Revisiting matrix product

on heterogeneous platforms

Frédéric Vivien

December 11, 2006

Why revisit matrix-product?

» A fundamental computational kernel (the mother source of
parallel algorithm design)

Why revisit matrix-product?

» A fundamental computational kernel (the mother source of
parallel algorithm design)
» Well-understood for homogeneous 2D-arrays of processors

- Cannon algorithm
- ScaLAPACK outer product algorithm

Why revisit matrix-product?

» A fundamental computational kernel (the mother source of
parallel algorithm design)

» Well-understood for homogeneous 2D-arrays of processors
- Cannon algorithm
- ScaLAPACK outer product algorithm

» Target platforms = heterogeneous clusters

Why revisit matrix-product?

» A fundamental computational kernel (the mother source of
parallel algorithm design)

» Well-understood for homogeneous 2D-arrays of processors
- Cannon algorithm
- ScaLAPACK outer product algorithm

» Target platforms = heterogeneous clusters

» Target usage = speed up MATLAB-client

Why bother?

» Communications are one order of magnitude fewer than
computations!!

Why bother?

» Communications are one order of magnitude fewer than
computations!!

» Myth or reality?

Outline

© Framework

© Playing with the simplest problem

© Bound on the total number of communications
@ Parallel algorithms (at last)

© Experiments

@ Conclusion

Application (1/2)

s stripes

=

t blocks
of size g xq

Ak Cij

T stripes

r+ s blocks

Application model (2/2)

» Manipulate blocks of size g x ¢ (harness power of Level 3
BLAS)
Heard from the grapevine: ¢ = 80 in ATLAS

Application model (2/2)

» Manipulate blocks of size g x ¢ (harness power of Level 3

BLAS)
Heard from the grapevine: ¢ = 80 in ATLAS

> Ais of size nyg X nyga:
- split A into r horizontal stripes A;
- split stripe A; into t square g x g blocks A;;
-herer =ny/q and t = nap/q

Application model (2/2)

» Manipulate blocks of size g x ¢ (harness power of Level 3
BLAS)
Heard from the grapevine: ¢ = 80 in ATLAS
> Ais of size nyg X nyga:
- split A into r horizontal stripes A;
- split stripe A; into t square g x g blocks A;;
-herer =ny/q and t = nap/q
» B is of size n4n X ng:
- split B into s vertical stripes B;
- split stripe B; into ¢ square ¢ x g blocks By
- here s =ng/q

Application model (2/2)

» Manipulate blocks of size g x ¢ (harness power of Level 3
BLAS)
Heard from the grapevine: ¢ = 80 in ATLAS
> Ais of size nyg X nyga:
- split A into 7 horizontal stripes A;
- split stripe A; into t square g x g blocks A;;
-herer =ny/q and t = nap/q
» B is of size n4n X ng:
- split B into s vertical stripes B;
- split stripe B; into ¢ square ¢ x g blocks By
- here s =ng/q
» Compute C=C+ A x B:
- split C into 7 X s square ¢ x ¢ blocks C;;

Application model (2/2)

» Manipulate blocks of size g x ¢ (harness power of Level 3
BLAS)
Heard from the grapevine: ¢ = 80 in ATLAS
> Ais of size nyg X nyga:
- split A into 7 horizontal stripes A;
- split stripe A; into t square g x g blocks A;;
-herer =ny/q and t = nap/q
» B is of size n4n X ng:
- split B into s vertical stripes B;
- split stripe B; into ¢ square ¢ x g blocks By
- here s =ng/q
» Compute C=C+ A x B:
- split C into 7 X s square ¢ x ¢ blocks C;;

» All stripes and blocks have same size

Platform model (1/2)

Network
Links

Memory

Slaves

Platform model (2/2)

» Star network S = {M, P, P,,..., P}
- master M and p workers P;

Platform model (2/2)

» Star network S = {M, P, P,,..., P}
- master M and p workers P;

» P, needs X.w; time-units to execute a task of size X

Platform model (2/2)

» Star network S = {M, P, P,,..., P}
- master M and p workers P;

» P, needs X.w; time-units to execute a task of size X

» M needs X.c; time-units to send/rcv a msg of size X to/from
P

Platform model (2/2)

» Star network S = {M, P, P,,..., P}
- master M and p workers P;

» P, needs X.w; time-units to execute a task of size X
» M needs X.c; time-units to send/rcv a msg of size X to/from
P

» Master has no processing capability

Platform model (2/2)

v

Star network S = {M, P, P,, ..., P}
- master M and p workers P;

v

P; needs X.w; time-units to execute a task of size X

v

M needs X.¢; time-units to send/rcv a msg of size X to/from
B

Master has no processing capability

vy

Enforce one-port model:

Platform model (2/2)

» Star network S = {M, P, P,,..., P}
- master M and p workers P;

» P, needs X.w; time-units to execute a task of size X

» M needs X.c; time-units to send/rcv a msg of size X to/from
P;

» Master has no processing capability

» Enforce one-port model:

» Master involved in a single communication, either send or
receive

Platform model (2/2)

» Star network S = {M, P, P,,..., P}
- master M and p workers P;

» P, needs X.w; time-units to execute a task of size X

» M needs X.c; time-units to send/rcv a msg of size X to/from
P;

» Master has no processing capability

» Enforce one-port model:

» Master involved in a single communication, either send or
receive

» Worker cannot start execution before having completed
message reception (but overlap between independent
communications and computations)

Platform model (2/2)

» Star network S = {M, P, P,,..., P}
- master M and p workers P;
» P, needs X.w; time-units to execute a task of size X
» M needs X.c; time-units to send/rcv a msg of size X to/from
P;
» Master has no processing capability
» Enforce one-port model:
» Master involved in a single communication, either send or
receive
» Worker cannot start execution before having completed
message reception (but overlap between independent
communications and computations)
» Memory limitation: P; can only store m; blocks

What is the simplest problem? (1/2)

Problem

» Fully homogeneous platform (identical workers and
communication links)

What is the simplest problem? (1/2)

Problem

» Fully homogeneous platform (identical workers and
communication links)

» Stripes instead of blocks, no return results

What is the simplest problem? (1/2)

Problem
» Fully homogeneous platform (identical workers and
communication links)
» Stripes instead of blocks, no return results

» No memory limitation:
- workers receive stripes only once, re-use them when needed

What is the simplest problem? (1/2)

Problem
» Fully homogeneous platform (identical workers and
communication links)
» Stripes instead of blocks, no return results

» No memory limitation:
- workers receive stripes only once, re-use them when needed

Scheduling
» How many workers to enroll?

What is the simplest problem? (1/2)

Problem
» Fully homogeneous platform (identical workers and
communication links)
» Stripes instead of blocks, no return results

» No memory limitation:
- workers receive stripes only once, re-use them when needed
Scheduling
» How many workers to enroll?
» Which files sent to which workers, and in which order?

What is the simplest problem? (2/2)

Parameters

» Platform: p (number of workers), ¢ and w (send/process a
stripe)

What is the simplest problem? (2/2)

Parameters

» Platform: p (number of workers), ¢ and w (send/process a
stripe)
» Application: 7 and s (number of stripes)

What is the simplest problem? (2/2)

Parameters
» Platform: p (number of workers), ¢ and w (send/process a
stripe)
» Application: 7 and s (number of stripes)
Objective

» Makespan minimization

What is the simplest problem? (2/2)

Parameters
» Platform: p (number of workers), ¢ and w (send/process a
stripe)
» Application: 7 and s (number of stripes)
Objective
» Makespan minimization

» Design optimal algorithm (includes resource selection)

Bipartite graph: files and tasks

B B
./41 ClZ
Ay Co Co
As Cs Cs

Suggests alternating sends of A and B

And with a single worker?

Theorem With a single worker, the alternating greedy algorithm is
optimal.

Proof.

- Master sends stripes as soon as possible

- Alternate a stripe of type A and a stripe of type BB

- After x communication steps, with y A-files and z B-files

(y + z = x), worker can process y X z tasks

- Alternating greedy algorithm enforces y = [$] and z = |5 (as
long as max(z,y) < min(r, s), and then on sends remaining files).
Hence optimality [

v

With several workers? (1/3)

Thrifty: a natural greedy algorithm

» Send enough tasks to first worker so that it is never idle

With several workers? (1/3)

Thrifty: a natural greedy algorithm
» Send enough tasks to first worker so that it is never idle

» Send tasks to second worker during available communication
slots

With several workers? (1/3)

Thrifty: a natural greedy algorithm
» Send enough tasks to first worker so that it is never idle
» Send tasks to second worker during available communication
slots
» Enroll new worker only when all previous ones are not delayed

With several workers? (1/3)

Thrifty: a natural greedy algorithm
» Send enough tasks to first worker so that it is never idle

» Send tasks to second worker during available communication
slots

» Enroll new worker only when all previous ones are not delayed
Min-min: another natural greedy algorithm
» Min-min heuristic

With several workers? (1/3)

Thrifty: a natural greedy algorithm
» Send enough tasks to first worker so that it is never idle

» Send tasks to second worker during available communication
slots

» Enroll new worker only when all previous ones are not delayed
Min-min: another natural greedy algorithm
» Min-min heuristic

» Start best new task on best processor

With several workers? (2/3)

Thrlfty \ wn\ wl2‘ Wa1 ‘“‘22 ‘ ww‘ Wa3

Min-Min

p=2,c=4, w=7 r=s=3, Min-min wins

With several workers? (3/3)

n

\ Wi \ Wi \ W21 \’Llr"zz \ Wiz \ Wa3 \ W31 \ Ws2 \ W33 \ Wa1 \ Wa \ Wq3
‘ We1 ‘ ‘ We2 ‘ Ws1 ‘ Ws2 ‘ We3 ‘ Ws3 ‘

[@ @

\ w1y ‘ 'LUI2‘ Wa1 ‘ u“zz\ ‘ U'ls\ w‘za\
(b [a] [o [a5 |
‘ We1 ‘ ‘U'GQ ‘

p=2,c¢c=8 w=9, r=06, s =3, Thrifty wins

Allocating the buffers

» Goal: bound total number of communications performed by
master

Allocating the buffers

» Goal: bound total number of communications performed by
master

» Simulate any parallel algorithm with a single worker

Allocating the buffers

» Goal: bound total number of communications performed by
master

» Simulate any parallel algorithm with a single worker
» Master sends blocks A, By;, and C;;

Allocating the buffers

» Goal: bound total number of communications performed by
master

» Simulate any parallel algorithm with a single worker
» Master sends blocks A, By;, and C;;

> Master retrieves final values of blocks C;;

Allocating the buffers

vV v Vv Yy

Goal: bound total number of communications performed by
master

Simulate any parallel algorithm with a single worker
Master sends blocks A;i, Byj, and Cy;
Master retrieves final values of blocks C;;

Memory limitation: only m buffers available
— at most m blocks simultaneously stored on worker

» Find largest pus.t. 14+ pu+p?2 <m

» Find largest pus.t. 14+ pu+p?2 <m

» Store 1% blocks of C in memory:
send a p X p square {C; j / 10 <@ <o+ p, jo <j<jo+p}

>

>

Find largest pns.t. 1+ p+ 2 <m

Store 2 blocks of C in memory:

send a p X p square {C; j / 10 <@ <o+ p, jo <j<jo+p}
For each k from 1 to ¢:

>

>

Find largest pns.t. 1+ p+ 2 <m
Store 2 blocks of C in memory:
send a p X p square {C; j / 10 <@ <o+ p, jo <j<jo+p}
For each k from 1 to t:
© Send row of p elements {By ; / jo < j < jo+ p}

A strategy

» Find largest pus.t. 14+ pu+p?2 <m

» Store 1% blocks of C in memory:
send a pu x p square {C;; / io < i <o+, jo <J<jo+p}
» For each k from 1 to ¢:
© Send row of p elements {By ; / jo < j < jo+ p}
@ Sequentially send p elements of column
{Air /io <i<ig+p}. Foreach Ay, update u elements of
C

A strategy

» Find largest pus.t. 14+ pu+p?2 <m
» Store 1% blocks of C in memory:

send a p X p square {C; j / 10 <@ <o+ p, jo <j<jo+p}
» For each k from 1 to ¢:

© Send row of p elements {By ; / jo < j < jo+ p}

@ Sequentially send p elements of column
{Air /io <i<ig+p}. Foreach Ay, update u elements of
C

» Return results to master

lllustrating the strategy

Cii | Ca | Ci3 | Cuy
Cop | C | Co3 | Coy
Ca1 Cs2 | C33 | Cxy
Cy | Co | Cy3 | Cy

lllustrating the strategy

lllustrating the strategy

B | Bz | Bis | Bu

Cii | Ca | Ci3 | Cuy
Az

Ca1 Cs2 | C33 | Cxy

Cy | Co | Cy3 | Cyy

lllustrating the strategy

Bll 812 813 814

Cll C12 C13 Cl4

CQl CQZ 623 C24

lllustrating the strategy

A41

Bii | Biz | Biz | Bus
Cii | Ci2 |Ci3 | Cuu
Cor | Cx | Cos | C
Ca1 Cs2 | C33 | Cxy

Performance

» Need 242 communications to send/retrieve C

Performance

» Need 242 communications to send/retrieve C

» For each value of ¢:
- need p elements of A and j elements of B
- perform rank-1 update of C square — ;> computations

Performance

» Need 242 communications to send/retrieve C

» For each value of ¢:
- need p elements of A and j elements of B
- perform rank-1 update of C square — ;> computations

» Communication-to-computation ratio:

2,u2+2utig+g
pt ot

—

3l

Assessing that performance (1/3)

» Estimate number of computations made during m consecutive
communication steps

Assessing that performance (1/3)

» Estimate number of computations made during m consecutive
communication steps

» Notations:
- olds Botd» and vo1q number of buffers dedicated to A, B and

C at the beginning
- Qrecyy Brecv, and Yreey number of A, B, and C elements sent

by master during m steps
- Ysent NuMber of C elements returned to master during m

steps

Assessing that performance (1/3)

» Estimate number of computations made during m consecutive
communication steps

» Notations:
- olds Botd» and vo1q number of buffers dedicated to A, B and

C at the beginning
- Qrecyy Brecv, and Yreey number of A, B, and C elements sent

by master during m steps
- Ysent NuMber of C elements returned to master during m

steps
» Equations:

Qotd + Bold + Yoid < M
Crecy + Breco + Yrecv T Vsent = M

Assessing that performance (2/3)

» Simplify notations:

Qold + Qrecy = M
ﬁold + /Brecv = Bm
Yold + Yrecv = YM

Assessing that performance (2/3)

» Simplify notations:

Qold + Qrecy = M
ﬁold + /Brecv = Bm
Yold + Yrecv = YM

» Use Toledo’s lemma: if N4 elements of A, Ng elements of B
and N¢ elements of C are accessed, then no more than K
computations can be done:

K = min { (N + Np)v/Ne, (Na + Ne)y/Na, (N + No)v/Na |

Here

K = min{(a +)7, (8 +1)Va, (v + a)V/B} x mym

Digression: proof of Toledo’s lemma

» Partition computations w.r.t elements of A:
- big rows have more than /N4 elements accessed
- small rows have fewer than /N4 elements accessed

Digression: proof of Toledo’s lemma

» Partition computations w.r.t elements of A:
- big rows have more than /N4 elements accessed
- small rows have fewer than /N4 elements accessed

» Computations involving big rows:
- each element of B used at most once per big row
- bounded by Np x #big-rows < N X /N4

Digression: proof of Toledo’s lemma

» Partition computations w.r.t elements of A:
- big rows have more than /N4 elements accessed
- small rows have fewer than /N4 elements accessed

» Computations involving big rows:
- each element of B used at most once per big row
- bounded by N x #big-rows < Ng x /N4
» Computations involving small rows:
- each element of C' accumulates at most #elements in

small-row
- bounded by N¢ x #max-elts < N¢ X /N4

Digression: proof of Toledo’s lemma

» Partition computations w.r.t elements of A:
- big rows have more than /N4 elements accessed
- small rows have fewer than /N4 elements accessed
» Computations involving big rows:
- each element of B used at most once per big row
- bounded by N x #big-rows < Ng x /N4
» Computations involving small rows:
- each element of C' accumulates at most #elements in
small-row
- bounded by N¢ x #max-elts < Ng x /Na

> Use trilinear form) A;;,By,;C;j for symmetrical identities

Assessing that performance (3/3)

» Problem: K = kmy/m,

(MAXIMIZE k S.T.
E<(a+PB)vy
k< (B4 7V

k<(7+a)\/ﬁ
a+pB+v<2

Assessing that performance (3/3)

» Problem: K = kmy/m,
([MAXIMIZE k S.T.
E<(a+PB)vy
k< (B+v)Va
E<(y+ a)\/B
a+pB+7<2

» Solution:

Assessing that performance (3/3)

» Problem: K = kmy/m,

(MAXIMIZE k S.T.
E<(a+PB)vy
B+v)Va

» Solution:

» Lower bound for communication-to-computation ratio:

m m 27

K kmym VY 32m

Refinement

» Instead of Toledo's lemma, use Loomis-Whitney inequality: if
N4 elements of A, Np elements of B and N elements of C
are accessed, then no more than K computations can be done:

K =+/NasNpN¢c

Here
K=+va+8+yxm/m

Refinement

» Instead of Toledo's lemma, use Loomis-Whitney inequality: if
N4 elements of A, Np elements of B and N elements of C
are accessed, then no more than K computations can be done:

K =+/NasNpN¢c

Here
K=+va+8+yxm/m

» Solution:
8

2
a:ﬁ:*y:§, AND k = o

Refinement

» Instead of Toledo's lemma, use Loomis-Whitney inequality: if
N4 elements of A, Np elements of B and N elements of C
are accessed, then no more than K computations can be done:

K =+/NasNpN¢c

Here
K=+\a+p+vxmy/m
» Solution:
2 8
=0f=v=—-, ANDk=1/—
a=f=1=3 27

» Lower bound for communication-to-computation ratio:

27

m

m__m _
K kmym V8m

Outline

@ Poarallel algorithms (at last)
@ Homogeneous platforms

Algorithm with identical workers (1/2)

for all blocks do
Return u? old C; ; (if any);
Receive uz new C; j;
for t do

receive u By, ;;

receive u Aj j;

update u2 blocks C; ;;
end
end

Algorithm 1: Synchronous version

Algorithm with identical workers (2/2)

c=2,w=4.5, p=4,t =100, enroll P = 5 workers

Algorithm with identical workers (2/2)

c=2,w=4.5, p=4,t =100, enroll P = 5 workers

P x p2C

Algorithm with identical workers (2/2)

c=2,w=4.5, p=4,t =100, enroll P = 5 workers

P x p2C B x w(A,B)

Algorithm with identical workers (2/2)

c=2,w=4.5, p=4,t =100, enroll P = 5 workers

P x p2C B x w(A, BB x u(A, B)

Algorithm with identical workers (2/2)

c=2,w=4.5, p=4,t =100, enroll P = 5 workers

t

P x p2C B x w(A, BB x u(A, B) P x u(A,B)

Algorithm with identical workers (2/2)

c=2,w=4.5, p=4,t =100, enroll P = 5 workers

t

P x p2C B x w(A, BB x u(A, B) P x (A, B) P x p2C

Performance (1/2)

» Assume P < p participating workers

Performance (1/2)

» Assume P < p participating workers

» In a round (computing a C block entirely), master
communicates with each worker:
- 212 blocks of C (either sent or received)
- 2ut blocks of A and B

Performance (1/2)

» Assume P < p participating workers

» In a round (computing a C block entirely), master
communicates with each worker:
- 212 blocks of C (either sent or received)
- 2ut blocks of A and B

» In a round, each worker computes p?t updates

Performance (1/2)

» Assume P < p participating workers

» In a round (computing a C block entirely), master
communicates with each worker:
- 212 blocks of C (either sent or received)
- 2ut blocks of A and B

» In a round, each worker computes p?t updates
» For large ¢, neglect input/output of C' blocks, and choose ‘B
s.t.

%]

(2ute) xP ~ p*tw < P = [50

Performance (1/2)

» Assume P < p participating workers

» In a round (computing a C block entirely), master
communicates with each worker:
- 212 blocks of C (either sent or received)
- 2ut blocks of A and B

» In a round, each worker computes p?t updates

» For large ¢, neglect input/output of C' blocks, and choose ‘B
s.t.

(2ute) xP ~ p*tw < P = [%—‘ In the example, P = [4.5]

» Typically, ¢ = quc and w = q37'a
— resource selection P = {,qujﬂ

Performance (2/2)

v

Can we really neglect input/output of C' blocks?

v

Each worker loses 2¢ time-units per block, i.e. per tw
time-units

[43Y
There are at most P < 5~ workers

Total loss 2¢3 time-units every tw time-units

Total loss < &

In the example, at most 4%

vV Vv Vv Y

Outline

@ Poarallel algorithms (at last)

@ Heterogeneous platforms

Resource selection

Problem

» Each worker P; has parameters c;, w;, and p; = /m;.

» Each participating P; needs &; = 2u,tc; communications to
process ¢; = tu7w; computations (neglect |/O for C blocks)

» Which workers to enroll?

Solution (1/3)

> In steady-state, P; receives y; A and B blocks per time-unit

» In steady-state, P; computes z; C blocks per time-unit

MAXIMIZE), ;
SUBJECT TO

»’U_;' < Yi
2 20

Solution (1/3)

> In steady-state, P; receives y; A and B blocks per time-unit

» In steady-state, P; computes z; C blocks per time-unit

<M—i>
MAXIMIZE), ;
SUBJECT TO
Ti _ Y

/7?\2/%

< 1
Zyzcz < wi || N?
\

—_

Solution (2/3)

SUBJECT TO
T Y

(MAXIMIZE), x;

2

Claim y; = %
(MAXIMIZE), x;
SUBJECT TO
1
T < —
i
QCZ‘
> 2
Hi

\ 7

Solution (3/3)

(MAXIMIZE), x;
SUBJECT TO

T < —
w;

> n<l

P

» Bandwidth-centric strategy:
- Sort workers by non-decreasing %

- Enroll them as long as ZMQ% <1
1

- Achieve throughput p =~ >, .\ olled e

Solution (3/3)

MAXIMIZE), z;
SUBJECT TO

Do you have enough

> Bandwidth- memory?!
- Sort workers by non-decreasing o
2¢;
- Enroll them as long as 3“5 < 1
- Achieve throughput p =~ >, .\ olled wi

No, we don’t have enough memory!

PP

C; 1 20
Hi 2 | 2
2ci 1 1
LWy 2 2

» Every 160 seconds:
- Py receives 80 blocks (20 p1 % w1 chunks) in 80 seconds
- P; computes 80 blocks in 160 seconds
- P, receives 4 blocks (1 pg x pa chunk) in 80 seconds
- P computes 4 blocks in 160 seconds

No, we don’t have enough memory!

PP

@ 1 |20
Hi 2 | 2
_2¢i 1 1
LWy 2 2

» Every 160 seconds:
- Py receives 80 blocks (20 p1 % w1 chunks) in 80 seconds
- P; computes 80 blocks in 160 seconds
- P, receives 4 blocks (1 pg x pa chunk) in 80 seconds
- P computes 4 blocks in 160 seconds
» P; computes two slowly and needs buffers to store 20 blocks!

11111111111111111111° 20 11111111111111111111 20 111111111...
P P P P Pr...

No, we don’t have enough memory!

PP

@ 1 |20
Hi 2 | 2
_2¢i 1 1
LWy 2 2

» Every 160 seconds:
- Py receives 80 blocks (20 p1 % w1 chunks) in 80 seconds
- P; computes 80 blocks in 160 seconds
- P, receives 4 blocks (1 pg x pa chunk) in 80 seconds
- P computes 4 blocks in 160 seconds
» P; computes two slowly and needs buffers to store 20 blocks!

11111111111111111111° 20 11111111111111111111 20 111111111...
P P P P Pr...

» Previous throughput achievable for divisible messages

Greedy heuristic for heterogeneous platforms

M
Py
Py
P
P | P P
C; 2 3 5
7% 6 18 10
2u;c; | 24 | 108 100
Wrw; | 72 | 972 100
T [2 [I 1
1 5
pw | 3| 5 |17%

Greedy heuristic for heterogeneous platforms

Mo

Py

Py
P

2
5 . . P 1 _ 3 _ 3
If first communication to Py, ratio = el — 94 = 2

Ratios: P : 1.5

Greedy heuristic for heterogeneous platforms

M
Py
7o
P
2
. . . . o /,L2 _ 324 _
If first communication to P, ratio = Yiney = 108 = 3

Ratios: P :15 P:3

Greedy heuristic for heterogeneous platforms

M
Py
P
Py
: — : 13 100
If first communication to P3, ratio = Siacs = 100 — 1

Ratios: P :15 P, :3 P3:1

Greedy heuristic for heterogeneous platforms

M

Py

p I

P

Best solution : first communication to P

Greedy heuristic for heterogeneous platforms

M

L |

e 00 |

Py

IF caesi] comrieaten te B Eie = o0t _ s _
L ~ 2upcat2uicy | 108424

2.71

Ratios: P : 2.71

Greedy heuristic for heterogeneous platforms

M

P

o I

Py

7 seeard] cormtilcaien e B, wie = - ArHs Bk
2y - 2}1,2C2+2,u202 - 1080 -

0.60

Ratios: P, : 271 P, : 0.60

Greedy heuristic for heterogeneous platforms

M

P

ro I
P T

p3+p3 3244100 _
2paco+2p3c3 — 1084100 —

If second communication to P3, ratio =
2.04

Ratios: P : 271 P, : 060 P;: 204

Greedy heuristic for heterogeneous platforms

M

L
. |
p I

P

Best solution : second communication to P;

Greedy heuristic for heterogeneous platforms

v
A T
7o
P
- - . p3+pi+ui _ 360+36
If third communication to P, ratio = 2tco;m L = 222 =236

Ratios: P : 1.93

Greedy heuristic for heterogeneous platforms

M
|
L. B
Py
2 2 2
If third communication to P, ratio = (2T — 3606821 — 63

Ratios: P : 1.93 P, : 0.63

Greedy heuristic for heterogeneous platforms

M

Py

p I

P 0

If third communication to P;, ratio = pa i =
&L T 2pocet2uici+2uzes

3604100 __ 1.97

1324100 — -

Ratios: P : 193 P, :063 P3:1.97
Best solution: third communication to Ps

Greedy heuristic for heterogeneous platforms

P
P I

Asymptotic ratio: 1.17 (divisible throughput 1.39)
Allocated bandwidths: 14.8%, 11.2%, and 61.7% (instead of 33.3%,
11.1%, and 55.6%)

Two-block look-ahead greedy
Asymptotic ratio: 1.30 (divisible throughput 1.39)
Allocated bandwidths: 17.2%, 11.1%, and 71.7%

The studied algorithms

» Homogeneous algorithm

» Overlapped Round-Robin, Optimized Memory Layout
(ORROML)

» Overlapped Min-Min, Optimized Memory Layout
(OMMOML)

» Overlapped Demand-Driven, Optimized Memory Layout
(ODDOML)

» Demand-Driven, Optimized Memory Layout (DDOML)
» Block Matrix Multiply (BMM)
» Overlapped Block Matrix Multiply (OBMM)

Results

20000,0
18000,0 _
16000,0 -
14000,0 L (@ Hom
[l obbomL
@ 120000 - | omvonL
@ 10000,0 I | B ORROML
£ I DooML
80000 F o mewm
6000,0 - L [oBum
4000,0 -
2000,0 | -
0,0+

size:100x800 size:200x160 size:100x800
x100 0x200 x800

Performance of the algorithms on different matrices.

Results

4500,0

4000,0

3500,0

3000,0

2500,0

Time (s)

2000,0

1500,0
1000,0

500,0

HoLtM ~ ODDOML OMMOML ORROML DDOML BMM OBMM

Variation of algorithm execution times.

Results

Time (s)

Impact of memory size on algorithm

16000,0

14000,0

12000,0

10000,0 ~

8000,0 ~
6000,0 ~
4000,0

2000,0 ~

0,0

memory=132

memory=512

[HolLM

Il ODDOML
— |l OMMOML
[l ORROML
|l DDOML
[l BMM

— |JoBMM

X Average

performance.

Conclusion

» Key points:
» Realistic platform model
> Lower bound on total number of communications
> Design of efficient parallel algorithms
» Extensions:
» Improve lower bound to match algorithm performance
» Run experiments with DIET /GridSolve
> Investigate LU/Cholesky

LU /Cholesky

» Right-looking approach more amenable to parallelism

LU /Cholesky

» Right-looking approach more amenable to parallelism
» Main kernel is rank-p update C «— C' + A.B

LU /Cholesky

» Right-looking approach more amenable to parallelism
» Main kernel is rank-p update C «— C' + A.B
» Similar to matrix product

LU /Cholesky

» Right-looking approach more amenable to parallelism
» Main kernel is rank-p update C «— C' + A.B

» Similar to matrix product
» Reuse A instead of C

LU /Cholesky

» Right-looking approach more amenable to parallelism
» Main kernel is rank-p update C «— C' + A.B

» Similar to matrix product
» Reuse A instead of C

» Similar results

LU /Cholesky

» Right-looking approach more amenable to parallelism
» Main kernel is rank-p update C «— C' + A.B

» Similar to matrix product

» Reuse A instead of C
» Similar results

» Homogeneous platforms: P = [@-I

3c

LU /Cholesky

» Right-looking approach more amenable to parallelism
» Main kernel is rank-p update C «— C' + A.B

» Similar to matrix product
» Reuse A instead of C

» Similar results
pw
» Homogeneous platforms: P = [—
c
» Heterogeneous platforms: same bandwidth-centric approach

Scheme for LU at step &

Scheme for LU at step &

Communications ;2

Computations u’

Scheme for LU at step &

Communications 2u

Computations %u

Scheme for LU at step &

Communications 2(

: 1
Computations ot

Scheme for LU at step &

Communications 4(— k)

Computations (% — k)u

Scheme for LU at step &

Scheme for LU at step &

AN

[| I

Scheme for LU at step &

Communications 2 + 3u

Computations p?

Scheme for LU at step &

[[T
LT

Communications % + 3(% — k)u?

Computations (% — k)u

	Framework
	Playing with the simplest problem
	Bound on the total number of communications
	Parallel algorithms (at last)
	Homogeneous platforms
	Heterogeneous platforms

	Experiments
	Conclusion

