Revisiting matrix product on heterogeneous platforms

Frédéric Vivien

December 11, 2006

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

 A fundamental computational kernel (the mother source of parallel algorithm design)

- A fundamental computational kernel (the mother source of parallel algorithm design)
- ► Well-understood for *homogeneous 2D-arrays of processors*

- Cannon algorithm
- ScaLAPACK outer product algorithm

- A fundamental computational kernel (the mother source of parallel algorithm design)
- ► Well-understood for *homogeneous 2D-arrays of processors*

- Cannon algorithm
- ScaLAPACK outer product algorithm
- Target platforms = heterogeneous clusters

- A fundamental computational kernel (the mother source of parallel algorithm design)
- ► Well-understood for *homogeneous 2D-arrays of processors*

- Cannon algorithm
- ScaLAPACK outer product algorithm
- Target platforms = heterogeneous clusters
- Target usage = speed up MATLAB-client

Why bother?

Communications are one order of magnitude fewer than computations!!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Why bother?

Communications are one order of magnitude fewer than computations!!

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Myth or reality?

Outline

1 Framework

- 2 Playing with the simplest problem
- 3 Bound on the total number of communications

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Parallel algorithms (at last)

5 Experiments

Application (1/2)

(ロ)、(型)、(E)、(E)、 E、 のQの

Manipulate blocks of size q × q (harness power of Level 3 BLAS)
Heard from the grapevine: q = 80 in ATLAS

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Manipulate blocks of size $q \times q$ (harness power of Level 3 BLAS)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Heard from the grapevine: q = 80 in ATLAS

- \mathcal{A} is of size $n_{\mathcal{A}} \times n_{\mathcal{AB}}$:
 - split \mathcal{A} into r horizontal stripes \mathcal{A}_i
 - split stripe \mathcal{A}_i into t square q imes q blocks \mathcal{A}_{ik}
 - here $r=n_{\mathcal{A}}/q$ and $t=n_{\mathcal{A}\mathcal{B}}/q$

 Manipulate blocks of size q × q (harness power of Level 3 BLAS)

Heard from the grapevine: q = 80 in ATLAS

- \mathcal{A} is of size $n_{\mathcal{A}} \times n_{\mathcal{AB}}$:
 - split \mathcal{A} into r horizontal stripes \mathcal{A}_i
 - split stripe \mathcal{A}_i into t square $q \times q$ blocks \mathcal{A}_{ik}
 - here $r=n_{\mathcal{A}}/q$ and $t=n_{\mathcal{A}\mathcal{B}}/q$
- \mathcal{B} is of size $n_{\mathcal{AB}} \times n_{\mathcal{B}}$:
 - split \mathcal{B} into s vertical stripes \mathcal{B}_i
 - split stripe \mathcal{B}_j into t square $q \times q$ blocks \mathcal{B}_{kj}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- here
$$s = n_{\mathcal{B}}/q$$

 Manipulate blocks of size q × q (harness power of Level 3 BLAS)

Heard from the grapevine: q = 80 in ATLAS

- \mathcal{A} is of size $n_{\mathcal{A}} \times n_{\mathcal{AB}}$:
 - split \mathcal{A} into r horizontal stripes \mathcal{A}_i
 - split stripe \mathcal{A}_i into t square $q \times q$ blocks \mathcal{A}_{ik}
 - here $r = n_{\mathcal{A}}/q$ and $t = n_{\mathcal{AB}}/q$
- \mathcal{B} is of size $n_{\mathcal{A}\mathcal{B}} \times n_{\mathcal{B}}$:
 - split \mathcal{B} into s vertical stripes \mathcal{B}_i
 - split stripe \mathcal{B}_j into t square $q \times q$ blocks \mathcal{B}_{kj}

- here $s = n_{\mathcal{B}}/q$
- Compute $C = C + A \times B$:
 - split C into $r \times s$ square $q \times q$ blocks \mathcal{C}_{ij}

 Manipulate blocks of size q × q (harness power of Level 3 BLAS)

Heard from the grapevine: q = 80 in ATLAS

- \mathcal{A} is of size $n_{\mathcal{A}} \times n_{\mathcal{AB}}$:
 - split \mathcal{A} into r horizontal stripes \mathcal{A}_i
 - split stripe \mathcal{A}_i into t square q imes q blocks \mathcal{A}_{ik}
 - here $r = n_{\mathcal{A}}/q$ and $t = n_{\mathcal{AB}}/q$
- \mathcal{B} is of size $n_{\mathcal{A}\mathcal{B}} \times n_{\mathcal{B}}$:
 - split \mathcal{B} into s vertical stripes \mathcal{B}_i
 - split stripe \mathcal{B}_j into t square q imes q blocks \mathcal{B}_{kj}

- here $s = n_{\mathcal{B}}/q$
- Compute $C = C + A \times B$:
 - split C into $r \times s$ square $q \times q$ blocks \mathcal{C}_{ij}
- All stripes and blocks have same size

Slaves

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

• Star network
$$S = \{M, P_1, P_2, \dots, P_p\}$$
:

-20

- master M and p workers P_i

- Star network $S = \{M, P_1, P_2, ..., P_p\}$:
 - master M and p workers P_i
- \triangleright P_i needs $X.w_i$ time-units to execute a task of size X

- Star network $S = \{M, P_1, P_2, \dots, P_p\}$:
 - master M and p workers P_i
- P_i needs $X.w_i$ time-units to execute a task of size X
- ► M needs X.c_i time-units to send/rcv a msg of size X to/from P_i

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Star network $S = \{M, P_1, P_2, \dots, P_p\}$:
 - master M and p workers P_i
- ▶ P_i needs X.w_i time-units to execute a task of size X
- M needs $X.c_i$ time-units to send/rcv a msg of size X to/from P_i

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Master has no processing capability

- Star network $S = \{M, P_1, P_2, \dots, P_p\}$:
 - master M and p workers P_i
- ▶ P_i needs X.w_i time-units to execute a task of size X
- M needs $X.c_i$ time-units to send/rcv a msg of size X to/from P_i

- Master has no processing capability
- Enforce one-port model:

- Star network $S = \{M, P_1, P_2, \dots, P_p\}$:
 - master M and p workers P_i
- P_i needs $X.w_i$ time-units to execute a task of size X
- ► M needs X.c_i time-units to send/rcv a msg of size X to/from P_i
- Master has no processing capability
- Enforce one-port model:
 - Master involved in a single communication, either send or receive

- Star network $S = \{M, P_1, P_2, \dots, P_p\}$:
 - master M and p workers P_i
- P_i needs $X.w_i$ time-units to execute a task of size X
- ► M needs X.c_i time-units to send/rcv a msg of size X to/from P_i
- Master has no processing capability
- Enforce one-port model:
 - Master involved in a single communication, either send or receive
 - Worker cannot start execution before having completed message reception (but overlap between independent communications and computations)

- Star network $S = \{M, P_1, P_2, \dots, P_p\}$:
 - master M and p workers P_i
- ▶ P_i needs X.w_i time-units to execute a task of size X
- M needs $X.c_i$ time-units to send/rcv a msg of size X to/from P_i
- Master has no processing capability
- Enforce one-port model:
 - Master involved in a single communication, either send or receive
 - Worker cannot start execution before having completed message reception (but overlap between independent communications and computations)
- Memory limitation: P_i can only store m_i blocks

Problem

 Fully homogeneous platform (identical workers and communication links)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Problem

 Fully homogeneous platform (identical workers and communication links)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Stripes instead of blocks, no return results

Problem

- Fully homogeneous platform (identical workers and communication links)
- Stripes instead of blocks, no return results
- No memory limitation:
 - workers receive stripes only once, re-use them when needed

Problem

- Fully homogeneous platform (identical workers and communication links)
- Stripes instead of blocks, no return results
- No memory limitation:
 - workers receive stripes only once, re-use them when needed

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Scheduling

How many workers to enroll?

Problem

- Fully homogeneous platform (identical workers and communication links)
- Stripes instead of blocks, no return results
- No memory limitation:
 - workers receive stripes only once, re-use them when needed

Scheduling

- How many workers to enroll?
- Which files sent to which workers, and in which order?

Parameters

 Platform: p (number of workers), c and w (send/process a stripe)

Parameters

 Platform: p (number of workers), c and w (send/process a stripe)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Application: r and s (number of stripes)

Parameters

 Platform: p (number of workers), c and w (send/process a stripe)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Application: r and s (number of stripes)

Objective

Makespan minimization

Parameters

- Platform: p (number of workers), c and w (send/process a stripe)
- Application: r and s (number of stripes)

Objective

- Makespan minimization
- Design optimal algorithm (includes resource selection)

Bipartite graph: files and tasks

Suggests alternating sends of ${\mathcal A}$ and ${\mathcal B}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

And with a single worker?

Theorem

Theorem With a single worker, the alternating greedy algorithm is optimal.

Proof.

- Master sends stripes as soon as possible
- Alternate a stripe of type ${\mathcal A}$ and a stripe of type ${\mathcal B}$
- After x communication steps, with $y \ A$ -files and $z \ B$ -files

(y + z = x), worker can process $y \times z$ tasks

- Alternating greedy algorithm enforces $y = \lceil \frac{x}{2} \rceil$ and $z = \lfloor \frac{x}{2} \rfloor$ (as long as $\max(x, y) \leq \min(r, s)$, and then on sends remaining files). Hence optimality

With several workers? (1/3)

Thrifty: a natural greedy algorithm

Send enough tasks to first worker so that it is never idle

With several workers? (1/3)

Thrifty: a natural greedy algorithm

- Send enough tasks to first worker so that it is never idle
- Send tasks to second worker during available communication slots
With several workers? (1/3)

Thrifty: a natural greedy algorithm

- Send enough tasks to first worker so that it is never idle
- Send tasks to second worker during available communication slots
- Enroll new worker only when all previous ones are not delayed

With several workers? (1/3)

Thrifty: a natural greedy algorithm

- Send enough tasks to first worker so that it is never idle
- Send tasks to second worker during available communication slots
- Enroll new worker only when all previous ones are not delayed

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Min-min: another natural greedy algorithm

Min-min heuristic

With several workers? (1/3)

Thrifty: a natural greedy algorithm

- Send enough tasks to first worker so that it is never idle
- Send tasks to second worker during available communication slots
- > Enroll new worker only when all previous ones are not delayed

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Min-min: another natural greedy algorithm

- Min-min heuristic
- Start best new task on best processor

With several workers? (2/3)

p = 2, c = 4, w = 7, r = s = 3, Min-min wins

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

With several workers? (3/3)

p = 2, c = 8, w = 9, r = 6, s = 3, Thrifty wins

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 Goal: bound total number of communications performed by master

 Goal: bound total number of communications performed by master

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Simulate any parallel algorithm with a single worker

 Goal: bound total number of communications performed by master

- Simulate any parallel algorithm with a single worker
- Master sends blocks A_{ik} , B_{kj} , and C_{ij}

 Goal: bound total number of communications performed by master

- Simulate any parallel algorithm with a single worker
- Master sends blocks A_{ik} , B_{kj} , and C_{ij}
- Master retrieves final values of blocks C_{ij}

 Goal: bound total number of communications performed by master

- Simulate any parallel algorithm with a single worker
- Master sends blocks A_{ik} , B_{kj} , and C_{ij}
- Master retrieves final values of blocks C_{ij}
- ► Memory limitation: only m buffers available → at most m blocks simultaneously stored on worker

E 940

▶ Find largest μ s.t. $1 + \mu + \mu^2 \leq m$

- Find largest μ s.t. $1 + \mu + \mu^2 \leqslant m$
- Store μ² blocks of C in memory: send a μ × μ square {C_{i,j} / i₀ ≤ i < i₀ + μ, j₀ ≤ j < j₀ + μ}

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ─ ○ ○ ○

- ▶ Find largest μ s.t. $1 + \mu + \mu^2 \leqslant m$
- ▶ Store μ^2 blocks of C in memory: send a $\mu \times \mu$ square $\{C_{i,j} / i_0 \leq i < i_0 + \mu, j_0 \leq j < j_0 + \mu\}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ─ ○ ○ ○

For each k from 1 to t:

- Find largest μ s.t. $1 + \mu + \mu^2 \leqslant m$
- ▶ Store μ^2 blocks of C in memory: send a $\mu \times \mu$ square $\{C_{i,j} / i_0 \leq i < i_0 + \mu, j_0 \leq j < j_0 + \mu\}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ─ ○ ○ ○

- ▶ For each k from 1 to t:
 - Send row of μ elements $\{\mathcal{B}_{k,j} \mid j_0 \leq j < j_0 + \mu\}$

- Find largest μ s.t. $1 + \mu + \mu^2 \leqslant m$
- ▶ Store μ^2 blocks of C in memory: send a $\mu \times \mu$ square $\{C_{i,j} / i_0 \leq i < i_0 + \mu, j_0 \leq j < j_0 + \mu\}$
- ▶ For each k from 1 to t:
 - Send row of μ elements $\{\mathcal{B}_{k,j} / j_0 \leq j < j_0 + \mu\}$
 - $\begin{array}{l} \textcircled{\label{eq:constraint} \textbf{2} } \\ \textbf{3} \\ \{\mathcal{A}_{i,k} \ / \ i_0 \leqslant i < i_0 + \mu \}. \end{array} \\ \textbf{For each } A_{i,k} \text{, update } \mu \text{ elements of } \\ \mathcal{C} \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Find largest μ s.t. $1 + \mu + \mu^2 \leqslant m$
- Store µ² blocks of C in memory: send a µ × µ square {C_{i,j} / i₀ ≤ i < i₀ + µ, j₀ ≤ j < j₀ + µ}
- ▶ For each k from 1 to t:
 - Send row of μ elements $\{\mathcal{B}_{k,j} / j_0 \leq j < j_0 + \mu\}$
 - **2** Sequentially send μ elements of column $\{A_{i,k} \mid i_0 \leq i < i_0 + \mu\}$. For each $A_{i,k}$, update μ elements of C

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Return results to master

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ の < @ >

	\mathcal{B}_{11}	\mathcal{B}_{12}	\mathcal{B}_{13}	\mathcal{B}_{14}
\mathcal{A}_{11}	\mathcal{C}_{11}	\mathcal{C}_{12}	\mathcal{C}_{13}	\mathcal{C}_{14}
	\mathcal{C}_{21}	\mathcal{C}_{22}	\mathcal{C}_{23}	\mathcal{C}_{24}
	\mathcal{C}_{31}	\mathcal{C}_{32}	\mathcal{C}_{33}	\mathcal{C}_{34}
	\mathcal{C}_{41}	\mathcal{C}_{42}	\mathcal{C}_{43}	\mathcal{C}_{44}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

	\mathcal{B}_{11}	\mathcal{B}_{12}	\mathcal{B}_{13}	\mathcal{B}_{14}
	\mathcal{C}_{11}	\mathcal{C}_{12}	\mathcal{C}_{13}	\mathcal{C}_{14}
\mathcal{A}_{21}	\mathcal{C}_{21}	${\cal C}_{22}$	\mathcal{C}_{23}	\mathcal{C}_{24}
	\mathcal{C}_{31}	\mathcal{C}_{32}	\mathcal{C}_{33}	\mathcal{C}_{34}
	\mathcal{C}_{41}	\mathcal{C}_{42}	\mathcal{C}_{43}	\mathcal{C}_{44}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

	\mathcal{B}_{11}	\mathcal{B}_{12}	\mathcal{B}_{13}	\mathcal{B}_{14}
	\mathcal{C}_{11}	\mathcal{C}_{12}	\mathcal{C}_{13}	\mathcal{C}_{14}
	\mathcal{C}_{21}	\mathcal{C}_{22}	\mathcal{C}_{23}	\mathcal{C}_{24}
\mathcal{A}_{31}	\mathcal{C}_{31}	\mathcal{C}_{32}	\mathcal{C}_{33}	\mathcal{C}_{34}
	\mathcal{C}_{41}	\mathcal{C}_{42}	\mathcal{C}_{43}	\mathcal{C}_{44}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

	\mathcal{B}_{11}	\mathcal{B}_{12}	\mathcal{B}_{13}	\mathcal{B}_{14}
	\mathcal{C}_{11}	\mathcal{C}_{12}	\mathcal{C}_{13}	\mathcal{C}_{14}
	\mathcal{C}_{21}	\mathcal{C}_{22}	\mathcal{C}_{23}	\mathcal{C}_{24}
	\mathcal{C}_{31}	\mathcal{C}_{32}	\mathcal{C}_{33}	\mathcal{C}_{34}
\mathcal{A}_{41}	\mathcal{C}_{41}	\mathcal{C}_{42}	\mathcal{C}_{43}	\mathcal{C}_{44}

◆□▶ ◆□▶ ◆目▶ ◆目▶ →目 − のへぐ

\blacktriangleright Need $2\mu^2$ communications to send/retrieve ${\cal C}$

Performance

- Need $2\mu^2$ communications to send/retrieve ${\cal C}$
- ▶ For each value of *t*:
 - need μ elements of ${\mathcal A}$ and μ elements of ${\mathcal B}$
 - perform rank-1 update of ${\mathcal C}$ square $\to \mu^2$ computations

Performance

- ▶ Need $2\mu^2$ communications to send/retrieve C
- For each value of t:
 - need μ elements of ${\mathcal A}$ and μ elements of ${\mathcal B}$
 - perform rank-1 update of ${\cal C}$ square $\rightarrow \mu^2$ computations
- Communication-to-computation ratio:

$$\frac{2\mu^2 + 2\mu t}{\mu^2 t} = \frac{2}{t} + \frac{2}{\mu} \to \frac{2}{\sqrt{m}}$$

Assessing that performance (1/3)

 Estimate number of computations made during *m* consecutive communication steps

Assessing that performance (1/3)

- Estimate number of computations made during *m* consecutive communication steps
- Notations:
 - $\alpha_{old},~\beta_{old},$ and γ_{old} number of buffers dedicated to $\mathcal A,~\mathcal B$ and $\mathcal C$ at the beginning
 - α_{recv} , β_{recv} , and γ_{recv} number of A, B, and C elements sent by master during m steps

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- γ_{sent} number of ${\mathcal C}$ elements returned to master during m steps

Assessing that performance (1/3)

- Estimate number of computations made during *m* consecutive communication steps
- Notations:
 - $\alpha_{old},~\beta_{old},$ and γ_{old} number of buffers dedicated to $\mathcal A,~\mathcal B$ and $\mathcal C$ at the beginning
 - α_{recv} , β_{recv} , and γ_{recv} number of A, B, and C elements sent by master during m steps
 - γ_{sent} number of ${\mathcal C}$ elements returned to master during m steps
- Equations:

$$\begin{cases} \alpha_{old} + \beta_{old} + \gamma_{old} \leqslant m \\ \alpha_{recv} + \beta_{recv} + \gamma_{recv} + \gamma_{sent} = m \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Assessing that performance (2/3)

Simplify notations:

$$\begin{cases} \alpha_{old} + \alpha_{recv} = \alpha m \\ \beta_{old} + \beta_{recv} = \beta m \\ \gamma_{old} + \gamma_{recv} = \gamma m \end{cases}$$

Assessing that performance (2/3)

Simplify notations:

$$\begin{cases} \alpha_{old} + \alpha_{recv} = \alpha m \\ \beta_{old} + \beta_{recv} = \beta m \\ \gamma_{old} + \gamma_{recv} = \gamma m \end{cases}$$

► Use Toledo's lemma: if N_A elements of A, N_B elements of B and N_C elements of C are accessed, then no more than K computations can be done:

$$K = \min\left\{ (N_A + N_B)\sqrt{N_C}, (N_A + N_C)\sqrt{N_B}, (N_B + N_C)\sqrt{N_A} \right\}$$

Here

$$K = \min\{(\alpha + \beta)\sqrt{\gamma}, (\beta + \gamma)\sqrt{\alpha}, (\gamma + \alpha)\sqrt{\beta}\} \times m\sqrt{m}$$

▶ Partition computations w.r.t elements of *A*:

- big rows have more than $\sqrt{N_A}$ elements accessed
- small rows have fewer than $\sqrt{N_A}$ elements accessed

▶ Partition computations w.r.t elements of *A*:

- big rows have more than $\sqrt{N_A}$ elements accessed
- small rows have fewer than $\sqrt{N_A}$ elements accessed
- Computations involving big rows:
 - each element of \boldsymbol{B} used at most once per big row

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- bounded by $N_B \times \# \text{big-rows} \leqslant N_B \times \sqrt{N_A}$

Partition computations w.r.t elements of A:

- big rows have more than $\sqrt{N_A}$ elements accessed
- small rows have fewer than $\sqrt{N_A}$ elements accessed
- Computations involving big rows:
 - each element of B used at most once per big row
 - bounded by $N_B \times \# \text{big-rows} \leqslant N_B \times \sqrt{N_A}$
- Computations involving small rows:
 - each element of C accumulates at most $\# {\rm elements}$ in small-row

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- bounded by $N_C \times \#$ max-elts $\leqslant N_C \times \sqrt{N_A}$

Partition computations w.r.t elements of A:

- big rows have more than $\sqrt{N_A}$ elements accessed
- small rows have fewer than $\sqrt{N_A}$ elements accessed
- Computations involving big rows:
 - each element of B used at most once per big row
 - bounded by $N_B \times \# \text{big-rows} \leqslant N_B \times \sqrt{N_A}$
- Computations involving small rows:
 - each element of C accumulates at most $\# {\rm elements}$ in small-row
 - bounded by $N_C \times \#$ max-elts $\leqslant N_C \times \sqrt{N_A}$
- Use trilinear form $\sum A_{ik}B_{kj}C_{ij}$ for symmetrical identities

Assessing that performance (3/3)

• Problem: $K = km\sqrt{m}$,

 $\begin{cases} \text{MAXIMIZE } k \text{ s.t.} \\ k \leqslant (\alpha + \beta)\sqrt{\gamma} \\ k \leqslant (\beta + \gamma)\sqrt{\alpha} \\ k \leqslant (\gamma + \alpha)\sqrt{\beta} \\ \alpha + \beta + \gamma \leqslant 2 \end{cases}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Assessing that performance (3/3)

• Problem: $K = km\sqrt{m}$,

$$\begin{aligned} & \text{MAXIMIZE } k \text{ s.t.} \\ & k \leqslant (\alpha + \beta)\sqrt{\gamma} \\ & k \leqslant (\beta + \gamma)\sqrt{\alpha} \\ & k \leqslant (\gamma + \alpha)\sqrt{\beta} \\ & \alpha + \beta + \gamma \leqslant 2 \end{aligned}$$

Solution:

$$\alpha = \beta = \gamma = \frac{2}{3}$$
, and $k = \sqrt{\frac{32}{27}}$

Assessing that performance (3/3)

• Problem: $K = km\sqrt{m}$,

$$\begin{aligned} & \text{MAXIMIZE } k \text{ s.t.} \\ & k \leqslant (\alpha + \beta)\sqrt{\gamma} \\ & k \leqslant (\beta + \gamma)\sqrt{\alpha} \\ & k \leqslant (\gamma + \alpha)\sqrt{\beta} \\ & \alpha + \beta + \gamma \leqslant 2 \end{aligned}$$

Solution:

$$\alpha = \beta = \gamma = rac{2}{3}$$
, and $k = \sqrt{rac{32}{27}}$

Lower bound for communication-to-computation ratio:

$$\frac{m}{K} = \frac{m}{km\sqrt{m}} = \sqrt{\frac{27}{32m}}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のへで
Refinement

► Instead of Toledo's lemma, use Loomis-Whitney inequality: if N_A elements of A, N_B elements of B and N_C elements of C are accessed, then no more than K computations can be done:

$$K = \sqrt{N_A N_B N_C}$$

Here

$$K = \sqrt{\alpha + \beta + \gamma} \times m\sqrt{m}$$

Refinement

► Instead of Toledo's lemma, use Loomis-Whitney inequality: if N_A elements of A, N_B elements of B and N_C elements of C are accessed, then no more than K computations can be done:

$$K = \sqrt{N_A N_B N_C}$$

Here

$$K = \sqrt{\alpha + \beta + \gamma} \times m\sqrt{m}$$

Solution:

$$\alpha = \beta = \gamma = rac{2}{3}, \ \mathrm{AND} \ k = \sqrt{rac{8}{27}}$$

Refinement

► Instead of Toledo's lemma, use Loomis-Whitney inequality: if N_A elements of A, N_B elements of B and N_C elements of C are accessed, then no more than K computations can be done:

$$K = \sqrt{N_A N_B N_C}$$

Here

$$K = \sqrt{\alpha + \beta + \gamma} \times m\sqrt{m}$$

Solution:

$$\alpha = \beta = \gamma = rac{2}{3}, \ \mathrm{AND} \ k = \sqrt{rac{8}{27}}$$

Lower bound for communication-to-computation ratio:

$$\frac{m}{K} = \frac{m}{km\sqrt{m}} = \sqrt{\frac{27}{8m}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

Framework

- 2 Playing with the simplest problem
- Bound on the total number of communications

・ロット (雪) (日) (日) (日)

- Parallel algorithms (at last)
 Homogeneous platforms
 Heterogeneous platforms
 - 5 Experiments


```
for all blocks do

Return \mu^2 old C_{i,j} (if any);

Receive \mu^2 new C_{i,j};

for t do

receive \mu \mathcal{B}_{k,j};

receive \mu \mathcal{A}_{i,k};

update \mu^2 blocks C_{i,j};

end

end
```

Algorithm 1: Synchronous version

$$c=2, w=4.5, \mu=4, t=100$$
, enroll $\mathfrak{P}=5$ workers

2

$$c=2$$
, $w=4.5$, $\mu=4$, $t=100$, enroll $\mathfrak{P}=5$ workers

≣ ୬९୯

$$c=2$$
, $w=4.5$, $\mu=4$, $t=100$, enroll $\mathfrak{P}=5$ workers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$c=2$$
, $w=4.5$, $\mu=4$, $t=100$, enroll $\mathfrak{P}=5$ workers

$$c=2$$
, $w=4.5$, $\mu=4$, $t=100$, enroll $\mathfrak{P}=5$ workers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $c=2,~w=4.5,~\mu=4,~t=100,~{\rm enroll}~\mathfrak{P}=5~{\rm workers}$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ 三直 - のへで

• Assume $\mathfrak{P} \leqslant p$ participating workers

- Assume $\mathfrak{P} \leqslant p$ participating workers
- In a round (computing a C block entirely), master communicates with each worker:

- $2\mu^2$ blocks of C (either sent or received)
- $2\mu t$ blocks of ${\cal A}$ and ${\cal B}$

- Assume $\mathfrak{P} \leqslant p$ participating workers
- In a round (computing a C block entirely), master communicates with each worker:
 - $2\mu^2$ blocks of C (either sent or received)
 - $2\mu t$ blocks of ${\cal A}$ and ${\cal B}$
- ▶ In a round, each worker computes $\mu^2 t$ updates

- Assume $\mathfrak{P} \leqslant p$ participating workers
- In a round (computing a C block entirely), master communicates with each worker:
 - $2\mu^2$ blocks of C (either sent or received)
 - $2\mu t$ blocks of ${\cal A}$ and ${\cal B}$
- ▶ In a round, each worker computes $\mu^2 t$ updates
- ▶ For large t, neglect input/output of C blocks, and choose ℜ s.t.

$$(2\mu tc) \times \mathfrak{P} \approx \mu^2 tw \iff \mathfrak{P} = \left\lceil \frac{\mu w}{2c} \right\rceil$$

- Assume $\mathfrak{P} \leqslant p$ participating workers
- In a round (computing a C block entirely), master communicates with each worker:
 - $2\mu^2$ blocks of C (either sent or received)
 - $2\mu t$ blocks of ${\cal A}$ and ${\cal B}$
- ▶ In a round, each worker computes $\mu^2 t$ updates
- ► For large t, neglect input/output of C blocks, and choose ℜ s.t.

$$(2\mu tc) \times \mathfrak{P} \approx \mu^2 tw \iff \mathfrak{P} = \left\lceil \frac{\mu w}{2c} \right\rceil$$
 In the example, $\mathfrak{P} = \left\lceil 4.5 \right\rceil$

► Typically,
$$c = q^2 \tau_c$$
 and $w = q^3 \tau_a$
→ resource selection $\mathfrak{P} = \left[\mu q \frac{\tau_a}{2\tau_c} \right]$

- Can we really neglect input/output of C blocks?
- ► Each worker loses 2*c* time-units per block, i.e. per *tw* time-units

- There are at most $\mathfrak{P} \leqslant rac{\mu w}{2c}$ workers
- Total loss $2c\mathfrak{P}$ time-units every tw time-units
- Total loss $\leq \frac{\mu}{t}$
- \blacktriangleright In the example, at most 4%

Outline

Framework

- 2 Playing with the simplest problem
- Bound on the total number of communications

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Parallel algorithms (at last)
 Homogeneous platforms
 - Heterogeneous platforms

5 Experiments

6 Conclusion

Problem

- Each worker P_i has parameters c_i , w_i , and $\mu_i = \sqrt{m_i}$.
- ► Each participating P_i needs δ_i = 2μ_itc_i communications to process φ_i = tμ_i²w_i computations (neglect I/O for C blocks)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Which workers to enroll?

Solution (1/3)

▶ In steady-state, P_i receives y_i A and B blocks per time-unit

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▶ In steady-state, P_i computes $x_i C$ blocks per time-unit

$$\begin{cases} \text{Maximize } \sum_{i} x_{i} \\ \text{SUBJECT TO} \\ \frac{x_{i}}{\mu_{i}^{2}} \leqslant \frac{y_{i}}{2\mu_{i}} \\ x_{i}w_{i} \leqslant 1 \\ \sum_{i} y_{i}c_{i} \leqslant 1 \end{cases}$$

Solution (1/3)

- ▶ In steady-state, P_i receives y_i A and B blocks per time-unit
- ▶ In steady-state, P_i computes x_i C blocks per time-unit

Solution (2/3)

$$\begin{cases} \text{MAXIMIZE } \sum_{i} x_i \\ \text{SUBJECT TO} \\ \frac{x_i}{\mu_i^2} \leqslant \frac{y_i}{2\mu_i} \\ x_i w_i \leqslant 1 \\ \sum_{i} y_i c_i \leqslant 1 \end{cases} \Leftrightarrow$$

Claim
$$y_i = \frac{2x_i}{\mu_i}$$

 $\begin{array}{l} \text{Maximize } \sum_{i} x_{i} \\ \text{SUBJECT TO} \\ x_{i} \leqslant \frac{1}{w_{i}} \\ \sum_{i} \frac{2c_{i}}{\mu_{i}} x_{i} \leqslant 1 \end{array}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Solution (3/3)

 $\begin{cases} \text{Maximize } \sum_{i} x_i \\ \text{subject to} \\ x_i \leqslant \frac{1}{w_i} \\ \sum_{i} \frac{2c_i}{\mu_i} x_i \leqslant 1 \end{cases}$

Bandwidth-centric strategy:

- Sort workers by non-decreasing $\frac{2c_i}{\mu_i}$
- Enroll them as long as $\sum \frac{2c_i}{\mu_i w_i} \leqslant 1$
- Achieve throughput $\rho \approx \sum_{i \text{ enrolled }} \frac{1}{w_i}$

Solution (3/3)

No, we don't have enough memory!

	P_1	P_2
c_i	1	20
w_i	2	40
μ_i	2	2
$\frac{2c_i}{\mu_i w_i}$	$\frac{1}{2}$	$\frac{1}{2}$

- Every 160 seconds:
 - P_1 receives 80 blocks (20 $\mu_1 \times \mu_1$ chunks) in 80 seconds

- P_1 computes 80 blocks in 160 seconds
- P_2 receives 4 blocks (1 $\mu_2 \times \mu_2$ chunk) in 80 seconds
- P_2 computes 4 blocks in 160 seconds

No, we don't have enough memory!

	P_1	P_2
c_i	1	20
w_i	2	40
μ_i	2	2
$\frac{2c_i}{\mu_i w_i}$	$\frac{1}{2}$	$\frac{1}{2}$

Every 160 seconds:

- P_1 receives 80 blocks (20 $\mu_1 \times \mu_1$ chunks) in 80 seconds
- P_1 computes 80 blocks in 160 seconds
- P_2 receives 4 blocks (1 $\mu_2 \times \mu_2$ chunk) in 80 seconds
- P_2 computes 4 blocks in 160 seconds
- ▶ P₁ computes two slowly and needs buffers to store 20 blocks!

11111111111111111111111	20	111111111111111111111111111111111111	20	1111111111
P_1	P_2	P_1	P_2	$P_1 \ldots$

No, we don't have enough memory!

	P_1	P_2
c_i	1	20
w_i	2	40
μ_i	2	2
$\frac{2c_i}{\mu_i w_i}$	$\frac{1}{2}$	$\frac{1}{2}$

Every 160 seconds:

- P_1 receives 80 blocks (20 $\mu_1 \times \mu_1$ chunks) in 80 seconds
- P_1 computes 80 blocks in 160 seconds
- P_2 receives 4 blocks (1 $\mu_2 \times \mu_2$ chunk) in 80 seconds
- P_2 computes 4 blocks in 160 seconds
- ▶ P₁ computes two slowly and needs buffers to store 20 blocks!

111111111111111111111111	20	111111111111111111111111	20	1111111111
P_1	P_2	P_1	P_2	$P_1 \ldots$

Previous throughput achievable for *divisible* messages

	P_1	P_2	P_3
c_i	2	3	5
w_i	2	3	1
μ_i	6	18	10
$2\mu_i c_i$	24	108	100
$\mu_i^2 w_i$	72	972	100
$\frac{2c_i}{\mu_i}$	$\frac{2}{3}$	$\frac{1}{3}$	1
$\frac{2c_i}{\mu_i w_i}$	$\frac{1}{3}$	$\frac{1}{9}$	$1 \rightarrow \frac{5}{9}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If first communication to P_1 , ratio $= \frac{\mu_1^2}{2\mu_1c_1} = \frac{36}{24} = \frac{3}{2}$

Ratios: $P_1 : 1.5$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If first communication to P_2 , ratio $= \frac{\mu_2^2}{2\mu_2 c_2} = \frac{324}{108} = 3$

Ratios: $P_1 : 1.5 P_2 : 3$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If first communication to P_3 , ratio $= \frac{\mu_3^2}{2\mu_3c_3} = \frac{100}{100} = 1$

Ratios: P_1 : 1.5 P_2 : 3 P_3 : 1

Best solution : first communication to P_2

If second communication to P_1 , ratio = $\frac{\mu_2^2 + \mu_1^2}{2\mu_2 c_2 + 2\mu_1 c_1} = \frac{324 + 36}{108 + 24} = 2.71$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Ratios: P_1 : 2.71

If second communication to P_2 , ratio = $\frac{\mu_2^2 + \mu_2^2}{2\mu_2 c_2 + 2\mu_2 c_2} = \frac{324 + 324}{1080} = 0.60$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Ratios: P_1 : 2.71 P_2 : 0.60

If second communication to P_3 , ratio $=\frac{\mu_2^2 + \mu_3^2}{2\mu_2 c_2 + 2\mu_3 c_3} = \frac{324+100}{108+100} = 2.04$

Ratios: P_1 : 2.71 P_2 : 0.60 P_3 : 2.04

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Best solution : second communication to P_1

If third communication to P_1 , ratio $= \frac{\mu_2^2 + \mu_1^2 + \mu_1^2}{t_{comm}} = \frac{360 + 36}{168} = 2.36$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Ratios: P_1 : 1.93

If third communication to P_2 , ratio $= \frac{\mu_2^2 + \mu_1^2 + \mu_2^2}{t_{comm}} = \frac{360 + 324}{1080} = 0.63$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Ratios: P_1 : 1.93 P_2 : 0.63

If third communication to P_3 , ratio = $\frac{\mu_2^2 + \mu_1^2 + \mu_3^2}{2\mu_2 c_2 + 2\mu_1 c_1 + 2\mu_3 c_3} = \frac{360+100}{132+100} = 1.97$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Ratios: P_1 : 1.93 P_2 : 0.63 P_3 : 1.97 Best solution: third communication to P_3

Asymptotic ratio: 1.17 (*divisible* throughput 1.39) Allocated bandwidths: 14.8%, 11.2%, and 61.7% (instead of 33.3%, 11.1%, and 55.6%)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Two-block look-ahead greedy Asymptotic ratio: 1.30 (*divisible* throughput 1.39) Allocated bandwidths: 17.2%, 11.1%, and 71.7%

The studied algorithms

- Homogeneous algorithm
- Overlapped Round-Robin, Optimized Memory Layout (ORROML)
- Overlapped Min-Min, Optimized Memory Layout (OMMOML)
- Overlapped Demand-Driven, Optimized Memory Layout (ODDOML)
- Demand-Driven, Optimized Memory Layout (DDOML)

(日)、(型)、(E)、(E)、(E)、(O)()

- Block Matrix Multiply (BMM)
- Overlapped Block Matrix Multiply (OBMM)

Results

Performance of the algorithms on different matrices.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Results

Variation of algorithm execution times.

Results

Impact of memory size on algorithm performance.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Conclusion

- Key points:
 - Realistic platform model
 - Lower bound on total number of communications
 - Design of efficient parallel algorithms
- Extensions:
 - Improve lower bound to match algorithm performance

- Run experiments with DIET/GridSolve
- Investigate LU/Cholesky

Right-looking approach more amenable to parallelism

Right-looking approach more amenable to parallelism

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Main kernel is rank- μ update $C \leftarrow C + A.B$

Right-looking approach more amenable to parallelism

- Main kernel is rank- μ update $C \leftarrow C + A.B$
 - Similar to matrix product

Right-looking approach more amenable to parallelism

- Main kernel is rank- μ update $C \leftarrow C + A.B$
 - Similar to matrix product
 - Reuse A instead of C

Right-looking approach more amenable to parallelism

- Main kernel is rank- μ update $C \leftarrow C + A.B$
 - Similar to matrix product
 - Reuse A instead of C
- Similar results

Right-looking approach more amenable to parallelism

- Main kernel is rank- μ update $C \leftarrow C + A.B$
 - Similar to matrix product
 - Reuse A instead of C
- Similar results
 - Homogeneous platforms: $\mathfrak{P} = \left[\frac{\mu w}{3c}\right]$

- Right-looking approach more amenable to parallelism
- Main kernel is rank- μ update $C \leftarrow C + A.B$
 - Similar to matrix product
 - Reuse A instead of C
- Similar results
 - Homogeneous platforms: $\mathfrak{P} = \left[\frac{\mu w}{3c}\right]$
 - Heterogeneous platforms: same bandwidth-centric approach

Scheme for LU at step \boldsymbol{k}

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Scheme for LU at step \boldsymbol{k}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Scheme for LU at step \boldsymbol{k}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

・ロト・日本・モト・モー うへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙