Applications de la compacité propositionnelle

En 1977, Appel et Haken prouvent le théorème des 4 couleurs¹ :

Il suffit de 4 couleur pour colorier les noeuds de tout graphe planaire fini de telle sorte que deux noeud adjacents n'aient pas la même couleur.

Le théorème de compacité nous permet de prouver alors :

Théorème : (4-coloriage des graphes planaires infinis)

Il suffit de 4 couleur pour colorier les noeuds de tout graphe planaire <u>infini</u> de telle sorte que deux noeud adjacents n'aient pas la même couleur.

Résolution

Méthode par réfutation :

 $\Delta \models A \text{ iff } \Delta \cup \{\neg A\} \text{ insatisfaisable iff } \Delta \cup \{\neg A\} \text{ est réfutable}^2$

Forme Normale Conjonctive (FNC)

Définition:

- Un littéral est une formule de la forme p ou $\neg p$, où p est une lettre propositionnelle quelconque.
- Une clause est une formule de la forme $l_1 \vee ... \vee l_n$, $n \geq 0$, où chaque l_i est un littéral. La clause vide³ (n = 0) s'écrit \perp .
- Une formule est en forme normal conjonctive ssi elle est de la forme $D_1 \wedge \ldots \wedge D_n$, $n \geq 0$, où chaque D_i est une clause.

Forme Normale Disjonctive (FND)

Définition:

- Une conjonction élémentaire est une formule de la forme $l_1 \wedge \ldots \wedge l_n$, $n \geq 0$, où chaque l_i est un littéral.La conjonction élémentaire vide (n=0) s'écrit \top .
- Une formule est en forme normal disjonctive ssi elle est de la forme $C_1 \vee \ldots \vee C_n$, $n \geq 0$, où chaque C_i est une conjonction élémentaire.

¹Every planar map is four colorable. Illinois J. Math. 21 (1977)

³à ne pas confondre avecl'ensemble vide de formules!

Existence de la FND et de la FNC

Théorème : Soit *A* une formule.

- Il existe une formule A_1 en FND telle que $A_1 \equiv A$.
- II existe une formule A_2 en FNC telle que $A_2 \equiv A$.

Lemme : Soit $\Delta = \{A_1, \dots, A_n\}$ et $FNC_\Delta = \{E_1, \dots, E_n\}$ où chaque E_i est une FNC de A_i . Pour chaque E_i de la forme $D_{i_1} \wedge \dots \wedge D_{i_k}$ on construit $C_{E_i} = \{D_{i_1}, \dots, D_{i_k}\}$. Soit $C_\Delta = \bigcup_{1 \leq i \leq n} C_{E_i}$. Alors Δ est satisfaisable ssi C_Δ est satisfaisable.

La méthode de résolution

Pour prouver qu'un ensemble Δ de clauses est *non satisfaisable*, la résolution construit une suite $\Delta \subset \Delta_1 \subset \ldots \Delta_n \ldots$ d'ensembles de clauses t.q. Δ_{i+1} est satisfaisable ssi Δ_i l'est.

Étapes élémentaire :

- 1. si Δ_i contient deux clauses $D \vee p$ et $C \vee \neg p$, et $(D \vee C) \not\in \Delta_i$, alors $\Delta_{i+1} = \Delta_i \cup \{(D \vee C)\}$ Comme cas particulier, si Δ_i contient p et $\neg p$, alors $\Delta_{i+1} = \Delta_i \cup \{\bot\}$
- 2. si Δ_i contient une clause $C \vee p \vee p$, et $C \vee p \notin \Delta_i$, alors $\Delta_{i+1} = \Delta_i \cup \{C \vee p\}$

N.B. on travaille modulo associativité et commutativité de \vee . **Dérivation par résolution**

Notation : Si il existe un i t.q. $A \in \Delta_i$, alors on écrit $\Delta \models_R A$.

Exemple : Soit $\Delta = \{p \lor r \lor s, r \lor \neg s, \neg r\}$. On peut construire : $\{p \lor r \lor s, r \lor \neg s, \neg r\}$ $\{p \lor r \lor s, r \lor \neg s, \neg r, p \lor r \lor r\}$ $\{p \lor r \lor s, r \lor \neg s, \neg r, p \lor r \lor r, p \lor r\}$ $\{p \lor r \lor s, r \lor \neg s, \neg r, p \lor r \lor r, p \lor r\}$

Donc $\{p \lor r \lor s, r \lor \neg s, \neg r\} \models_R p$.

Réfutation

Définition: Un ensemble de clauses Δ est réfutable ssi $\Delta \models_R \bot$.

Exemple : Soit
$$\Delta = \{p \lor r \lor s, r \lor \neg s, \neg r, \neg p\}$$
, alors
$$\{ \begin{matrix} p \lor r \lor s, r \lor \neg s, \neg r, \neg p \rbrace \\ \{p \lor r \lor s, r \lor \neg s, \neg r, \neg p, p \lor r \lor r \rbrace \end{matrix}$$

$$\{p \lor r \lor s, r \lor \neg s, \neg r, \neg p, p \lor r \lor r\}$$

$$\{p \lor r \lor s, r \lor \neg s, \neg r, \neg p, p \lor r \lor r, p \lor r\}$$

$$\{p \lor r \lor s, r \lor \neg s, \neg r, \neg p, p \lor r \lor r, p \lor r, p\}$$

$$\{p \lor r \lor s, r \lor \neg s, \neg r, \neg p, p \lor r \lor r, p \lor r, p, \bot\}$$

Donc $\Delta = \{p \lor r \lor s, r \lor \neg s, \neg r, \neg p\}$ est réfutable.

Propriétés de la résolution

Théorème : La résolution est correcte, i.e., si $\Delta \models_R A$, alors $\Delta \models A$ et si $\Delta \models_R \bot$, alors Δ est insatisfaisable.

Théorème : La résolution est complète, i.e., si $\Delta \models A$, alors $\Delta \models_R A$ et si Δ est insatisfaisable, alors $\Delta \models_R \bot$.

Résolution comme dérivation

On peut aussi présenter la méthode de résolution comme un système déductif avec deux seules règles :

$$\frac{D \vee p \quad C \vee \neg p}{D \vee C} \quad (coupure) \quad \frac{p \quad \neg p}{\bot} \quad (cas \ particulier)$$

$$\frac{D \vee p \vee p}{D \vee p} \ (factorisation)$$

Où D et C sont des clauses.

Dérivation par résolution

Exemple:

$$\frac{\begin{array}{c|cccc}
p \lor r \lor s & r \lor \neg s \\
\hline
p \lor r \lor r & \\
\hline
p \lor r
\end{array}}$$

Notation : Une dérivation de la clause p à partir de l'ensemble $\{p\vee r\vee s,r\vee\neg s,\neg r\}$ s'écrit

$$\{p \lor r \lor s, r \lor \neg s, \neg r\} \vdash_R p$$

Réfutation

Définition : Un ensemble de clauses Δ est réfutable ssi $\Delta \vdash_R \bot$.

Exemple:

$$\begin{array}{c|cccc}
 & p \lor r \lor s & r \lor \neg s \\
\hline
 & p \lor r \lor r \\
\hline
 & p \\
\hline
 & \downarrow
\end{array}
\qquad \neg p$$

$$\{p \lor r \lor s, r \lor \neg s, \neg r, \neg p\} \vdash_R \bot$$