
Revisiting matrix product
on heterogeneous platforms

Frédéric Vivien

December 11, 2006



Why revisit matrix-product?

I A fundamental computational kernel (the mother source of
parallel algorithm design)

I Well-understood for homogeneous 2D-arrays of processors
- Cannon algorithm
- ScaLAPACK outer product algorithm

I Target platforms = heterogeneous clusters

I Target usage = speed up MATLAB-client



Why revisit matrix-product?

I A fundamental computational kernel (the mother source of
parallel algorithm design)

I Well-understood for homogeneous 2D-arrays of processors
- Cannon algorithm
- ScaLAPACK outer product algorithm

I Target platforms = heterogeneous clusters

I Target usage = speed up MATLAB-client



Why revisit matrix-product?

I A fundamental computational kernel (the mother source of
parallel algorithm design)

I Well-understood for homogeneous 2D-arrays of processors
- Cannon algorithm
- ScaLAPACK outer product algorithm

I Target platforms = heterogeneous clusters

I Target usage = speed up MATLAB-client



Why revisit matrix-product?

I A fundamental computational kernel (the mother source of
parallel algorithm design)

I Well-understood for homogeneous 2D-arrays of processors
- Cannon algorithm
- ScaLAPACK outer product algorithm

I Target platforms = heterogeneous clusters

I Target usage = speed up MATLAB-client



Why bother?

I Communications are one order of magnitude fewer than
computations!!

I Myth or reality?



Why bother?

I Communications are one order of magnitude fewer than
computations!!

I Myth or reality?



Outline

1 Framework

2 Playing with the simplest problem

3 Bound on the total number of communications

4 Parallel algorithms (at last)

5 Experiments

6 Conclusion



Application (1/2)

t blocks
of size q ∗ q

... ...

...

...

...

Bk,j
...

Ci,j

r ∗ s blocks

stripesr

s stripes

Ai,k



Application model (2/2)

I Manipulate blocks of size q × q (harness power of Level 3
BLAS)
Heard from the grapevine: q = 80 in ATLAS

I A is of size nA × nAB:
- split A into r horizontal stripes Ai

- split stripe Ai into t square q × q blocks Aik

- here r = nA/q and t = nAB/q

I B is of size nAB × nB:
- split B into s vertical stripes Bj

- split stripe Bj into t square q × q blocks Bkj

- here s = nB/q

I Compute C = C +A× B:
- split C into r × s square q × q blocks Cij

I All stripes and blocks have same size



Application model (2/2)

I Manipulate blocks of size q × q (harness power of Level 3
BLAS)
Heard from the grapevine: q = 80 in ATLAS

I A is of size nA × nAB:
- split A into r horizontal stripes Ai

- split stripe Ai into t square q × q blocks Aik

- here r = nA/q and t = nAB/q

I B is of size nAB × nB:
- split B into s vertical stripes Bj

- split stripe Bj into t square q × q blocks Bkj

- here s = nB/q

I Compute C = C +A× B:
- split C into r × s square q × q blocks Cij

I All stripes and blocks have same size



Application model (2/2)

I Manipulate blocks of size q × q (harness power of Level 3
BLAS)
Heard from the grapevine: q = 80 in ATLAS

I A is of size nA × nAB:
- split A into r horizontal stripes Ai

- split stripe Ai into t square q × q blocks Aik

- here r = nA/q and t = nAB/q

I B is of size nAB × nB:
- split B into s vertical stripes Bj

- split stripe Bj into t square q × q blocks Bkj

- here s = nB/q

I Compute C = C +A× B:
- split C into r × s square q × q blocks Cij

I All stripes and blocks have same size



Application model (2/2)

I Manipulate blocks of size q × q (harness power of Level 3
BLAS)
Heard from the grapevine: q = 80 in ATLAS

I A is of size nA × nAB:
- split A into r horizontal stripes Ai

- split stripe Ai into t square q × q blocks Aik

- here r = nA/q and t = nAB/q

I B is of size nAB × nB:
- split B into s vertical stripes Bj

- split stripe Bj into t square q × q blocks Bkj

- here s = nB/q

I Compute C = C +A× B:
- split C into r × s square q × q blocks Cij

I All stripes and blocks have same size



Application model (2/2)

I Manipulate blocks of size q × q (harness power of Level 3
BLAS)
Heard from the grapevine: q = 80 in ATLAS

I A is of size nA × nAB:
- split A into r horizontal stripes Ai

- split stripe Ai into t square q × q blocks Aik

- here r = nA/q and t = nAB/q

I B is of size nAB × nB:
- split B into s vertical stripes Bj

- split stripe Bj into t square q × q blocks Bkj

- here s = nB/q

I Compute C = C +A× B:
- split C into r × s square q × q blocks Cij

I All stripes and blocks have same size



Platform model (1/2)

... ... ... ...

Slaves

Links
Network

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �

� � � � �
� � � � �

� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

	 	 	 	
	 	 	 	
	 	 	 	


 
 
 


 
 
 

� � � �
� � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�




































�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Master

Pi

ci

wi

mi

Memory



Platform model (2/2)

I Star network S = {M,P1, P2, . . . , Pp}:
- master M and p workers Pi

I Pi needs X.wi time-units to execute a task of size X

I M needs X.ci time-units to send/rcv a msg of size X to/from
Pi

I Master has no processing capability
I Enforce one-port model:

I Master involved in a single communication, either send or
receive

I Worker cannot start execution before having completed
message reception (but overlap between independent
communications and computations)

I Memory limitation: Pi can only store mi blocks



Platform model (2/2)

I Star network S = {M,P1, P2, . . . , Pp}:
- master M and p workers Pi

I Pi needs X.wi time-units to execute a task of size X

I M needs X.ci time-units to send/rcv a msg of size X to/from
Pi

I Master has no processing capability
I Enforce one-port model:

I Master involved in a single communication, either send or
receive

I Worker cannot start execution before having completed
message reception (but overlap between independent
communications and computations)

I Memory limitation: Pi can only store mi blocks



Platform model (2/2)

I Star network S = {M,P1, P2, . . . , Pp}:
- master M and p workers Pi

I Pi needs X.wi time-units to execute a task of size X

I M needs X.ci time-units to send/rcv a msg of size X to/from
Pi

I Master has no processing capability
I Enforce one-port model:

I Master involved in a single communication, either send or
receive

I Worker cannot start execution before having completed
message reception (but overlap between independent
communications and computations)

I Memory limitation: Pi can only store mi blocks



Platform model (2/2)

I Star network S = {M,P1, P2, . . . , Pp}:
- master M and p workers Pi

I Pi needs X.wi time-units to execute a task of size X

I M needs X.ci time-units to send/rcv a msg of size X to/from
Pi

I Master has no processing capability

I Enforce one-port model:

I Master involved in a single communication, either send or
receive

I Worker cannot start execution before having completed
message reception (but overlap between independent
communications and computations)

I Memory limitation: Pi can only store mi blocks



Platform model (2/2)

I Star network S = {M,P1, P2, . . . , Pp}:
- master M and p workers Pi

I Pi needs X.wi time-units to execute a task of size X

I M needs X.ci time-units to send/rcv a msg of size X to/from
Pi

I Master has no processing capability
I Enforce one-port model:

I Master involved in a single communication, either send or
receive

I Worker cannot start execution before having completed
message reception (but overlap between independent
communications and computations)

I Memory limitation: Pi can only store mi blocks



Platform model (2/2)

I Star network S = {M,P1, P2, . . . , Pp}:
- master M and p workers Pi

I Pi needs X.wi time-units to execute a task of size X

I M needs X.ci time-units to send/rcv a msg of size X to/from
Pi

I Master has no processing capability
I Enforce one-port model:

I Master involved in a single communication, either send or
receive

I Worker cannot start execution before having completed
message reception (but overlap between independent
communications and computations)

I Memory limitation: Pi can only store mi blocks



Platform model (2/2)

I Star network S = {M,P1, P2, . . . , Pp}:
- master M and p workers Pi

I Pi needs X.wi time-units to execute a task of size X

I M needs X.ci time-units to send/rcv a msg of size X to/from
Pi

I Master has no processing capability
I Enforce one-port model:

I Master involved in a single communication, either send or
receive

I Worker cannot start execution before having completed
message reception (but overlap between independent
communications and computations)

I Memory limitation: Pi can only store mi blocks



Platform model (2/2)

I Star network S = {M,P1, P2, . . . , Pp}:
- master M and p workers Pi

I Pi needs X.wi time-units to execute a task of size X

I M needs X.ci time-units to send/rcv a msg of size X to/from
Pi

I Master has no processing capability
I Enforce one-port model:

I Master involved in a single communication, either send or
receive

I Worker cannot start execution before having completed
message reception (but overlap between independent
communications and computations)

I Memory limitation: Pi can only store mi blocks



What is the simplest problem? (1/2)

Problem

I Fully homogeneous platform (identical workers and
communication links)

I Stripes instead of blocks, no return results

I No memory limitation:
- workers receive stripes only once, re-use them when needed

Scheduling

I How many workers to enroll?

I Which files sent to which workers, and in which order?



What is the simplest problem? (1/2)

Problem

I Fully homogeneous platform (identical workers and
communication links)

I Stripes instead of blocks, no return results

I No memory limitation:
- workers receive stripes only once, re-use them when needed

Scheduling

I How many workers to enroll?

I Which files sent to which workers, and in which order?



What is the simplest problem? (1/2)

Problem

I Fully homogeneous platform (identical workers and
communication links)

I Stripes instead of blocks, no return results

I No memory limitation:
- workers receive stripes only once, re-use them when needed

Scheduling

I How many workers to enroll?

I Which files sent to which workers, and in which order?



What is the simplest problem? (1/2)

Problem

I Fully homogeneous platform (identical workers and
communication links)

I Stripes instead of blocks, no return results

I No memory limitation:
- workers receive stripes only once, re-use them when needed

Scheduling

I How many workers to enroll?

I Which files sent to which workers, and in which order?



What is the simplest problem? (1/2)

Problem

I Fully homogeneous platform (identical workers and
communication links)

I Stripes instead of blocks, no return results

I No memory limitation:
- workers receive stripes only once, re-use them when needed

Scheduling

I How many workers to enroll?

I Which files sent to which workers, and in which order?



What is the simplest problem? (2/2)

Parameters

I Platform: p (number of workers), c and w (send/process a
stripe)

I Application: r and s (number of stripes)

Objective

I Makespan minimization

I Design optimal algorithm (includes resource selection)



What is the simplest problem? (2/2)

Parameters

I Platform: p (number of workers), c and w (send/process a
stripe)

I Application: r and s (number of stripes)

Objective

I Makespan minimization

I Design optimal algorithm (includes resource selection)



What is the simplest problem? (2/2)

Parameters

I Platform: p (number of workers), c and w (send/process a
stripe)

I Application: r and s (number of stripes)

Objective

I Makespan minimization

I Design optimal algorithm (includes resource selection)



What is the simplest problem? (2/2)

Parameters

I Platform: p (number of workers), c and w (send/process a
stripe)

I Application: r and s (number of stripes)

Objective

I Makespan minimization

I Design optimal algorithm (includes resource selection)



Bipartite graph: files and tasks

C31

A2

A1

A3

C11

C21

C12

C22

C32

B2B1

Suggests alternating sends of A and B



And with a single worker?

Theorem

Theorem With a single worker, the alternating greedy algorithm is
optimal.

Proof.

- Master sends stripes as soon as possible
- Alternate a stripe of type A and a stripe of type B
- After x communication steps, with y A-files and z B-files
(y + z = x), worker can process y × z tasks
- Alternating greedy algorithm enforces y = dx2 e and z = bx2 c (as
long as max(x, y) 6 min(r, s), and then on sends remaining files).
Hence optimality



With several workers? (1/3)

Thrifty: a natural greedy algorithm

I Send enough tasks to first worker so that it is never idle

I Send tasks to second worker during available communication
slots

I Enroll new worker only when all previous ones are not delayed

Min-min: another natural greedy algorithm

I Min-min heuristic

I Start best new task on best processor



With several workers? (1/3)

Thrifty: a natural greedy algorithm

I Send enough tasks to first worker so that it is never idle

I Send tasks to second worker during available communication
slots

I Enroll new worker only when all previous ones are not delayed

Min-min: another natural greedy algorithm

I Min-min heuristic

I Start best new task on best processor



With several workers? (1/3)

Thrifty: a natural greedy algorithm

I Send enough tasks to first worker so that it is never idle

I Send tasks to second worker during available communication
slots

I Enroll new worker only when all previous ones are not delayed

Min-min: another natural greedy algorithm

I Min-min heuristic

I Start best new task on best processor



With several workers? (1/3)

Thrifty: a natural greedy algorithm

I Send enough tasks to first worker so that it is never idle

I Send tasks to second worker during available communication
slots

I Enroll new worker only when all previous ones are not delayed

Min-min: another natural greedy algorithm

I Min-min heuristic

I Start best new task on best processor



With several workers? (1/3)

Thrifty: a natural greedy algorithm

I Send enough tasks to first worker so that it is never idle

I Send tasks to second worker during available communication
slots

I Enroll new worker only when all previous ones are not delayed

Min-min: another natural greedy algorithm

I Min-min heuristic

I Start best new task on best processor



With several workers? (2/3)

Min-Min

Thrifty

a2b1 a1 b2 b3

w11 w12 w21 w22 w13 w23

b1 a3 b2 b3

w31 w32 w33

b3a2b2a1b1

w11 w12 w21 w22 w13

w23w33w32w31

a3b1 b2 b3 a2

p = 2, c = 4, w = 7, r = s = 3, Min-min wins



With several workers? (3/3)

b1 a1 b2

w11 w12

a2 b3

w21 w22

b1 a6

w13

a3

w61

b2

w23 w31 w32 w33

a4

w41 w42 w43

a5 b3

w62 w51 w52 w63 w53

b1 a1 b2 a2

w11 w12 w21 w22

b3

b1 a6

w61

b2 a5

w23w13

w62

a3 a4

w31

b3

w51 w52 w63 w53 w43

a4

w32 w33 w41 w42

p = 2, c = 8, w = 9, r = 6, s = 3, Thrifty wins



Allocating the buffers

I Goal: bound total number of communications performed by
master

I Simulate any parallel algorithm with a single worker

I Master sends blocks Aik, Bkj , and Cij
I Master retrieves final values of blocks Cij
I Memory limitation: only m buffers available
→ at most m blocks simultaneously stored on worker



Allocating the buffers

I Goal: bound total number of communications performed by
master

I Simulate any parallel algorithm with a single worker

I Master sends blocks Aik, Bkj , and Cij
I Master retrieves final values of blocks Cij
I Memory limitation: only m buffers available
→ at most m blocks simultaneously stored on worker



Allocating the buffers

I Goal: bound total number of communications performed by
master

I Simulate any parallel algorithm with a single worker

I Master sends blocks Aik, Bkj , and Cij

I Master retrieves final values of blocks Cij
I Memory limitation: only m buffers available
→ at most m blocks simultaneously stored on worker



Allocating the buffers

I Goal: bound total number of communications performed by
master

I Simulate any parallel algorithm with a single worker

I Master sends blocks Aik, Bkj , and Cij
I Master retrieves final values of blocks Cij

I Memory limitation: only m buffers available
→ at most m blocks simultaneously stored on worker



Allocating the buffers

I Goal: bound total number of communications performed by
master

I Simulate any parallel algorithm with a single worker

I Master sends blocks Aik, Bkj , and Cij
I Master retrieves final values of blocks Cij
I Memory limitation: only m buffers available
→ at most m blocks simultaneously stored on worker



A strategy

CCCC CCCC CCCC CCCCA B B B B

1 µ µ2

I Find largest µ s.t. 1 + µ + µ2 6 m

I Store µ2 blocks of C in memory:
send a µ× µ square {Ci,j / i0 6 i < i0 + µ, j0 6 j < j0 + µ}

I For each k from 1 to t:

1 Send row of µ elements {Bk,j / j0 6 j < j0 + µ}
2 Sequentially send µ elements of column
{Ai,k / i0 6 i < i0 + µ}. For each Ai,k, update µ elements of
C

I Return results to master



A strategy

CCCC CCCC CCCC CCCCA B B B B

1 µ µ2

I Find largest µ s.t. 1 + µ + µ2 6 m

I Store µ2 blocks of C in memory:
send a µ× µ square {Ci,j / i0 6 i < i0 + µ, j0 6 j < j0 + µ}

I For each k from 1 to t:

1 Send row of µ elements {Bk,j / j0 6 j < j0 + µ}
2 Sequentially send µ elements of column
{Ai,k / i0 6 i < i0 + µ}. For each Ai,k, update µ elements of
C

I Return results to master



A strategy

CCCC CCCC CCCC CCCCA B B B B

1 µ µ2

I Find largest µ s.t. 1 + µ + µ2 6 m

I Store µ2 blocks of C in memory:
send a µ× µ square {Ci,j / i0 6 i < i0 + µ, j0 6 j < j0 + µ}

I For each k from 1 to t:

1 Send row of µ elements {Bk,j / j0 6 j < j0 + µ}
2 Sequentially send µ elements of column
{Ai,k / i0 6 i < i0 + µ}. For each Ai,k, update µ elements of
C

I Return results to master



A strategy

CCCC CCCC CCCC CCCCA B B B B

1 µ µ2

I Find largest µ s.t. 1 + µ + µ2 6 m

I Store µ2 blocks of C in memory:
send a µ× µ square {Ci,j / i0 6 i < i0 + µ, j0 6 j < j0 + µ}

I For each k from 1 to t:
1 Send row of µ elements {Bk,j / j0 6 j < j0 + µ}

2 Sequentially send µ elements of column
{Ai,k / i0 6 i < i0 + µ}. For each Ai,k, update µ elements of
C

I Return results to master



A strategy

CCCC CCCC CCCC CCCCA B B B B

1 µ µ2

I Find largest µ s.t. 1 + µ + µ2 6 m

I Store µ2 blocks of C in memory:
send a µ× µ square {Ci,j / i0 6 i < i0 + µ, j0 6 j < j0 + µ}

I For each k from 1 to t:
1 Send row of µ elements {Bk,j / j0 6 j < j0 + µ}
2 Sequentially send µ elements of column
{Ai,k / i0 6 i < i0 + µ}. For each Ai,k, update µ elements of
C

I Return results to master



A strategy

CCCC CCCC CCCC CCCCA B B B B

1 µ µ2

I Find largest µ s.t. 1 + µ + µ2 6 m

I Store µ2 blocks of C in memory:
send a µ× µ square {Ci,j / i0 6 i < i0 + µ, j0 6 j < j0 + µ}

I For each k from 1 to t:
1 Send row of µ elements {Bk,j / j0 6 j < j0 + µ}
2 Sequentially send µ elements of column
{Ai,k / i0 6 i < i0 + µ}. For each Ai,k, update µ elements of
C

I Return results to master



Illustrating the strategy

C41 C42 C43 C44

C34C32 C33C31

C24C21 C22 C23

C14C13C12C11



Illustrating the strategy

C14C13C12C11

C41 C42 C43 C44

C34C32 C33C31

C24C21 C22 C23

B14B13B12B11

A11



Illustrating the strategy

C22C21 C24C23

C41 C42 C43 C44

C34C32 C33C31

C14C13C12C11

B14B13B12B11

A21



Illustrating the strategy

C34C33C32C31

C41 C42 C43 C44

C24C21 C22 C23

C14C13C12C11

B14B13B12B11

A31



Illustrating the strategy

C44C43C41 C42

C34C32 C33C31

C24C21 C22 C23

C14C13C12C11

B14B13B12B11

A41



Performance

I Need 2µ2 communications to send/retrieve C

I For each value of t:
- need µ elements of A and µ elements of B
- perform rank-1 update of C square → µ2 computations

I Communication-to-computation ratio:

2µ2 + 2µt

µ2t
=

2
t

+
2
µ
→ 2√

m



Performance

I Need 2µ2 communications to send/retrieve C
I For each value of t:

- need µ elements of A and µ elements of B
- perform rank-1 update of C square → µ2 computations

I Communication-to-computation ratio:

2µ2 + 2µt

µ2t
=

2
t

+
2
µ
→ 2√

m



Performance

I Need 2µ2 communications to send/retrieve C
I For each value of t:

- need µ elements of A and µ elements of B
- perform rank-1 update of C square → µ2 computations

I Communication-to-computation ratio:

2µ2 + 2µt

µ2t
=

2
t

+
2
µ
→ 2√

m



Assessing that performance (1/3)

I Estimate number of computations made during m consecutive
communication steps

I Notations:
- αold, βold, and γold number of buffers dedicated to A, B and
C at the beginning
- αrecv, βrecv, and γrecv number of A, B, and C elements sent
by master during m steps
- γsent number of C elements returned to master during m
steps

I Equations: {
αold + βold + γold 6 m
αrecv + βrecv + γrecv + γsent = m



Assessing that performance (1/3)

I Estimate number of computations made during m consecutive
communication steps

I Notations:
- αold, βold, and γold number of buffers dedicated to A, B and
C at the beginning
- αrecv, βrecv, and γrecv number of A, B, and C elements sent
by master during m steps
- γsent number of C elements returned to master during m
steps

I Equations: {
αold + βold + γold 6 m
αrecv + βrecv + γrecv + γsent = m



Assessing that performance (1/3)

I Estimate number of computations made during m consecutive
communication steps

I Notations:
- αold, βold, and γold number of buffers dedicated to A, B and
C at the beginning
- αrecv, βrecv, and γrecv number of A, B, and C elements sent
by master during m steps
- γsent number of C elements returned to master during m
steps

I Equations: {
αold + βold + γold 6 m
αrecv + βrecv + γrecv + γsent = m



Assessing that performance (2/3)

I Simplify notations: 
αold + αrecv = αm
βold + βrecv = βm
γold + γrecv = γm

I Use Toledo’s lemma: if NA elements of A, NB elements of B
and NC elements of C are accessed, then no more than K
computations can be done:

K = min
{

(NA + NB)
√

NC , (NA + NC)
√

NB, (NB + NC)
√

NA

}
Here

K = min{(α + β)
√

γ, (β + γ)
√

α, (γ + α)
√

β} ×m
√

m



Assessing that performance (2/3)

I Simplify notations: 
αold + αrecv = αm
βold + βrecv = βm
γold + γrecv = γm

I Use Toledo’s lemma: if NA elements of A, NB elements of B
and NC elements of C are accessed, then no more than K
computations can be done:

K = min
{

(NA + NB)
√

NC , (NA + NC)
√

NB, (NB + NC)
√

NA

}
Here

K = min{(α + β)
√

γ, (β + γ)
√

α, (γ + α)
√

β} ×m
√

m



Digression: proof of Toledo’s lemma

I Partition computations w.r.t elements of A:
- big rows have more than

√
NA elements accessed

- small rows have fewer than
√

NA elements accessed

I Computations involving big rows:
- each element of B used at most once per big row
- bounded by NB ×#big-rows 6 NB ×

√
NA

I Computations involving small rows:
- each element of C accumulates at most #elements in
small-row
- bounded by NC ×#max-elts 6 NC ×

√
NA

I Use trilinear form
∑

AikBkjCij for symmetrical identities



Digression: proof of Toledo’s lemma

I Partition computations w.r.t elements of A:
- big rows have more than

√
NA elements accessed

- small rows have fewer than
√

NA elements accessed

I Computations involving big rows:
- each element of B used at most once per big row
- bounded by NB ×#big-rows 6 NB ×

√
NA

I Computations involving small rows:
- each element of C accumulates at most #elements in
small-row
- bounded by NC ×#max-elts 6 NC ×

√
NA

I Use trilinear form
∑

AikBkjCij for symmetrical identities



Digression: proof of Toledo’s lemma

I Partition computations w.r.t elements of A:
- big rows have more than

√
NA elements accessed

- small rows have fewer than
√

NA elements accessed

I Computations involving big rows:
- each element of B used at most once per big row
- bounded by NB ×#big-rows 6 NB ×

√
NA

I Computations involving small rows:
- each element of C accumulates at most #elements in
small-row
- bounded by NC ×#max-elts 6 NC ×

√
NA

I Use trilinear form
∑

AikBkjCij for symmetrical identities



Digression: proof of Toledo’s lemma

I Partition computations w.r.t elements of A:
- big rows have more than

√
NA elements accessed

- small rows have fewer than
√

NA elements accessed

I Computations involving big rows:
- each element of B used at most once per big row
- bounded by NB ×#big-rows 6 NB ×

√
NA

I Computations involving small rows:
- each element of C accumulates at most #elements in
small-row
- bounded by NC ×#max-elts 6 NC ×

√
NA

I Use trilinear form
∑

AikBkjCij for symmetrical identities



Assessing that performance (3/3)

I Problem: K = km
√

m,

Maximize k s.t.
k 6 (α + β)

√
γ

k 6 (β + γ)
√

α

k 6 (γ + α)
√

β

α + β + γ 6 2

I Solution:

α = β = γ =
2
3
, and k =

√
32
27

I Lower bound for communication-to-computation ratio:

m

K
=

m

km
√

m
=

√
27

32m



Assessing that performance (3/3)

I Problem: K = km
√

m,

Maximize k s.t.
k 6 (α + β)

√
γ

k 6 (β + γ)
√

α

k 6 (γ + α)
√

β

α + β + γ 6 2

I Solution:

α = β = γ =
2
3
, and k =

√
32
27

I Lower bound for communication-to-computation ratio:

m

K
=

m

km
√

m
=

√
27

32m



Assessing that performance (3/3)

I Problem: K = km
√

m,

Maximize k s.t.
k 6 (α + β)

√
γ

k 6 (β + γ)
√

α

k 6 (γ + α)
√

β

α + β + γ 6 2

I Solution:

α = β = γ =
2
3
, and k =

√
32
27

I Lower bound for communication-to-computation ratio:

m

K
=

m

km
√

m
=

√
27

32m



Refinement

I Instead of Toledo’s lemma, use Loomis-Whitney inequality: if
NA elements of A, NB elements of B and NC elements of C
are accessed, then no more than K computations can be done:

K =
√

NANBNC

Here
K =

√
α + β + γ ×m

√
m

I Solution:

α = β = γ =
2
3
, and k =

√
8
27

I Lower bound for communication-to-computation ratio:

m

K
=

m

km
√

m
=

√
27
8m



Refinement

I Instead of Toledo’s lemma, use Loomis-Whitney inequality: if
NA elements of A, NB elements of B and NC elements of C
are accessed, then no more than K computations can be done:

K =
√

NANBNC

Here
K =

√
α + β + γ ×m

√
m

I Solution:

α = β = γ =
2
3
, and k =

√
8
27

I Lower bound for communication-to-computation ratio:

m

K
=

m

km
√

m
=

√
27
8m



Refinement

I Instead of Toledo’s lemma, use Loomis-Whitney inequality: if
NA elements of A, NB elements of B and NC elements of C
are accessed, then no more than K computations can be done:

K =
√

NANBNC

Here
K =

√
α + β + γ ×m

√
m

I Solution:

α = β = γ =
2
3
, and k =

√
8
27

I Lower bound for communication-to-computation ratio:

m

K
=

m

km
√

m
=

√
27
8m



Outline

1 Framework

2 Playing with the simplest problem

3 Bound on the total number of communications

4 Parallel algorithms (at last)
Homogeneous platforms
Heterogeneous platforms

5 Experiments

6 Conclusion



Algorithm with identical workers (1/2)

for all blocks do
Return µ2 old Ci,j (if any);
Receive µ2 new Ci,j ;
for t do

receive µ Bk,j ;
receive µ Ai,k;
update µ2 blocks Ci,j ;

end
end

Algorithm 1: Synchronous version



Algorithm with identical workers (2/2)

c = 2, w = 4.5, µ = 4, t = 100, enroll P = 5 workers



Algorithm with identical workers (2/2)

c = 2, w = 4.5, µ = 4, t = 100, enroll P = 5 workers

P× µ2C



Algorithm with identical workers (2/2)

c = 2, w = 4.5, µ = 4, t = 100, enroll P = 5 workers

P× µ2C P× µ(A, B)



Algorithm with identical workers (2/2)

c = 2, w = 4.5, µ = 4, t = 100, enroll P = 5 workers

P× µ2C P× µ(A, B)P× µ(A, B)



Algorithm with identical workers (2/2)

c = 2, w = 4.5, µ = 4, t = 100, enroll P = 5 workers

P× µ2C P× µ(A, B)P× µ(A, B) P× µ(A, B)

t



Algorithm with identical workers (2/2)

c = 2, w = 4.5, µ = 4, t = 100, enroll P = 5 workers

P× µ2C P× µ(A, B)P× µ(A, B) P× µ(A, B)

t

P× µ2C



Performance (1/2)

I Assume P 6 p participating workers

I In a round (computing a C block entirely), master
communicates with each worker:
- 2µ2 blocks of C (either sent or received)
- 2µt blocks of A and B

I In a round, each worker computes µ2t updates

I For large t, neglect input/output of C blocks, and choose P

s.t.

(2µtc)×P ≈ µ2tw ⇔ P =
⌈µw

2c

⌉

In the example, P = d4.5e

I Typically, c = q2τc and w = q3τa

→ resource selection P =
⌈
µq τa

2τc

⌉



Performance (1/2)

I Assume P 6 p participating workers

I In a round (computing a C block entirely), master
communicates with each worker:
- 2µ2 blocks of C (either sent or received)
- 2µt blocks of A and B

I In a round, each worker computes µ2t updates

I For large t, neglect input/output of C blocks, and choose P

s.t.

(2µtc)×P ≈ µ2tw ⇔ P =
⌈µw

2c

⌉

In the example, P = d4.5e

I Typically, c = q2τc and w = q3τa

→ resource selection P =
⌈
µq τa

2τc

⌉



Performance (1/2)

I Assume P 6 p participating workers

I In a round (computing a C block entirely), master
communicates with each worker:
- 2µ2 blocks of C (either sent or received)
- 2µt blocks of A and B

I In a round, each worker computes µ2t updates

I For large t, neglect input/output of C blocks, and choose P

s.t.

(2µtc)×P ≈ µ2tw ⇔ P =
⌈µw

2c

⌉

In the example, P = d4.5e

I Typically, c = q2τc and w = q3τa

→ resource selection P =
⌈
µq τa

2τc

⌉



Performance (1/2)

I Assume P 6 p participating workers

I In a round (computing a C block entirely), master
communicates with each worker:
- 2µ2 blocks of C (either sent or received)
- 2µt blocks of A and B

I In a round, each worker computes µ2t updates

I For large t, neglect input/output of C blocks, and choose P

s.t.

(2µtc)×P ≈ µ2tw ⇔ P =
⌈µw

2c

⌉

In the example, P = d4.5e

I Typically, c = q2τc and w = q3τa

→ resource selection P =
⌈
µq τa

2τc

⌉



Performance (1/2)

I Assume P 6 p participating workers

I In a round (computing a C block entirely), master
communicates with each worker:
- 2µ2 blocks of C (either sent or received)
- 2µt blocks of A and B

I In a round, each worker computes µ2t updates

I For large t, neglect input/output of C blocks, and choose P

s.t.

(2µtc)×P ≈ µ2tw ⇔ P =
⌈µw

2c

⌉
In the example, P = d4.5e

I Typically, c = q2τc and w = q3τa

→ resource selection P =
⌈
µq τa

2τc

⌉



Performance (2/2)

I Can we really neglect input/output of C blocks?

I Each worker loses 2c time-units per block, i.e. per tw
time-units

I There are at most P 6 µw
2c workers

I Total loss 2cP time-units every tw time-units

I Total loss 6 µ
t

I In the example, at most 4%



Outline

1 Framework

2 Playing with the simplest problem

3 Bound on the total number of communications

4 Parallel algorithms (at last)
Homogeneous platforms
Heterogeneous platforms

5 Experiments

6 Conclusion



Resource selection

Problem

I Each worker Pi has parameters ci, wi, and µi =
√

mi.

I Each participating Pi needs δi = 2µitci communications to
process φi = tµ2

i wi computations (neglect I/O for C blocks)

I Which workers to enroll?



Solution (1/3)

I In steady-state, Pi receives yi A and B blocks per time-unit

I In steady-state, Pi computes xi C blocks per time-unit



Maximize
∑

i xi

subject to
xi

µ2
i

6
yi

2µi

xiwi 6 1∑
i

yici 6 1

µi µ2
i

µi



Solution (1/3)

I In steady-state, Pi receives yi A and B blocks per time-unit

I In steady-state, Pi computes xi C blocks per time-unit



Maximize
∑

i xi

subject to
xi

µ2
i

6
yi

2µi

xiwi 6 1∑
i

yici 6 1 µi µ2
i

µi



Solution (2/3)



Maximize
∑

i xi

subject to
xi

µ2
i

6
yi

2µi

xiwi 6 1∑
i

yici 6 1

⇔

Claim yi = 2xi
µi

Maximize
∑

i xi

subject to

xi 6
1
wi∑

i

2ci

µi
xi 6 1



Solution (3/3)



Maximize
∑

i xi

subject to

xi 6
1
wi∑

i

2ci

µi
xi 6 1

I Bandwidth-centric strategy:
- Sort workers by non-decreasing 2ci

µi

- Enroll them as long as
∑ 2ci

µiwi
6 1

- Achieve throughput ρ ≈
∑

i enrolled
1
wi



Solution (3/3)



Maximize
∑

i xi

subject to

xi 6
1
wi∑

i

2ci

µi
xi 6 1

I Bandwidth-centric strategy:
- Sort workers by non-decreasing 2ci

µi

- Enroll them as long as
∑ 2ci

µiwi
6 1

- Achieve throughput ρ ≈
∑

i enrolled
1
wi

Eh wait!
Do you have enough

memory?!



No, we don’t have enough memory!

P1 P2

ci 1 20
wi 2 40
µi 2 2
2ci

µiwi

1
2

1
2

I Every 160 seconds:
- P1 receives 80 blocks (20 µ1 × µ1 chunks) in 80 seconds
- P1 computes 80 blocks in 160 seconds
- P2 receives 4 blocks (1 µ2 × µ2 chunk) in 80 seconds
- P2 computes 4 blocks in 160 seconds

I P1 computes two slowly and needs buffers to store 20 blocks!

11111111111111111111 20 11111111111111111111 20 111111111 . . .
P1 P2 P1 P2 P1 . . .

I Previous throughput achievable for divisible messages



No, we don’t have enough memory!

P1 P2

ci 1 20
wi 2 40
µi 2 2
2ci

µiwi

1
2

1
2

I Every 160 seconds:
- P1 receives 80 blocks (20 µ1 × µ1 chunks) in 80 seconds
- P1 computes 80 blocks in 160 seconds
- P2 receives 4 blocks (1 µ2 × µ2 chunk) in 80 seconds
- P2 computes 4 blocks in 160 seconds

I P1 computes two slowly and needs buffers to store 20 blocks!

11111111111111111111 20 11111111111111111111 20 111111111 . . .
P1 P2 P1 P2 P1 . . .

I Previous throughput achievable for divisible messages



No, we don’t have enough memory!

P1 P2

ci 1 20
wi 2 40
µi 2 2
2ci

µiwi

1
2

1
2

I Every 160 seconds:
- P1 receives 80 blocks (20 µ1 × µ1 chunks) in 80 seconds
- P1 computes 80 blocks in 160 seconds
- P2 receives 4 blocks (1 µ2 × µ2 chunk) in 80 seconds
- P2 computes 4 blocks in 160 seconds

I P1 computes two slowly and needs buffers to store 20 blocks!

11111111111111111111 20 11111111111111111111 20 111111111 . . .
P1 P2 P1 P2 P1 . . .

I Previous throughput achievable for divisible messages



Greedy heuristic for heterogeneous platforms

P3

P2

P1

M

P1 P2 P3

ci 2 3 5
wi 2 3 1
µi 6 18 10

2µici 24 108 100
µ2

i wi 72 972 100
2ci

µi

2
3

1
3 1

2ci

µiwi

1
3

1
9 1→ 5

9



Greedy heuristic for heterogeneous platforms

P3

P2

P1

M

If first communication to P1, ratio =
µ2

1
2µ1c1

= 36
24 = 3

2

Ratios: P1 : 1.5



Greedy heuristic for heterogeneous platforms

P3

P2

P1

M

If first communication to P2, ratio =
µ2

2
2µ2c2

= 324
108 = 3

Ratios: P1 : 1.5 P2 : 3



Greedy heuristic for heterogeneous platforms

P3

P2

P1

M

If first communication to P3, ratio =
µ2

3
2µ3c3

= 100
100 = 1

Ratios: P1 : 1.5 P2 : 3 P3 : 1



Greedy heuristic for heterogeneous platforms

P3

P2

P1

M

Best solution : first communication to P2



Greedy heuristic for heterogeneous platforms

P3

P2

P1

M

If second communication to P1, ratio =
µ2

2+µ2
1

2µ2c2+2µ1c1
= 324+36

108+24 =
2.71

Ratios: P1 : 2.71



Greedy heuristic for heterogeneous platforms

P3

P2

P1

M

If second communication to P2, ratio =
µ2

2+µ2
2

2µ2c2+2µ2c2
= 324+324

1080 =
0.60

Ratios: P1 : 2.71 P2 : 0.60



Greedy heuristic for heterogeneous platforms

P3

P2

P1

M

If second communication to P3, ratio =
µ2

2+µ2
3

2µ2c2+2µ3c3
= 324+100

108+100 =
2.04

Ratios: P1 : 2.71 P2 : 0.60 P3 : 2.04



Greedy heuristic for heterogeneous platforms

P3

P2

P1

M

Best solution : second communication to P1



Greedy heuristic for heterogeneous platforms

P3

P2

P1

M

If third communication to P1, ratio =
µ2

2+µ2
1+µ2

1
tcomm

= 360+36
168 = 2.36

Ratios: P1 : 1.93



Greedy heuristic for heterogeneous platforms

P3

P2

P1

M

If third communication to P2, ratio =
µ2

2+µ2
1+µ2

2
tcomm

= 360+324
1080 = 0.63

Ratios: P1 : 1.93 P2 : 0.63



Greedy heuristic for heterogeneous platforms

P3

P2

P1

M

If third communication to P3, ratio =
µ2

2+µ2
1+µ2

3
2µ2c2+2µ1c1+2µ3c3

=
360+100
132+100 = 1.97

Ratios: P1 : 1.93 P2 : 0.63 P3 : 1.97
Best solution: third communication to P3



Greedy heuristic for heterogeneous platforms

P3

P2

P1

M

Asymptotic ratio: 1.17 (divisible throughput 1.39)
Allocated bandwidths: 14.8%, 11.2%, and 61.7% (instead of 33.3%,
11.1%, and 55.6%)

Two-block look-ahead greedy
Asymptotic ratio: 1.30 (divisible throughput 1.39)
Allocated bandwidths: 17.2%, 11.1%, and 71.7%



The studied algorithms

I Homogeneous algorithm

I Overlapped Round-Robin, Optimized Memory Layout
(ORROML)

I Overlapped Min-Min, Optimized Memory Layout
(OMMOML)

I Overlapped Demand-Driven, Optimized Memory Layout
(ODDOML)

I Demand-Driven, Optimized Memory Layout (DDOML)

I Block Matrix Multiply (BMM)

I Overlapped Block Matrix Multiply (OBMM)



Results

size:100x800
x100

size:200x160
0x200

size:100x800
x800

0,0

2000,0

4000,0

6000,0

8000,0

10000,0

12000,0

14000,0

16000,0

18000,0

20000,0

HoLM

ODDOML
OMMOML
ORROML

DDOML
BMM
OBMM

Ti
m

e 
(s

)

Performance of the algorithms on different matrices.



Results

HoLM ODDOML OMMOML ORROML DDOML BMM OBMM

0,0

500,0

1000,0

1500,0

2000,0

2500,0

3000,0

3500,0

4000,0

4500,0

Ti
m

e 
(s

)

Variation of algorithm execution times.



Results

memory=132 memory=512
0,0

2000,0

4000,0

6000,0

8000,0

10000,0

12000,0

14000,0

16000,0

HoLM
ODDOML
OMMOML

ORROML
DDOML
BMM

OBMM
Average

Ti
m

e 
(s

)

Impact of memory size on algorithm performance.



Conclusion

I Key points:
I Realistic platform model
I Lower bound on total number of communications
I Design of efficient parallel algorithms

I Extensions:
I Improve lower bound to match algorithm performance
I Run experiments with DIET/GridSolve
I Investigate LU/Cholesky



LU /Cholesky

I Right-looking approach more amenable to parallelism

I Main kernel is rank-µ update C ← C + A.B

I Similar to matrix product
I Reuse A instead of C

I Similar results

I Homogeneous platforms: P =
⌈µw

3c

⌉
I Heterogeneous platforms: same bandwidth-centric approach



LU /Cholesky

I Right-looking approach more amenable to parallelism
I Main kernel is rank-µ update C ← C + A.B

I Similar to matrix product
I Reuse A instead of C

I Similar results

I Homogeneous platforms: P =
⌈µw

3c

⌉
I Heterogeneous platforms: same bandwidth-centric approach



LU /Cholesky

I Right-looking approach more amenable to parallelism
I Main kernel is rank-µ update C ← C + A.B

I Similar to matrix product

I Reuse A instead of C

I Similar results

I Homogeneous platforms: P =
⌈µw

3c

⌉
I Heterogeneous platforms: same bandwidth-centric approach



LU /Cholesky

I Right-looking approach more amenable to parallelism
I Main kernel is rank-µ update C ← C + A.B

I Similar to matrix product
I Reuse A instead of C

I Similar results

I Homogeneous platforms: P =
⌈µw

3c

⌉
I Heterogeneous platforms: same bandwidth-centric approach



LU /Cholesky

I Right-looking approach more amenable to parallelism
I Main kernel is rank-µ update C ← C + A.B

I Similar to matrix product
I Reuse A instead of C

I Similar results

I Homogeneous platforms: P =
⌈µw

3c

⌉
I Heterogeneous platforms: same bandwidth-centric approach



LU /Cholesky

I Right-looking approach more amenable to parallelism
I Main kernel is rank-µ update C ← C + A.B

I Similar to matrix product
I Reuse A instead of C

I Similar results
I Homogeneous platforms: P =

⌈µw

3c

⌉

I Heterogeneous platforms: same bandwidth-centric approach



LU /Cholesky

I Right-looking approach more amenable to parallelism
I Main kernel is rank-µ update C ← C + A.B

I Similar to matrix product
I Reuse A instead of C

I Similar results
I Homogeneous platforms: P =

⌈µw

3c

⌉
I Heterogeneous platforms: same bandwidth-centric approach



Scheme for LU at step k



Scheme for LU at step k

Communications µ2

Computations µ3



Scheme for LU at step k

Communications 2µ

Computations 1
2µ2



Scheme for LU at step k

Communications 2(n
µ − k)µ2

Computations 1
2(n

µ − k)µ3



Scheme for LU at step k

Communications 4(n
µ − k)µ2

Computations (n
µ − k)µ3



Scheme for LU at step k



Scheme for LU at step k



Scheme for LU at step k

Communications µ2 + 3µ

Computations µ2



Scheme for LU at step k

Communications µ2 + 3(n
µ − k)µ2

Computations (n
µ − k)µ3


	Framework
	Playing with the simplest problem
	Bound on the total number of communications
	Parallel algorithms (at last)
	Homogeneous platforms
	Heterogeneous platforms

	Experiments
	Conclusion

