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The problem : the world is not perfect !

I Uncertainties
I On the platforms’ characteristics

(Processor power, link bandwidth, etc.)
I On the applications’ characteristics

(Volume computation to be performed, volume of messages to
be sent, etc.)

I Dynamicity
I Of network (interferences with other applications, etc.)
I Of processors (interferences with other users, other processors

of the same node, other core of the same processor, etc.)
I Of applications (on which detail should the simulation focus ?)



Solutions : to prevent or to cure ?

To prevent

I Algorithms tolerant to uncertainties and dynamicity.

To cure

I Algorithms auto-adapting to actual conditions.

Leitmotiv : the more the information, the more precise we can sta-
tically define the solutions, the better our chances to “succeed”
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Analyzing the sensitivity

Question : we have defined a solution, how is it going to behave “in
practice” ?

Possible approach

1 Definition of an algorithm A.

2 Modeling the uncertainties and the dynamicity.

3 Analyzing the sensitivity of A as follows :

I For each theoretical instance of the problem

I Evaluate the solution found by A
I For each “actual”instance corresponding to the given theoreti-

cal instance, find the optimal solution and the relative perfor-
mance of the solution found by A.

Sensitivity of A : worst relative performance, or (weighted) ave-
rage relative performance, etc.



Analyzing the sensitivity : an example

Problem

I Master-slave platform with two identical processors

I Flow of two types of identical tasks

I Objective function : maximum minimum throughput between
the two applications (max-min fairness)

P2

P1

A possible solution... null if processor P2 fails.
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Analyzing the sensitivity : the case of Backfilling (1)

The EASY backfilling scheme

I The jobs are considered in First-come first-serve order

I Each time a job arrives or a job completes, a reservation is made
for the first job that cannot be immediately started, later jobs
that can be started immediately are started.

I In practice jobs are submitted with runtime estimates.
A job exceeding its estimate is automatically killed.



Analyzing the sensitivity : the case of Backfilling (2)

The set-up

I 128-node IBM SP2 (San Diego Supercomputer Center)

I May 1998 to April 2000 log : 67,667 jobs

I Job runtime limit : 18 hours.
(Some dozens of seconds may be needed to kill a job.)

I Performance measure : average slowdown (=average stretch).



Analyzing the sensitivity : the case of Backfilling (3)

The length of a job running for 18 hours and 30 seconds is shorten
by 30 seconds.
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Robust slutions

An algorithm is said to be robust if its solutions stay close to the
optimal when the actual parameters are slightly different from the
theoretical parameters.

This solution stays optimal whatever the variations in the processors’
performance : it is not sensitive to this parameter !

It is at worst at two from the optimal when considering variations
on the relative size of the two types of tasks.
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An example of resolution : the problem

The problem :

I A master which has an output bandwidth B.

I p slaves, slave Pi being link with a bandwidth bi and having a
computational speed of ci .

I n flows of tasks, each flow being a set of identical tasks.
A task from the flow k needs βk units of communications and
γk units of computation.

I ρ
(k)
i : throughput of application k on processor i .

ρ(k) =
∑

i ρ
(k)
i is the throughput of application k on the whole

platform.

I Objective : maximize mink ρ(k).

Dynamicity : a processor may fail (definitively).
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An example of resolution : classical solution

1 Resource constraint : processors’ capacities

∀i ,
∑
k

ρ
(k)
i γk ≤ ci

2 Resource constraint : processors’ bandwidths

∀i ,
∑
k

ρ
(k)
i βk ≤ bi

3 Resource constraint : the master output bandwidth∑
i ,k

ρ
(k)
i βk ≤ B

4 Objective

Maximize min
k

∑
i

ρ
(k)
i
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An example of resolution : robust solution

1 ∀i ,
∑
k

ρ
(k)
i γk ≤ ci

2 ∀i ,
∑
k

ρ
(k)
i βk ≤ bi

3

∑
i ,k

ρ
(k)
i βk ≤ B

4 Objective if processor Pp fails :

ρp̄ = min
k

∑
i 6=p

ρ
(k)
i

5 Objective : Maximize min

{
min

p

ρp̄

ρ
(opt)
p̄

,min
k

∑
i

ρ
(k)
i

ρ(opt)

}



An example of resolution : robust solution

1 ∀i ,
∑
k

ρ
(k)
i γk ≤ ci

2 ∀i ,
∑
k

ρ
(k)
i βk ≤ bi

3

∑
i ,k

ρ
(k)
i βk ≤ B

4 Objective if processor Pp fails :

ρp̄ = min
k

∑
i 6=p

ρ
(k)
i

5 Objective : Maximize min

{
min

p

ρp̄

ρ
(opt)
p̄

,min
k

∑
i

ρ
(k)
i

ρ(opt)

}



An example of resolution : robust solution

1 ∀i ,
∑
k

ρ
(k)
i γk ≤ ci

2 ∀i ,
∑
k

ρ
(k)
i βk ≤ bi

3

∑
i ,k

ρ
(k)
i βk ≤ B

4 Objective if processor Pp fails :

ρp̄ = min
k

∑
i 6=p

ρ
(k)
i

5 Objective : Maximize min

{
min

p

ρp̄

ρ
(opt)
p̄

,min
k

∑
i

ρ
(k)
i

ρ(opt)

}



Internet-Based Computing : problem motivation

A possible schedule



Internet-Based Computing : problem motivation

A possible schedule



Internet-Based Computing : problem motivation

A possible schedule



Internet-Based Computing : problem motivation

A possible schedule



Internet-Based Computing : problem motivation

A possible schedule



Internet-Based Computing : problem motivation

A possible schedule



Internet-Based Computing : problem motivation

Another possible schedule



Internet-Based Computing : problem motivation

Another possible schedule



Internet-Based Computing : problem motivation

Another possible schedule



Internet-Based Computing : problem motivation

Another possible schedule



Internet-Based Computing : problem motivation

Another possible schedule



Internet-Based Computing : the principle

Framework

I Internet-Based computing : processor capacities are unknown,
running times are thus unpredictable.

I Execution of a task graph (aka workflow) containing n tasks.

The principle

I Motivation : lessening the likelihood of the “gridlock” that can
arise when a computation stalls pending computation of already
allocated tasks.

I IC-optimal schedule : after t tasks have been executed, the
number of eligible (=executable) tasks is maximal, for any t ∈
[1, n]



Internet-Based Computing : back to the example
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Need of models

How do reality differ from the theoretical views ?

I Model on uncertainties on the length of tasks ?

I Model on the variations of the network capacities ?

I Model on the variations of the processors capacities ?

The model may have a big impact on the results...

What does the reality look like ?
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Modeling the availability of machines

Question :

I Being given a set of homogeneous machines for which we have
a record of the availability ;

I Being given a percentage p and a confidence level c ;

I What is the longest time t during which we can assure with a
confidence c that at least p% of the machines are available ?



Considered models

I Approximation by a Weibull function

density function fw (x) = αβ−αxα−1ε
( x

β
)α

distribution Fw (x) = 1− ε
−( x

β
)α

I Binomial law : let Xq be the q-th percentile of X distribution.
Let (x1, x2, ..., xn) be an independent sample of X . The proba-
bility that at most k of the xi are no larger than Xq is :

k∑
j=0

(
n
j

)
· (1− q)n−j · qj

I Re-sampling method : for a value q and a sample n, the asymp-
totic distribution of the sample of the q-th percentile is a normal
law of mean value Xq and of variance :

1

[f (Xq)2]

q(1− q)

n

where f (Xq) is the density function of the population.



Results

Learning on 20 records (for each machine).

Data # of machines Weibull Binomial Re-sampling

CSIL 16 56.25 87,5 62.5

Condor 97 95.92 98.9 60.2

Long 83 57.95 94.3 53.4

Tab.: Percentage of machines’ traces, for each set, for which the conside-
red method gave an estimate between 95% and 100% of the experimental
measure.

It had previously been shown that the third data set could not be
modeled by a Poisson law or an exponential law.
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Dynamic load-balancing

To cure (and no longer preventing) : the algorithm balance the load
to take into account the des uncertainties and the dynamicity.



General scheme

I From time to time, do :

Each invocation has a cost : the invocations should only take
place at “useful” instants

I Compute a good solution using the observed parameters.

How do we predict the future from the past ?

I Evaluate the cost of balancing the load
I If the gain is larger than the cost : load-balance

If the objective is to minimize the running time, the comparison
is obvious. How do we compare a time and some QoS ?
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Network Weather Service

Distributed system which periodically monitors/records network and
processor performance.

Also, allows to predict the future performance of the network and
of the processors.

Does the past enable to predict the future ?
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How useful is old information ?

The problem

I The values used when taking decisions have already “aged”.

I Is it a problem ? Should we take this ageing into account ?



Framework : the platform

I A set of n servers.

I Tasks arrive according to a Poisson law of througput λn, λ < 1.

I Task execution time : exponential law of mean 1.

I Each server executes in FIFO order the tasks it receives.

I We look at the time each task spent in the system (=flow).



Framework : information

There is a bulletin board on which are displayed the loads of the
different processors.

This information may be wrong or approximate.

We only deal with the case in which this information is old.

This is the only information available to the tasks : they cannot com-
municate between each other and have some coordinated behavior.



The obvious strategies

I Random and uniform choice of the server.

I Random and uniform choice of d servers, the task being sent
on the least loaded of the d servers.

I Task sent on the least loaded server.



First model : periodic updates

I Each T units of time the bulletin board is updated with correct
information.



First model : results
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First model : more elaborated strategies

I Time-based : random choice among the servers which are sup-
posed to be the least loaded.

I Record-Insert : centralized service in which each task updates
the bulletin board by indicating on which server it is sent.

n = 100 and λ = 0.9



Second model : continuous updates

Model : continuous updates, but the information used is T units of
time old.

n = 100 and λ = 0.9

Age of information :
exactly T
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Second model : continuous updates

Model : continuous updates, but the information used is T units of
time old.

n = 100 and λ = 0.9

Age of information :
exactly T uniform distribution on [0; 2T ]



Third model : de-synchronized updates

The different servers updates their information in a de-synchronized
manner, each following an exponential law of average T .

Updates each T units of
time.

De-synchronized updates.

n = 100 and λ = 0.9



And if some were cheating ?

With a probability p a task does not choose between two randomly
determined servers, but takes the least loaded of all servers.



Some memory always help

I Studied scenario : a task is allocated to the “best” of two ran-
domly determined servers.

I New scenario : a task is allocated to the “best” of two servers,
one being randomly chosen and the other one being the least-
loaded one —after the previous task was allocated— of the two
processors considered by the prevoious task.

I The problem : the memorization requires some communications
and centralization.



Complete vs. incomplete information

Complete information

I Requires some centralization (or total replication) ;

I Communications of the most remote elements to the “center” ;

I Obsolescence of the information.

Decentralized schedulers

I The local data are more up-to-date ;

I A local optimization does not always lead to a global optimi-
zation...
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Conclusion

I An obvious need to be able to cope with the dynamicity and
the uncertainties.

I Crucial need to be able to model the dynamicity and the un-
certainty.

I The static world is already complex enough ! ! !

I Where is the trade-off between the precision of the models and
their usability ?

I Trade-off between static and dynamic approaches ?
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