TD de Maths pour l'Info n° 6

Révisions

Exercice 1 [Calcul propositionnel]

Lesquelles, parmi les formules suivantes, sont valides? Contradictoires? Si une formule n'est pas valide, on donnera une interprétation qui la falsifie.

Exercice 2 [Calcul propositionnel]

- 1. Pour quelles valeurs de l'entier n la formule $(n=1) \rightarrow (n=2)$ est-elle vraie?
- 2. Même question pour $((n=1) \leftrightarrow (n=2))$.

Exercice 3 [Calcul propositionnel]

Que peut-on dire des formules suivantes? Sont-elles satisfaisables? Valides? Insatisfaisables? Utiliser pour chacune les tables de vérité.

- 1. $(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$
- 2. $((p \rightarrow q) \land (s \rightarrow m)) \rightarrow ((p \lor s) \rightarrow q)$
- 3. $(p \rightarrow q) \land (p \land \neg q)$
- 4. $(p \land \neg p) \rightarrow q$

Exercice 4 [Récurrence]

- 1. Donner toutes les sous-formules de la formule : $\neg (p \lor (q \land r)) \rightarrow (p \land q)$
- 2. Soit F une formule propositionnelle à n connecteurs. Quel est le nombre maximum de sous-formules de F? Le démontrer par récurrence sur n.

Exercice 5 [Combinatoire]

Donner une preuve (interprétation) combinatoire des égalités suivantes :

- 1. $C_n^k + C_n^{k+1} = C_{n+1}^{k+1}$ $(n \ge 0, 0 \le k < n)$
- 2. $C_{p+q}^n = \sum_{i=0}^n C_p^i C_q^{n-i}$ $(p, q \ge 0, 0 \le n \le p+q)$

Exercice 6 [Combinatoire - Examen de janvier 2004]

Considérons l'ensemble B_n des fonctions booléennes à n variables, ainsi que les sous-ensembles de B_n suivants :

 $V_n^k = \{f \in B_n \mid f \text{ a exactement } k \text{ lignes à } \mathbf{V} \text{ dans sa table de vérité}\}$ $W_n^k = \{f \in B_n \mid f \text{ a au plus } k \text{ lignes à } \mathbf{V} \text{ dans sa table de vérité}\}$ $Z_n^k = \{f \in B_n \mid f \text{ a au moins } k \text{ lignes à } \mathbf{V} \text{ dans sa table de vérité}\}$

Répondez, en justifiant vos réponses, aux questions qui suivent :

- 1. Quelle est la cardinalité b_n de B_n ?
- 2. Quelle est la cardinalité v_n^k de V_n^k ? Vérifiez que votre formule est valide sur le cas n=2, k=2.
- 3. Quelle est la cardinalité w_n^k de l'ensemble W_n^k ?
- 4. Quelle est la cardinalité z_n^k de l'ensemble Z_n^k ?
- 5. Montrez que w_n^k a la propriété suivante :

$$w_n^k = w_n^{k-1} + C_{2n}^{2n-k}$$

6. Montrez que, pous les formules que vous avez trouvé, on a bien :

$$b_n = w_n^k + w_n^k - v_n^k$$

Exercice 7 [Induction]

Étant donné un ensemble A, on note List_A l'ensemble des listes d'élément de A. On désigne par [] la liste vide, et l'opération de consing est notée a::l (avec $a \in A$ et $l \in List_A$). On considère la fonction append : List_A × List_A \rightarrow List_A définie par :

append(
$$[], l_2) = l_2$$

append($a :: l_1, l_2) = a :: append(l_1, l_2)$

- 1. Montrer que la fonction append est bien définie.
- 2. Montrez que la fonction append est associative :

$$append(append(l_1, l_2), l_3) = append(l_1, append(l_2, l_3)) \qquad (l_1, l_2, l_3 \in List_A)$$

Exercice 8 [Combinatoire – Examen de septembre 2004]

1. Écrivons S_n^k pour les sommes $\sum_{i=0}^k C_n^i$ des coefficients binomiaux. Montrez que S_n^k satisfait les égalités suivantes :

$$S_1^0 = 1$$
 $S_1^1 = 2$ $S_n^k = S_{n-1}^{k-1} + S_{n-1}^k$

- 2. Considérons l'ensemble $I\!\!B$ des fonctions booléennes ternaires.
 - (a) Indiquez la cardinalité des sous-ensembles suivants de $I\!\!B$, en justifiant le résultat (une réponse sans justification ne sera pas prise en compte).
 - i. *IB*
 - ii. $B_i^k = \{ f \in \mathbb{B} \mid \text{la table de vérité de } f \text{ contient exactement } n \text{ valeurs } \mathbf{V}, \text{ avec } i \leq n \leq k \}$
 - iii. $B_2^6 \cap B_4^7$
 - (b) Calculez maintenant la cardinalité de $B_2^6 \cup B_4^7 \cup B_5^8$ en utilisant la formule de Sylvester (toute autre solution ne sera pas prise en compte).