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Why revisit matrix-product?

I A fundamental computational kernel (the mother source of
parallel algorithm design)

I Well-understood for homogeneous 2D-arrays of processors
- Cannon algorithm
- ScaLAPACK outer product algorithm

I Target platforms = heterogeneous clusters

I Target usage = speed up MATLAB-client
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Application (1/2)
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Application model (2/2)

I Manipulate blocks of size q × q (harness power of Level 3
BLAS)
Heard from the grapevine: q = 80 in ATLAS

I A is of size nA × nAB:
- split A into r horizontal stripes Ai

- split stripe Ai into t square q × q blocks Aik

- here r = nA/q and t = nAB/q

I B is of size nAB × nB:
- split B into s vertical stripes Bj

- split stripe Bj into t square q × q blocks Bkj

- here s = nB/q

I Compute C = C +A× B:
- split C into r × s square q × q blocks Cij

I All stripes and blocks have same size
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Platform model (1/2)
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Platform model (2/2)

I Star network S = {M,P1, P2, . . . , Pp}:
- master M and p workers Pi

I Pi needs X.wi time-units to execute a task of size X

I M needs X.ci time-units to send/rcv a msg of size X to/from
Pi

I Master has no processing capability
I Enforce one-port model:

I Master involved in a single communication, either send or
receive

I Worker cannot start execution before having completed
message reception (but overlap between independent
communications and computations)

I Memory limitation: Pi can only store mi blocks
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What is the simplest problem? (1/2)

Problem

I Fully homogeneous platform (identical workers and
communication links)

I Stripes instead of blocks, no return results

I No memory limitation:
- workers receive stripes only once, re-use them when needed

Scheduling

I How many workers to enroll?

I Which files sent to which workers, and in which order?
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What is the simplest problem? (2/2)

Parameters

I Platform: p (number of workers), c and w (send/process a
stripe)

I Application: r and s (number of stripes)

Objective

I Makespan minimization

I Design optimal algorithm (includes resource selection)
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Bipartite graph: files and tasks
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B2B1

Suggests alternating sends of A and B



And with a single worker?

Theorem

Theorem With a single worker, the alternating greedy algorithm is
optimal.

Proof.

- Master sends stripes as soon as possible
- Alternate a stripe of type A and a stripe of type B
- After x communication steps, with y A-files and z B-files
(y + z = x), worker can process y × z tasks
- Alternating greedy algorithm enforces y = dx2 e and z = bx2 c (as
long as max(x, y) 6 min(r, s), and then on sends remaining files).
Hence optimality



With several workers? (1/3)

Thrifty: a natural greedy algorithm

I Send enough tasks to first worker so that it is never idle

I Send tasks to second worker during available communication
slots

I Enroll new worker only when all previous ones are not delayed

Min-min: another natural greedy algorithm

I Min-min heuristic

I Start best new task on best processor
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With several workers? (2/3)

Min-Min

Thrifty

a2b1 a1 b2 b3

w11 w12 w21 w22 w13 w23

b1 a3 b2 b3

w31 w32 w33

b3a2b2a1b1

w11 w12 w21 w22 w13

w23w33w32w31

a3b1 b2 b3 a2

p = 2, c = 4, w = 7, r = s = 3, Min-min wins



With several workers? (3/3)

b1 a1 b2

w11 w12

a2 b3

w21 w22

b1 a6

w13

a3

w61

b2

w23 w31 w32 w33

a4

w41 w42 w43

a5 b3

w62 w51 w52 w63 w53

b1 a1 b2 a2

w11 w12 w21 w22

b3

b1 a6

w61

b2 a5

w23w13

w62

a3 a4

w31

b3

w51 w52 w63 w53 w43

a4

w32 w33 w41 w42

p = 2, c = 8, w = 9, r = 6, s = 3, Thrifty wins



Allocating the buffers

I Goal: bound total number of communications performed by
master

I Simulate any parallel algorithm with a single worker

I Master sends blocks Aik, Bkj , and Cij
I Master retrieves final values of blocks Cij
I Memory limitation: only m buffers available
→ at most m blocks simultaneously stored on worker
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A strategy

CCCC CCCC CCCC CCCCA B B B B

1 µ µ2

I Find largest µ s.t. 1 + µ + µ2 6 m

I Store µ2 blocks of C in memory:
send a µ× µ square {Ci,j / i0 6 i < i0 + µ, j0 6 j < j0 + µ}

I For each k from 1 to t:

1 Send row of µ elements {Bk,j / j0 6 j < j0 + µ}
2 Sequentially send µ elements of column
{Ai,k / i0 6 i < i0 + µ}. For each Ai,k, update µ elements of
C

I Return results to master
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Performance

I Need 2µ2 communications to send/retrieve C

I For each value of t:
- need µ elements of A and µ elements of B
- perform rank-1 update of C square → µ2 computations

I Communication-to-computation ratio:

2µ2 + 2µt

µ2t
=

2
t

+
2
µ
→ 2√

m
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Assessing that performance (1/3)

I Estimate number of computations made during m consecutive
communication steps

I Notations:
- αold, βold, and γold number of buffers dedicated to A, B and
C at the beginning
- αrecv, βrecv, and γrecv number of A, B, and C elements sent
by master during m steps
- γsent number of C elements returned to master during m
steps

I Equations: {
αold + βold + γold 6 m
αrecv + βrecv + γrecv + γsent = m



Assessing that performance (1/3)

I Estimate number of computations made during m consecutive
communication steps

I Notations:
- αold, βold, and γold number of buffers dedicated to A, B and
C at the beginning
- αrecv, βrecv, and γrecv number of A, B, and C elements sent
by master during m steps
- γsent number of C elements returned to master during m
steps

I Equations: {
αold + βold + γold 6 m
αrecv + βrecv + γrecv + γsent = m



Assessing that performance (1/3)

I Estimate number of computations made during m consecutive
communication steps

I Notations:
- αold, βold, and γold number of buffers dedicated to A, B and
C at the beginning
- αrecv, βrecv, and γrecv number of A, B, and C elements sent
by master during m steps
- γsent number of C elements returned to master during m
steps

I Equations: {
αold + βold + γold 6 m
αrecv + βrecv + γrecv + γsent = m



Assessing that performance (2/3)

I Simplify notations: 
αold + αrecv = αm
βold + βrecv = βm
γold + γrecv = γm

I Use Toledo’s lemma: if NA elements of A, NB elements of B
and NC elements of C are accessed, then no more than K
computations can be done:

K = min
{

(NA + NB)
√

NC , (NA + NC)
√

NB, (NB + NC)
√

NA

}
Here

K = min{(α + β)
√

γ, (β + γ)
√

α, (γ + α)
√

β} ×m
√

m
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Digression: proof of Toledo’s lemma

I Partition computations w.r.t elements of A:
- big rows have more than

√
NA elements accessed

- small rows have fewer than
√

NA elements accessed

I Computations involving big rows:
- each element of B used at most once per big row
- bounded by NB ×#big-rows 6 NB ×

√
NA

I Computations involving small rows:
- each element of C accumulates at most #elements in
small-row
- bounded by NC ×#max-elts 6 NC ×

√
NA

I Use trilinear form
∑

AikBkjCij for symmetrical identities
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Assessing that performance (3/3)

I Problem: K = km
√

m,

Maximize k s.t.
k 6 (α + β)
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I Solution:
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3
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Refinement

I Instead of Toledo’s lemma, use Loomis-Whitney inequality: if
NA elements of A, NB elements of B and NC elements of C
are accessed, then no more than K computations can be done:

K =
√

NANBNC

Here
K =

√
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Algorithm with identical workers (1/2)

for all blocks do
Return µ2 old Ci,j (if any);
Receive µ2 new Ci,j ;
for t do

receive µ Bk,j ;
receive µ Ai,k;
update µ2 blocks Ci,j ;

end
end

Algorithm 1: Synchronous version



Algorithm with identical workers (2/2)

c = 2, w = 4.5, µ = 4, t = 100, enroll P = 5 workers
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Algorithm with identical workers (2/2)

c = 2, w = 4.5, µ = 4, t = 100, enroll P = 5 workers

P× µ2C P× µ(A, B)P× µ(A, B) P× µ(A, B)

t

P× µ2C



Performance (1/2)

I Assume P 6 p participating workers

I In a round (computing a C block entirely), master
communicates with each worker:
- 2µ2 blocks of C (either sent or received)
- 2µt blocks of A and B

I In a round, each worker computes µ2t updates

I For large t, neglect input/output of C blocks, and choose P

s.t.

(2µtc)×P ≈ µ2tw ⇔ P =
⌈µw

2c

⌉

In the example, P = d4.5e

I Typically, c = q2τc and w = q3τa

→ resource selection P =
⌈
µq τa

2τc
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Performance (2/2)

I Can we really neglect input/output of C blocks?

I Each worker loses 2c time-units per block, i.e. per tw
time-units

I There are at most P 6 µw
2c workers

I Total loss 2cP time-units every tw time-units

I Total loss 6 µ
t

I In the example, at most 4%
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Resource selection

Problem

I Each worker Pi has parameters ci, wi, and µi =
√

mi.

I Each participating Pi needs δi = 2µitci communications to
process φi = tµ2

i wi computations (neglect I/O for C blocks)

I Which workers to enroll?



Solution (1/3)

I In steady-state, Pi receives yi A and B blocks per time-unit

I In steady-state, Pi computes xi C blocks per time-unit



Maximize
∑

i xi

subject to
xi

µ2
i

6
yi

2µi

xiwi 6 1∑
i

yici 6 1

µi µ2
i

µi



Solution (1/3)

I In steady-state, Pi receives yi A and B blocks per time-unit

I In steady-state, Pi computes xi C blocks per time-unit
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Maximize
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i xi

subject to
xi

µ2
i

6
yi

2µi

xiwi 6 1∑
i

yici 6 1 µi µ2
i

µi



Solution (2/3)



Maximize
∑

i xi

subject to
xi

µ2
i

6
yi

2µi

xiwi 6 1∑
i

yici 6 1

⇔

Claim yi = 2xi
µi

Maximize
∑

i xi

subject to

xi 6
1
wi∑

i

2ci

µi
xi 6 1



Solution (3/3)



Maximize
∑

i xi

subject to

xi 6
1
wi∑

i

2ci

µi
xi 6 1

I Bandwidth-centric strategy:
- Sort workers by non-decreasing 2ci

µi

- Enroll them as long as
∑ 2ci

µiwi
6 1

- Achieve throughput ρ ≈
∑

i enrolled
1
wi



Solution (3/3)
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Maximize
∑

i xi

subject to

xi 6
1
wi∑

i

2ci

µi
xi 6 1

I Bandwidth-centric strategy:
- Sort workers by non-decreasing 2ci

µi

- Enroll them as long as
∑ 2ci

µiwi
6 1

- Achieve throughput ρ ≈
∑

i enrolled
1
wi

Eh wait!
Do you have enough

memory?!



No, we don’t have enough memory!

P1 P2

ci 1 20
wi 2 40
µi 2 2
2ci

µiwi

1
2

1
2

I Every 160 seconds:
- P1 receives 80 blocks (20 µ1 × µ1 chunks) in 80 seconds
- P1 computes 80 blocks in 160 seconds
- P2 receives 4 blocks (1 µ2 × µ2 chunk) in 80 seconds
- P2 computes 4 blocks in 160 seconds

I P1 computes two slowly and needs buffers to store 20 blocks!
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P1 P2 P1 P2 P1 . . .

I Previous throughput achievable for divisible messages
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Greedy heuristic for heterogeneous platforms

P3

P2

P1

M

P1 P2 P3

ci 2 3 5
wi 2 3 1
µi 6 18 10

2µici 24 108 100
µ2

i wi 72 972 100
2ci

µi

2
3

1
3 1

2ci

µiwi

1
3

1
9 1→ 5

9
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Greedy heuristic for heterogeneous platforms

P3

P2

P1

M

If third communication to P3, ratio =
µ2

2+µ2
1+µ2

3
2µ2c2+2µ1c1+2µ3c3

=
360+100
132+100 = 1.97

Ratios: P1 : 1.93 P2 : 0.63 P3 : 1.97
Best solution: third communication to P3



Greedy heuristic for heterogeneous platforms

P3

P2

P1

M

Asymptotic ratio: 1.17 (divisible throughput 1.39)
Allocated bandwidths: 14.8%, 11.2%, and 61.7% (instead of 33.3%,
11.1%, and 55.6%)

Two-block look-ahead greedy
Asymptotic ratio: 1.30 (divisible throughput 1.39)
Allocated bandwidths: 17.2%, 11.1%, and 71.7%



The studied algorithms

I Homogeneous algorithm

I Overlapped Round-Robin, Optimized Memory Layout
(ORROML)

I Overlapped Min-Min, Optimized Memory Layout
(OMMOML)

I Overlapped Demand-Driven, Optimized Memory Layout
(ODDOML)

I Demand-Driven, Optimized Memory Layout (DDOML)

I Block Matrix Multiply (BMM)

I Overlapped Block Matrix Multiply (OBMM)



Results
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Results
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Conclusion

I Key points:
I Realistic platform model
I Lower bound on total number of communications
I Design of efficient parallel algorithms

I Extensions:
I Improve lower bound to match algorithm performance
I Run experiments with DIET/GridSolve
I Investigate LU/Cholesky



LU /Cholesky

I Right-looking approach more amenable to parallelism

I Main kernel is rank-µ update C ← C + A.B

I Similar to matrix product
I Reuse A instead of C

I Similar results

I Homogeneous platforms: P =
⌈µw

3c
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I Heterogeneous platforms: same bandwidth-centric approach
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Scheme for LU at step k

Communications 4(n
µ − k)µ2

Computations (n
µ − k)µ3
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Scheme for LU at step k

Communications µ2 + 3µ

Computations µ2



Scheme for LU at step k

Communications µ2 + 3(n
µ − k)µ2

Computations (n
µ − k)µ3
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