Iterative algorithms (on the impact of network models)

Frédéric Vivien

e-mail: Frederic.Vivien@ens-lyon.fr

16 octobre 2006

Outline

(1) The problem
(2) Fully homogeneous network
(3) Heterogeneous network (complete)

4 Heterogeneous network (general case)
(5) Non dedicated platforms
(6) Conclusion

Outline

(1) The problem
(2) Fully homogeneous network
(3) Heterogeneous network (complete)

4 Heterogeneous network (general case)
(5) Non dedicated platforms
(6) Conclusion

The context: distributed heterogeneous platforms

New sources of problems

- Heterogeneity of processors (computational power, memory, etc.)
- Heterogeneity of communications links.
- Irregularity of interconnection network.
- Non dedicated platforms.

Targeted applications: iterative algorithms

- A set of data (typically, a matrix)

Targeted applications: iterative algorithms

- A set of data (typically, a matrix)
- Structure of the algorithms:

Targeted applications: iterative algorithms

- A set of data (typically, a matrix)
- Structure of the algorithms:
(1) Each processor performs a computation on its chunk of data

Targeted applications: iterative algorithms

- A set of data (typically, a matrix)
- Structure of the algorithms:
(1) Each processor performs a computation on its chunk of data
(2) Each processor exchange the "border" of its chunk of data with its neighbor processors

Targeted applications: iterative algorithms

- A set of data (typically, a matrix)
- Structure of the algorithms:
(1) Each processor performs a computation on its chunk of data
(2) Each processor exchange the "border" of its chunk of data with its neighbor processors
(3) We go back at Step 1

Targeted applications: iterative algorithms

- A set of data (typically, a matrix)
- Structure of the algorithms:
(1) Each processor performs a computation on its chunk of data
(2) Each processor exchange the "border" of its chunk of data with its neighbor processors
(3) We go back at Step 1

Question: how can we efficiently execute such an algorithm on such a platform?

The questions

- Which processors should be used ?
- What amount of data should we give them ?
- How do we cut the set of data ?

Before all, a simplification: slicing the data

- Data: a 2-D array

$$
\begin{array}{cc}
P_{1} & P_{2} \\
\bullet & \bullet \\
\stackrel{\ominus}{P_{3}} & \\
& \stackrel{\ominus}{P_{4}}
\end{array}
$$

Before all, a simplification: slicing the data

- Data: a 2-D array

$$
\stackrel{\ominus}{P_{3}} \quad \stackrel{\ominus}{P}_{4}
$$

- Unidimensional cutting into vertical slices

Before all, a simplification: slicing the data

- Data: a 2-D array

- Unidimensional cutting into vertical slices
- Consequences:

Before all, a simplification: slicing the data

- Data: a 2-D array

- Unidimensional cutting into vertical slices
- Consequences:
(1) Borders and neighbors are easily defined

Before all, a simplification: slicing the data

- Data: a 2-D array

- Unidimensional cutting into vertical slices
- Consequences:
(1) Borders and neighbors are easily defined
(2) Constant volume of data exchanged between neighbors: D_{c}

Before all, a simplification: slicing the data

- Data: a 2-D array

- Unidimensional cutting into vertical slices
- Consequences:
(1) Borders and neighbors are easily defined
(2) Constant volume of data exchanged between neighbors: D_{c}
(3) Processors are virtually organized into a ring

Notations

- Processors: P_{1}, \ldots, P_{p}

Notations

- Processors: P_{1}, \ldots, P_{p}
- Processor P_{i} executes a unit task in a time w_{i}

Notations

- Processors: P_{1}, \ldots, P_{p}
- Processor P_{i} executes a unit task in a time w_{i}
- Overall amount of work D_{w};

Share of $P_{i}: \alpha_{i} . D_{w}$ processed in a time $\alpha_{i} . D_{w} \cdot w_{i}$
$\left(\alpha_{i} \geq 0, \sum_{j} \alpha_{j}=1\right)$

Notations

- Processors: P_{1}, \ldots, P_{p}
- Processor P_{i} executes a unit task in a time w_{i}
- Overall amount of work D_{w};

Share of $P_{i}: \alpha_{i} . D_{w}$ processed in a time $\alpha_{i} . D_{w} \cdot w_{i}$
$\left(\alpha_{i} \geq 0, \sum_{j} \alpha_{j}=1\right)$

- Cost of a unit-size communication from P_{i} to $P_{j}: c_{i, j}$

Notations

- Processors: P_{1}, \ldots, P_{p}
- Processor P_{i} executes a unit task in a time w_{i}
- Overall amount of work D_{w};

Share of $P_{i}: \alpha_{i} . D_{w}$ processed in a time $\alpha_{i} . D_{w} \cdot w_{i}$

$$
\left(\alpha_{i} \geq 0, \sum_{j} \alpha_{j}=1\right)
$$

- Cost of a unit-size communication from P_{i} to $P_{j}: c_{i, j}$
- Cost of a sending from P_{i} to its successor in the ring: $D_{c} . c_{i, \operatorname{succ}(i)}$

Communications: 1-port model

A processor can:

- send at most one message at any time;
- receive at most one message at any time;
- send and receive a message simultaneously.

Objective

(1) Select q processors among p

Objective

(1) Select q processors among p
(2) Order them into a ring

Objective

(1) Select q processors among p
(2) Order them into a ring
(3) Distribute the data among them

Objective

(1) Select q processors among p
(2) Order them into a ring
(3) Distribute the data among them

So as to minimize:

$$
\max _{1 \leq i \leq p} \mathbb{I}\{i\}\left[\alpha_{i} \cdot D_{w} \cdot w_{i}+D_{c} \cdot\left(c_{i, \operatorname{pred}(i)}+c_{i, \operatorname{succ}(i)}\right)\right]
$$

Where $\mathbb{I}\{i\}[x]=x$ if P_{i} participates in the computation, and 0 otherwise

Outline

(1) The problem

(2) Fully homogeneous network
(3) Heterogeneous network (complete)

4 Heterogeneous network (general case)
(5) Non dedicated platforms
(6) Conclusion

Special hypotheses

(1) There exists a communication link between any two processors
(2) All links have the same capacity
$\left(\exists c, \forall i, j c_{i, j}=c\right)$

Consequences

- Either the most powerful processor performs all the work, or all the processors participate

Consequences

- Either the most powerful processor performs all the work, or all the processors participate
- If all processors participate, all end their share of work simultaneously

Consequences

- Either the most powerful processor performs all the work, or all the processors participate
- If all processors participate, all end their share of work simultaneously $\alpha_{i} . D_{w}$ rational values ???

Consequences

- Either the most powerful processor performs all the work, or all the processors participate
- If all processors participate, all end their share of work simultaneously $\alpha_{i} . D_{w}$ rational values ??? $\left(\exists \tau, \quad \alpha_{i} . D_{w} \cdot w_{i}=\tau\right.$, so $\left.1=\sum_{i} \frac{\tau}{D_{w} \cdot w_{i}}\right)$

Consequences

- Either the most powerful processor performs all the work, or all the processors participate
- If all processors participate, all end their share of work simultaneously $\alpha_{i} . D_{w}$ rational values ???
$\left(\exists \tau, \quad \alpha_{i} . D_{w} \cdot w_{i}=\tau\right.$, so $\left.1=\sum_{i} \frac{\tau}{D_{w} \cdot w_{i}}\right)$
- Time of the optimal solution:

$$
T_{\text {step }}=\min \left\{D_{w} \cdot w_{\min }, D_{w} \cdot \frac{1}{\sum_{i} \frac{1}{w_{i}}}+2 \cdot D_{c} \cdot c\right\}
$$

Outline

(1) The problem
 (2) Fully homogeneous network

(3) Heterogeneous network (complete)

4 Heterogeneous network (general case)
(5) Non dedicated platforms
(6) Conclusion

Special hypothesis

(1) There exists a communication link between any two processors

All the processors participate: study (1)

All processors end simultaneously

All the processors participate: study (2)

- All processors end simultaneously

$$
T_{\text {step }}=\alpha_{i} \cdot D_{w} \cdot w_{i}+D_{c} \cdot\left(c_{i, \text { succ }(i)}+c_{i, \operatorname{pred}(i)}\right)
$$

All the processors participate: study (2)

- All processors end simultaneously

$$
\begin{gathered}
T_{\text {step }}=\alpha_{i} \cdot D_{w} \cdot w_{i}+D_{c} \cdot\left(c_{i, \text { succ }(i)}+c_{i, \text { pred }(i)}\right) \\
-\sum_{\substack{i=1 \\
\text { Thus }}}^{p} \alpha_{i}=1 \Rightarrow \sum_{i=1}^{p} \frac{T_{\text {step }}-D_{c} \cdot\left(c_{i, \text { succ }(i)}+c_{i, \operatorname{pred}(i)}\right)}{D_{w} \cdot w_{i}}=1 .
\end{gathered}
$$

$$
\frac{T_{\text {step }}}{D_{w} \cdot w_{\text {cumul }}}=1+\frac{D_{c}}{D_{w}} \sum_{i=1}^{p} \frac{c_{i, \text { succ }(i)}+c_{i, \operatorname{pred}(i)}}{w_{i}}
$$

where $w_{\text {cumul }}=\frac{1}{\sum_{i} \frac{1}{w_{i}}}$

All the processors participate: interpretation

$$
\frac{T_{\text {step }}}{D_{w} \cdot w_{\mathrm{cumul}}}=1+\frac{D_{c}}{D_{w}} \sum_{i=1}^{p} \frac{c_{i, \operatorname{succ}(i)}+c_{i, \operatorname{pred}(i)}}{w_{i}}
$$

All the processors participate: interpretation

$$
\frac{T_{\text {step }}}{D_{w} \cdot w_{\text {cumul }}}=1+\frac{D_{c}}{D_{w}} \sum_{i=1}^{p} \frac{c_{i, \operatorname{succ}(i)}+c_{i, \operatorname{pred}(i)}}{w_{i}}
$$

$T_{\text {step }}$ is minimal when $\sum_{i=1}^{p} \frac{c_{i, \operatorname{succ}(i)}+c_{i, \operatorname{pred}(i)}}{w_{i}}$ is minimal

All the processors participate: interpretation

$$
\frac{T_{\text {step }}}{D_{w} \cdot w_{\text {cumul }}}=1+\frac{D_{c}}{D_{w}} \sum_{i=1}^{p} \frac{c_{i, \operatorname{succ}(i)}+c_{i, \operatorname{pred}(i)}}{w_{i}}
$$

$T_{\text {step }}$ is minimal when $\sum_{i=1}^{p} \frac{c_{i, \operatorname{succ}(i)}+c_{i, \operatorname{pred}(i)}}{w_{i}}$ is minimal
Look for an hamiltonian cycle of minimal weight in a graph where the edge from P_{i} to P_{j} has a weight of $d_{i, j}=\frac{c_{i, j}}{w_{i}}+\frac{c_{j, i}}{w_{j}}$

All the processors participate: interpretation

$$
\frac{T_{\text {step }}}{D_{w} \cdot w_{\text {cumul }}}=1+\frac{D_{c}}{D_{w}} \sum_{i=1}^{p} \frac{c_{i, \operatorname{succ}(i)}+c_{i, \operatorname{pred}(i)}}{w_{i}}
$$

$T_{\text {step }}$ is minimal when $\sum_{i=1}^{p} \frac{c_{i, \operatorname{succ}(i)}+c_{i, \operatorname{pred}(i)}}{w_{i}}$ is minimal
Look for an hamiltonian cycle of minimal weight in a graph where the edge from P_{i} to P_{j} has a weight of $d_{i, j}=\frac{c_{i, j}}{w_{i}}+\frac{c_{j, i}}{w_{j}}$

NP-complete problem

All the processors participate: linear program

$\operatorname{Minimize} \sum_{i=1}^{p} \sum_{j=1}^{p} d_{i, j} \cdot x_{i, j}$,
SATISFYING THE (IN)EQUATIONS

$$
\begin{cases}\text { (1) } \sum_{j=1}^{p} x_{i, j}=1 & 1 \leq i \leq p \\ \text { (2) } \sum_{i=1}^{p} x_{i, j}=1 & 1 \leq j \leq p \\ \text { (3) } x_{i, j} \in\{0,1\} & 1 \leq i, j \leq p \\ \text { (4) } u_{i}-u_{j}+p \cdot x_{i, j} \leq p-1 & 2 \leq i, j \leq p, i \neq j \\ \text { (5) } u_{i} \text { integer, } u_{i} \geq 0 & 2 \leq i \leq p\end{cases}
$$

$x_{i, j}=1$ if, and only if, the edge from P_{i} to P_{j} is used

General case : linear program

Best ring made of q processors

Minimize $\quad T \quad$ Satisfying the (in)Equations

$$
\begin{array}{ll}
\text { (1) } x_{i, j} \in\{0,1\} & 1 \leq i, j \leq p \\
\text { (2) } \sum_{i=1}^{p} x_{i, j} \leq 1 & 1 \leq j \leq p \\
\text { (3) } \sum_{i=1}^{p} \sum_{j=1}^{p} x_{i, j}=q & \\
\text { (4) } \sum_{i=1}^{p} x_{i, j}=\sum_{i=1}^{p} x_{j, i} & 1 \leq j \leq p \\
\text { (5) } \sum_{i=1}^{p} \alpha_{i}=1 & \\
\text { (6) } \alpha_{i} \leq \sum_{j=1}^{p} x_{i, j} & 1 \leq i \leq p \\
\text { (7) } \alpha_{i} \cdot w_{i}+\frac{D_{c}}{D_{w}} \sum_{j=1}^{p}\left(x_{i, j} c_{i, j}+x_{j, i} c_{j, i}\right) \leq T & 1 \leq i \leq p \\
\text { (8) } \sum_{i=1}^{p} y_{i}=1 & \\
\text { (9) }-p \cdot y_{i}-p \cdot y_{j}+u_{i}-u_{j}+q \cdot x_{i, j} \leq q-1 & 1 \leq i, j \leq p, i \neq j \\
\text { (10) } y_{i} \in\{0,1\} & 1 \leq i \leq p \\
\text { (11) } u_{i} \text { integer, } u_{i} \geq 0 & 1 \leq i \leq p
\end{array}
$$

Linear programming

- Problems with rational variables: can be solved in polynomial time (in the size of the problem).

Linear programming

- Problems with rational variables: can be solved in polynomial time (in the size of the problem).
- Problems with integer variables: solved in exponential time in the worst case.

Linear programming

- Problems with rational variables: can be solved in polynomial time (in the size of the problem).
- Problems with integer variables: solved in exponential time in the worst case.
- No relaxation in rationals seems possible here...

And, in practice ?

All processors participate. One can use a heuristic to solve the traveling salesman problem (as Lin-Kernighan's one)

And, in practice ?

All processors participate. One can use a heuristic to solve the traveling salesman problem (as Lin-Kernighan's one)
No guarantee, but excellent results in practice.

And, in practice ?

All processors participate. One can use a heuristic to solve the traveling salesman problem (as Lin-Kernighan's one)
No guarantee, but excellent results in practice.

General case.

And, in practice ?

All processors participate. One can use a heuristic to solve the traveling salesman problem (as Lin-Kernighan's one)
No guarantee, but excellent results in practice.

General case.
(1) Exhaustive search: feasible until a dozen of processors...

And, in practice ?

All processors participate. One can use a heuristic to solve the traveling salesman problem (as Lin-Kernighan's one)
No guarantee, but excellent results in practice.

General case.

(1) Exhaustive search: feasible until a dozen of processors...
(2) Greedy heuristic: initially we take the best pair of processors; for a given ring we try to insert any unused processor in between any pair of neighbor processors in the ring...

Outline

(1) The problem

(2) Fully homogeneous network
(3) Heterogeneous network (complete)

4 Heterogeneous network (general case)
(5) Non dedicated platforms
(6) Conclusion

New difficulty: communication links sharing

Heterogeneous platform

We must take communication link sharing into account.

New notations

- A set of communications links: e_{1}, \ldots, e_{n}

New notations

- A set of communications links: e_{1}, \ldots, e_{n}
- Bandwidth of link $e_{m}: b_{e_{m}}$

New notations

- A set of communications links: e_{1}, \ldots, e_{n}
- Bandwidth of link $e_{m}: b_{e_{m}}$
- There is a path \mathcal{S}_{i} from P_{i} to $P_{\text {succ }(i)}$ in the network

New notations

- A set of communications links: e_{1}, \ldots, e_{n}
- Bandwidth of link $e_{m}: b_{e_{m}}$
- There is a path \mathcal{S}_{i} from P_{i} to $P_{\text {succ }(i)}$ in the network
- \mathcal{S}_{i} uses a fraction $s_{i, m}$ of the bandwidth $b_{e_{m}}$ of link e_{m}

New notations

- A set of communications links: e_{1}, \ldots, e_{n}
- Bandwidth of link $e_{m}: b_{e_{m}}$
- There is a path \mathcal{S}_{i} from P_{i} to $P_{\text {succ }(i)}$ in the network
- \mathcal{S}_{i} uses a fraction $s_{i, m}$ of the bandwidth $b_{e_{m}}$ of link e_{m}
- P_{i} needs a time $D_{c} \cdot \frac{1}{\min _{e_{m} \in \mathcal{S}_{i}} s_{i, m}}$ to send to its successor a message of size D_{c}

New notations

- A set of communications links: e_{1}, \ldots, e_{n}
- Bandwidth of link $e_{m}: b_{e_{m}}$
- There is a path \mathcal{S}_{i} from P_{i} to $P_{\text {succ }(i)}$ in the network
- \mathcal{S}_{i} uses a fraction $s_{i, m}$ of the bandwidth $b_{e_{m}}$ of link e_{m}
- P_{i} needs a time $D_{c} \cdot \frac{1}{\min _{e_{m} \in \mathcal{S}_{i}} s_{i, m}}$ to send to its successor a message of size D_{c}
- Constraints on the bandwidth of $e_{m}: \sum_{1 \leq i \leq p} s_{i, m} \leq b_{e_{m}}$

New notations

- A set of communications links: e_{1}, \ldots, e_{n}
- Bandwidth of link e_{m} : $b_{e_{m}}$
- There is a path \mathcal{S}_{i} from P_{i} to $P_{\text {succ }(i)}$ in the network
- \mathcal{S}_{i} uses a fraction $s_{i, m}$ of the bandwidth $b_{e_{m}}$ of link e_{m}
- P_{i} needs a time $D_{c} \cdot \frac{1}{\min _{e_{m} \in \mathcal{S}_{i}} s_{i, m}}$ to send to its successor a message of size D_{c}
- Constraints on the bandwidth of $e_{m}: \sum_{1 \leq i \leq p} s_{i, m} \leq b_{e_{m}}$
- Symmetrically, there is a path \mathcal{P}_{i} from P_{i} to $P_{\text {pred }(i)}$ in the network, which uses a fraction $p_{i, m}$ of the bandwidth $b_{e_{m}}$ of link e_{m}

Toy example: choosing the ring

- 7 processors and 8 bidirectional communications links

Toy example: choosing the ring

- 7 processors and 8 bidirectional communications links
- We choose a ring of 5 processors:

$$
P_{1} \rightarrow P_{2} \rightarrow P_{3} \rightarrow P_{4} \rightarrow P_{5} \text { (we use neither } Q, \text { nor } R \text {) }
$$

Toy example: choosing the paths

Toy example: choosing the paths

From P_{1} to P_{2}, we use the links a and $b: \mathcal{S}_{1}=\{a, b\}$.

Toy example: choosing the paths

From P_{1} to P_{2}, we use the links a and $b: \mathcal{S}_{1}=\{a, b\}$.
From P_{2} to P_{1}, we use the links b, g and $h: \mathcal{P}_{2}=\{b, g, h\}$.

Toy example: choosing the paths

From P_{1} to P_{2}, we use the links a and $b: \mathcal{S}_{1}=\{a, b\}$.
From P_{2} to P_{1}, we use the links b, g and $h: \mathcal{P}_{2}=\{b, g, h\}$.
From P_{1} : to $P_{2}, \mathcal{S}_{1}=\{a, b\}$ and to $P_{5}, \mathcal{P}_{1}=\{h\}$
From P_{2} : to $P_{3}, \mathcal{S}_{2}=\{c, d\}$ and to $P_{1}, \mathcal{P}_{2}=\{b, g, h\}$
From P_{3} : to $P_{4}, \mathcal{S}_{3}=\{d, e\}$ and to $P_{2}, \mathcal{P}_{3}=\{d, e, f\}$
From P_{4} : to $P_{5}, \mathcal{S}_{4}=\{f, b, g\}$ and to $P_{3}, \mathcal{P}_{4}=\{e, d\}$
From P_{5} : to $P_{1}, \mathcal{S}_{5}=\{h\}$ and to $P_{4}, \mathcal{P}_{5}=\{g, b, f\}$

Toy example: bandwidth sharing

From P_{1} to P_{2} we use links a and $b: c_{1,2}=\frac{1}{\min \left(s_{1, a}, s_{1, b}\right)}$.
From P_{1} to P_{5} we use the link $h: c_{1,5}=\frac{1}{p_{1, h}}$.

Toy example: bandwidth sharing

From P_{1} to P_{2} we use links a and $b: c_{1,2}=\frac{1}{\min \left(s_{1, a}, s_{1, b}\right)}$.
From P_{1} to P_{5} we use the link $h: c_{1,5}=\frac{1}{p_{1, h}}$.

Set of all sharing constraints:

$$
\begin{array}{ll}
\text { Lien } a: & s_{1, a} \leq b_{a} \\
\text { Lien } b: & s_{1, b}+s_{4, b}+p_{2, b}+p_{5, b} \leq b_{b} \\
\text { Lien } c: & s_{2, c} \leq b_{c} \\
\text { Lien } d: & s_{2, d}+s_{3, d}+p_{3, d}+p_{4, d} \leq b_{d} \\
\text { Lien } e & s_{3, e}+p_{3, e}+p_{4, e} \leq b_{e} \\
\text { Lien } f: & s_{4, f}+p_{3, f}+p_{5, f} \leq b_{f} \\
\text { Lien } g: & s_{4, g}+p_{2, g}+p_{5, g} \leq b_{g} \\
\text { Lien } h: & s_{5, h}+p_{1, h}+p_{2, h} \leq b_{h}
\end{array}
$$

Toy example: final quadratic system

Minimize $\max _{1 \leq i \leq 5}\left(\alpha_{i} . D_{w} \cdot w_{i}+D_{c} \cdot\left(c_{i, i-1}+c_{i, i+1}\right)\right) \quad$ UNDER THE CONSTRAINTS

$$
\left\{\begin{array}{lll}
\sum_{i=1}^{5} \alpha_{i}=1 & & \\
s_{1, a} \leq b_{a} & s_{1, b}+s_{4, b}+p_{2, b}+p_{5, b} \leq b_{b} & s_{2, c} \leq b_{c} \\
s_{2, d}+s_{3, d}+p_{3, d}+p_{4, d} \leq b_{d} & s_{3, e}+p_{3, e}+p_{4, e} \leq b_{e} & s_{4, f}+p_{3, f}+p_{5, f} \leq b_{f} \\
s_{4, g}+p_{2, g}+p_{5, g} \leq b_{g} & s_{5, h}+p_{1, h}+p_{2, h} \leq b_{h} & \\
s_{1, a} \cdot c_{1,2} \geq 1 & s_{1, b} \cdot c_{1,2} \geq 1 & p_{1, h} \cdot c_{1,5} \geq 1 \\
s_{2, c} \cdot c_{2,3} \geq 1 & s_{2, d} \cdot c_{2,3} \geq 1 & p_{2, b} \cdot c_{2,1} \geq 1 \\
p_{2, g} \cdot c_{2,1} \geq 1 & p_{2, h} \cdot c_{2,1} \geq 1 & s_{3, d} \cdot c_{3,4} \geq 1 \\
s_{3, e} \cdot c_{3,4} \geq 1 & p_{3, d} \cdot c_{3,2} \geq 1 & p_{3, e} \cdot c_{3,2} \geq 1 \\
p_{3, f} \cdot c_{3,2} \geq 1 & s_{4, f} \cdot c_{4,5} \geq 1 & s_{4, b} \cdot c_{4,5} \geq 1 \\
s_{4, g} \cdot c_{4,5} \geq 1 & p_{4, e} \cdot c_{4,3} \geq 1 & p_{4, d} \cdot c_{4,3} \geq 1 \\
s_{5, h} \cdot c_{5,1} \geq 1 & p_{5, g} \cdot c_{5,4} \geq 1 & p_{5, b} \cdot c_{5,4} \geq 1
\end{array}\right.
$$

$$
p_{5, f} \cdot c_{5,4} \geq 1
$$

Toy example: the moral

The problem sums up to a quadratic system if
(1) The processors are selected;

Toy example: the moral

The problem sums up to a quadratic system if
(1) The processors are selected;
(2) The processors are ordered into a ring;

Toy example: the moral

The problem sums up to a quadratic system if
(1) The processors are selected;
(2) The processors are ordered into a ring;
(3) The communication paths between the processors are known.

Toy example: the moral

The problem sums up to a quadratic system if
(1) The processors are selected;
(2) The processors are ordered into a ring;
(3) The communication paths between the processors are known.

In other words: a quadratic system if the ring is known.

Toy example: the moral

The problem sums up to a quadratic system if
(1) The processors are selected;
(2) The processors are ordered into a ring;
(3) The communication paths between the processors are known.

In other words: a quadratic system if the ring is known.
If the ring is known:

- Complete graph: closed-form expression;
- General graph: quadratic system.

And, in practice ?

We adapt our greedy heuristic:
(1) Initially: best pair of processors
(2) For each processor P_{k} (not already included in the ring)

- For each pair $\left(P_{i}, P_{j}\right)$ of neighbors in the ring
(1) We build the graph of the unused bandwidths (Without considering the paths between P_{i} and P_{j})
(2) We compute the shortest paths (in terms of bandwidth) between P_{k} and P_{i} and P_{j}
(3) We evaluate the solution
(3) We keep the best solution found at step 2 and we start again
+ refinements (max-min fairness, quadratic solving)

Is this meaningful ?

- No guarantee, neither theoretical, nor practical

Is this meaningful ?

- No guarantee, neither theoretical, nor practical
- Simple solution:

Is this meaningful ?

- No guarantee, neither theoretical, nor practical
- Simple solution:
(1) we build the complete graph whose edges are labeled with the bandwidths of the best communication paths

Is this meaningful ?

- No guarantee, neither theoretical, nor practical
- Simple solution:
(1) we build the complete graph whose edges are labeled with the bandwidths of the best communication paths
(2) we apply the heuristic for complete graphs

Is this meaningful ?

- No guarantee, neither theoretical, nor practical
- Simple solution:
(1) we build the complete graph whose edges are labeled with the bandwidths of the best communication paths
(2) we apply the heuristic for complete graphs
(3) we allocate the bandwidths

An example of an actual platform (Lyon)

Topology

P_{0}	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}	P_{8}
0.0206	0.0206	0.0206	0.0206	0.0291	0.0206	0.0087	0.0206	0.0206

P_{9}	P_{10}	P_{11}	P_{12}	P_{13}	P_{14}	P_{15}	P_{16}
0.0206	0.0206	0.0206	0.0291	0.0451	0	0	0

Processors processing times (in seconds par megaflop)

Describing Lyon's platform

Abstracting Lyon's platform.

Results

First heuristic building the ring without taking link sharing into account

Second heuristic taking into account link sharing (and with quadratic programing)

Ratio D_{c} / D_{w}	H1	H2	Gain	
0.64	$0.008738 \quad(1)$	$0.008738 \quad(1)$	0%	
0.064	$0.018837(13)$	$0.006639(14)$	64.75%	
0.0064	0.003819	(13)	0.001975	(14)

Ratio D_{c} / D_{w}	H 1	H 2	Gain
0.64	$0.005825(1)$	$0.005825(1)$	0%
0.064	0.027919	(8)	$0.004865(6)$
$0.02 .57 \%$			
0.064	$0.007218(13)$	$0.001608(8)$	77.72%

Table: $T_{\text {step }} / D_{w}$ for each heuristic on Lyon's and Strasbourg's platforms (the numbers in parentheses show the size of the rings built).

Outline

(1) The problem

(2) Fully homogeneous network
(3) Heterogeneous network (complete)
4. Heterogeneous network (general case)
(5) Non dedicated platforms
(6) Conclusion

New difficulties

The available processing power of each processor changes over time
The available bandwidth of each communication link changes over time
\Rightarrow Need to reconsider the allocation previously done
\Rightarrow Introduce dynamicity in a static approach

A possible approach

- If the actual performance is "too much" different from the characteristics used to build the solution
- If the actual performance is "very" different
- We compute a new ring
- We redistribute data from the old ring to the new one
- If the actual performance is "a little" different
- We compute a new load-balancing in the existing ring
- We redistribute the data in the ring

A possible approach

- If the actual performance is "too much" different from the characteristics used to build the solution Actual criterion defining "too much" ?
- If the actual performance is "very" different
- We compute a new ring
- We redistribute data from the old ring to the new one Actual criterion defining "very" ?
Cost of the redistribution ?
- If the actual performance is "a little" different
- We compute a new load-balancing in the existing ring
- We redistribute the data in the ring How to efficiently do the redistribution ?

Principle of the load-balancing

Principle: the ring is modified only if this is profitable.

- $T_{\text {step }}$: length of an iteration before load-balancing;
- $T_{\text {step }}^{\prime}$: length of an iteration after load-balancing;
- $T_{\text {redistribution }}$: cost of the redistribution;
- $n_{\text {iter }}$: number of remaining iterations

Condition: $\quad T_{\text {redistribution }}+n_{\text {iter }} \times T_{\text {step }}^{\prime} \leq n_{\text {iter }} \times T_{\text {step }}$

Load-balancing on a ring

- Homogeneous unidirectional ring
- Heterogeneous unidirectional ring
- Homogeneous bidirectional ring
- Heterogeneous bidirectional ring

Notations

- $C_{k, l}$ the set of the processors from P_{k} to P_{l} :

$$
C_{k, l}=P_{k}, P_{k+1}, \ldots, P_{l}
$$

- $c_{i, i+1}$: time needed by processor P_{i} to send a data item to processor P_{i+1} (next one in the ring).
- Initially, processor P_{i} holds L_{i} data items (atomic). After redistribution, P_{i} will hold $L_{i}-\delta_{i}$ data items. δ_{i} is the unbalance of processor P_{i}.
$\delta_{k, l}$: unbalance of the set $C_{k, l}: \delta_{k, l}=\sum_{i=k}^{l} \delta_{i}$.
Conservation law for the data: $\sum_{i} \delta_{i}=0$
We assume that each processor at least one data item before and after the redistribution: $L_{i} \geq 1$ et $L_{i} \geq 1+\delta_{i}$.

Framework

Homogeneous communication time: c.
P_{k} can only send messages to P_{k+1}.

Lower bound on the length of the redistribution

Homogeneous communication time: c.
P_{k} can only send messages to P_{k+1}.

Lower bound on the length of the redistribution

Homogeneous communication time: c.
P_{k} can only send messages to P_{k+1}.

Lower bound on the length of the redistribution

Homogeneous communication time: c.
P_{k} can only send messages to P_{k+1}.
P_{l} needs a time $\delta_{k, l} \times c$ to send $\delta_{k, l}$ data (if $\delta_{k, l}>0$).

Lower bound on the length of the redistribution

Homogeneous communication time: c.
P_{k} can only send messages to P_{k+1}.
P_{l} needs a time $\delta_{k, l} \times c$ to send $\delta_{k, l}$ data (if $\delta_{k, l}>0$).
Lower bound: $\quad\left(\max _{1 \leq k \leq n, 0 \leq l \leq n-1} \delta_{k, k+l}\right) \times c$

Redistribution algorithm

Redistribution algorithm

Redistribution algorithm

Redistribution algorithm

The redistribution algorithm is defined by the first processor of a "chain" of processors whose unbalance is maximal.

Redistribution algorithm

During the algorithm execution processor P_{i} sends $\delta_{2, i}$ data.

Redistribution algorithm

At step $1, P_{i}$ sends a data item if and only if $\delta_{2, i} \geq 1$

Redistribution algorithm

At step $1, P_{i}$ sends a data item if and only if $\delta_{2, i} \geq 1$

Redistribution algorithm

At step $2, P_{i}$ sends a data item if and only if $\delta_{2, i} \geq 2$

Redistribution algorithm

At step $2, P_{i}$ sends a data item if and only if $\delta_{2, i} \geq 2$

Redistribution algorithm

At step $3, P_{i}$ sends a data item if and only if $\delta_{2, i} \geq 3$

Redistribution algorithm

At step $3, P_{i}$ sends a data item if and only if $\delta_{2, i} \geq 3$

Redistribution algorithm

At step $4, P_{i}$ sends a data item if and only if $\delta_{2, i} \geq 4$

Redistribution algorithm

At step $4, P_{i}$ sends a data item if and only if $\delta_{2, i} \geq 4$

Redistribution algorithm

At step $5, P_{i}$ sends a data item if and only if $\delta_{2, i} \geq 5$

Redistribution algorithm

At step $5, P_{i}$ sends a data item if and only if $\delta_{2, i} \geq 5$

Homogeneous unidirectional ring: formal algorithm

1: Let $\delta_{\max }=\left(\max _{1 \leq k \leq n, 0 \leq l \leq n-1}\left|\delta_{k, k+l}\right|\right)$
2: Let start and end be two indices such that the slice $C_{\text {start,end }}$ is of maximal imbalance: $\delta_{\text {start,end }}=\delta_{\text {max }}$.
3: for $s=1$ to $\delta_{\text {max }}$ do
4: \quad for all $l=0$ to $n-1$ do
5: \quad if $\delta_{\text {start,start }+l} \geq s$ then
6: $\quad P_{\text {start }+l}$ sends to $P_{\text {start }+l+1}$ a data item during the time interval $[(s-1) \times c, s \times c[$

Homogeneous unidirectional ring: formal algorithm

1: Let $\delta_{\max }=\left(\max _{1 \leq k \leq n, 0 \leq l \leq n-1}\left|\delta_{k, k+l}\right|\right)$
2: Let start and end be two indices such that the slice $C_{\text {start,end }}$ is of maximal imbalance: $\delta_{\text {start,end }}=\delta_{\text {max }}$.
3: for $s=1$ to $\delta_{\text {max }}$ do
4: \quad for all $l=0$ to $n-1$ do
5: \quad if $\delta_{\text {start,start }+l} \geq s$ then
6: $\quad P_{\text {start }+l}$ sends to $P_{\text {start }+l+1}$ a data item during the time interval $[(s-1) \times c, s \times c[$

Theorem

This redistribution algorithm is optimal.

Heterogeneous unidirectional ring: lower bound

Processor P_{i} needs a time $c_{i, i+1}$ to send a data to processor P_{i+1}.

Heterogeneous unidirectional ring: lower bound

Processor P_{i} needs a time $c_{i, i+1}$ to send a data to processor P_{i+1}.

Principle of the lower bound: same as for the homogeneous case.
P_{l} needs a time $\delta_{k, l} \times c_{l, l+1}$ to send $\delta_{k, l}$ data items to P_{l+1} (if $\left.\delta_{k, l}>0\right)$.

Lower bound:

$$
\max _{1 \leq k \leq n, 0 \leq l \leq n-1} \delta_{k, k+l} \times c_{k+l, k+l+1}
$$

Consequences of the heterogeneity of communications

P_{6} can have to receive some data items from P_{5} to complete sending all the necessary data items to P_{7}.

Consequences of the heterogeneity of communications

P_{6} can have to receive some data items from P_{5} to complete sending all the necessary data items to P_{7}.

We cannot express with a simple closed-form expression the time needed by P_{6} to complete its share of the work.

The redistribution algorithm is asynchronous.

The redistribution algorithm

This is just an asynchronous version of the previous algorithm.

1: Let $\delta_{\text {max }}=\left(\max _{1 \leq k \leq n, 0 \leq l \leq n-1}\left|\delta_{k, k+l}\right|\right)$
2: Let start and end be two indices such that the slice $C_{\text {start, end }}$ is of maximal unbalance: $\delta_{\text {start,end }}=\delta_{\text {max }}$.

3: for all $l=0$ to $n-1$ do

4: $\quad P_{\text {start }+l}$ sends $\delta_{\text {start } \text { start }+l}$ data items one by one and as soon as possible to processor $P_{\text {start }+l+1}$

Optimality

Obvious by construction

Optimality

Obvious by construction

Lemma

The execution time of the redistribution algorithm is

$$
\max _{0 \leq l \leq n-1} \delta_{\text {start }, \text { start }+l} \times c_{\text {start }+l, \text { start }+l+1}
$$

Optimality

Obvious by construction

Lemma

The execution time of the redistribution algorithm is

$$
\max _{0 \leq l \leq n-1} \delta_{\text {start }, \text { start }+l} \times c_{\text {start }+l, \text { start }+l+1}
$$

In other words, there is no propagation delay, whatever the initial distribution of the data, and whatever the communication speeds...

Optimality : principle of the proof

The execution time of the algorithm is

$$
\max _{0 \leq l \leq n-1} \delta_{\text {start }, \text { start }+l} \times c_{\text {start }+l, \text { start }+l+1}
$$

Time

Homogeneous bidirectional ring : framework

Homogeneous communication time: c.
Bidirectional communications

Homogeneous bidirectional ring : lower bound

Homogeneous communication time: c.
Bidirectional communications

Homogeneous bidirectional ring : lower bound

Homogeneous communication time: c.
Bidirectional communications

Homogeneous bidirectional ring : lower bound

Homogeneous communication time: c.
We need a time $\left\lceil\frac{\delta_{k, k+l}}{2}\right\rceil \times c$ to send $\delta_{k, k+l}$ data items of the processor "chain" $P_{k}, \ldots, P_{k+l}\left(\right.$ if $\left.\delta_{k, l}>0\right)$.

Homogeneous bidirectional ring : lower bound

Homogeneous communication time: c.
We need a time $\left\lceil\frac{\delta_{k, k+l}}{2}\right\rceil \times c$ to send $\delta_{k, k+l}$ data items of the processor "chain" $P_{k}, \ldots, P_{k+l}\left(\right.$ if $\left.\delta_{k, l}>0\right)$.

Lower bound:

$$
\max \left\{\max _{1 \leq i \leq n}\left|\delta_{i}\right|, \max _{1 \leq i \leq n, 1 \leq l \leq n-1}\left\lceil\frac{\left|\delta_{i, i+l}\right|}{2}\right\rceil\right\} \times c
$$

Bidirectional homogeneous: principle of the algorithm

(1) Each non trivial set $C_{k, l}$ such that $\left\lceil\frac{\left|\delta_{k, l}\right|}{2}\right\rceil=\delta_{\max }$ and $\delta_{k, l} \geq 0$ must send two data items at each step, one by each of its two extremities.

Bidirectional homogeneous: principle of the algorithm

(1) Each non trivial set $C_{k, l}$ such that $\left\lceil\frac{\left|\delta_{k, l}\right|}{2}\right\rceil=\delta_{\max }$ and $\delta_{k, l} \geq 0$ must send two data items at each step, one by each of its two extremities.
(2) Each non trivial set $C_{k, l}$ such that $\left\lceil\frac{\left|\delta_{k, l}\right|}{2}\right\rceil=\delta_{\text {max }}$ and $\delta_{k, l} \leq 0$ must receive two data items at each step, one by each of its two extremities.

Bidirectional homogeneous: principle of the algorithm

(1) Each non trivial set $C_{k, l}$ such that $\left\lceil\frac{\left|\delta_{k, l}\right|}{2}\right\rceil=\delta_{\max }$ and $\delta_{k, l} \geq 0$ must send two data items at each step, one by each of its two extremities.
(2) Each non trivial set $C_{k, l}$ such that $\left\lceil\frac{\left|\delta_{k, l}\right|}{2}\right\rceil=\delta_{\text {max }}$ and $\delta_{k, l} \leq 0$ must receive two data items at each step, one by each of its two extremities.
(3) Once the communications required by the two previous cases are defined, we take care of P_{i} such that $\left|\delta_{i}\right|=\delta_{\text {max }}$. If P_{i} is already implied in a communication: everything is already set up.
Otherwise, we have the choice of the processor to which P_{i} sends (case $\delta_{i} \geq 0$) or from which P_{i} receives (case $\delta_{i} \leq 0$) a data item.
For the sake of simplicity: all these communications are in the same direction "from P_{i} to P_{i+1} ".

Homogeneous bidirectional ring: optimality

Difficulties:

- Particular cases (taking care of the termination)
- Proof of the correctness of the algorithm (the optimality is then obvious)

Heterogeneous bidirectional rig: bound

The length τ of any redistribution satisfies:
$\left\{\max _{1 \leq k \leq n, \delta_{k}>0} \delta_{k} \min \left\{c_{k, k-1}, c_{k, k+1}\right\}\right.$

Heterogeneous bidirectional rig: bound

The length τ of any redistribution satisfies:
$\tau \geq \max \left\{\begin{array}{l}\max _{1 \leq k \leq n, \delta_{k}>0} \delta_{k} \min \left\{c_{k, k-1}, c_{k, k+1}\right\} \\ \max _{1 \leq k \leq n, \delta_{k}<0}-\delta_{k} \min \left\{c_{k-1, k}, c_{k+1, k}\right\} \\ \\ \end{array}\right.$

Heterogeneous bidirectional rig: bound

The length τ of any redistribution satisfies:

$$
\tau \geq \max \left\{\begin{array}{l}
\max _{1 \leq k \leq n, \delta_{k}>0} \delta_{k} \min \left\{c_{k, k-1}, c_{k, k+1}\right\} \\
\max _{1 \leq k \leq n, \delta_{k}<0}-\delta_{k} \min \left\{c_{k-1, k}, c_{k+1, k}\right\} \\
\max _{\substack{1 \leq k \leq n, 1 \leq l \leq n-2, \delta_{k, k+l}>0}} \min _{\substack{ \\
}} \max \left\{i \cdot c_{k, k-1},\left(\delta_{k, k+l}-i\right) \cdot c_{k+l, k+l+1}\right\} \\
\end{array}\right.
$$

Heterogeneous bidirectional rig: bound

The length τ of any redistribution satisfies:

$$
\tau \geq \max \left\{\begin{array}{l}
\max _{1 \leq k \leq n, \delta_{k}>0} \delta_{k} \min \left\{c_{k, k-1}, c_{k, k+1}\right\} \\
\max _{1 \leq k \leq n, \delta_{k}<0}-\delta_{k} \min \left\{c_{k-1, k}, c_{k+1, k}\right\} \\
\max _{1 \leq k \leq n,} \min _{\substack{ \\
1 \leq l \leq n-2, \delta_{k}, k+l>0}}^{\max _{\substack{ \\
1 \leq k \leq n, 1 \leq l \leq n, k+l}} \max \left\{i \cdot c_{k, k-1},\left(\delta_{k, k+l}-i\right) \cdot c_{k+l, k+l+1}\right\}} \begin{array}{l}
\min _{k, k+l}<-\delta_{k, k+l} \\
\delta_{k, k+l}<0
\end{array} \max \left\{i \cdot c_{k-1, k},-\left(\delta_{k, k+l}+i\right) \cdot c_{k+l+1, k+l}\right\}
\end{array}\right.
$$

Heterogeneous bidirectional ring: "light" redistributions (1)

Definition: we say that a redistribution is "light" if each processor initially holds all the data items it needs to send during the execution of the algorithm.
$\mathcal{S}_{i, j}$: amount of data sent by P_{i} to its neighbor P_{j}.

Minimize τ, Subject to

$$
\begin{cases}\mathcal{S}_{i, i+1} \geq 0 & 1 \leq i \leq n \\ \mathcal{S}_{i, i-1} \geq 0 & 1 \leq i \leq n \\ \mathcal{S}_{i, i+1}+\mathcal{S}_{i, i-1}-\mathcal{S}_{i+1, i}-\mathcal{S}_{i-1, i}=\delta_{i} & 1 \leq i \leq n \\ \mathcal{S}_{i, i+1} c_{i, i+1}+\mathcal{S}_{i, i-1} c_{i, i-1} \leq \tau & 1 \leq i \leq n \\ \mathcal{S}_{i+1, i} c_{i+1, i}+\mathcal{S}_{i-1, i} c_{i-1, i} \leq \tau & 1 \leq i \leq n\end{cases}
$$

Heterogeneous bidirectional ring: "light" redistributions (2)

(1) Any integral solution is feasible.

Ex.: P_{i} sends its $\mathcal{S}_{i, i+1}$ data to P_{i+1} starting at time 0 . Once this communication is completed, P_{i} sends $\mathcal{S}_{i, i-1}$ data to P_{i-1} as soon as it is possible under the one port model.
(2) If we solve the system in rational, one of the two natural rounding in integer defines an optimal integral solution.

Heterogeneous bidirectional ring: general case

Any idea anybody ?

Outline

(1) The problem
(2) Fully homogeneous network
(3) Heterogeneous network (complete)

4 Heterogeneous network (general case)
(5) Non dedicated platforms
(6) Conclusion

Conclusion

"Regular" parallelism was already complicated, now we have:

- Processors with different characteristics
- Communications links with different characteristics
- Irregular interconnection networks
- Resources whose characteristics evolve over time

We need to use a realistic model of networks... but a more realistic model may lead to a more complicated problem.

