Master Parisien de Recherche en Informatique Cours 2.2

Modèle des langages de programmation Domaines, Catégories, Jeux

Séance IV

Espace de cohérence ;
Catégories monoïdales fermées ;
Logique linéaire.

Séance précédente: la catégorie Ens comme ccc

- Une catégorie cartésienne est une catégorie \mathcal{C} où sont spécifiés:
 - pour chaque couple d'objets A, B, un produit cartésien $A \times B$ et ses projections $A \times B \longrightarrow A$ et $A \times B \longrightarrow B$,
 - un objet terminal 1.
- Une catégorie cartésienne close est une catégorie cartésienne où sont spécifiés, pour chaque objet B,
 - un foncteur

$$(-\Rightarrow -): \mathcal{C}^{op} \times \mathcal{C} \longrightarrow \mathcal{C},$$

• une famille de bijections $(\phi_{A,B,C})_{A,C}$ indexée par des objets A,B,C:

$$\phi_{A,B,C}: \mathbf{Hom}(A \times B,C) \longrightarrow \mathbf{Hom}(B,A \Rightarrow C)$$

naturelle en A, B et C.

I. Espaces de cohérence.

Espace de cohérence

Ce modèle est à l'origine de la logique linéaire (1986).

Décomposition linéaire du modèle des dI-domaines et fonctions stables.

Depuis, d'autres telles linéarisations ont été opérée:

Structures Jeux de données concrètes Lamarche 1992 Berry-Curien 1985 dl-domaines avec cohérence **Espace** et fonctions fortement stables d'hypercohérence Ehrhard 1993 Bucciarelli-Ehrhard 1991 **Bidomaines Bistructures** \Rightarrow Curien-Plotkin-Winskel 1996 **Berry 1979**

Espace de cohérence

On appelle espace de cohérence un couple $A = (|A|, \bigcirc_A)$ formé

- d'un ensemble |A| appelé la trame de A
- d'une relation reflexive symétrique $\bigcirc_A \subset |A| \times |A|$ appelée cohérence.

Espace de cohérence est une manière pédante de dire graphe.

Notation: on écrit

$$-a \curvearrowright_A a'$$
 si $a \curvearrowright_A a'$ et $a \neq a'$.

$$-a \simeq_A a'$$
 si $\neg(a \subset_A a')$ ou $a = a'$.

Exemple 1. les espaces de cohérence 0 = T de trame vide et 1 = L de trame singleton.

Exemple 2. pour tout ensemble X, l'espace de cohérence "discret" (X, =). En particulier, $B = (\{V, F\}, =)$ et $N = (\mathbb{N}, =)$.

Interaction

Une clique u dans un graphe A est un sous-ensemble de |A| tel que

$$\forall (a, a') \in u, \quad a \subset_A a'$$

Une anticlique v dans un graphe A est un sous-ensemble de |A| tel que

$$\forall (a, a') \in v, \quad a \simeq_A a'$$

Nous allons interpréter

- les types simples du λ -calcul comme des graphes,
- les programmes u de type A comme des cliques de A,
- les contre-programmes v de type A comme des anti-cliques de A,
- l'interaction entre u et v comme l'intersection $u \cap v$.

Remarque: $u \cap v$ contient au plus un élément (=le résultat!).

La négation

Soit A un espace de cohérence. On définit sa négation A^{\perp} comme le graphe dual de A:

$$-|A^{\perp}| = |A|$$

$$-a \subset_{A^{\perp}} a' \operatorname{ssi} a \simeq_A a'.$$

Remarque: une anti-clique de A est une clique de A^{\perp} . On fait donc interagir une clique de A contre une clique de A^{\perp} . Dualité Joueur vs. Opposant.

Propriété fondamentale:

$$A = (A^{\perp})^{\perp}$$

La somme (plus)

Soient A et B deux espaces de cohérence. On définit la somme $A \oplus B$ comme la somme des graphes A et B

$$-|A \oplus B| = |A| + |B|$$

$$-a \bigcirc_{A \oplus B} a' \operatorname{ssi} a \bigcirc_A a',$$

$$-b \bigcirc_{A \oplus B} b' \operatorname{ssi} b \bigcirc_{B} b',$$

$$-a \bigcirc_{A \oplus B} b$$
 jamais.

exo. montrer que les graphes $A \oplus 0$ et A sont isomorphes.

Le produit (avec)

Soient A et B deux espaces de cohérence. On définit le produit A & B comme une somme "alternative" des graphes A et B.

$$-|A\&B| = |A| + |B|$$

$$-a \subset_{A \& B} a' \operatorname{ssi} a \subset_A a',$$

$$-b \bigcirc_{A \& B} b' \operatorname{ssi} b \bigcirc_{B} b',$$

$$-a \bigcirc_{A \& B} b$$
 toujours.

exo. montrer que

$$A\&B = (A^{\perp} \oplus B^{\perp})^{\perp}$$

Tenseur

Soient A et B deux espaces de cohérence. On définit le tenseur $A \otimes B$ comme le produit des deux graphes A et B:

$$-|A \otimes B| = |A| \times |B|$$

$$-(a,b) \bigcirc_{A \otimes B} (a',b')$$
 ssi $a \bigcirc_A a'$ et $b \bigcirc_B b'$.

exo. montrer que les graphes $A \otimes 1$ et A sont isomorphes.

Par

Soient A et B deux espaces de cohérence. On définit le par-produit A *B comme un produit "alternatif" des deux graphes A et B:

$$-|A \cdot B| = |A| \times |B|$$

$$-(a,b) \frown_A \mathbf{g}_B(a',b')$$
 ssi $a \frown_A a'$ ou $b \frown_B b'$.

exo. montrer que

$$A *B = (A^{\perp} \otimes B^{\perp})^{\perp}$$

Distributivité

$$A \otimes (B \oplus C) \cong (A \otimes B) \oplus (A \otimes C)$$

 $A \otimes (B \otimes C) \cong (A \otimes B) \otimes (A \otimes C)$

Réminiscent de $A \times (B+C) \cong (A \times B) + (A \times C)$ dans Ens. Dès lors, on appellera

- additifs les connecteurs \oplus et &, et unités 0 et \top ,
- multiplicatifs les connecteurs \otimes et \mathbf{z} , et unités 1 et \perp .

Remarque: \cong signifie ici isomorphes en tant que graphes, ou bien isomorphes dans la catégorie \mathbf{Coh} construite ci-après.

Flèche linéaire

Soient A et B deux espaces de cohérence. On définit la flèche linéaire $A \multimap B$ de A et B comme

$$-|A \multimap B| = |A| \times |B|$$

$$\begin{split} - & |A \multimap B| = |A| \times |B| \\ - & (a,b) \bigcirc_{A \multimap B} (a',b') \text{ ssi } \left\{ \begin{array}{c} a \bigcirc_A a' \text{ implique } b \bigcirc_B b' \\ & \text{et} \\ b \bigcirc_{B^\perp} b' \text{ implique } a \bigcirc_{A^\perp} a' \end{array} \right. \end{split}$$

exo. Montrer que

$$A \multimap B = A^{\perp} *B = (A \otimes B^{\perp})^{\perp}$$

La catégorie Coh

La catégorie Coh est définie comme la catégorie

- dont les objets sont les espaces de cohérence,
- dont les morphismes $f:A\longrightarrow B$ sont les cliques de $A\multimap B$.

L'identité

$$id_A = \{(a, a) \in |A \multimap A|\}$$

La composition de $f:A\longrightarrow B$ et $g:B\longrightarrow C$.

$$g \circ f = \{(a, c) \in |A \multimap C| \mid \exists b \in |B| \ (a, b) \in f \text{ et } (b, c) \in g\}$$

exo. Vérifier que les définitions d'identité et de composition définissent une catégorie.

Exercice

exo. Montrer que la catégorie Coh contient la catégorie des ensembles et fonctions partielles comme sous-catégorie pleine (voir [MacLane] pour une définition de full subcategory). Pour cela, considérer l'espace de cohérence "discret" (X, =) associé à un ensemble X.

Montrer que la sous-catégorie est close par \oplus et \otimes , mais pas close par \multimap . Montrer que toutes les anticliques de $(X, =) \multimap (Y, =)$ sont sous-ensemble d'une ligne d'abscisse.

Damnation: Coh n'est pas cartésienne fermée!

exo. Montrer que

- A&B est produit cartésien de A et B dans la catégorie Coh.
- que l'objet \top est terminal dans \mathcal{C} .

En déduire que $(Coh, \&, \top)$ définit une catégorie cartésienne.

exo. Montrer que seul l'objet $0 = \top$ admet une exponentiation cartésienne dans la catégorie cartésienne $(Coh, \&, \top)$. [Utiliser (1) l'égalité $0 = \top$, (2) que Hom(0, A) est singleton pour tout objet A, (3) que tout objet A exponentiable définit une bijection

$$\frac{A\&\top\longrightarrow B}{\top\longrightarrow A\Rightarrow B} \quad \phi_{\top,A,B}$$

pour démontrer que $\mathbf{Hom}(A,B)$ est singleton, pour tout objet B.] En déduire que la catégorie ($\mathbf{Coh}, \&, \top$) n'est pas cartésienne fermée.

Mais presque...

exo. Utiliser l'associativité et la définition de a pour montrer que

$$(A \otimes B) \multimap C = B \multimap (A \multimap C)$$

En déduire qu'il existe pour tout espace de cohérence A une famille de bijections $(\phi_{A,B,C})_{B,C}$ dans \mathbf{Coh} :

$$\frac{A \otimes B \longrightarrow C}{B \longrightarrow A \multimap C} \quad \phi_{A,B,C}$$

dont il s'agira de montrer la naturalité en B et C.

Verdict:

- la structure cartésienne est donnée par les additifs & et ⊤,
- la structure fermée est donnée par les multiplicatifs ⊗ et 1.

Prescription:

— il faut une exponentielle pour relier les mondes additifs et multiplicatifs.

II. La structure de Coh

Catégories symétriques monoïdales fermées.

Intuition

Tout refaire comme dans les catégories cartésiennes fermées mais en remplaçant le produit cartésien \times par un bifoncteur \otimes arbitraire.

Remplacer la propriétés universelle de \times par une série de diagrammes de cohérence sur \otimes .

On obtient une catégorie symétrique monoïdale.

Puis remplacer l'adjonction
$$\dfrac{A \times B \longrightarrow C}{B \longrightarrow A \Rightarrow C}$$
 par une adjonction $\dfrac{A \otimes B \longrightarrow C}{B \longrightarrow A \multimap C}$.

On obtient ainsi une catégorie symétrique monoïdale fermée (smcc) où on interpréte la logique linéaire multiplicative intuitionniste (= λ -calcul linéaire.)

Catégorie monoïdale

Une catégorie monoïdale $(\mathcal{C}, \otimes, 1)$ est une catégorie \mathcal{C} munie d'un bifoncteur

$$\otimes: \mathcal{C} \times \mathcal{C} \longrightarrow \mathcal{C}$$

associatif "modulo" un isomorphisme naturel

$$\alpha: A \otimes (B \otimes C) \longrightarrow (A \otimes B) \otimes C$$

munie d'un objet 1, unité de \otimes "modulo" un isomorphisme naturel

$$\lambda: \mathbf{1} \otimes A \longrightarrow A$$
 $\rho: A \otimes \mathbf{1} \longrightarrow A$

Ces morphismes doivent faire commuter le "pentagone de MacLane"

$$A \otimes (B \otimes (C \otimes D)) \xrightarrow{\alpha} (A \otimes B) \otimes (C \otimes D)$$

$$A \otimes \alpha \downarrow \qquad \qquad \downarrow \alpha$$

$$A \otimes ((B \otimes C) \otimes D) \xrightarrow{\alpha} (A \otimes (B \otimes C)) \otimes D \xrightarrow{\alpha \otimes D} ((A \otimes B) \otimes C) \otimes D$$

ainsi que le triangle:

$$\begin{array}{ccc}
A \otimes (\mathbf{1} \otimes B) & \xrightarrow{\alpha} (A \otimes \mathbf{1}) \otimes B \\
 & \downarrow^{\rho \otimes B} \\
A \otimes B & \xrightarrow{} A \otimes B
\end{array}$$

Symétrie

Une symétrie dans une catégorie monoïdale $(C, \otimes, 1)$ consiste en une famille d'isomorphismes

$$\gamma_{A,B}: A\otimes B\longrightarrow B\otimes A$$

naturelle en A et B, qui vérifie l'égalité:

$$A \otimes B \xrightarrow{\gamma_{A,B}} B \otimes A \xrightarrow{\gamma_{B,A}} A \otimes B = A \otimes B \xrightarrow{id_{A \otimes B}} A \otimes B$$

et fait commuter les diagrammes:

$$\begin{array}{ccc}
A \otimes 1 & \xrightarrow{\gamma} & 1 \otimes A \\
\downarrow \rho & & \downarrow \lambda \\
A & & & A
\end{array}$$

$$\begin{array}{ccc}
A \otimes (B \otimes C) & \xrightarrow{\alpha} & (A \otimes B) \otimes C & \xrightarrow{\gamma} & C \otimes (A \otimes B) \\
& & \downarrow^{\alpha} & & \downarrow^{\alpha} \\
A \otimes (C \otimes B) & \xrightarrow{\alpha} & (A \otimes C) \otimes B & \xrightarrow{\gamma \otimes B} & (C \otimes A) \otimes B
\end{array}$$

Exemples de catégories monoidales

Sans symétrie:

- La catégorie des tresses,
- Nous le verrons bientôt: La catégorie $End(\mathcal{C})$ des endofoncteurs d'une catégorie \mathcal{C} . Les foncteurs $F, G: \mathcal{C} \longrightarrow \mathcal{C}$ sont ses objets, les transformations naturelles $F \stackrel{\cdot}{\longrightarrow} G$ sont ses morphismes, et la composition de foncteur son produit tensoriel.

Avec symétrie:

- La catégorie des permutations,
- Toute catégorie cartésienne, avec le produit cartésien pour tenseur, et l'objet terminal pour unité,
- La catégorie duale d'une catégorie monoïdale symétrique,
- La catégorie Coh avec tenseur ⊗ et unité 1.

exo. Démontrer que les exemples forment bien des catégorie monoïdales, avec symétrie dans les trois derniers cas.

Le pourquoi des diagrammes de cohérence

"Every diagram commutes"

Effet Canada Dry: Retrouver une conséquence de la propriété universelle... sans la propriété universelle.

Intuitivement: soit $A_1, ..., A_p$ une liste de p objets dans une catégorie monoïdale C. Un mot w sur $(A_1, ..., A_p)$ est un objet de la forme:

— 1 lorsque p = 0,

— $u \otimes v$ où u est un mot sur $(A_1, ..., A_m)$, et v est un mot sur $(A_{m+1}, ..., A_p)$, pour un certain 1 < m < p.

Parmi les mots sur $(A_1,...,A_p)$, le mot canonique $(\cdots (A_1 \otimes A_2) \otimes \cdots A_p)$.

Théorème de cohérence: il n'existe qu'un seul morphisme structural " α, λ, ρ " d'un mot sur $(A_1, ..., A_p)$ au mot canonique sur $(A_1, ..., A_p)$.

En fait: -1- un seul isomorphisme naturel canonique entre des foncteurs mots $\mathcal{C}^p \longrightarrow \mathcal{C}$. -2- Ou bien: toute catégorie monoïdale symétrique est équivalente à une catégorie monoïdale symétrique stricte. -3- Ou bien, la catégorie monoïdale symétrique est la catégorie des permutations. Voir chapitres VII.2 et IX dans MacLane.

Exponentiation monoïdale

Soit A un objet dans une catégorie symétrique monoïdale $(C, \times, 1)$.

On appelle exponentiation mono $\ddot{}$ dale de A le couple formé par un foncteur

$$(A \multimap -) : \mathcal{C} \longrightarrow \mathcal{C}$$

et une famille $(\phi_{A,B,C})_{B,C}$ de bijections indexée par des objets B,C de C:

$$\phi_{A,B,C}: \mathbf{Hom}(A \otimes B,C) \longrightarrow \mathbf{Hom}(B,A \multimap C)$$

naturelle en B et C.

Catégorie symétrique monoïdale fermée

Une catégorie symétrique monoïdale fermée (smcc) est une catégorie symétrique monoïdale $(\mathcal{C}, \otimes, 1)$ munie d'une exponentiation monoïdale

$$\frac{A \otimes B \longrightarrow C}{B \longrightarrow A \multimap C} \quad \phi_{A,B,C} \tag{1}$$

pour tout objet A.

Par le théorème du paramètre, \multimap définit un bifoncteur $\mathcal{C}^{op} \times \mathcal{C} \longrightarrow \mathcal{C}$ tel que la famille de bijections $(\phi_{A,B,C})_{A,B,C}$ soit naturelle en A, B, et C.

On définit le morphisme $eval_{A,B}: A \otimes (A \multimap B) \longrightarrow B$ de la manière suivante:

$$\frac{A \multimap B \xrightarrow{id} A \multimap B}{A \otimes (A \multimap B) \longrightarrow B} \quad \phi_{A \multimap B, A, B}^{-1}$$

exo. Montrer que toute catégorie cartésienne fermée est une catégorie symétrique monoïdale fermée.

Logique linéaire multiplicative intuitionniste

$$A,B ::= \mathbf{1} \mid A \otimes B \mid A \multimap B \mid \alpha$$

$$\overline{A \vdash A}$$

$$\multimap$$
 gauche $\frac{\Delta \vdash A \qquad \Gamma, B \vdash C}{\Gamma, \Delta, A \multimap B \vdash C}$

$$\multimap$$
 droit
$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \multimap B}$$

$$\otimes$$
 gauche

$$\frac{\Gamma, A, B \vdash C}{\Gamma, A \otimes B \vdash C}$$

$$\otimes$$
 droit

$$\otimes$$
 droit $\frac{\Gamma \vdash A \qquad \Delta \vdash B}{\Gamma, \Delta \vdash A \otimes B}$

$$\frac{\Gamma, 1 \vdash A}{\Gamma \vdash A}$$

$$\overline{\vdash \mathbf{1}}$$

$$\frac{\Delta \vdash A \qquad \Gamma, A \vdash B}{\Gamma, \Delta \vdash B}$$

$$\frac{\Gamma, A_1, A_2, \Delta \vdash B}{\Gamma, A_2, A_1, \Delta \vdash B}$$

Interprétation de la logique

Axiome: $A \xrightarrow{id_A} A$

 \multimap gauche: $\triangle \xrightarrow{f} A$ et $\Gamma \otimes B \xrightarrow{g} C$ deviennent

$$\Gamma \otimes \Delta \otimes (A \multimap B) \xrightarrow{\Gamma \otimes f \otimes A \multimap B} \Gamma \otimes A \otimes (A \multimap B) \xrightarrow{\Gamma \otimes eval_{A,B}} \Gamma \otimes B \xrightarrow{g} C$$

- \multimap droit: $\Gamma \otimes A \xrightarrow{f} B$ devient $\Gamma \xrightarrow{\phi_{\Gamma,A,B}(f)} A \multimap B$.
- \otimes gauche: $\Gamma \otimes A \otimes B \xrightarrow{f} C$ reste tel qu'en lui-même.
- \otimes droit: $\Gamma \xrightarrow{f} A$ et $\Delta \xrightarrow{g} B$ deviennent $\Gamma \otimes \Delta \xrightarrow{f \otimes g} A \otimes B$

Interprétation de la logique (suite)

Coupure:
$$\Delta \xrightarrow{f} A$$
 et $\Gamma \otimes A \xrightarrow{g} B$ deviennent
$$\Gamma \otimes \Delta \xrightarrow{\Gamma \otimes f} \Gamma \otimes A \xrightarrow{g} B$$

Permutation: $\Gamma \otimes A_1 \otimes A_2 \otimes \Delta \xrightarrow{f} B$ devient

$$\Gamma \otimes A_2 \otimes A_1 \otimes \Delta \xrightarrow{\Gamma \otimes \gamma_{A_2,A_1} \otimes \Delta} \Gamma \otimes A_1 \otimes A_2 \otimes \Delta \xrightarrow{f} B$$

Remarque: pour simplifier, la catégorie est supposée stricte. c'est-à-dire que α , λ et ρ sont toutes des identités.

III. La structure catégorique de Coh (suite)

Dualité et catégories *-autonomes.

Catégorie *-autonome

Tout couple d'objets A, \perp dans une catégorie symétrique monoïdale fermée $(C, \otimes, 1)$, définit un morphisme identité

$$id_{A \multimap \bot} : A \multimap \bot \longrightarrow A \multimap \bot$$

que la bijection $\phi_{A \multimap \bot, A, \bot}^{-1}$ transporte en le morphisme

$$eval_{A,\perp}:A\otimes (A\multimap \bot)\longrightarrow \bot$$

qui devient en précomposant avec la symétrie:

$$(A \multimap \bot) \otimes A \longrightarrow \bot$$

que la bijection $\phi_{A \multimap \bot, A, \bot}$ transporte en un morphisme:

$$A \longrightarrow (A \multimap \bot) \multimap \bot$$

Un objet \bot est dualisant lorsque le morphisme canonique $A \longrightarrow (A \multimap \bot) \multimap \bot$ est un isomorphisme, pour tout objet A.

Une catégorie symétrique monoïdale fermée avec un objet dualisant est appelé catégorie *-autonome.

La catégorie Coh est *-autonome

 $\perp = 1^{\perp}$ est l'espace de cohérence avec la trame singleton $|\perp| = \{*\}$.

$$e = id_{A \multimap \bot} \qquad A \multimap \bot \longrightarrow A \multimap \bot \qquad \{((a, *), (a, *)) \mid a \in |A|\}$$

$$f = \phi_{A \multimap \bot, A, \bot}^{-1}(e) \qquad A \otimes (A \multimap \bot) \longrightarrow \bot \qquad \{((a, *), *), *) \mid a \in |A|\}$$

$$g = f \circ \gamma_{A, A \multimap \bot} \qquad (A \multimap \bot) \otimes A \longrightarrow \bot \qquad \{((a, *), *), *) \mid a \in |A|\}$$

$$h = \phi_{A \multimap \bot, A, \bot}(g) \qquad A \longrightarrow (A \multimap \bot) \multimap \bot \qquad \{(a, ((a, *), *)) \mid a \in |A|\}$$

Le morphisme h est un isomorphisme, d'inverse la clique

$$h^{-1} = \{((a, *), *), a) \mid a \in |A|\}$$

Logique linéaire multiplicative (MLL)

$$A,B ::= A \otimes B \mid \mathbf{1} \mid A \otimes B \mid \perp \mid \alpha$$

La logique MLL s'interprète dans toute catégorie *-autonome.

Logique linéaire multiplicative additive (MALL)

$$A,B ::= A \oplus B \mid A \otimes B \mid 0 \mid 1 \mid A \& B \mid A *B \mid \top \mid \bot \mid \alpha$$

MLL+

$$\begin{array}{ll} \oplus \mbox{ gauche } & \frac{\vdash \Gamma, B}{\vdash \Gamma, A \oplus B} \\ \\ \oplus \mbox{ droit } & \frac{\vdash \Gamma, A}{\vdash \Gamma, A \oplus B} \\ \\ \& & \frac{\vdash \Gamma, A}{\vdash \Gamma, A \oplus B} \\ \\ \mbox{0} & \mbox{pas de règle} \\ \\ \top & \frac{\vdash \Gamma, \top}{\vdash \Gamma, \top} \end{array}$$

La logique MALL s'interprète dans toute catégorie à la fois cartésienne et *-autonome.

IV. La structure de Coh (fin)

Exponentielles.

Le nouvel ingrédient: l'exponentielle

On définit l'exponentielle !A d'un espace de cohérence A comme le graphe

- dont la trame |!A| est l'ensemble des cliques finies de A,
- $-u \bigcirc_{!A} v$ ssi l'union $u \cup v$ est une clique finie de A.

exo. Montrer que A définit un dI-domaine dont A est l'ensemble des éléments compacts, ordonnés par inclusion entre cliques finies.

L'espace de cohérence ? A est défini par:

$$?A = (!A^{\perp})^{\perp}$$

L'alchimie exponentielle

Le rôle de l'exponentielle est de transmuter les additifs en multiplicatifs!

Le nom "exponentielle" est justifié par les isomorphismes suivants:

$$!(A\&B) \cong !A\otimes !B \qquad !\top \cong 1$$

Réminiscent de $\wp(A+B) \cong \wp(A) \times \wp(B)$ dans Ens.

Nous étudierons plus loin les propriétés catégoriques de l'exponentielle!. En particulier,

- chaque !A définit un comonoïde (!A, d_A , e_A) dans Coh,
- l'exponentielle définit une comonade $(!, \delta, \epsilon)$ dans Coh,
- la diagonale cartésienne $A \longrightarrow A \& A$ est transportée sur la diagonale comonoidale $!A \longrightarrow !A \otimes !A$.

exo. Montrer que les égalités $A \otimes (B \& C) \cong (A \otimes B) \& (A \otimes C)$ et $!(A \oplus B) \cong !A ?!B$ sont fausses. Début d'un tableau de Mendeleiev! Effets des polarités, très importants par la suite.

Logique linéaire (LL)

$$A, B ::= A \oplus B \mid A \otimes B \mid !A \mid 0 \mid 1 \mid A \& B \mid A \not B \mid ?A \mid \top \mid \bot \mid \alpha$$

MALL+

contraction
$$\frac{\vdash \Gamma, ?A, ?A}{\vdash \Gamma, ?A}$$

affaiblissement
$$\frac{\vdash \Gamma}{\vdash \Gamma, ?A}$$

$$\begin{array}{ll} \text{d\'er\'eliction} & & \frac{\vdash \Gamma, A}{\vdash \Gamma, ?A} \end{array}$$

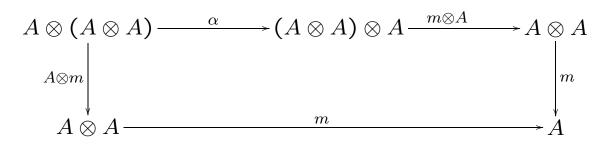
renforcement
$$\frac{\vdash ?\Gamma, A}{\vdash ?\Gamma, !A}$$

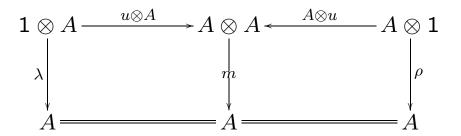
Monoïde

Dans une catégorie monoïdale $(C, \otimes, 1)$, un monoïde est un objet A muni de deux morphismes

$$1 \xrightarrow{u} A \xleftarrow{m} A \otimes A$$

tels que les diagrammes suivants commutent:





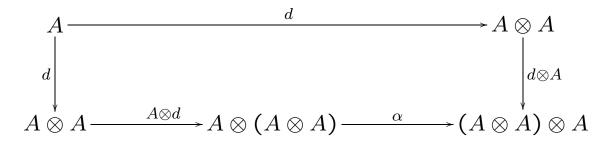
Exemple: un monoïde dans $(Ens, \times, 1)$.

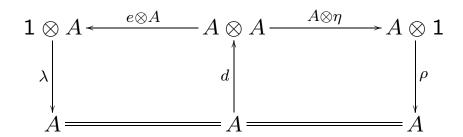
Comonoïde

Dualement: Dans une catégorie monoïdale $(C, \otimes, 1)$, un comonoïde est un objet A muni de deux morphismes

$$1 \stackrel{e}{\longleftarrow} A \stackrel{d}{\longrightarrow} A \otimes A$$

tels que les diagrammes suivants commutent:





Comonoïde co-commutatif

Un comonoïde (A,d,e) dans une catégorie monoïdale symétrique $(\mathcal{C},\otimes,\mathbf{1},\gamma)$ est dit co-commutatif lorsque

$$A \xrightarrow{d} A \otimes A \xrightarrow{\gamma_{A,A}} A \otimes A = A \xrightarrow{d} A \otimes A$$

Un comonoïde dans Coh: chaque objet !A

L'espace de cohérence !A est un comonoïde co-commutatif dans ${\bf Coh}$, lorsqu'on l'équipe des cliques suivantes:

— Un morphisme diagonal ou co-multiplication

$$!A \xrightarrow{d_A} !A \otimes !A$$

défini par

$$\{(u,(v,w)) \in |!A \multimap !A \otimes !A| \mid u = v \cup w\}$$

— Un morphisme d'affaiblissement ou co-unité

$$!A \xrightarrow{e_A} 1$$

défini par le singleton

$$\{(\varnothing,*)\}$$

Prochaine séance

- Interprétation de LL dans Coh,
- construction de la catégorie de Kleisli d'une comonade.

En avant goût... dans la trame de $!(A \multimap A) \multimap (A \multimap A)$

$$\lambda f : !(A \multimap A) \cdot \lambda x : A \cdot fx : !(A \multimap A) \multimap (A \multimap A)$$

est interprété en l'ensemble des points de la forme $(\{(a,b)\}, a, b)$

$$\lambda f : !(A \longrightarrow A).\lambda x : A.x : !(A \multimap A) \multimap (A \multimap A)$$

est interprété en l'ensemble des points de la forme (\emptyset, a, a)

$$\lambda f : !(A \multimap A) \cdot \lambda x : A \cdot f(fx) : !(A \multimap A) \multimap (A \multimap A)$$

est interprété en l'ensemble des points de la forme $(\{(a,b),(b,c)\},a,c)$