
Online scheduling of divisibles requests

Frédéric Vivien

13 & 27 novembre 2006

Outline

1 The problem

2 Flow or average stretch minimization

3 Minimizing the maximum stretch: off-line case

4 Minimizing the maximum stretch: online case

5 Simulation results

6 Conclusion

Outline

1 The problem
Target application
Theoretical framework
Restriction to the uni-processor
Choosing an objective function

2 Flow or average stretch minimization

3 Minimizing the maximum stretch: off-line case

4 Minimizing the maximum stretch: online case

5 Simulation results

6 Conclusion

The problem

I An heterogeneous platform.

I A set of databanks
I text files of several MB or GB;
I each databank may be replicated;
I a databank is not necessarily present on each processor.

I Some requests: comparing a motif with a databank
I the requests are independent;
I a very large number of requests;
I motifs have different sizes.

Application: GriPPS from the Institut de Biologie et Chimie des
Protéines

Analyzing the application : divisible jobs

 0

 20

 40

 60

 80

 100

 120

 140

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

B
lo

ck
 E

xe
cu

tio
n

Ti
m

e
(s

ec
.)

Sequence Block Size

GriPPS Execution Time

cirque exec time
grail exec time

griagecl01 exec time
home exec time

Experimental setup:

I Benchmark : a given set of motifs, compared with subsets of
varying sizes of a databank.

I Each benchmark is executed 10 times.

Conclusions:

I A request execution time is linear in the size of the databank.

I Compact motif representation⇒ communication times are neg-
ligible. (another experiment)

Analyzing the application : uniform machines

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 100 200 300 400 500 600 700 800 900 1000

N
or

m
al

iz
ed

 T
im

e

Motif number

Normalized Execution Time

I Determining the relative speeds of the processors
I set of motifs individually compared on a set of machines
I average on 40 iterations
I average execution time compared to a reference machine

Notations

I Jobs J1, ..., Jn

Job Jj arrives in the system at date rj .
Job Jj has a weight (or a priority) wj .

I Machines M1, ..., Mm

Machine Mi takes a time ci,j to process the job Jj .
ci,j is infinite if job Jj needs a databank which is not present
on machine Mi.

I Completion time of job Jj : Cj .
Flow of job Jj : Fj = Cj − rj (time spent in the system)

Divisibility

I Each job is inherently divisible: at any time, different processors
can compare the motif against different subparts of the same
databank.

I αi,j : fraction of job Jj processed by machine Mi:

∀j,
∑

i

αi,j = 1.

From divisible jobs to the uni-processor case

Geometric transformation of a uniform and divisible problem
into a uni-processor problem.

P3

P2

P1

We can restrict the study to the uni-processor case...
... except that we are in the case of uni-processor

with availability.

From divisible jobs to the uni-processor case

Geometric transformation of a uniform and divisible problem
into a uni-processor problem.

1
c3

1
c2

{1
c1

{

of heterogeneity
Geometrical representation

P3

P2

P1

We can restrict the study to the uni-processor case...
... except that we are in the case of uni-processor

with availability.

From divisible jobs to the uni-processor case

Geometric transformation of a uniform and divisible problem
into a uni-processor problem.

1
c3

1
c2

{1
c1

{

Using uniformity
of heterogeneity

Geometrical representation

P3

P2

P1

We can restrict the study to the uni-processor case...
... except that we are in the case of uni-processor

with availability.

From divisible jobs to the uni-processor case

Geometric transformation of a uniform and divisible problem
into a uni-processor problem.

1
c3

1
c2

{1
c1

{
Pequiv

preemptive schedule
Equivalent monoprocessorUsing uniformity

of heterogeneity
Geometrical representation

P3

P2

P1

We can restrict the study to the uni-processor case...
... except that we are in the case of uni-processor

with availability.

From divisible jobs to the uni-processor case

Geometric transformation of a uniform and divisible problem
into a uni-processor problem.

1
c3

1
c2

{1
c1

{
Pequiv

preemptive schedule
Equivalent monoprocessorUsing uniformity

of heterogeneity
Geometrical representation

P3

P2

P1

We can restrict the study to the uni-processor case...
... except that we are in the case of uni-processor

with availability.

From the uni-processor case to divisible jobs

P1

{
P2

{
A: original schedule

P2

{P1

{

B: uniform machines C: restricted availabilities

P2

{P1

{

Simple rule to extend scheduling strategies defined for the uni-
processor case:

1: while some processors are idle do
2: Select a job of highest priority and distribute it on

available processors which are able to process it.

From the uni-processor case to divisible jobs

P1

{
P2

{
A: original schedule

P2

{P1

{

B: uniform machines C: restricted availabilities

P2

{P1

{

Simple rule to extend scheduling strategies defined for the uni-
processor case:

1: while some processors are idle do
2: Select a job of highest priority and distribute it on

available processors which are able to process it.

What should we optimize ?

I Makespan: maxj Cj .
Optimization of the machine usage.
Arrival dates are not taken into account.

I Average flow or response time:
∑

j(Cj − rj).
Optimization from the user point of view.

Inconvenient: starvation.

I Maximum flow or maximum response time: maxj(Cj − rj).
No starvation. Favor long jobs. Worst-case optimization.

I Maximum weighted flow: maxj wj(Cj − rj).
Gives back some importance to short jobs.

Particular case of the stretch:
wj=1/running time of the job on empty platform.

What should we optimize ?

I Makespan: maxj Cj .
Optimization of the machine usage.
Arrival dates are not taken into account.

I Average flow or response time:
∑

j(Cj − rj).
Optimization from the user point of view.

Inconvenient: starvation.

I Maximum flow or maximum response time: maxj(Cj − rj).
No starvation. Favor long jobs. Worst-case optimization.

I Maximum weighted flow: maxj wj(Cj − rj).
Gives back some importance to short jobs.

Particular case of the stretch:
wj=1/running time of the job on empty platform.

What should we optimize ?

I Makespan: maxj Cj .
Optimization of the machine usage.
Arrival dates are not taken into account.

I Average flow or response time:
∑

j(Cj − rj).
Optimization from the user point of view.
Inconvenient: starvation.

I Maximum flow or maximum response time: maxj(Cj − rj).
No starvation. Favor long jobs. Worst-case optimization.

I Maximum weighted flow: maxj wj(Cj − rj).
Gives back some importance to short jobs.

Particular case of the stretch:
wj=1/running time of the job on empty platform.

What should we optimize ?

I Makespan: maxj Cj .
Optimization of the machine usage.
Arrival dates are not taken into account.

I Average flow or response time:
∑

j(Cj − rj).
Optimization from the user point of view.
Inconvenient: starvation.

I Maximum flow or maximum response time: maxj(Cj − rj).
No starvation. Favor long jobs. Worst-case optimization.

I Maximum weighted flow: maxj wj(Cj − rj).
Gives back some importance to short jobs.

Particular case of the stretch:
wj=1/running time of the job on empty platform.

What should we optimize ?

I Makespan: maxj Cj .
Optimization of the machine usage.
Arrival dates are not taken into account.

I Average flow or response time:
∑

j(Cj − rj).
Optimization from the user point of view.
Inconvenient: starvation.

I Maximum flow or maximum response time: maxj(Cj − rj).
No starvation. Favor long jobs. Worst-case optimization.

I Maximum weighted flow: maxj wj(Cj − rj).
Gives back some importance to short jobs.

Particular case of the stretch:
wj=1/running time of the job on empty platform.

What should we optimize ?

I Makespan: maxj Cj .
Optimization of the machine usage.
Arrival dates are not taken into account.

I Average flow or response time:
∑

j(Cj − rj).
Optimization from the user point of view.
Inconvenient: starvation.

I Maximum flow or maximum response time: maxj(Cj − rj).
No starvation. Favor long jobs. Worst-case optimization.

I Maximum weighted flow: maxj wj(Cj − rj).
Gives back some importance to short jobs.
Particular case of the stretch:
wj=1/running time of the job on empty platform.

Evaluating the quality of an online schedule

An online algorithm has a competitive factor ρ if and only if:

Whatever the set of jobs T1, ..., Tn:

Online schedule cost(T1, ..., TN) ≤
ρ× Optimal off-line schedule cost(T1, ..., TN).

Stretch minimization

We consider minimizing the maximum or average stretch

Theorem

∆: ratio of the sizes of the largest and smallest job.
Consider any online algorithm whose competitive ratio for average
stretch minimization satisfies ρ(∆) < ∆2.

There exists for this algorithm a sequence of jobs leading to starva-
tion, and for which the maximum stretch can be as far as we want
from the optimal maximum stretch.

Stretch minimization

We consider minimizing the maximum or average stretch

Theorem

∆: ratio of the sizes of the largest and smallest job.
Consider any online algorithm whose competitive ratio for average
stretch minimization satisfies ρ(∆) < ∆2.

There exists for this algorithm a sequence of jobs leading to starva-
tion, and for which the maximum stretch can be as far as we want
from the optimal maximum stretch.

The objectives are incompatible : demonstration (1)

I By contradiction, ∃∆ > 1, ∃ε > 0, ∃ algorithm A s.t.

ρA(∆) < ∆2 − ε.

I Adversary:

I Let α ∈ N s.t. 1+α∆
1+ α

∆
> ∆2 − ε

2

I At date 0 arrives α jobs of size ∆, J1, ..., Jα.
I k ∈ N. ∀t ∈ [0, k − 1], job Jα+t+1 of size 1 arrives at time t.

The objectives are incompatible : demonstration (1)

I By contradiction, ∃∆ > 1, ∃ε > 0, ∃ algorithm A s.t.

ρA(∆) < ∆2 − ε.

I Adversary:

I Let α ∈ N s.t. 1+α∆
1+ α

∆
> ∆2 − ε

2

I At date 0 arrives α jobs of size ∆, J1, ..., Jα.
I k ∈ N. ∀t ∈ [0, k − 1], job Jα+t+1 of size 1 arrives at time t.

The objectives are incompatible : demonstration (1)

I By contradiction, ∃∆ > 1, ∃ε > 0, ∃ algorithm A s.t.

ρA(∆) < ∆2 − ε.

I Adversary:

I Let α ∈ N s.t. 1+α∆
1+ α

∆
> ∆2 − ε

2

I At date 0 arrives α jobs of size ∆, J1, ..., Jα.
I k ∈ N. ∀t ∈ [0, k − 1], job Jα+t+1 of size 1 arrives at time t.

The objectives are incompatible : demonstration (1)

I By contradiction, ∃∆ > 1, ∃ε > 0, ∃ algorithm A s.t.

ρA(∆) < ∆2 − ε.

I Adversary:

I Let α ∈ N s.t. 1+α∆
1+ α

∆
> ∆2 − ε

2

I At date 0 arrives α jobs of size ∆, J1, ..., Jα.

I k ∈ N. ∀t ∈ [0, k − 1], job Jα+t+1 of size 1 arrives at time t.

0

∆

α

The objectives are incompatible : demonstration (1)

I By contradiction, ∃∆ > 1, ∃ε > 0, ∃ algorithm A s.t.

ρA(∆) < ∆2 − ε.

I Adversary:

I Let α ∈ N s.t. 1+α∆
1+ α

∆
> ∆2 − ε

2

I At date 0 arrives α jobs of size ∆, J1, ..., Jα.
I k ∈ N. ∀t ∈ [0, k − 1], job Jα+t+1 of size 1 arrives at time t.

0

∆

α

k jobs of size 1

The objectives are incompatible : demonstration (2)

0

∆

α

k jobs of size 1

A possible schedule: each of the k unit jobs at its release date, and
then the α ∆-units jobs.

sum-stretch = k×1+
k + ∆

∆
+...+

k + α∆
∆

=
α(α + 1)

2
+k

(
1 +

α

∆

)
.

max-stretch = α +
k

∆
.

May not be optimal (just an upper-bound) and induces starvation.

The objectives are incompatible : demonstration (2)

0

∆

α

k jobs of size 1

Otherwise, at a date t1 < k +α∆ the ∆ size jobs are all completed.

The objectives are incompatible : demonstration (2)

0

∆

α

k1

k jobs of size 1

Otherwise, at a date t1 < k +α∆ the ∆ size jobs are all completed.
k1 unit size jobs were completed before t1.

The objectives are incompatible : demonstration (2)

0

∆

α

t1k1

k jobs of size 1

Otherwise, at a date t1 < k +α∆ the ∆ size jobs are all completed.
k1 unit size jobs were completed before t1.

The objectives are incompatible : demonstration (2)

0

∆

α

t1k1

k jobs of size 1

Otherwise, at a date t1 < k +α∆ the ∆ size jobs are all completed.
k1 unit size jobs were completed before t1.

The objectives are incompatible : demonstration (2)

0

∆

α

t1k1

k jobs of size 1

Otherwise, at a date t1 < k +α∆ the ∆ size jobs are all completed.
k1 unit size jobs were completed before t1.
Best achievable sum-stretch:

k1 × 1 +
k1 + ∆

∆
+ ... +

k1 + α∆
∆

+ (k − k1)(1 + α∆) =(
α(α + 1)

2
+

αk1

∆

)
+ k1 + (k − k1)(1 + α∆).

The objectives are incompatible : demonstration (3)

Hypothesis: A is ρA(∆)-competitive

(
α(α + 1)

2
+

αk1

∆

)
+ k1 + (k − k1)(1 + α∆)

≤ ρA(∆)
(

α(α + 1)
2

+ k
(
1 +

α

∆

))
⇔

− α∆k1 +
α(α + 1)

2
(1− ρA(∆)) +

αk1

∆
≤ k

(
ρA(∆)

(
1 +

α

∆

)
− (1 + α∆)

)
.

Must hold for any k, thus:(
ρA(∆)

(
1 +

α

∆

)
− (1 + α∆)

)
≥ 0 ⇒ ∆2 − ε >

1 + α∆
1 + α

∆

.

FIFO is ∆2-competitive for sum-stretch

Theorem

First come, first served is:

I ∆2-competitive for the online minimization of sum-stretch,

I ∆-competitive for the online minimization of max-stretch,

I ∆-competitive for the online minimization of sum-flow, and

I optimal for the online minimization of max-flow.

Outline

1 The problem

2 Flow or average stretch minimization
Minimizing the average or maximum flow
Minimizing the average stretch

3 Minimizing the maximum stretch: off-line case

4 Minimizing the maximum stretch: online case

5 Simulation results

6 Conclusion

Minimizing the average or maximum flow

I Maximum flow is minimized by the policy First come, first serve

I Average flow is minimized by the Shortest Remaining Process-
ing Time (SRPT) policy.

Minimizing the average stretch

I Problem complexity: open.

I Polynomial Time Approximation Schemes (PTAS).

I The competitive ratio of any online algorithm is at least: 1.19485.

I Shortest Remaining Processing Time is 2-competitive.

I Obvious improvement: Shortest Weighted Remaining Process-
ing Time.
At any time t, SWRPT schedules the job Jj minimizing pjρt(j).
SWRPT is at best 2-competitive.

The off-line case looks difficult... but there exists a simple guaran-
teed online algorithm.

Minimizing the average stretch

I Problem complexity: open.

I Polynomial Time Approximation Schemes (PTAS).

I The competitive ratio of any online algorithm is at least: 1.19485.

I Shortest Remaining Processing Time is 2-competitive.

I Obvious improvement: Shortest Weighted Remaining Process-
ing Time.
At any time t, SWRPT schedules the job Jj minimizing pjρt(j).
SWRPT is at best 2-competitive.

The off-line case looks difficult... but there exists a simple guaran-
teed online algorithm.

Minimizing the average stretch

I Problem complexity: open.

I Polynomial Time Approximation Schemes (PTAS).

I The competitive ratio of any online algorithm is at least: 1.19485.

I Shortest Remaining Processing Time is 2-competitive.

I Obvious improvement: Shortest Weighted Remaining Process-
ing Time.
At any time t, SWRPT schedules the job Jj minimizing pjρt(j).
SWRPT is at best 2-competitive.

The off-line case looks difficult... but there exists a simple guaran-
teed online algorithm.

Minimizing the average stretch

I Problem complexity: open.

I Polynomial Time Approximation Schemes (PTAS).

I The competitive ratio of any online algorithm is at least: 1.19485.

I Shortest Remaining Processing Time is 2-competitive.

I Obvious improvement: Shortest Weighted Remaining Process-
ing Time.
At any time t, SWRPT schedules the job Jj minimizing pjρt(j).
SWRPT is at best 2-competitive.

The off-line case looks difficult... but there exists a simple guaran-
teed online algorithm.

Minimizing the average stretch

I Problem complexity: open.

I Polynomial Time Approximation Schemes (PTAS).

I The competitive ratio of any online algorithm is at least: 1.19485.

I Shortest Remaining Processing Time is 2-competitive.

I Obvious improvement: Shortest Weighted Remaining Process-
ing Time.
At any time t, SWRPT schedules the job Jj minimizing pjρt(j).
SWRPT is at best 2-competitive.

The off-line case looks difficult... but there exists a simple guaran-
teed online algorithm.

Minimizing the average stretch

I Problem complexity: open.

I Polynomial Time Approximation Schemes (PTAS).

I The competitive ratio of any online algorithm is at least: 1.19485.

I Shortest Remaining Processing Time is 2-competitive.

I Obvious improvement: Shortest Weighted Remaining Process-
ing Time.
At any time t, SWRPT schedules the job Jj minimizing pjρt(j).
SWRPT is at best 2-competitive.

The off-line case looks difficult... but there exists a simple guaran-
teed online algorithm.

Outline

1 The problem

2 Flow or average stretch minimization

3 Minimizing the maximum stretch: off-line case
The problem
Deadline scheduling
Maximum weighted flow
Pareto optimality

4 Minimizing the maximum stretch: online case

5 Simulation results

6 Conclusion

Off-line framework: the rules of the game

I We know in advance the release dates of jobs, and their size
(off-line framework).

I We want to minimize the maximum weighted flow (for any
weights).

I Jobs are divisible.

Existence of a schedule having a given max-stretch

Existence of a schedule of max-stretch S:

For each job Jj ,
Cj−rj

pj
≤ S

Equivalent to a scheduling problem with deadlines where dj(S) =
rj + pj × S

Deadline scheduling: definition

I Each job Jj has a deadline dj (and always a release/arrival date
rj).

I Question: is there a schedule which completes each job Jj

during its existence interval [rj , dj] ?

Deadline scheduling: notations

Set of release dates and deadlines: {r1, ..., rn, d1, ..., dn}.

I1 I2 I3 I4 I5 I6 I7

r2 r3 d4 d3d2r1 d1 r4 time

processors

P1

P2

P3

These dates, when sorted, define a set of nint intervals I1, ..., Inint ,
with 1 ≤ nint ≤ 2n− 1.

It = [inf It, sup It[

α
(t)
i,j : fraction of Jj processed by Mi during the interval It.

Deadline scheduling: solution

1 Release dates:

∀i,∀j, ∀t, rj ≥ sup It ⇒ α
(t)
i,j = 0

2 Deadlines:

∀i,∀j,∀t, dj ≤ inf It ⇒ α
(t)
i,j = 0

3 Resource constraints:

∀t,∀i,
∑

j

α
(t)
i,j .ci,j ≤ sup It − inf It

4 Jobs’ completion:

∀j,
∑

t

∑
i

α
(t)
i,j = 1

Deadline scheduling: solution

1 Release dates:

∀i,∀j, ∀t, rj ≥ sup It ⇒ α
(t)
i,j = 0

2 Deadlines:

∀i,∀j,∀t, dj ≤ inf It ⇒ α
(t)
i,j = 0

3 Resource constraints:

∀t,∀i,
∑

j

α
(t)
i,j .ci,j ≤ sup It − inf It

4 Jobs’ completion:

∀j,
∑

t

∑
i

α
(t)
i,j = 1

Deadline scheduling: solution

1 Release dates:

∀i,∀j, ∀t, rj ≥ sup It ⇒ α
(t)
i,j = 0

2 Deadlines:

∀i,∀j,∀t, dj ≤ inf It ⇒ α
(t)
i,j = 0

3 Resource constraints:

∀t,∀i,
∑

j

α
(t)
i,j .ci,j ≤ sup It − inf It

4 Jobs’ completion:

∀j,
∑

t

∑
i

α
(t)
i,j = 1

Deadline scheduling: solution

1 Release dates:

∀i,∀j, ∀t, rj ≥ sup It ⇒ α
(t)
i,j = 0

2 Deadlines:

∀i,∀j,∀t, dj ≤ inf It ⇒ α
(t)
i,j = 0

3 Resource constraints:

∀t,∀i,
∑

j

α
(t)
i,j .ci,j ≤ sup It − inf It

4 Jobs’ completion:

∀j,
∑

t

∑
i

α
(t)
i,j = 1

Maximum weighted flow and deadlines

I Is there a schedule whose maximum weighted flow is no greater
than F ?

I max
j

wj(Cj − rj) ≤ F ⇔ ∀j, wj(Cj − rj) ≤ F ⇔

∀j, Cj ≤ rj + F/wj .

I Equivalent to solving the scheduling problem with deadlines
where dj(F) = rj + F/wj is job Jj ’s deadline.

I We only need to do a binary search over F !

We would rather have an algorithm which terminates...

Maximum weighted flow and deadlines

I Is there a schedule whose maximum weighted flow is no greater
than F ?

I max
j

wj(Cj − rj) ≤ F ⇔ ∀j, wj(Cj − rj) ≤ F ⇔

∀j, Cj ≤ rj + F/wj .

I Equivalent to solving the scheduling problem with deadlines
where dj(F) = rj + F/wj is job Jj ’s deadline.

I We only need to do a binary search over F !

We would rather have an algorithm which terminates...

Maximum weighted flow and deadlines

I Is there a schedule whose maximum weighted flow is no greater
than F ?

I max
j

wj(Cj − rj) ≤ F ⇔ ∀j, wj(Cj − rj) ≤ F ⇔

∀j, Cj ≤ rj + F/wj .

I Equivalent to solving the scheduling problem with deadlines
where dj(F) = rj + F/wj is job Jj ’s deadline.

I We only need to do a binary search over F !

We would rather have an algorithm which terminates...

Maximum weighted flow and deadlines

I Is there a schedule whose maximum weighted flow is no greater
than F ?

I max
j

wj(Cj − rj) ≤ F ⇔ ∀j, wj(Cj − rj) ≤ F ⇔

∀j, Cj ≤ rj + F/wj .

I Equivalent to solving the scheduling problem with deadlines
where dj(F) = rj + F/wj is job Jj ’s deadline.

I We only need to do a binary search over F !

We would rather have an algorithm which terminates...

Maximum weighted flow and deadlines

I Is there a schedule whose maximum weighted flow is no greater
than F ?

I max
j

wj(Cj − rj) ≤ F ⇔ ∀j, wj(Cj − rj) ≤ F ⇔

∀j, Cj ≤ rj + F/wj .

I Equivalent to solving the scheduling problem with deadlines
where dj(F) = rj + F/wj is job Jj ’s deadline.

I We only need to do a binary search over F !

We would rather have an algorithm which terminates...

Solving on an interval of objectives (1)

I Let F1 and F2 be two values, F1 < F2.

We assume that the relative order of release dates and deadlines
r1, . . . , rn, d1(F), . . . , dn(F), is independent of F ∈]F1;F2[.

I We define from the set r1, . . . , rn, d1(F), . . . , dn(F) some in-
tervals, as we previously did.

The interval extremities are affine functions in F .

I We adapt the previous system.

Solving on an interval of objectives (1)

I Let F1 and F2 be two values, F1 < F2.

We assume that the relative order of release dates and deadlines
r1, . . . , rn, d1(F), . . . , dn(F), is independent of F ∈]F1;F2[.

I We define from the set r1, . . . , rn, d1(F), . . . , dn(F) some in-
tervals, as we previously did.

The interval extremities are affine functions in F .

I We adapt the previous system.

Solving on an interval of objectives (1)

I Let F1 and F2 be two values, F1 < F2.

We assume that the relative order of release dates and deadlines
r1, . . . , rn, d1(F), . . . , dn(F), is independent of F ∈]F1;F2[.

I We define from the set r1, . . . , rn, d1(F), . . . , dn(F) some in-
tervals, as we previously did.

The interval extremities are affine functions in F .

I We adapt the previous system.

Solving on an interval of objectives (2)

∀i, ∀j,∀t, rj ≥ sup It(F) ⇒ α
(t)
i,j = 0

∀i,∀j,∀t, dj(F) ≤ inf It(F) ⇒ α
(t)
i,j = 0

∀t,∀i,
∑

j

α
(t)
i,j .ci,j ≤ sup It(F)− inf It(F)

∀j,
∑

t

∑
i

α
(t)
i,j = 1

F1 ≤ F ≤ F2

minF

Solving on an interval of objectives (2)

∀i, ∀j,∀t, rj ≥ sup It(F) ⇒ α
(t)
i,j = 0

∀i,∀j,∀t, dj(F) ≤ inf It(F) ⇒ α
(t)
i,j = 0

∀t,∀i,
∑

j

α
(t)
i,j .ci,j ≤ sup It(F)− inf It(F)

∀j,
∑

t

∑
i

α
(t)
i,j = 1

F1 ≤ F ≤ F2

minF

Relative ordering of the epochal times

F

r1 r2 r3 r4 temps

Relative ordering of the epochal times

F

r1 r2 r3 r4 temps
d1 d2 d3 d4

Relative ordering of the epochal times

F

r1 r2 r3 r4 temps

d3(F) d4(F)d1(F)d2(F)

Relative ordering of the epochal times

F

r1 r2 r3 r4 temps

d3(F) d4(F)d1(F)d2(F)

F1

d1 d2 d3 d4

F = 0

Relative ordering of the epochal times

F

r1 r2 r3 r4 temps

d3(F) d4(F)d1(F)d2(F)

F2

d4d3d2d1

Relative ordering of the epochal times

F

r1 r2 r3 r4 temps

d3(F) d4(F)d1(F)d2(F)

d2d1 d3 d4

F3

Relative ordering of the epochal times

F

r1 r2 r3 r4 temps

d3(F) d4(F)d1(F)d2(F)

d1

d2

d3 d4

Relative ordering of the epochal times

F

r1 r2 r3 r4 temps

d3(F) d4(F)d1(F)d2(F)

Relative ordering of the epochal times

F

r1 r2 r3 r4 temps

d3(F) d4(F)d1(F)d2(F)

There are at most nq ≤ n2 − n possible intersections.

Resolution

I We compute the nq ≤ n2 − n possible intersections.

I Let F1,F2, ...,Fnq be the peculiar values of the objective.

We perform a binary search on the set of the peculiar values
Fi, each time searching if there is a solution in the interval
[Fi,Fi+1].

I Polynomial-time algorithm.

Resolution

I We compute the nq ≤ n2 − n possible intersections.

I Let F1,F2, ...,Fnq be the peculiar values of the objective.

We perform a binary search on the set of the peculiar values
Fi, each time searching if there is a solution in the interval
[Fi,Fi+1].

I Polynomial-time algorithm.

Resolution

I We compute the nq ≤ n2 − n possible intersections.

I Let F1,F2, ...,Fnq be the peculiar values of the objective.

We perform a binary search on the set of the peculiar values
Fi, each time searching if there is a solution in the interval
[Fi,Fi+1].

I Polynomial-time algorithm.

Pareto optimality

The cost (here the completion time) of a user can not be improved
without degrading the cost of another user.

3 4 50 1 2
C2

4

3

2

1

1 2 3 4 C1

Pareto optimality

The cost (here the completion time) of a user can not be improved
without degrading the cost of another user.

A

A

3 4 50 1 2
C2

4

3

2

1

1 2 3 4 C1

Pareto optimality

The cost (here the completion time) of a user can not be improved
without degrading the cost of another user.

B

B

A

A

3 4 50 1 2
C2

4

3

2

1

1 2 3 4 C1

Pareto optimality

The cost (here the completion time) of a user can not be improved
without degrading the cost of another user.

C

C

B

B

A

A

3 4 50 1 2
C2

4

3

2

1

1 2 3 4 C1

Pareto optimality

The cost (here the completion time) of a user can not be improved
without degrading the cost of another user.

D

D

C

C

B

B

A

A

3 4 50 1 2
C2

4

3

2

1

1 2 3 4 C1

Pareto optimality

The cost (here the completion time) of a user can not be improved
without degrading the cost of another user.

E

E

D

D

C

C

B

B

A

A

3 4 50 1 2
C2

4

3

2

1

1 2 3 4 C1

Pareto optimality

The cost (here the completion time) of a user can not be improved
without degrading the cost of another user.

E

E

D

D

C

C

B

B

A

A

3 4 50 1 2
C2

4

3

2

1

1 2 3 4 C1

Pareto optimality

The cost (here the completion time) of a user can not be improved
without degrading the cost of another user.

C2

4

3

2

1

1 2 3 4 C1

Pareto optimality

The cost (here the completion time) of a user can not be improved
without degrading the cost of another user.

Cmax iso-lines

C2

4

3

2

1

1 2 3 4 C1

Pareto optimality

The cost (here the completion time) of a user can not be improved
without degrading the cost of another user.

C2

4

3

2

1

1 2 3 4 C1

Pareto optimality

The cost (here the completion time) of a user can not be improved
without degrading the cost of another user.

C2

4

3

2

1

1 2 3 4 C1

Points pareto optimaux

Pareto optimality

The cost (here the completion time) of a user can not be improved
without degrading the cost of another user.

C2

4

3

2

1

1 2 3 4 C1

Point min-max optimal

The Pareto max-stretch (1)

Dates d’arrivées

3 4 50 1 2

Schedule 1 and Schedule 2 are Pareto optimal

Schedule 2 is the min-max solution

The Pareto max-stretch (1)

Stretch 1 2 2Ordonnancement 1

Dates d’arrivées

3 4 50 1 2

Schedule 1 and Schedule 2 are Pareto optimal

Schedule 2 is the min-max solution

The Pareto max-stretch (1)

Ordonnancement 2 Stretch 2 1 1

Stretch 1 2 2Ordonnancement 1

Dates d’arrivées

3 4 50 1 2

Schedule 1 and Schedule 2 are Pareto optimal

Schedule 2 is the min-max solution

The Pareto max-stretch (2)

3 4 50 1 2 6 7 8 9

Computation of the optimal max-stretch: 2.

The Pareto max-stretch (2)

d d dd d

3 4 50 1 2 6 7 8 9

Computation of the optimal max-stretch: 2.

Defining a deadline per job.

Jobs are scheduled Earliest deadline first.

The Pareto max-stretch (2)

d d dd d

3 4 50 1 2 6 7 8 9

Jobs are scheduled Earliest deadline first.

The Pareto max-stretch (2)

d d dd d

3 4 50 1 2 6 7 8 9

Jobs are scheduled Earliest deadline first.

The Pareto max-stretch (2)

d d dd d

3 4 50 1 2 6 7 8 9

Jobs are scheduled Earliest deadline first.

The Pareto max-stretch (2)

d d dd d

3 4 50 1 2 6 7 8 9

Jobs are scheduled Earliest deadline first.

The Pareto max-stretch (2)

d d dd d

3 4 50 1 2 6 7 8 9

Jobs are scheduled Earliest deadline first.

The Pareto max-stretch (2)

d d dd d

3 4 50 1 2 6 7 8 9

Jobs are scheduled Earliest deadline first.

The Pareto max-stretch (2)

d d dd d

3 4 50 1 2 6 7 8 9

Jobs are scheduled Earliest deadline first.

If completion time = deadline, whatever the schedule, the stretch
of this job is equal to the maximum stretch.

We set the jobs that cannot be optimized, and we call recursively
the process.

The Pareto max-stretch (2)

3 4 50 1 2 6 7 8 9

We set the jobs that cannot be optimized, and we call recursively
the process.

Max-stretch of remaining jobs : 1,5.

The Pareto max-stretch (2)

dd dd

3 4 50 1 2 6 7 8 9

We set the jobs that cannot be optimized, and we call recursively
the process.

Max-stretch of remaining jobs : 1,5.

The Pareto max-stretch (2)

dd dd

3 4 50 1 2 6 7 8 9

Jobs are scheduled Earliest deadline first.

The Pareto max-stretch (2)

dd dd

3 4 50 1 2 6 7 8 9

Jobs are scheduled Earliest deadline first.

The Pareto max-stretch (2)

dd dd

3 4 50 1 2 6 7 8 9

Jobs are scheduled Earliest deadline first.

The Pareto max-stretch (2)

dd dd

3 4 50 1 2 6 7 8 9

Jobs are scheduled Earliest deadline first.

The Pareto max-stretch (2)

dd dd

3 4 50 1 2 6 7 8 9

Jobs are scheduled Earliest deadline first.

If completion time = deadline, whatever the schedule, the stretch
of this job is equal to the maximum stretch.

We set the jobs that cannot be optimized, and we call recursively
the process.

The Pareto max-stretch (2)

3 4 50 1 2 6 7 8 9

We set the jobs that cannot be optimized, and we call recursively
the process.

The Pareto max-stretch (2)

3 4 50 1 2 6 7 8 9

Outline

1 The problem

2 Flow or average stretch minimization

3 Minimizing the maximum stretch: off-line case

4 Minimizing the maximum stretch: online case
The problem
Bound on the competitive ratio
Heuristics

5 Simulation results

6 Conclusion

Rules of the game

I A job characteristics are only known at the time the job arrives
in the system (i.e., at the release date).

I We want to minimize the maximum weighted flow (for any
weights).

I Jobs are divisible.

Evaluating the quality of an online schedule

An online algorithm has a competitive factor ρ if and only if:

Whatever the set of jobs T1, ..., Tn:

Online schedule cost(T1, ..., TN) ≤
ρ× Optimal off-line schedule cost(T1, ..., TN).

FIFO competitiveness (1)

Theorem

FIFO is ∆ competitive for maximum stretch minimization.

FIFO competitiveness (2): at best∆-competitive

0 ε

∆

1

time

Competitive ratio: 1+∆−ε
1+∆
∆

= ∆1+∆−ε
1+∆ = ∆− ε ∆

1+∆ ≥ ∆− ε.

FIFO competitiveness (2): at best∆-competitive

0 ε

∆

1

time

FIFO Max-stretch = 1 + ∆− ε

Competitive ratio: 1+∆−ε
1+∆
∆

= ∆1+∆−ε
1+∆ = ∆− ε ∆

1+∆ ≥ ∆− ε.

FIFO competitiveness (2): at best∆-competitive

0 ε

∆

1

time

FIFO Max-stretch = 1 + ∆− ε

Optimal Max-stretch = 1+∆
∆

Competitive ratio: 1+∆−ε
1+∆
∆

= ∆1+∆−ε
1+∆ = ∆− ε ∆

1+∆ ≥ ∆− ε.

FIFO competitiveness (2): at best∆-competitive

0 ε

∆

1

time

FIFO Max-stretch = 1 + ∆− ε

Optimal Max-stretch = 1+∆
∆

Competitive ratio: 1+∆−ε
1+∆
∆

= ∆1+∆−ε
1+∆ = ∆− ε ∆

1+∆ ≥ ∆− ε.

FIFO competitiveness (3): at worst ∆ competitive

I An instance J1, ..., Jn.
Θ∗: an optimal schedule for max-stretch.
Cj : completion time of Jj under FIFO (C∗j under Θ∗).
Sj : stretch of Jj under FIFO (S∗j under Θ∗).

I Any job Jl s.t. Sl > S∗l .

t last time before Cl s.t. the processor was idle under FIFO.
t is the release date ri of some job Ji.
During the time interval [ri, Cl], FIFO exactly executes Ji,
Ji+1, ..., Jl−1, Jl.
As C∗l < Cl, there is a job Jk, i ≤ k ≤ l − 1 s.t. C∗k ≥ Cl.
Then:

max
j
S∗j ≥ S∗k =

C∗k − rk

ck
≥ Cl − rl

ck
=

Cl − rl

cl

cl

ck
≥ Sl ×

1
∆

∀l,Sl > S∗l ⇒ S∗ ≥ Sl ×
1
∆

.

FIFO competitiveness (3): at worst ∆ competitive

I An instance J1, ..., Jn.
Θ∗: an optimal schedule for max-stretch.
Cj : completion time of Jj under FIFO (C∗j under Θ∗).
Sj : stretch of Jj under FIFO (S∗j under Θ∗).

I Any job Jl s.t. Sl > S∗l .

t last time before Cl s.t. the processor was idle under FIFO.
t is the release date ri of some job Ji.
During the time interval [ri, Cl], FIFO exactly executes Ji,
Ji+1, ..., Jl−1, Jl.
As C∗l < Cl, there is a job Jk, i ≤ k ≤ l − 1 s.t. C∗k ≥ Cl.
Then:

max
j
S∗j ≥ S∗k =

C∗k − rk

ck
≥ Cl − rl

ck
=

Cl − rl

cl

cl

ck
≥ Sl ×

1
∆

∀l,Sl > S∗l ⇒ S∗ ≥ Sl ×
1
∆

.

FIFO competitiveness (3): at worst ∆ competitive

I An instance J1, ..., Jn.
Θ∗: an optimal schedule for max-stretch.
Cj : completion time of Jj under FIFO (C∗j under Θ∗).
Sj : stretch of Jj under FIFO (S∗j under Θ∗).

I Any job Jl s.t. Sl > S∗l .
t last time before Cl s.t. the processor was idle under FIFO.
t is the release date ri of some job Ji.

During the time interval [ri, Cl], FIFO exactly executes Ji,
Ji+1, ..., Jl−1, Jl.
As C∗l < Cl, there is a job Jk, i ≤ k ≤ l − 1 s.t. C∗k ≥ Cl.
Then:

max
j
S∗j ≥ S∗k =

C∗k − rk

ck
≥ Cl − rl

ck
=

Cl − rl

cl

cl

ck
≥ Sl ×

1
∆

∀l,Sl > S∗l ⇒ S∗ ≥ Sl ×
1
∆

.

FIFO competitiveness (3): at worst ∆ competitive

I An instance J1, ..., Jn.
Θ∗: an optimal schedule for max-stretch.
Cj : completion time of Jj under FIFO (C∗j under Θ∗).
Sj : stretch of Jj under FIFO (S∗j under Θ∗).

I Any job Jl s.t. Sl > S∗l .
t last time before Cl s.t. the processor was idle under FIFO.
t is the release date ri of some job Ji.
During the time interval [ri, Cl], FIFO exactly executes Ji,
Ji+1, ..., Jl−1, Jl.

As C∗l < Cl, there is a job Jk, i ≤ k ≤ l − 1 s.t. C∗k ≥ Cl.
Then:

max
j
S∗j ≥ S∗k =

C∗k − rk

ck
≥ Cl − rl

ck
=

Cl − rl

cl

cl

ck
≥ Sl ×

1
∆

∀l,Sl > S∗l ⇒ S∗ ≥ Sl ×
1
∆

.

FIFO competitiveness (3): at worst ∆ competitive

I An instance J1, ..., Jn.
Θ∗: an optimal schedule for max-stretch.
Cj : completion time of Jj under FIFO (C∗j under Θ∗).
Sj : stretch of Jj under FIFO (S∗j under Θ∗).

I Any job Jl s.t. Sl > S∗l .
t last time before Cl s.t. the processor was idle under FIFO.
t is the release date ri of some job Ji.
During the time interval [ri, Cl], FIFO exactly executes Ji,
Ji+1, ..., Jl−1, Jl.
As C∗l < Cl, there is a job Jk, i ≤ k ≤ l − 1 s.t. C∗k ≥ Cl.
Then:

max
j
S∗j ≥ S∗k =

C∗k − rk

ck
≥ Cl − rl

ck
=

Cl − rl

cl

cl

ck
≥ Sl ×

1
∆

∀l,Sl > S∗l ⇒ S∗ ≥ Sl ×
1
∆

.

Bound on the competitive ratio

Theorem

On one processor, any online scheduling algorithm with preemption
minimizing the max-stretch has a competitive ratio greater than
1
2∆

√
2−1, if the system receives at least jobs of three different sizes,

and if ∆ is the ratio between the size of the largest and the smallest
job.

Proof principle: by contradiction we assume that there exists an
algorithm and we build a sequence of jobs and a scenario to make
the algorithm fail.

Bound on the competitive ratio

Theorem

On one processor, any online scheduling algorithm with preemption
minimizing the max-stretch has a competitive ratio greater than
1
2∆

√
2−1, if the system receives at least jobs of three different sizes,

and if ∆ is the ratio between the size of the largest and the smallest
job.

Proof principle: by contradiction we assume that there exists an
algorithm and we build a sequence of jobs and a scenario to make
the algorithm fail.

The adversary

0

The adversary

0

δ

The adversary

0

δ

δ 2δ

Achievable stretch:
2δ − 0

δ
= 2.

The adversary

k

0

δ

δ 2δ

2δ − k

The adversary

0

δ

δ 2δ

2δ − k

α tâches de taille k

2δ + (α− 2)k

The job T2+j arrives at time 2δ + (j − 2)k.

The adversary

0

δ

δ 2δ

2δ − k

α tâches de taille k

2δ + (α− 2)k

The job T2+j arrives at time 2δ + (j − 2)k.

The adversary

0

δ

δ 2δ

2δ − k

α tâches de taille k

2δ + (α− 2)k

The job T2+j arrives at time 2δ + (j − 2)k.

Achievable stretch:
(2δ + jk)− (2δ + (j − 2)k)

k
= 2.

The adversary

0

δ

δ 2δ

2δ − k

α tâches de taille k

2δ + (α− 2)k

In practice: we do not know what happens after 2δ − k.

The adversary

0

δ

δ 2δ

2δ − k

α tâches de taille k

2δ + (α− 2)k

We want to forbid this case (each size-k job being executed at its
release date.

The adversary

0

δ

δ 2δ

2δ − k

α tâches de taille k

2δ + (α− 2)k

We want to forbid this case (each size-k job being executed at its
release date.

The algorithm being 1
2∆

√
2−1-competitive, T1 and T2 must be com-

pleted at the latest at time: 2 · 1
2
∆
√

2−1 · δ = 2 · 1
2

(
δ

k

)√2−1

· δ

The adversary

0

δ

δ 2δ

2δ − k

α tâches de taille k

2δ + (α− 2)k

We want to forbid this case (each size-k job being executed at its
release date.

The algorithm being 1
2∆

√
2−1-competitive, T1 and T2 must be com-

pleted at the latest at time: 2 · 1
2
∆
√

2−1 · δ = 2 · 1
2

(
δ

k

)√2−1

· δ

We let α = d1+k− 2δ
k e and then 2δ +(α−1)k ≥ 2 · 1

2

(
δ
k

)√2−1 · δ.

The adversary

0

δ

δ 2δ

2δ − k

α tâches de taille k

2δ + (α− 2)k

k + 1

We want to forbid this case (each size-k job being executed at its
release date.

The algorithm being 1
2∆

√
2−1-competitive, T1 and T2 must be com-

pleted at the latest at time: 2 · 1
2
∆
√

2−1 · δ = 2 · 1
2

(
δ

k

)√2−1

· δ

We let α = d1+k− 2δ
k e and then 2δ +(α−1)k ≥ 2 · 1

2

(
δ
k

)√2−1 · δ.

The adversary

0

δ

δ 2δ

2δ − k

α tâches de taille k

2δ + (α− 2)k

The adversary

0

δ

δ 2δ

2δ − k

α tâches de taille k

2δ + (α− 2)k

β tâches de taille 1

2δ + αk + β

The job T2+α+j arrives at time 2δ + (α− 1)k + (j − 1).

The adversary

0

δ

δ 2δ

2δ − k

α tâches de taille k

2δ + (α− 2)k

β tâches de taille 1

2δ + αk + β

Achievable stretch (off-line)

Stretch of each job of size k or 1 : 1.

Stretch of T1 or T2:
2δ + αk + β

δ

Optimal stretch ≤ 2δ + αk + β

δ

The adversary

0

δ

δ 2δ

2δ − k

α tâches de taille k

2δ + (α− 2)k

β tâches de taille 1

2δ + αk + β

Achievable stretch (online)

The adversary

0

δ

δ 2δ

2δ − k

α tâches de taille k

2δ + (α− 2)k

β tâches de taille 1

2δ + αk + β

Achievable stretch (online)

The last completed job is of size k.

Stretch ≥ (2δ + αk + β)− (2δ + (α− 2)k)
k

= 2 +
β

k
.

The adversary

0

δ

δ 2δ

2δ − k

α tâches de taille k

2δ + (α− 2)k

β tâches de taille 1

2δ + αk + β

Achievable stretch (online)

The last completed job is of size 1.

Stretch ≥ (2δ + αk + β)− (2δ + (α− 1)k + (β − 1))
1

= k + 1.

The adversary

0

δ

δ 2δ

2δ − k

α tâches de taille k

2δ + (α− 2)k

β tâches de taille 1

2δ + αk + β

Achievable stretch (online)

Stretch ≥ min
{

2 +
β

k
, k + 1

}
We let: β = dk(k − 1)e

Then: stretch ≥ k + 1.

The adversary: summing things up

α =
⌈
1 + k − 2δ

k

⌉
β = dk(k − 1)e

Optimal stretch ≤ 2δ + αk + β

δ

Achieved stretch ≥ k + 1.

We let k = δ2−
√

2

Therefore k + 1 >

(
1
2
δ
√

2−1

) (
2δ + αk + β

δ

)

The adversary: summing things up

α =
⌈
1 + k − 2δ

k

⌉
β = dk(k − 1)e

Optimal stretch ≤ 2δ + αk + β

δ

Achieved stretch ≥ k + 1.

We let k = δ2−
√

2

Therefore k + 1 >

(
1
2
δ
√

2−1

) (
2δ + αk + β

δ

)

The adversary: summing things up

α =
⌈
1 + k − 2δ

k

⌉
β = dk(k − 1)e

Optimal stretch ≤ 2δ + αk + β

δ

Achieved stretch ≥ k + 1.

We let k = δ2−
√

2

Therefore k + 1 >

(
1
2
δ
√

2−1

) (
2δ + αk + β

δ

)

Existing approximation algorithms

Two greedy approximation algorithms which are
√

∆-competitive:

1 Bender, Muthukrishnan, and Rajaraman (2002)
For each job Jj , we define a pseudo-stretch Ŝj(t):

Ŝj(t) =

{ t−rj√
∆

si 1 ≤ pj ≤
√

∆,

t−rj

∆ si
√

∆ < pj ≤ ∆.

The jobs are scheduled by non increasing pseudo-stretch.

2 Bender, Chahrabarti, and Muthukrishnan (1998).
Each time a job arrives:

I Compute the off-line max-stretch S.
I Jobs are scheduled earliest deadline first with the deadlines de-

fined by
√

∆× S.

Problem : only tries to optimize the most constraining jobs.

Existing approximation algorithms

Two greedy approximation algorithms which are
√

∆-competitive:

1 Bender, Muthukrishnan, and Rajaraman (2002)
For each job Jj , we define a pseudo-stretch Ŝj(t):

Ŝj(t) =

{ t−rj√
∆

si 1 ≤ pj ≤
√

∆,

t−rj

∆ si
√

∆ < pj ≤ ∆.

The jobs are scheduled by non increasing pseudo-stretch.

2 Bender, Chahrabarti, and Muthukrishnan (1998).
Each time a job arrives:

I Compute the off-line max-stretch S.
I Jobs are scheduled earliest deadline first with the deadlines de-

fined by
√

∆× S.

Problem : only tries to optimize the most constraining jobs.

Existing approximation algorithms

Two greedy approximation algorithms which are
√

∆-competitive:

1 Bender, Muthukrishnan, and Rajaraman (2002)
For each job Jj , we define a pseudo-stretch Ŝj(t):

Ŝj(t) =

{ t−rj√
∆

si 1 ≤ pj ≤
√

∆,

t−rj

∆ si
√

∆ < pj ≤ ∆.

The jobs are scheduled by non increasing pseudo-stretch.

2 Bender, Chahrabarti, and Muthukrishnan (1998).
Each time a job arrives:

I Compute the off-line max-stretch S.
I Jobs are scheduled earliest deadline first with the deadlines de-

fined by
√

∆× S.

Problem : only tries to optimize the most constraining jobs.

A non guaranteed heuristic

Each time a job arrives:
1 Preempt the running job (if any).
2 Compute the best achievable max-stretch, S, taking into ac-

count the already taken decisions.
3 With the deadlines and time intervals defined by the max-

stretch S, solve:

Minimize
nX

j=1

wj

 X
t

mX

i=1

α
(t)
i,j

!
sup It(S) + inf It(S)

2

!
rj

!
,while8>>>>>>>>><>>>>>>>>>:

(0a) ∀i, ∀j, ∀t, rj ≥ sup It(S) ⇒ α
(t)
i,j = 0

(0b) ∀i, ∀j, ∀t, dj(S) ≤ inf It(S) ⇒ α
(t)
i,j = 0

(0c) ∀t,∀i,
X

j

α
(t)
i,j .ci,j ≤ sup It(S)− inf It(S)

(0d) ∀j,
X

t

X
i

α
(t)
i,j = 1

(Pseudo-approximation of a rational relaxation of sum-stretch.)

No guarantee !

Conclusion

Minimizing the average stretch

I Off-line case: looks difficult.

I Online case: rather easy.

Minimizing the max-stretch

I Off-line case: in polynomial time.

I Online: very difficult.

and in practice ?

Outline

1 The problem

2 Flow or average stretch minimization

3 Minimizing the maximum stretch: off-line case

4 Minimizing the maximum stretch: online case

5 Simulation results

6 Conclusion

Simulation parameters

I platforms containing 3, 10, or 20 homogeneous clusters of 10
processors;

I applications with 3, 10, or 20 distinct databases;

I availability of the databases of 30%, 60%, or 90% each;

I workload of 0.75, 1.0, 1.25, 1.5, 2.0, or 3.0.

Simulation results

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline: 1.0000 0.0000 1.0000 1.3570 0.2658 2.4006
OfflinePareto: 1.0000 0.0000 1.0000 1.2487 0.2301 3.0291

Online: 1.0030 0.0129 1.1847 1.0386 0.0392 1.3554
Online-EDF: 1.0030 0.0129 1.1847 1.0378 0.0384 1.3609

Online-EGDF: 1.0295 0.0598 1.5476 1.0020 0.0054 1.0962
SWRPT: 1.0321 0.0644 1.6702 1.0003 0.0015 1.0363

SRPT: 1.0548 0.1022 1.9885 1.0043 0.0075 1.0894
SPT: 1.0483 0.0932 1.7630 1.0019 0.0050 1.0876

Bender98: 1.0377 0.0922 2.1521 1.0027 0.0070 1.0737
Bender02: 2.7554 2.5492 21.4543 1.1786 0.2882 4.9793

MCT: 35.1396 23.0246 145.9341 45.6123 33.4706 148.0354
FCFS-Div: 4.6077 6.1197 56.5935 1.3342 0.7059 12.9306

RAND: 4.1106 6.1035 62.2086 1.2149 0.4912 10.8549

Table: Aggregate statistics over all 162 platform/application configura-
tions.

Simulation results (on one processor)

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0000 1.0000 1.0413 0.0593 1.6735
Online 1.0016 0.0149 1.6344 1.0549 0.0893 1.8134

SWRPT 1.1316 0.2071 3.1643 1.0001 0.0009 1.0398
SRPT 1.1242 0.2003 3.0753 1.0139 0.0212 1.2576

SPT 1.1961 0.2667 3.9752 1.0229 0.0296 1.3573
Bender98 1.1200 0.1766 2.5428 1.0194 0.0279 1.4466
Bender02 3.5422 2.4870 21.4819 2.9872 1.9599 15.0019

MCT 8.7762 9.1900 80.7465 6.8979 7.7409 88.2449
RAND 11.3059 11.1981 125.3726 5.8227 6.3942 68.0009

Table: Aggregate statistics for a single machine for all application config-
urations.

Outline

1 The problem

2 Flow or average stretch minimization

3 Minimizing the maximum stretch: off-line case

4 Minimizing the maximum stretch: online case

5 Simulation results

6 Conclusion

Conclusion

Minimizing the average stretch

I Off-line case: looks difficult.

I Online case: rather easy.

Minimizing the max-stretch

I Off-line case: in polynomial time.

I Online: very difficult.

In practice

I The approximation algorithms are out.

I SWRPT and our online heuristics are very efficient.

I SWRPT can induce starvation.

I Sum-stretch does not seem to be a pertinent metrics.

More generally...

1 Study of the (theoretical) off-line problem as the online solution
will always be at best as good as the off-line.

2 Comparison of online and off-line solutions to quantify the qual-
ity of the online solutions.

3 Transposing results from a model to another one (from divisible
loads to the model with preemption, back and forth).

	The problem
	Target application
	Theoretical framework
	Restriction to the uni-processor
	Choosing an objective function

	Flow or average stretch minimization
	Minimizing the average or maximum flow
	Minimizing the average stretch

	Minimizing the maximum stretch: off-line case
	The problem
	Deadline scheduling
	Maximum weighted flow
	Pareto optimality

	Minimizing the maximum stretch: online case
	The problem
	Bound on the competitive ratio
	Heuristics

	Simulation results
	Conclusion

