Modèles de calcul, fiche de TD numéro 2

Friday, October 1, 2004

A Random Access Machine (RAM) over the integers has access to an infinite set $R_1, R_2,...$ of registers. Each register may contain an arbitrary nonnegative integer. The program of a RAM is a finite list of instructions which may be of the following type:

 $R_i := 0$ $R_i := 1$ $R_i := R_j + R_k$ $R_i := R_j - R_k$ (the result is 0 if $R_j < R_k$) $R_i := \lfloor R_i/2 \rfloor$ $R_i := R_{R_i}$ $R_{R_i} := R_j$ goto line mif $R_i > 0$ goto line m stop.

Question 1

Write a RAM program which computes the product of R_1 and R_2 .

Question 2

Write a RAM program which on input n computes n!.

Question 3

Write a RAM program which on inputs x and i computes the bit of x of weight 2^i .

Question 4

Write a RAM program which on inputs x et y computes the product $x \times y$ in time proportional to the length of its inputs.

Question 5

Let $n = \min\{j; R_j = 0 \text{ and } j \ge 5\}$. Write a RAM program which computes $\sum_{j=5}^n R_j$ if n exists. Question 6

Show that there exist a RAM which, given two integers x and y, computes the quotient of the euclidean division of x by y in time proportional to the length of its inputs.