ⊕,
!, and ∃.

Figure 5.10 contains the J proof system, which is composed of two kinds of
(one-sided) sequents, namely, Σ:Ψ ;∆ ⇑ L and Σ:Ψ ;∆ ⇓ G. In such sequents,

58 5 Proof Search in Linear Logic

Σ: Ψ ; ∆ ⇑ L

Σ: Ψ ; ∆ ⇑ ⊥, L
[⊥]

Σ: Ψ ; ∆ ⇑ F, G, L

Σ: Ψ ; ∆ ⇑ F
...

............
.................................. G, L

[
...

............
..................................]

Σ: Ψ, F ; ∆ ⇑ L

Σ: Ψ ; ∆ ⇑ ? F, L
[?]

Σ: Ψ ; ∆ ⇑ >, L
[>]

Σ: Ψ ; ∆ ⇑ F, L Σ: Ψ ; ∆ ⇑ G, L

Σ: Ψ ; ∆ ⇑ F & G, L
[&]

y : τ, Σ: Ψ ; ∆ ⇑ B[y/x], L

Σ: Ψ ; ∆ ⇑ ∀τx.B, L
[∀]

Σ: Ψ ; · ⇓ 1
[1]

Σ: Ψ ; ∆1 ⇓ F Σ: Ψ ; ∆2 ⇓ G

Σ: Ψ ; ∆1, ∆2 ⇓ F ⊗G
[⊗]

Σ: Ψ ; · ⇑ F

Σ: Ψ ; · ⇓ ! F
[!]

Σ: Ψ ; ∆ ⇓ Fi

Σ: Ψ ; ∆ ⇓ F1 ⊕ F2
[⊕i]

Σ: Ψ ; ∆ ⇓ B[t/x]

Σ: Ψ ; ∆ ⇓ ∃τx.B
[∃]

Σ: Ψ ; ∆, F ⇑ L

Σ: Ψ ; ∆ ⇑ F, L
[R ⇑] provided that F is not asynchronous

Σ: Ψ ; ∆ ⇑ F

Σ: Ψ ; ∆ ⇓ F
[R ⇓] provided that F is either asynchronous or an atom

Σ: Ψ ; A ⇓ A⊥
[I1]

Σ: Ψ, A; · ⇓ A⊥
[I2]

Σ: Ψ ; ∆ ⇓ F

Σ: Ψ ; ∆, F ⇑ · [D1]
Σ: Ψ ; ∆ ⇓ F

Σ: Ψ, F ; ∆ ⇑ · [D2]

Fig. 5.10. The J proof system. The rule [∀] has the proviso that y is not in Σ, and
the rule [∃] has the proviso that t is a Σ-term of type τ . In [⊕i], i = 1 or i = 2.

Ψ is a set of formulas, ∆ is a multiset of formulas, L is a list of formulas, and
G is a single formula. Andreoli showed in [And92] that this proof system is
complete for first-order linear logic.

Proposition 5.6 If ! Ψ, ∆ ` Γ, ?Υ then the sequent Σ:Ψ⊥, Υ ; ∆⊥ ⇑ Γ has a
J proof.

The following theorem shows that the F and J proof systems are similar,
and in this way, the completeness for F is established. Before proving the com-
pleteness of F we state the following technical result used in the completeness
theorem (proved by induction on the structure of proofs in F).

Lemma 1. Let A and A′ be lists of atoms that are permutations of each
other. If the sequent Σ: Ψ ; ∆ −→ A, Γ ; Υ has an F proof then so too does
Σ: Ψ ; ∆ −→ A′, Γ ; Υ . Similarly, if the sequent Σ:Ψ ; ∆ B−→ A; Υ has an F
proof then so too does Σ: Ψ ; ∆ B−→ A′;Υ .

Theorem 3 (Completeness). Let Σ be a signature, ∆ be a multiset of L1

Σ-formulas, Γ be a list of L1 Σ-formulas, and Ψ and Υ be sets of L1 Σ-
formulas. If !Ψ, ∆ ` Γ, ?Υ then the sequent Σ: Ψ ; ∆ −→ Γ ; Υ has a proof in
F .

The proof of this is a tedious proof that one proof system can be translated
to the other proof system. For a detailed proof, see [Mil96].

6

Linear Logic Programming

In order to present several examples in this chapter, we shall extend the use
of λProlog-like syntax to allow to specify some linear logic programs. The
symbols , (comma), true, =>, and :- of Prolog and λProlog will be used
here to represent ⊗, 1, ⇒, and the converse of −◦, respectively. In addition,
we allow formulas to have occurrences of &, bang, erase, -o, and <=, which
denote, respectively, &, !, >, −◦, and the converse of ⇒. Finally, the clauses
of a program are assumed to reside in the unbounded portion of an initial
proof context: that is, an surrounding ! is assumed for any program clauses
we display.

6.1 Toggling a switch

If we assume that the state of a switch is stored in the bounded part of the
proof context using one of the atomic formulas on or off, then the following
two clauses specify a higher-order predicate toggle that is provable of any
formula G in a given context if G is provable when the switch is set to the
opposite setting.

toggle G :- on, (off -o G).
toggle G :- off, (on -o G).

While this example involves a quantification over propositions (the variable
G), and as such is not strictly a first-order specification, the intended meaning
of the specification should be clear. (For now, one can fix G to be any goal.)
Figure 6.1 (in which the set Γ is assumed to contain the above two clauses for
toggle) shows how a bottom-up search using these clauses progresses. This
linear refinement of hereditary Harrop formulas provides a straightforward
declarative treatment of state update in that setting.

60 6 Linear Logic Programming

Γ ; off −→ off

....
Γ ; ∆, on −→ G

Γ ; ∆ −→ on−◦ G
Γ ; ∆, off −→ off⊗ (on−◦ G)

Γ ; ∆, off −→ toggle G

Fig. 6.1. Proof search for toggling a switch

6.2 Permuting a list

Since the bounded part of contexts in L-proofs are multisets, it is a simple
matter to permute a list by first loading the list’s members into the bounded
part of a context and then unloading them. The latter operation is nondeter-
ministic and can succeed once for each permutation of the loaded list. Consider
the following simple program:

load nil K :- unload K.
load (X::L) K :- (item X -o load L K).
unload nil.
unload (X::L) :- item X, unload L.

Here, nil denotes the empty list and :: the list constructor. The meaning
of load and unload is dependent on the contents of the bounded part of the
context, so the correctness of these clauses must be stated relative to a context.
Let Γ be a set of formulas containing the four formulas displayed above and
any other formulas that do not contain either item, load, or unload as their
head symbol. (The head symbol of a formula of the form A or G −◦ A is the
predicate symbol that is the head of the atom A.) Let ∆ be the multiset
containing exactly the atomic formulas

item a1, . . ., item an.

We shall say that such a context encodes the multiset {a1, . . . , an}. It is now
an easy matter to prove the following two assertions about load and unload:

• The goal (unload K) is provable from Γ ;∆ if and only if K is a list contain-
ing the same elements with the same multiplicity as the multiset encoded
in ∆.

• The goal (load L K) is provable from Γ ;∆ if and only if K is a list contain-
ing the same elements with the same multiplicity as in the list L together
with the multiset encoded in the context ∆.

In order for load and unload to correctly permute the elements of a list, we
must guarantee two things about the context: first, the predicates item, load,
and unload cannot be used as head symbols in any part of the context except
as specified above and, second, the bounded part of a context must be empty
at the start of the computation of a permutation. It is possible to handle the

6.4 Context management in theorem provers 61

first condition by making use of appropriate quantifiers over the predicate
names item, load, and unload (we discuss such “higher-order quantification”
elsewhere). The second condition — that the unbounded part of a context is
empty — can be managed by making use of the modal nature of !, which we
now discuss in more detail.

Consider proving the sequent Γ ; ∆ −→ !G1 ⊗ G2, where Γ and ∆ are
program clauses and G1 and G2 are goal formulas. Given the completeness
of uniform proofs for the system L′, this is provable if and only if the two
sequents Γ ; ∅ −→ G1 and Γ ; ∆ −→ G2 are provable. In other words, the use
of the “of-course” operator forces G1 to be proved with an empty bounded
context. In a sense, since bounded resources can come and go within contexts
during a computation, they can be viewed as “contingent” resources, whereas
unbounded resources are “necessary”. The “of-course” operator attached to
a goal ensures that the provability of the goal depends only on the necessary
and not the contingent resources of the context.

It is now clear how to define the permutation of two lists given the example
program above: add either the formula

perm L K :- bang(load L K).

or, equivalently, the formula

perm L K <= load L K.

to those defining load and unload. Thus attempting to prove (perm L K) will
result in an attempt to prove (load L K) with an empty bounded context.
From the description of load above, L and K must be permutations of each
other.

Exercise 50. Prove that there is a goal-directed proof of !G if and only if
there is such a proof of 1 & G.

6.3 Lazy splitting of contexts

Deal with splitting. Do this by making the left multiset an abstractions and
show how it can be reimplemented.

6.4 Context management in theorem provers

Intuitionistic logic is a useful meta-logic for the specification of provability in
various object-logics. For example, consider axiomatizing provability in propo-
sitional, intuitionistic logic over the logical symbols imp, and, or, and false
(denoting object-level implication, conjunction, disjunction, and absurdity). A
reasonable specification of the natural deduction inference rule for implication
introduction is:

62 6 Linear Logic Programming

pv (A imp B) :- hyp A => pv B.

where pv and hyp are meta-level predicates denoting provability and hypoth-
esis. (This specification of implication introduction is similar to that given
in the preceding section.) Operationally, this formula states that one way to
prove A imp B is to add the object-level hypothesis A to the context and
attempt a proof of B. In the same setting, conjunction elimination can be
expressed by the formula

pv G :- hyp (A and B), (hyp A => hyp B => pv G).

This formula states that in order to prove some object-level formula G, first
check to see if there is a conjunctive hypothesis, say (A and B), in the context
and, if so, attempt a proof of G from the context extended with the two
hypotheses A and B. Other introduction and elimination rules can be specified
similarly. Finally, the formula

pv G :- hyp G.

is needed to actually complete a proof. With the complete specification, it is
easy to prove that there is a proof of (pv G) from the assumptions (hyp H1),
. . ., (hyp Hi) in the meta-logic if and only if there is a proof of G from the
assumptions H1, . . ., Hi in the object-logic.

pv (A and B) :- pv A & pv B.

pv (A imp B) :- hyp A -o pv B.

pv (A or B) :- pv A.

pv (A or B) :- pv B.

pv G :- hyp (A and B), (hyp A -o hyp B -o pv G).

pv G :- hyp (A or B), ((hyp A -o pv G) & (hyp B -o pv G)).

pv G :- hyp (C imp B), ((hyp (C imp B) -o pv C) &

(hyp B -o pv G)).

pv G :- hyp false, erase.

pv G :- hyp G, erase.

Fig. 6.2. A specification of an intuitionistic propositional object-logic

Unfortunately, an intuitionistic meta-logic does not permit the natural
specification of provability in logics that have restricted contraction rules —
such as linear logic itself — because hypotheses are maintained in intuitionistic
logic contexts and hence can be used zero or more times. Even in describing
provability for propositional intuitionistic logic there are some drawbacks.
For instance, it is not possible to logically express the fact that a conjunctive
or disjunctive formula in the proof context needs to be eliminated at most
once. So, for example, in the specification of conjunction elimination, once
the context is augmented with the two conjuncts, the conjunction itself is no
longer needed in the context.

6.5 Multiset rewriting 63

If, however, we replace the intuitionistic meta-logic with our refinement
based on linear logic, these observations about use and re-use in intuitionistic
logic can be specified elegantly, as is done in Figure 6.2. In that specification,
a hypothesis is both “read from” and “written into” a context during the
elimination of implications. All other elimination rules simply “read from”
the context; they do not “write back.” The formulas represented by the last
two clauses in Figure 6.2 use a ⊗ with >: this allows for all unused hypotheses
to be erased, since the object logic has no restrictions on weakening.

It should be noted that this specification cannot be used effectively with
a depth-first interpreter because if the implication left rule can be used once,
it can be used any number of times, thereby causing the interpreter to loop.
Fortunately, improvements in the implication left-introduction rule are known.
For example, the proof system given by Dyckhoff in [Dyc92] can be expressed
directly in this setting by replacing the one formula specifying implication
elimination in Figure 6.2 with the five clauses for implication elimination
and the (partial) axiomatization of object-level atomic formulas in Figure 6.3.
Executing this linear logic program in a depth-first interpreter yields a decision

pv G :- hyp ((C imp D) imp B),

((hyp (D imp B) -o pv (C imp D)) & (hyp B -o pv G)).

pv G :- hyp ((C and D) imp B), (hyp (C imp (D imp B)) -o pv G).

pv G :- hyp ((C or D) imp B),

(hyp (C imp B) -o hyp (D imp B) -o pv G).

pv G :- hyp (false imp B), pv G.

pv G :- hyp (A imp B), isatom A, hyp A, (hyp B -o hyp A -o pv G).

isatom p.

isatom q.

isatom r.

Fig. 6.3. A contraction-free formulation of ⊃ L

procedure for propositional intuitionistic logic.

6.5 Multiset rewriting

The ideas presented in the permutation example can easily be expanded upon
to show how the bounded part of a context can be employed to do multiset
rewriting. Let H be the multiset rewriting system {〈Li, Ri〉 | i ∈ I} where
for each i ∈ I (a finite index set), Li and Ri are finite multisets. Define the
relation M =⇒H N on finite multisets to hold if there is some i ∈ I and some
multiset C such that M is C]Li and N is C]Ri. Let =⇒∗

H be the reflexive
and transitive closure of =⇒H .

64 6 Linear Logic Programming

Given a rewriting system H, we wish to specify a binary predicate rewrite
such that (rewrite L K) is provable if and only if the multisets encoded by
L and K stand in the =⇒∗

H relation. Let Γ0 be the following set of formulas
(these are independent of H):

rewrite L K <= load L K.

load (X::L) K :- (item X -o load L K).
load nil K :- rew K

rew K :- unload K.

unload (X::L) :- item X, unload L.
unload nil.

Taken alone, these clauses give a slightly different version of the permute
program of the last example. The only addition is the binary predicate rew,
which will be used as a socket into which we can plug a particular rewrite
system.

In order to encode a rewrite system H, each rewrite rule in H is given by
a formula specifying an additional clause for the rew predicate as follows: If
H contains the pair 〈{a1, . . . , an}, {b1, . . . , bm}〉 then this pair is encoded as
the clause:

rew K :- item a1, ..., item an,
(item b1 -o ... -o item bm -o rew K).

If either n or m is zero, the appropriate portion of the formula is deleted.
Operationally, this clause reads the ai’s out of the bounded context, loads
the bi’s, and then attempts another rewrite. Let ΓH be the set resulting
from encoding each pair in H. As an example, if H is the set of pairs
{〈{a, b}, {b, c}〉, 〈{a, a}, {a}〉} then ΓH is the set of clauses:

rew K :- item a, item b, (item b -o (item c -o rew K)).
rew K :- item a, item a, (item a -o rew K).

The following claim is easy to prove about this specification: if M and N
are multisets represented as the lists L and K, respectively, then M =⇒∗

H N
if and only if the goal (rewrite L K) is provable from the context Γ0, ΓH ; ∅.

One drawback of this example is that rewrite is a predicate on lists,
though its arguments are intended to represent multi-sets, and are operated
on as such. Therefore, for each M , N pair this program generates a factor of
at least n! more proofs than the corresponding rewriting proofs, where n is
the cardinality of the multiset N . This redundancy could be addressed either
by implementing a data type for multi-sets or, perhaps, by investigating a
non-commutative variant of linear logic.

Exercise 51. Let P and Q be the tensor (⊗) of atomic formulas. Show that
` P −◦Q implies ` Q−◦ P .

6.7 Asynchronous Communications 65

6.6 Examples in Forum

To illustrate how multiset rewriting is specified in Forum, consider the clause

a
...

............
.................................. b ◦− c

...
............
.................................. d

...
............
.................................. e.

When presenting examples of Forum code we often use (as in this example)
◦− and ⇐ to be the converses of −◦ and ⇒ since they provide a more natural
operational reading of clauses (similar to the use of :- in Prolog). Here, ...

............
..................................

binds tighter than ◦− and ⇐. Consider the sequent Σ: Ψ ; ∆ −→ a, b, Γ ; Υ
where the above clause is a member of Ψ . A proof for this sequent can then
look like the following.

Σ:Ψ ;∆ −→ c, d, e, Γ ;Υ
Σ:Ψ ;∆ −→ c, d

...
............
.................................. e, Γ ; Υ

Σ:Ψ ;∆ −→ c
...

............
.................................. d

...
............
.................................. e, Γ ; Υ

Σ: Ψ ; · a−→ a; Υ Σ: Ψ ; · b−→ b; Υ

Σ:Ψ ; · a
...

............
.................................. b−→ a, b;Υ

Σ:Ψ ;∆ c
...

............
.................................. d
...

............
.................................. e−◦a...

............
.................................. b−→ a, b, Γ ;Υ

Σ:Ψ ;∆ −→ a, b, Γ ;Υ

We can interpret this fragment of a proof as a reduction of the multiset a, b, Γ
to the multiset c, d, e, Γ by backchaining on the clause displayed above.

Of course, a clause may have multiple, top-level implications. In this case,
the surrounding context must be manipulated properly to prove the sub-goals
that arise in backchaining. Consider a clause of the form

G1 −◦G2 ⇒ G3 −◦G4 ⇒ A1
...

............
.................................. A2

labeling the sequent arrow in the sequent Σ:Ψ ;∆ −→ A1, A2,A;Υ . An at-
tempt to prove this sequent would then lead to attempt to prove the four
sequents

Σ:Ψ ;∆1 −→ G1,A1;Υ Σ: Ψ ; · −→ G2; Υ

Σ:Ψ ;∆2 −→ G3,A2;Υ Σ: Ψ ; · −→ G4; Υ

where ∆ is the multiset union of ∆1 and ∆2, and A is A1 + A2. In other
words, those subgoals immediately to the left of an ⇒ are attempted with
empty bounded contexts: the bounded contexts, here ∆ and A, are divided
up and used in attempts to prove those goals immediately to the left of −◦.

6.7 Asynchronous Communications

Provide the two ways to view asyn communications from my FCS paper:
multiset rewriting with one agent thread with messages. Also so the other
form that uses nested implications. The proof of equivalence waits until the
hop chapter is finished.

7

Solutions to Selected Exercises

Exercise 12 (page 20). We provide only a high-level outline of the proof:
various details need to be filled in.

For one direction, we shall show how to transform a C-proof with restart
to a C-proof without restart. Since I-proofs are C-proofs, this establishes the
forward implication. Restarts can be removed one-by-one via the following
transformation.

Ξ
Σ: Γ − B,∆

Σ: Γ − C, ∆
Restart

...
Σ′: Γ ′ − B, ∆′

=⇒

Ξ
Σ:Γ − B, ∆

Σ:Γ − C, B, ∆
wR

...
Σ′: Γ ′ − B, B, ∆′ cR

Σ′: Γ ′ − B, ∆′

That is, the restart rule can be implemented using a contraction and a weak-
ening on the right. Of course, one must check that the formula B can be added
to all possible inference rules below this occurrence of the restart rule.

For a sketch of the converse direction, consider a C-proof. Using Exer-
cise 22, we can assume that both the antecedent and succedent of sequents
increase monotonically when moving from the bottom up. (Note that this
form of proof uses a different form of the init rule and we are not allowed to
use the wR rule.) Now mark a formula on the right-hand side of every sequent
as follows. The single formula on the right of the endsequent is marked (as-
suming that we start proof search with a single formula to prove). If the last
inference rule of the proof is a left-introduction rule, then the marked occur-
rence of the formula in the conclusion is also marked in all the premises. If the
last inference rule is a right-introduction rule, the we have two cases: If the
introduced formula is already marked, then mark its subformulas that appear
in the right-hand side of any premise (for example, if the marked formula is
A ⇒ B then mark B in the premise; if the marked formula is A ∧ B then
mark A in one premise and B in the other; etc). Otherwise, the right-hand

68 7 Solutions to Selected Exercises

formula introduced is not marked, in which case, we have a marking break,
and we mark in the premises of the inference rules the subformulas of the
right-hand formula introduced and continue. The only other rules that might
be applied are: cL, in which case the marked formula on the right persists
from conclusion to premise; cL, in which case, if the marked formula is the
one contracted then select one of its copies to mark in the premise, otherwise,
the marked formula persists in the premise; and init, in which case, if the
marked formula on the right is not the same as the formula on the left, then
this occurrence of the init rule is also a marking break.

To illustrate this notion of marking formulas, consider the following C-
proof.

p − p, q∗, p ⊃ q, p ∨ (p ⊃ q) init∗

− p, (p ⊃ q)∗, p ⊃ q, p ∨ (p ⊃ q)
⊃R

− p, (p ⊃ q)∗, p ∨ (p ⊃ q) cR

− p∗, p ∨ (p ⊃ q), p ∨ (p ⊃ q) ∨R∗

− p∗, p ∨ (p ⊃ q) cR

− p ∨ (p ⊃ q)∗, p ∨ (p ⊃ q) ∨R

− p ∨ (p ⊃ q)∗ cR

Here, an asterisk is used to indicate marked formulas and to indicate which
inference rules correspond to marking gaps.

Now the I-proof with Restart is built as follows. For sequents that are the
conclusion of a rule that is not a marking break, delete all non-marked formula
on the right. For sequents that are the conclusion of a rule that is a marking
break, then this one inference rule become two: an instance of the Restart
rule must be inserted and then the version of the inference rule corresponding
to the marking break is put into the proof with the non-marked right-hand
formulas deleted.

For example, performing this transformation on the C-proof yields the
following structure.

p − p init

p − q Restart

− p ⊃ q ⊃R

− p ⊃ q cR

− p ∨ (p ⊃ q) ∨R

− p Restart

− p cR

− p ∨ (p ⊃ q) ∨R

− p ∨ (p ⊃ q) cR

This sequence of rules is not yet an I-proof: there are three occurrences of cR
that are not allowed in I-proofs: these can either be deleted or reclassified as
Restart rules.

7 Solutions to Selected Exercises 69

Exercise 51 (page 64). Prove by induction on n that if Γ is a multiset of
atoms and P is a tensor of atoms A1 ⊗ · · · ⊗ An (n ≥ 0) then Γ − P is
provable if and only if Γ is equal to the multiset {A1, . . . , An}. If n = 0 then
this case is immediate since P is 1 and Γ is empty. Now, assume that n > 0
and that P is (A1 ⊗ · · · ⊗Ai)⊗ (Ai+1 ⊗ · · · ⊗An). If Γ − P is provable then
there is a multiset partition of Γ into Γ1 and Γ2 such that both sequents Γ1 −
A1⊗· · ·⊗Ai and Γ2 − Ai+1⊗· · ·⊗An are provable. By induction, we have that
Γ1 is {A1, . . . , Ai} and Γ2 is {Ai+1, . . . , An} and, hence, Γ is {A1, . . . , An}.
For the converse, assume that Γ1 and Γ2 are the multiset of atomic formula
occurrences in P1 and P2, respectively. By induction, the sequents Γ1 − P1

and Γ2 − P2 are provable and, hence, so is Γ − P .

References

[Abr93] Samson Abramsky. Computational interpretations of linear logic. Theo-
retical Computer Science, 111:3–57, 1993.

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in linear
logic. J. of Logic and Computation, 2(3):297–347, 1992.

[Chu40] Alonzo Church. A formulation of the simple theory of types. J.of Symbolic
Logic, 5:56–68, 1940.

[Dyc92] Roy Dyckhoff. Contraction-free sequent calculi for intuitionistic logic.
J.of Symbolic Logic, 57(3):795–807, September 1992.

[Fit69] Melvin C. Fitting. Intuitionistic Logic Model Theory and Forcing. North-
Holland, 1969.

[Gal86] Jean H. Gallier. Logic for Computer Science: Foundations of Automatic
Theorem Proving. Harper & Row, 1986.

[Gen69] Gerhard Gentzen. Investigations into logical deductions. In M. E. Szabo,
editor, The Collected Papers of Gerhard Gentzen, pages 68–131. North-
Holland, Amsterdam, 1969.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102,
1987.

[GTL89] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cam-
bridge University Press, 1989.

[Gug02] Alessio Guglielmi. A system of interaction and structure. Accepted by
ACM Transactions on Computational Logic, 2002.

[HM94] Joshua Hodas and Dale Miller. Logic programming in a fragment of
intuitionistic linear logic. Information and Computation, 110(2):327–365,
1994.

[Kle52] Stephen Cole Kleene. Permutabilities of inferences in Gentzen’s calculi
LK and LJ. Memoirs of the American Mathematical Society, 10:1–26,
1952.

[Mil89] Dale Miller. A logical analysis of modules in logic programming. Journal
of Logic Programming, 6(1-2):79–108, January 1989.

[Mil96] Dale Miller. Forum: A multiple-conclusion specification logic. Theoretical
Computer Science, 165(1):201–232, September 1996.

[ML82] Per Martin-Löf. Constructive mathematics and computer programming.
In Sixth International Congress for Logic, Methodology, and Philosophy
of Science, pages 153–175, Amsterdam, 1982. North-Holland.

72 References

[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov.
Uniform proofs as a foundation for logic programming. Annals of Pure
and Applied Logic, 51:125–157, 1991.

[MP02] Dale Miller and Elaine Pimentel. Using linear logic to reason about
sequent systems. In Uwe Egly and Christian G. Fermüller, editors, In-
ternational Conference on Automated Reasoning with Analytic Tableaux
and Related Methods, volume 2381 of LNCS, pages 2–23. Springer, 2002.

[MP04] Dale Miller and Elaine Pimentel. Linear logic as a framework for specify-
ing sequent calculus. In Jan van Eijck, Vincent van Oostrom, and Albert
Visser, editors, Logic Colloquium ’99: Proceedings of the Annual European
Summer Meeting of the Association for Symbolic Logic, Lecture Notes in
Logic, pages 111–135. A K Peters Ltd, 2004.

[Pra65] Dag Prawitz. Natural Deduction. Almqvist & Wiksell, Uppsala, 1965.
[Tro73] Anne Sjerp Troelstra, editor. Metamathematical Investigation of Intu-

itionistic Arithmetic and Analysis, volume 344 of Lecture Notes in Math-
ematics. Springer Verlag, 1973.

