Master Parisien de Recherche en Informatique

Modèles des langages de programmation

Travaux Dirigés n°4

Paul-André Melliès

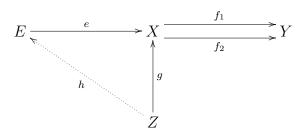
<mellies@pps.jussieu.fr>

Nous avons vu en cours que la catégorie **Coh** des espaces de cohérence est cartésienne et symétrique monoïdale close. Nous montrons ici que cette catégorie dispose de plus des *égaliseurs*, une notion fondamentale en mathématiques, qui permet par exemple d'interpréter tout ensemble simplicial de la topologie algébrique comme un espace de cohérence.

Soit C une catégorie, et $f_1: X \longrightarrow Y$ et $f_2: X \longrightarrow Y$ deux morphismes de cette catégorie. On appelle égaliseur de f_1 et f_2 une paire (E, e) formée d'un objet E et d'un morphisme $e: E \longrightarrow X$, tels que:

- $f_1 \circ e = f_2 \circ e$,
- pour tout objet Z et morphisme $g: Z \longrightarrow X$ tels que $f_1 \circ g = f_2 \circ g$, il existe un et un seul morphisme $h: Z \longrightarrow E$ tel que $g = e \circ h$.

La situation peut être représentée de la sorte:



Question 1. Dans cette question, nous considérons la catégorie **Ens** bien connue, dont les objets sont les ensembles et les morphismes $X \longrightarrow Y$ sont

les fonctions de X vers Y. Pour toute paire $f_1: X \longrightarrow Y$ et $f_2: X \longrightarrow Y$ de fonctions, nous définissons l'ensemble E suivant:

$$E = \{x \in X \mid f(x) = g(x)\}\$$

ainsi que la fonction d'inclusion:

$$e: E \longrightarrow X$$

qui à tout élément x de l'ensemble E, associe ce même élément x (noté e(x)) dans l'ensemble X.

 \bigstar Montrer que la paire (E,e) constituée de l'ensemble E et de la fonction $e:E\longrightarrow X$ définit un égaliseur de f_1 et f_2 dans la catégorie **Ens**.

Question 2. Nous passons maintenant à la catégorie Coh étudiée en cours, dont les objets sont les espaces de cohérence, dont les morphismes $X \longrightarrow Y$ sont les cliques de l'espace de cohérence $X \multimap Y$. Nous rappelons qu'un espace de cohérence $X = (|X|, \bigcirc_X)$ est donné par un ensemble de sommets |X| (la trame) et une relation $\bigcirc_X \subseteq |X| \times |X|$ réflexive et symétrique (la cohérence). Nous rappelons aussi que toute clique u d'un espace de cohérence X peut être vue également comme une clique de $1 \multimap X$, et donc comme un morphisme $1 \longrightarrow X$ dans la catégorie Coh. Nous notons f(u) la clique de Y obtenue par composition de $u: 1 \longrightarrow X$ et $f: X \longrightarrow Y$, dont nous rappelons la définition directe:

$$f(u) = \{ y \in |Y| \mid \exists x \in u, (x, y) \in f \}.$$

 \bigstar Montrer que la fonction $u \mapsto f(u)$ est linéaire au sens où:

- $f(\emptyset) = \emptyset$,
- si $u \subset v$ alors $f(u) \subset f(v)$,
- si $(u_i)_{i\in I}$ est une famille de cliques de X majorée par une clique u,

$$\forall i \in I, \qquad u_i \subset u, \tag{1}$$

alors

$$f(\bigcap_{i\in I} u_i) = \bigcap_{i\in I} f(u_i)$$

et

$$f(\bigcup_{i\in I} u_i) = \bigcup_{i\in I} f(u_i).$$

Question 3. Nous fixons désormais deux morphismes $f_1, f_2 : X \longrightarrow Y$ dans la catégorie **Coh**. Nous notons D l'ensemble des cliques u de X telles que:

$$f_1(u) = f_2(u).$$

Clairement, l'ensemble (D, \subseteq) est ordonné par l'ordre d'inclusion entre cliques de X. Une famille $(u_i)_{i\in I}$ d'éléments de D est dite dominée lorsqu'il existe un élément $v \in D$ tel que:

$$\forall i \in I, \quad u_i \subseteq v.$$

★ Utiliser la question 2 pour montrer que l'union

$$u = \bigcup_{i \in I} u_i$$

et l'intersection

$$v = \bigcap_{i \in I} u_i$$

de toute famille dominée d'éléments de D est un élément de D.

Question 4. Une famille $(u_i)_{i\in I}$ d'éléments de D est dite disjointe lorsque:

$$\forall i, j \in I, \quad i \neq j \implies u_i \cap u_j = \emptyset.$$

Dans le cas d'une famille $(u_i)_{i\in I}$ dominée et disjointe d'éléments de D, on appelle somme disjointe l'union des cliques u_i , qu'on désigne par la notation:

$$\biguplus_{i \in I} u_i$$

qui remplace donc dans ce cas la notation (1).

On appelle élément premier de D toute clique $p \in D$ non vide telle que pour toute famille $(u_i)_{i \in I}$ disjointe d'éléments de D, on a:

$$p \subseteq \biguplus_{i \in I} u_i \Rightarrow \exists i \in I, p \subseteq u_i.$$

Nous voulons montrer dans cette question et les trois suivantes que tout élément $u \in D$ se factorise de manière unique en une somme disjointe d'éléments premiers

$$\biguplus_{i \in I} p_i.$$

 \bigstar Soit un élément x d'un élément de D. Montrer que x est contenu dans un élément premier p lui-même inclus dans u. Indication: on définira p comme l'intersection de tous les éléments de D contenant x et inclus dans u.

Question 5. Soit une famille $(p_i)_{i\in I}$ d'éléments premiers de D, tels que:

• l'intersection des p_i est non vide:

$$\bigcap_{i \in I} p_i \neq \emptyset$$

• la famille est dominée par un élément $v \in D$:

$$\forall i \in I, \quad p_i \subseteq v.$$

 \bigstar Montrer que l'union p des éléments premiers p_i :

$$p = \bigcup_{i \in I} p_i$$

est lui-même un élément premier de D.

Question 6.

 \bigstar Déduire des questions 4 et 5 que tout élément $u \in D$ est la somme d'une famille $(p_i)_{i \in I}$ dominée et disjointe d'éléments premiers:

$$u = \biguplus_{i \in I} p_i.$$

Indication: on utilisera les résultats des questions 4. et 5. pour montrer que tout élément $x \in u$ est contenu dans un plus grand élément premier $p_x \subseteq u$. On montrera ensuite que $p_x = p_y$ lorsque $p_x \cap p_y \neq \emptyset$, pour x et y éléments de u. Et on concluera que u est la somme disjointe des p_x pour $x \in u$.

Question 7. Soient $(p_i)_{i\in I}$ et $(q_j)_{j\in J}$ deux familles dominées et disjointes d'éléments premiers de D, telles que

$$\biguplus_{i \in I} p_i = \biguplus_{j \in J} q_j.$$

 \bigstar Montrer qu'il existe une bijection $\varphi: I \longrightarrow J$ telle que:

$$\forall i \in I, \quad p_i = q_{\varphi(i)}.$$

Question 8. Les résultats des questions 4, 5, 6 et 7 montrent que tout élément de D se décompose de manière unique en une somme disjointe d'éléments premiers. Nous utilisons cette décomposition pour construire l'égaliseur (E, e) des morphismes $f_1: X \longrightarrow Y$ et $f_2: X \longrightarrow Y$ dans la catégorie **Coh**.

L'espace de cohérence E est défini comme suit:

- ses sommets sont les éléments premiers de D,
- deux sommets p et q sont cohérents exactement lorsque $p \cap q$ est vide, et $p \cup q$ est une clique.

 \star Montrer que les éléments de D sont en bijection avec les cliques de E.

Question 9. Le morphisme $e: E \longrightarrow X$ de la catégorie **Coh** est défini comme suit:

$$e = \{(p, x) \in |E| \times |X| \mid x \in p\}.$$

★ Montrer que pour toute clique u de X telle que $f_1(u) = f_2(u)$, il existe une et une seule clique v de E telle que e(v) = u.

Question 10.

★ Montrer que le couple (E, e) définit un égaliseur des morphismes $f_1: X \longrightarrow Y$ et $f_2: X \longrightarrow Y$ dans la catégorie **Coh**. Indication: on utilisera la définition suivante de l'espace de cohérence $Z \multimap X$:

$$(z,x) \bigcirc_{Z \multimap X} (z',x') \iff \left\{ \begin{array}{ll} 1. & z=z' \; \Rightarrow \; x \bigcirc_X x', \\ \\ 2. \; z \bigcirc_X z' \; \mathrm{et} \; z \neq z' \; \Rightarrow \; x \bigcirc_X x' \; \mathrm{et} \; x \neq x'. \end{array} \right.$$

Question 11. Nous étudions brièvement un exemple d'égaliseur dans la catégorie Coh. Soit X = Y l'espace de cohérence de trame |X| = |Y| l'ensemble \mathbb{N} des entiers naturels, pris cohérents deux à deux. Soit $f_1: X \longrightarrow Y$ l'identité dans la catégorie Coh:

$$f_1 = \{(n, n) \mid n \in \mathbb{N}\}$$

et $f_2: X \longrightarrow Y$ la clique suivante de $X \multimap Y$:

$$f_2 = \{(0,0)\} \cup \{(n,n+1) \mid n \in \mathbb{N}\}$$

★ Montrer que D contient deux éléments dans ce cas: la clique vide, et la clique totale u = |X|. En déduire que E est l'espace de cohérence 1, et que $e: 1 \longrightarrow X$ est la clique u de X. Expliquer intuitivement pourquoi la construction de l'égaliseur de deux cliques $f_1, f_2: X \longrightarrow Y$ nécessite d'utiliser des cliques infinies, alors que la construction exponentielle !X étudiée en cours ne fait intervenir que des cliques finies.