Online scheduling of divisibles requests

Frédéric Vivien

13 & 27 novembre 2006

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Outline

1 The problem

- 2 Flow or average stretch minimization
- 3 Minimizing the maximum stretch: off-line case
- 4 Minimizing the maximum stretch: online case

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

5 Simulation results

Outline

1 The problem

- Target application
- Theoretical framework
- Restriction to the uni-processor
- Choosing an objective function
- 2 Flow or average stretch minimization
- 3 Minimizing the maximum stretch: off-line case
- 4 Minimizing the maximum stretch: online case

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

5 Simulation results

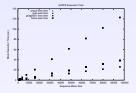
The problem

An heterogeneous platform.

- A set of databanks
 - text files of several MB or GB;
 - each databank may be replicated;
 - a databank is not necessarily present on each processor.
- Some requests: comparing a motif with a databank
 - the requests are independent;
 - a very large number of requests;
 - motifs have different sizes.

Application: GriPPS from the Institut de Biologie et Chimie des Protéines

Analyzing the application : divisible jobs



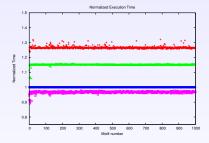
Experimental setup:

- Benchmark : a given set of motifs, compared with subsets of varying sizes of a databank.
- Each benchmark is executed 10 times.

Conclusions:

- A request execution time is linear in the size of the databank.
- Compact motif representation ⇒ communication times are negligible. (another experiment)

Analyzing the application : uniform machines



Determining the relative speeds of the processors

- set of motifs individually compared on a set of machines
- average on 40 iterations
- average execution time compared to a reference machine

Notations

Machines M₁, ..., M_m
 Machine M_i takes a time c_{i,j} to process the job J_j.
 c_{i,j} is infinite if job J_j needs a databank which is not present on machine M_i.

▶ Completion time of job J_j: C_j. Flow of job J_j : F_j = C_j − r_j (time spent in the system)

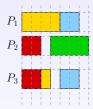
Divisibility

- Each job is inherently divisible: at any time, different processors can compare the motif against different subparts of the same databank.
- $\alpha_{i,j}$: fraction of job J_j processed by machine M_i :

$$\forall j, \sum_{i} \alpha_{i,j} = 1.$$

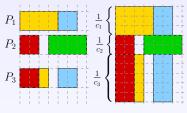
Geometric transformation of a uniform and divisible problem into a uni-processor problem.

(日) (四) (王) (日) (日) (日)



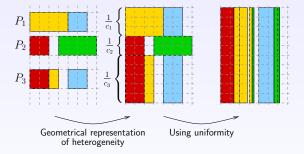
Geometric transformation of a uniform and divisible problem into a uni-processor problem.

-

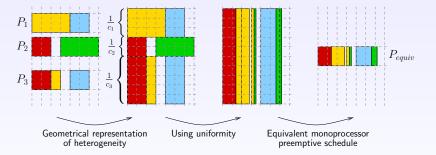


of heterogeneity

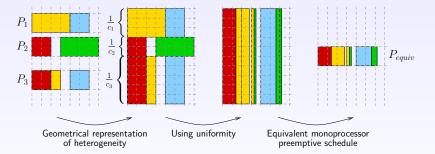
Geometric transformation of a uniform and divisible problem into a uni-processor problem.



Geometric transformation of a uniform and divisible problem into a uni-processor problem.

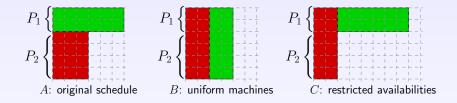


Geometric transformation of a uniform and divisible problem into a uni-processor problem.



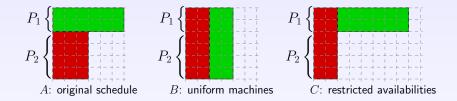
We can restrict the study to the uni-processor case... ... except that we are in the case of uni-processor with availability.

From the uni-processor case to divisible jobs



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

From the uni-processor case to divisible jobs



Simple rule to extend scheduling strategies defined for the uniprocessor case:

- 1: while some processors are idle do
- 2: Select a job of highest priority and distribute it on available processors which are able to process it.

Makespan: max_j C_j.
 Optimization of the machine usage.
 Arrival dates are not taken into account.

◆□▶

Makespan: max_j C_j.
 Optimization of the machine usage.
 Arrival dates are not taken into account.

► Average flow or response time: ∑_j(C_j − r_j). Optimization from the user point of view.

Makespan: max_j C_j.
 Optimization of the machine usage.
 Arrival dates are not taken into account.

► Average flow or response time: ∑_j(C_j - r_j). Optimization from the user point of view. Inconvenient: starvation.

Makespan: max_j C_j.
 Optimization of the machine usage.
 Arrival dates are not taken into account.

- ► Average flow or response time: ∑_j(C_j r_j). Optimization from the user point of view. Inconvenient: starvation.
- ► Maximum flow or maximum response time: max_j(C_j r_j). No starvation. Favor long jobs. Worst-case optimization.

Makespan: max_j C_j.
 Optimization of the machine usage.
 Arrival dates are not taken into account.

- ► Average flow or response time: ∑_j(C_j r_j). Optimization from the user point of view. Inconvenient: starvation.
- ► Maximum flow or maximum response time: max_j(C_j r_j). No starvation. Favor long jobs. Worst-case optimization.

► Maximum weighted flow: max_j w_j(C_j − r_j). Gives back some importance to short jobs.

Makespan: max_j C_j.
 Optimization of the machine usage.
 Arrival dates are not taken into account.

- ► Average flow or response time: ∑_j(C_j r_j). Optimization from the user point of view. Inconvenient: starvation.
- ► Maximum flow or maximum response time: max_j(C_j r_j). No starvation. Favor long jobs. Worst-case optimization.

 ▶ Maximum weighted flow: max_j w_j(C_j - r_j). Gives back some importance to short jobs. Particular case of the *stretch*: w_j=1/running time of the job on empty platform. An online algorithm has a competitive factor ρ if and only if:

Whatever the set of jobs $T_1, ..., T_n$:

Online schedule $cost(T_1, ..., T_N) \leq \rho \times Optimal off-line schedule <math>cost(T_1, ..., T_N)$.

Stretch minimization

We consider minimizing the maximum or average stretch

We consider minimizing the maximum or average stretch

Theorem

 Δ : ratio of the sizes of the largest and smallest job. Consider any online algorithm whose competitive ratio for average stretch minimization satisfies $\rho(\Delta) < \Delta^2$.

There exists for this algorithm a sequence of jobs leading to starvation, and for which the maximum stretch can be as far as we want from the optimal maximum stretch.

▶ By contradiction, $\exists \Delta > 1$, $\exists \epsilon > 0$, \exists algorithm \mathcal{A} s.t.

$$\rho_{\mathcal{A}}(\Delta) < \Delta^2 - \epsilon.$$

◆□▶ ▲□▶ ▲目▶ ▲□▶ ▲□▶

▶ By contradiction, $\exists \Delta > 1$, $\exists \epsilon > 0$, \exists algorithm \mathcal{A} s.t.

$$\rho_{\mathcal{A}}(\Delta) < \Delta^2 - \epsilon.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Adversary:

▶ By contradiction, $\exists \Delta > 1$, $\exists \epsilon > 0$, \exists algorithm \mathcal{A} s.t.

$$\rho_{\mathcal{A}}(\Delta) < \Delta^2 - \epsilon.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Adversary:

• Let
$$\alpha \in \mathbb{N}$$
 s.t. $\frac{1+\alpha\Delta}{1+\frac{\alpha}{\Delta}} > \Delta^2 - \frac{\epsilon}{2}$

▶ By contradiction, $\exists \Delta > 1$, $\exists \epsilon > 0$, \exists algorithm \mathcal{A} s.t.

$$\rho_{\mathcal{A}}(\Delta) < \Delta^2 - \epsilon.$$

Adversary:

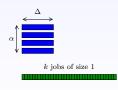
- Let $\alpha \in \mathbb{N}$ s.t. $\frac{1+\alpha\Delta}{1+\frac{\alpha}{\Delta}} > \Delta^2 \frac{\epsilon}{2}$
- At date 0 arrives α jobs of size Δ , J_1 , ..., J_{α} .

▶ By contradiction, $\exists \Delta > 1$, $\exists \epsilon > 0$, \exists algorithm \mathcal{A} s.t.

$$\rho_{\mathcal{A}}(\Delta) < \Delta^2 - \epsilon.$$

Adversary:

- Let $\alpha \in \mathbb{N}$ s.t. $\frac{1+\alpha\Delta}{1+\frac{\alpha}{\Delta}} > \Delta^2 \frac{\epsilon}{2}$
- At date 0 arrives α jobs of size Δ , J_1 , ..., J_{α} .
- ▶ $k \in \mathbb{N}$. $\forall t \in [0, k 1]$, job $J_{\alpha+t+1}$ of size 1 arrives at time t.



A possible schedule: each of the k unit jobs at its release date, and then the α $\Delta\text{-units jobs.}$

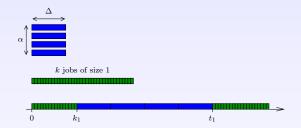
$$\begin{split} \text{sum-stretch} &= k \times 1 + \frac{k + \Delta}{\Delta} + \ldots + \frac{k + \alpha \Delta}{\Delta} = \frac{\alpha(\alpha + 1)}{2} + k \left(1 + \frac{\alpha}{\Delta} \right). \\ \text{max-stretch} &= \alpha + \frac{k}{\Delta}. \end{split}$$

May not be optimal (just an upper-bound) and induces starvation.

Otherwise, at a date $t_1 < k + \alpha \Delta$ the Δ size jobs are all completed.

Otherwise, at a date $t_1 < k + \alpha \Delta$ the Δ size jobs are all completed. k_1 unit size jobs were completed before t_1 .

Otherwise, at a date $t_1 < k + \alpha \Delta$ the Δ size jobs are all completed. k_1 unit size jobs were completed before t_1 .



Otherwise, at a date $t_1 < k + \alpha \Delta$ the Δ size jobs are all completed. k_1 unit size jobs were completed before t_1 .

Otherwise, at a date $t_1 < k + \alpha \Delta$ the Δ size jobs are all completed. k_1 unit size jobs were completed before t_1 . Best achievable sum-stretch:

$$k_1 \times 1 + \frac{k_1 + \Delta}{\Delta} + \dots + \frac{k_1 + \alpha \Delta}{\Delta} + (k - k_1)(1 + \alpha \Delta) = \left(\frac{\alpha(\alpha + 1)}{2} + \frac{\alpha k_1}{\Delta}\right) + k_1 + (k - k_1)(1 + \alpha \Delta).$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへ(?)

Hypothesis: \mathcal{A} is $\rho_{\mathcal{A}}(\Delta)$ -competitive

$$\left(\frac{\alpha(\alpha+1)}{2} + \frac{\alpha k_1}{\Delta}\right) + k_1 + (k - k_1)(1 + \alpha \Delta)$$
$$\leq \rho_{\mathcal{A}}(\Delta) \left(\frac{\alpha(\alpha+1)}{2} + k\left(1 + \frac{\alpha}{\Delta}\right)\right) \quad \Leftrightarrow$$

$$-\alpha\Delta k_{1} + \frac{\alpha(\alpha+1)}{2}(1-\rho_{\mathcal{A}}(\Delta)) + \frac{\alpha k_{1}}{\Delta} \leq k\left(\rho_{\mathcal{A}}(\Delta)\left(1+\frac{\alpha}{\Delta}\right) - (1+\alpha\Delta)\right).$$

Must hold for any k, thus:

$$\left(\rho_{\mathcal{A}}(\Delta)\left(1+\frac{\alpha}{\Delta}\right)-(1+\alpha\Delta)\right) \ge 0 \Rightarrow \Delta^{2}-\epsilon > \frac{1+\alpha\Delta}{1+\frac{\alpha}{\Delta}}.$$

 $\mathcal{O} \land \mathcal{O}$

-20

FIFO is Δ^2 -competitive for sum-stretch

Theorem

First come, first served is:

- Δ²-competitive for the online minimization of sum-stretch,
- Δ-competitive for the online minimization of max-stretch,
- Δ-competitive for the online minimization of sum-flow, and

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

optimal for the online minimization of max-flow.

Outline

The problem

- Flow or average stretch minimization
 Minimizing the average or maximum flow
 Minimizing the average stretch
- 3 Minimizing the maximum stretch: off-line case
- 4 Minimizing the maximum stretch: online case

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

5 Simulation results

Minimizing the average or maximum flow

Maximum flow is minimized by the policy First come, first serve

 Average flow is minimized by the Shortest Remaining Processing Time (SRPT) policy.

(日) (型) (E) (E) (E) (O)

Problem complexity: open.

- Problem complexity: open.
- Polynomial Time Approximation Schemes (PTAS).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Problem complexity: open.
- Polynomial Time Approximation Schemes (PTAS).
- The competitive ratio of any online algorithm is at least: 1.19485.

- Problem complexity: open.
- Polynomial Time Approximation Schemes (PTAS).
- The competitive ratio of any online algorithm is at least: 1.19485.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Shortest Remaining Processing Time is 2-competitive.

- Problem complexity: open.
- Polynomial Time Approximation Schemes (PTAS).
- The competitive ratio of any online algorithm is at least: 1.19485.
- Shortest Remaining Processing Time is 2-competitive.
- Obvious improvement: Shortest Weighted Remaining Processing Time.
 At any time t, SWRPT schedules the job J_j minimizing p_jρ_t(j).

SWRPT is *at best* 2-competitive.

- Problem complexity: open.
- Polynomial Time Approximation Schemes (PTAS).
- The competitive ratio of any online algorithm is at least: 1.19485.
- Shortest Remaining Processing Time is 2-competitive.
- Obvious improvement: Shortest Weighted Remaining Processing Time.
 At any time t, SWRPT schedules the job J_j minimizing p_jρ_t(j). SWRPT is at best 2-competitive.

The off-line case looks difficult... but there exists a simple guaranteed online algorithm.

Outline

The problem

2 Flow or average stretch minimization

3 Minimizing the maximum stretch: off-line case

- The problem
- Deadline scheduling
- Maximum weighted flow
- Pareto optimality

4 Minimizing the maximum stretch: online case

(日) (型) (E) (E) (E) (O)

5 Simulation results

Off-line framework: the rules of the game

- We know in advance the release dates of jobs, and their size (off-line framework).
- We want to minimize the maximum weighted flow (for any weights).

Jobs are divisible.

Existence of a schedule of max-stretch S:

For each job
$$J_j$$
, $\frac{C_j - r_j}{p_j} \leq S$

Equivalent to a scheduling problem with deadlines where $d_j(\mathcal{S}) = r_j + p_j \times \mathcal{S}$

Deadline scheduling: definition

Each job J_j has a deadline d_j (and always a release/arrival date r_j).

Question: is there a schedule which completes each job J_j during its existence interval [r_j, d_j] ?

Deadline scheduling: notations

Set of release dates and deadlines: $\{r_1, ..., r_n, d_1, ..., d_n\}$.

These dates, when sorted, define a set of n_{int} intervals $I_1, ..., I_{n_{\text{int}}}$, with $1 \le n_{\text{int}} \le 2n - 1$.

 $I_t = [\inf I_t, \sup I_t]$

 $\alpha_{i,j}^{(t)}: \text{ fraction of } J_j \text{ processed by } M_i \text{ during the interval } I_t.$

Release dates:

$$\forall i, \forall j, \forall t, \quad r_j \ge \sup I_t \Rightarrow \alpha_{i,j}^{(t)} = 0$$

<ロ> <回> <回> <三> <三> <三> <三</p>

Release dates:

$$\forall i, \forall j, \forall t, \quad r_j \ge \sup I_t \Rightarrow \alpha_{i,j}^{(t)} = 0$$

2 Deadlines:

$$\forall i, \forall j, \forall t, \quad d_j \leq \inf I_t \Rightarrow \alpha_{i,j}^{(t)} = 0$$

-20

500

Release dates:

$$\forall i, \forall j, \forall t, \quad r_j \ge \sup I_t \Rightarrow \alpha_{i,j}^{(t)} = 0$$

2 Deadlines:

$$\forall i, \forall j, \forall t, \quad d_j \leq \inf I_t \Rightarrow \alpha_{i,j}^{(t)} = 0$$

In the second second

$$\forall t, \forall i, \quad \sum_{j} \alpha_{i,j}^{(t)} . c_{i,j} \le \sup I_t - \inf I_t$$

●●● ● ▲田▼ ▲田▼ ▲田▼ ▲日▼

Release dates:

$$\forall i, \forall j, \forall t, \quad r_j \ge \sup I_t \Rightarrow \alpha_{i,j}^{(t)} = 0$$

2 Deadlines:

$$\forall i, \forall j, \forall t, \quad d_j \leq \inf I_t \Rightarrow \alpha_{i,j}^{(t)} = 0$$

In the second second

$$\forall t, \forall i, \quad \sum_{j} \alpha_{i,j}^{(t)} . c_{i,j} \le \sup I_t - \inf I_t$$

Jobs' completion:

$$\forall j, \quad \sum_{t} \sum_{i} \alpha_{i,j}^{(t)} = 1$$

Is there a schedule whose maximum weighted flow is no greater than *F* ?

Is there a schedule whose maximum weighted flow is no greater than *F* ?

$$\max_{\substack{j \\ \forall j, C_j \leq r_j + \mathcal{F}/w_j.}} w_j(C_j - r_j) \leq \mathcal{F} \quad \Leftrightarrow \quad \forall j, w_j(C_j - r_j) \leq \mathcal{F} \quad \Leftrightarrow \quad \forall j, C_j \leq r_j + \mathcal{F}/w_j.$$

Is there a schedule whose maximum weighted flow is no greater than *F* ?

$$\max_{\substack{j \\ \forall j, C_j \leq r_j + \mathcal{F}/w_j.}} w_j(C_j - r_j) \leq \mathcal{F} \quad \Leftrightarrow \quad \forall j, w_j(C_j - r_j) \leq \mathcal{F} \quad \Leftrightarrow \quad \forall j, C_j \leq r_j + \mathcal{F}/w_j.$$

Equivalent to solving the scheduling problem with deadlines where $d_j(\mathcal{F}) = r_j + \mathcal{F}/w_j$ is job J_j 's *deadline*.

Is there a schedule whose maximum weighted flow is no greater than *F* ?

$$\max_{\substack{j \\ \forall j, C_j \leq r_j + \mathcal{F}/w_j.}} w_j(C_j - r_j) \leq \mathcal{F} \quad \Leftrightarrow \quad \forall j, w_j(C_j - r_j) \leq \mathcal{F} \quad \Leftrightarrow \quad \forall j, C_j \leq r_j + \mathcal{F}/w_j.$$

Equivalent to solving the scheduling problem with deadlines where $d_j(\mathcal{F}) = r_j + \mathcal{F}/w_j$ is job J_j 's *deadline*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• We only need to do a binary search over \mathcal{F} !

Is there a schedule whose maximum weighted flow is no greater than *F* ?

$$\max_{\substack{j \\ \forall j, C_j \leq r_j + \mathcal{F}/w_j.}} w_j(C_j - r_j) \leq \mathcal{F} \quad \Leftrightarrow \quad \forall j, w_j(C_j - r_j) \leq \mathcal{F} \quad \Leftrightarrow \quad \forall j, C_j \leq r_j + \mathcal{F}/w_j.$$

- Equivalent to solving the scheduling problem with deadlines where $d_j(\mathcal{F}) = r_j + \mathcal{F}/w_j$ is job J_j 's *deadline*.
- We only need to do a binary search over \mathcal{F} !

We would rather have an algorithm which terminates...

Solving on an interval of objectives (1)

• Let \mathcal{F}_1 and \mathcal{F}_2 be two values, $\mathcal{F}_1 < \mathcal{F}_2$.

We assume that the relative order of release dates and deadlines $r_1, \ldots, r_n, d_1(\mathcal{F}), \ldots, d_n(\mathcal{F})$, is independent of $\mathcal{F} \in]\mathcal{F}_1; \mathcal{F}_2[$.

Solving on an interval of objectives (1)

• Let \mathcal{F}_1 and \mathcal{F}_2 be two values, $\mathcal{F}_1 < \mathcal{F}_2$.

We assume that the relative order of release dates and deadlines $r_1, \ldots, r_n, d_1(\mathcal{F}), \ldots, d_n(\mathcal{F})$, is independent of $\mathcal{F} \in]\mathcal{F}_1; \mathcal{F}_2[$.

▶ We define from the set $r_1, \ldots, r_n, d_1(\mathcal{F}), \ldots, d_n(\mathcal{F})$ some intervals, as we previously did.

The interval extremities are affine functions in \mathcal{F} .

Solving on an interval of objectives (1)

• Let \mathcal{F}_1 and \mathcal{F}_2 be two values, $\mathcal{F}_1 < \mathcal{F}_2$.

We assume that the relative order of release dates and deadlines $r_1, \ldots, r_n, d_1(\mathcal{F}), \ldots, d_n(\mathcal{F})$, is independent of $\mathcal{F} \in]\mathcal{F}_1; \mathcal{F}_2[$.

• We define from the set $r_1, \ldots, r_n, d_1(\mathcal{F}), \ldots, d_n(\mathcal{F})$ some intervals, as we previously did.

The interval extremities are affine functions in \mathcal{F} .

We adapt the previous system.

Solving on an interval of objectives (2)

$$\forall i, \forall j, \forall t, \quad r_j \ge \sup I_t(\mathcal{F}) \Rightarrow \alpha_{i,j}^{(t)} = 0$$

$$\forall i, \forall j, \forall t, \quad d_j(\mathcal{F}) \leq \inf I_t(\mathcal{F}) \Rightarrow \alpha_{i,j}^{(t)} = 0$$

$$egin{aligned} &orall t, orall i, \sum_j lpha_{i,j}^{(t)}.c_{i,j} \leq \sup I_t(\mathcal{F}) - \inf I_t(\mathcal{F}) \ & orall j, \quad \sum_t \sum_j lpha_{i,j}^{(t)} = 1 \end{aligned}$$

◆□ > ◆□ > ◆三 > ◆三 > 三 のへの

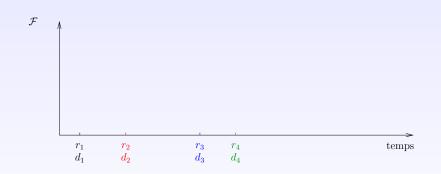
Solving on an interval of objectives (2)

$$\begin{aligned} \forall i, \forall j, \forall t, \quad r_j \geq \sup I_t(\mathcal{F}) \Rightarrow \alpha_{i,j}^{(t)} &= 0 \\ \forall i, \forall j, \forall t, \quad d_j(\mathcal{F}) \leq \inf I_t(\mathcal{F}) \Rightarrow \alpha_{i,j}^{(t)} &= 0 \\ \forall t, \forall i, \quad \sum_j \alpha_{i,j}^{(t)} \cdot c_{i,j} \leq \sup I_t(\mathcal{F}) - \inf I_t(\mathcal{F}) \\ \forall j, \quad \sum_t \sum_i \alpha_{i,j}^{(t)} &= 1 \\ \mathcal{F}_1 \leq \mathcal{F} \leq \mathcal{F}_2 \end{aligned}$$

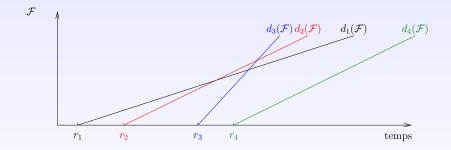
 $\min \mathcal{F}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

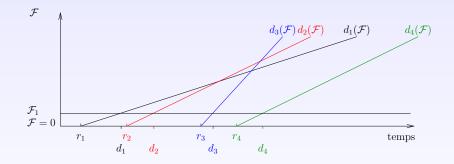
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙



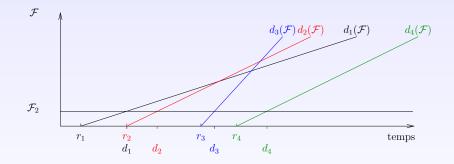
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで



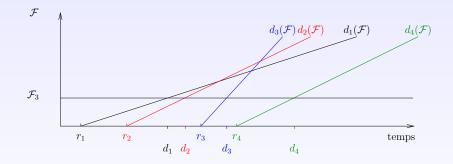
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙



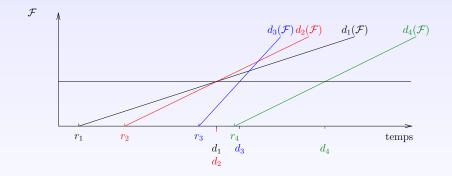
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

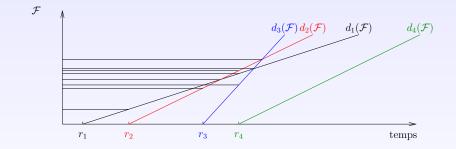


◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○へ⊙



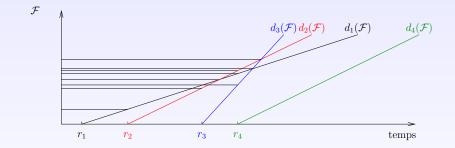
◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Relative ordering of the epochal times



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

There are at most $n_{q} \leq n^{2} - n$ possible intersections.

• We compute the $n_{q} \leq n^{2} - n$ possible intersections.

- 25

- We compute the $n_q \leq n^2 n$ possible intersections.
- ▶ Let $\mathcal{F}_1, \mathcal{F}_2, ..., \mathcal{F}_{n_q}$ be the peculiar values of the objective.

We perform a binary search on the set of the peculiar values \mathcal{F}_i , each time searching if there is a solution in the interval $[\mathcal{F}_i, \mathcal{F}_{i+1}]$.

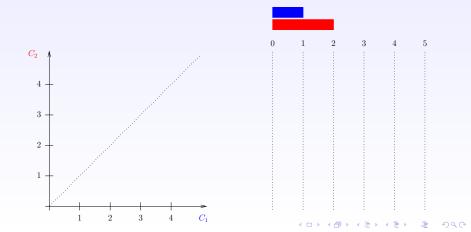
(日) (同) (三) (三) (三) (三) (○) (○)

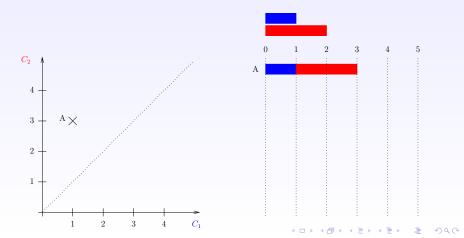
- We compute the $n_q \leq n^2 n$ possible intersections.
- ▶ Let $\mathcal{F}_1, \mathcal{F}_2, ..., \mathcal{F}_{n_q}$ be the peculiar values of the objective.

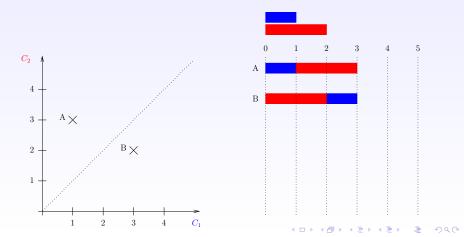
We perform a binary search on the set of the peculiar values \mathcal{F}_i , each time searching if there is a solution in the interval $[\mathcal{F}_i, \mathcal{F}_{i+1}]$.

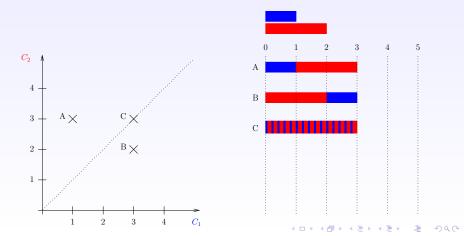
(日) (同) (三) (三) (三) (○) (○)

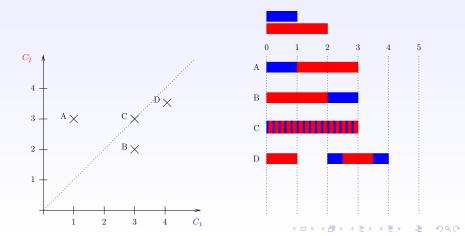
Polynomial-time algorithm.

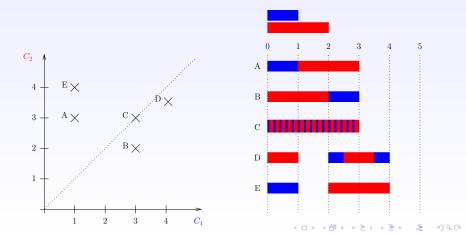


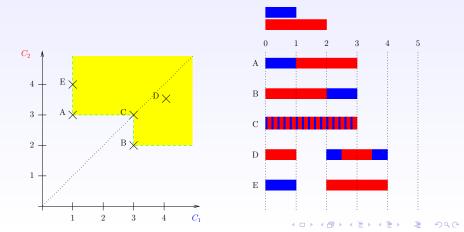


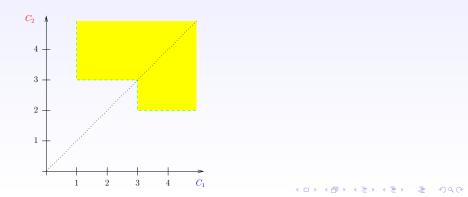


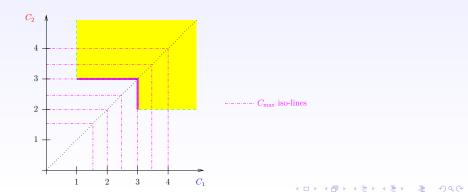


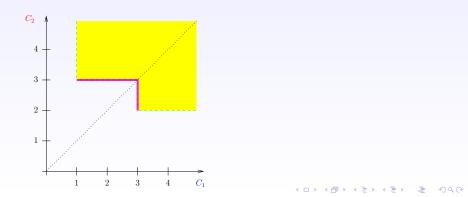


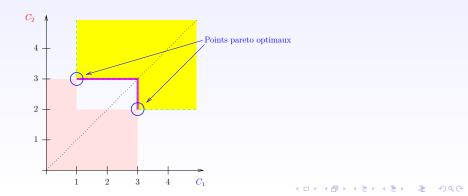


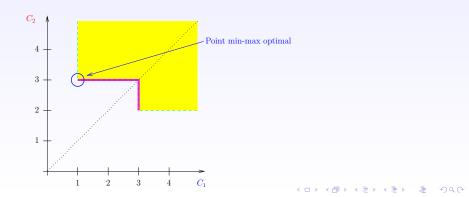


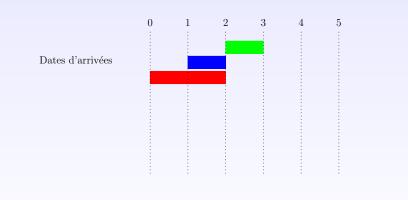




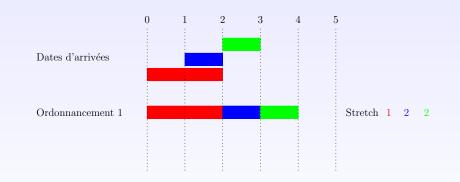


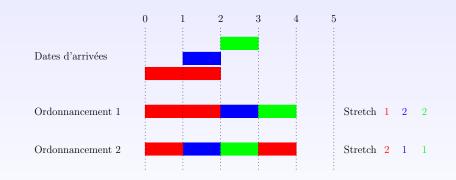






◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

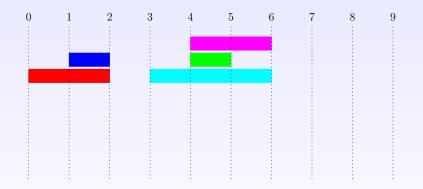




◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

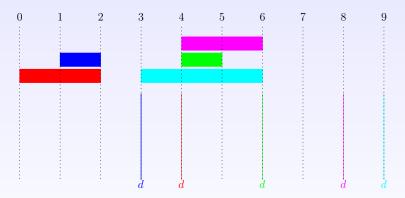
Schedule 1 and Schedule 2 are Pareto optimal

Schedule 2 is the min-max solution



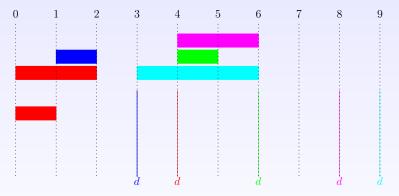
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Computation of the optimal max-stretch: 2.

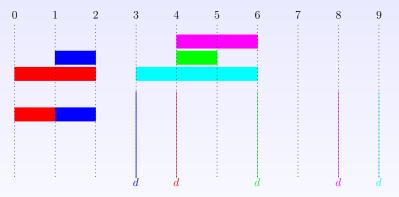


Computation of the optimal max-stretch: 2.

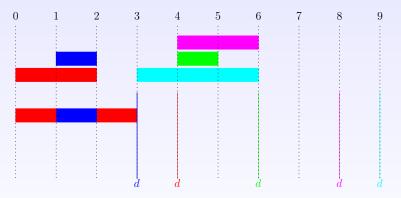
Defining a deadline per job.



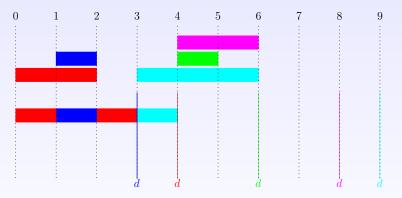
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



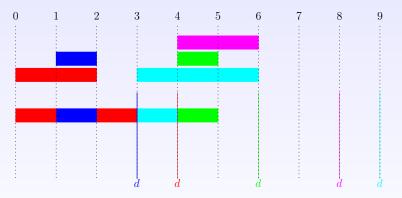
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



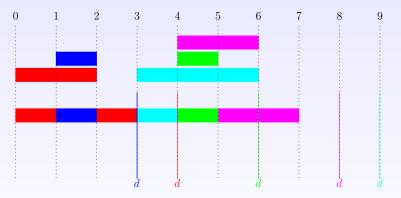
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



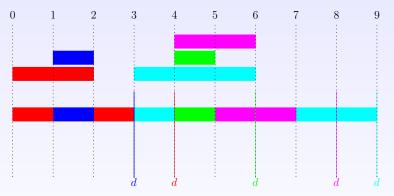
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



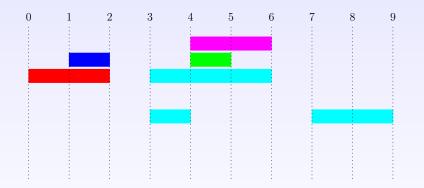
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



Jobs are scheduled Earliest deadline first.

If completion time = deadline, whatever the schedule, the stretch of this job is equal to the maximum stretch.

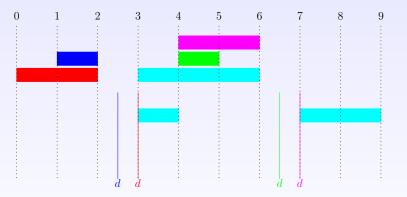
We set the jobs that cannot be optimized, and we call recursively the process.



We set the jobs that cannot be optimized, and we call recursively the process.

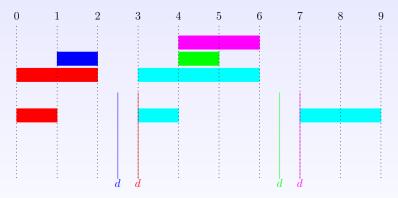
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Max-stretch of remaining jobs : 1,5.

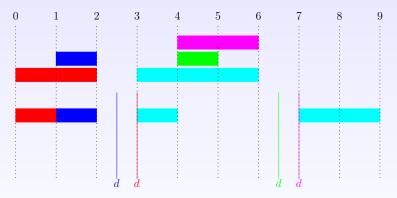


We set the jobs that cannot be optimized, and we call recursively the process.

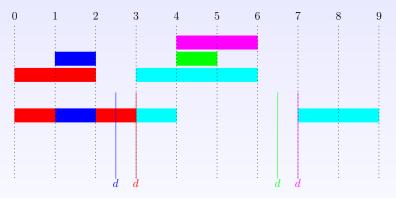
Max-stretch of remaining jobs : 1,5.



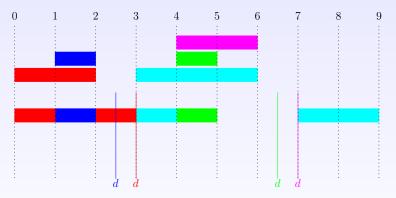
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



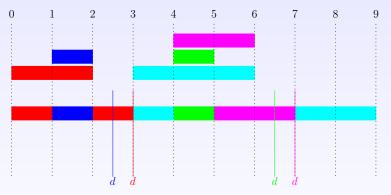
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



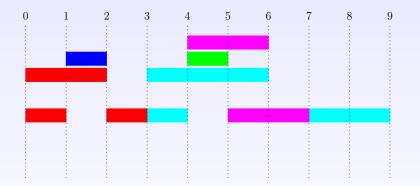
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



Jobs are scheduled Earliest deadline first.

If completion time = deadline, whatever the schedule, the stretch of this job is equal to the maximum stretch.

We set the jobs that cannot be optimized, and we call recursively the process.



We set the jobs that cannot be optimized, and we call recursively the process.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Pareto max-stretch (2)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへ⊙

Outline

The problem

2 Flow or average stretch minimization

3 Minimizing the maximum stretch: off-line case

4 Minimizing the maximum stretch: online case

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- The problem
- Bound on the competitive ratio
- Heuristics

5 Simulation results

A job characteristics are only known at the time the job arrives in the system (i.e., at the release date).

We want to minimize the maximum weighted flow (for any weights).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Jobs are divisible.

An online algorithm has a competitive factor ρ if and only if:

Whatever the set of jobs $T_1, ..., T_n$:

Online schedule $cost(T_1, ..., T_N) \leq \rho \times Optimal off-line schedule <math>cost(T_1, ..., T_N)$.

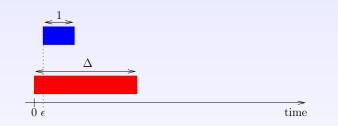
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

FIFO competitiveness (1)

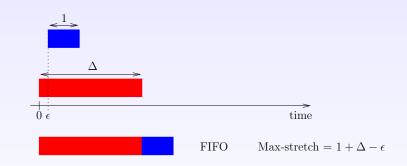
Theorem

FIFO is Δ competitive for maximum stretch minimization.

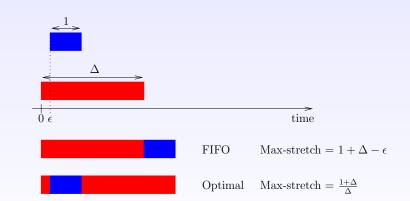
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙



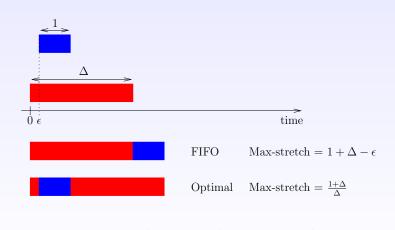
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



Competitive ratio:
$$\frac{1+\Delta-\epsilon}{\frac{1+\Delta}{\Delta}} = \Delta \frac{1+\Delta-\epsilon}{1+\Delta} = \Delta - \epsilon \frac{\Delta}{1+\Delta} \ge \Delta - \epsilon.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

- An instance J_1 , ..., J_n .
 - $\Theta^*:$ an optimal schedule for max-stretch.
 - C_j : completion time of J_j under FIFO (C_j^* under Θ^*).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 S_j : stretch of J_j under FIFO (S_i^* under Θ^*).

- An instance J_1 , ..., J_n .
 - $\Theta^*:$ an optimal schedule for max-stretch.
 - C_j : completion time of J_j under FIFO (C_j^* under Θ^*).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- S_j : stretch of J_j under FIFO (S_j^* under Θ^*).
- Any job J_l s.t. $S_l > S_l^*$.

- An instance J_1 , ..., J_n .
 - $\Theta^*:$ an optimal schedule for max-stretch.
 - C_j : completion time of J_j under FIFO (C_j^* under Θ^*).
 - S_j : stretch of J_j under FIFO (S_i^* under Θ^*).
- Any job J_l s.t. $S_l > S_l^*$.
 - t last time before C_l s.t. the processor was idle under FIFO.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

t is the release date r_i of some job J_i .

- An instance J_1 , ..., J_n .
 - $\Theta^*:$ an optimal schedule for max-stretch.
 - C_j : completion time of J_j under FIFO (C_j^* under Θ^*).
 - S_j : stretch of J_j under FIFO (S_i^* under Θ^*).
- Any job J_l s.t. $S_l > S_l^*$.
 - t last time before C_l s.t. the processor was idle under FIFO. t is the release date r_i of some job J_i .
 - During the time interval $[r_i,C_l],\ {\rm FIFO}$ exactly executes $J_i,\ J_{i+1},\ ...,\ J_{l-1},\ J_l.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- An instance J_1, \ldots, J_n .
 - $\Theta^*:$ an optimal schedule for max-stretch.
 - C_j : completion time of J_j under FIFO (C_j^* under Θ^*).
 - S_j : stretch of J_j under FIFO (S_i^* under Θ^*).

• Any job
$$J_l$$
 s.t. $S_l > S_l^*$.

t last time before C_l s.t. the processor was idle under FIFO. t is the release date r_i of some job J_i .

During the time interval $[r_i, C_l]$, FIFO exactly executes J_i , J_{i+1} , ..., J_{l-1} , J_l .

As $C_l^* < C_l$, there is a job J_k , $i \le k \le l-1$ s.t. $C_k^* \ge C_l$. Then:

$$\max_{j} \mathcal{S}_{j}^{*} \geq \mathcal{S}_{k}^{*} = \frac{C_{k}^{*} - r_{k}}{c_{k}} \geq \frac{C_{l} - r_{l}}{c_{k}} = \frac{C_{l} - r_{l}}{c_{l}} \frac{c_{l}}{c_{k}} \geq \mathcal{S}_{l} \times \frac{1}{\Delta}$$
$$\forall l, \mathcal{S}_{l} > \mathcal{S}_{l}^{*} \quad \Rightarrow \quad \mathcal{S}^{*} \geq \mathcal{S}_{l} \times \frac{1}{\Delta}.$$

Bound on the competitive ratio

Theorem

On one processor, any online scheduling algorithm with preemption minimizing the max-stretch has a competitive ratio greater than $\frac{1}{2}\Delta^{\sqrt{2}-1}$, if the system receives at least jobs of three different sizes, and if Δ is the ratio between the size of the largest and the smallest job.

Bound on the competitive ratio

Theorem

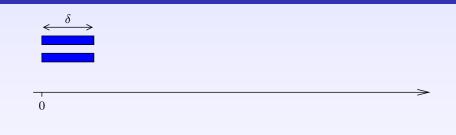
On one processor, any online scheduling algorithm with preemption minimizing the max-stretch has a competitive ratio greater than $\frac{1}{2}\Delta^{\sqrt{2}-1}$, if the system receives at least jobs of three different sizes, and if Δ is the ratio between the size of the largest and the smallest job.

Proof principle: by contradiction we assume that there exists an algorithm and we build a sequence of jobs and a scenario to make the algorithm fail.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

	Г	
1	٦	
l	J	
	~	

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > <



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

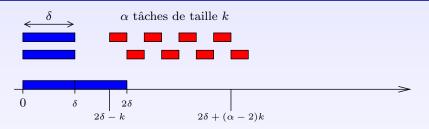
・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

æ

500

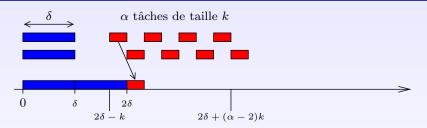
Achievable stretch:
$$rac{2\delta-0}{\delta}=2.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙



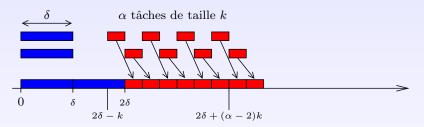
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The job T_{2+j} arrives at time $2\delta + (j-2)k$.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

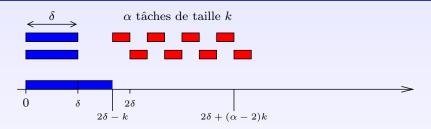
The job T_{2+j} arrives at time $2\delta + (j-2)k$.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

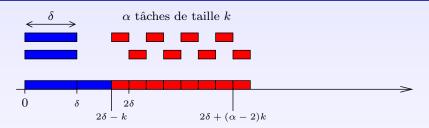
The job T_{2+j} arrives at time $2\delta + (j-2)k$.

Achievable stretch:
$$\frac{(2\delta + jk) - (2\delta + (j-2)k)}{k} = 2$$



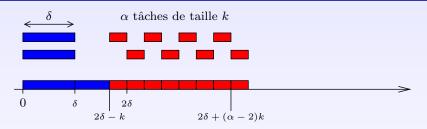
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In practice: we do not know what happens after $2\delta - k$.



We want to forbid this case (each size-k job being executed at its release date.

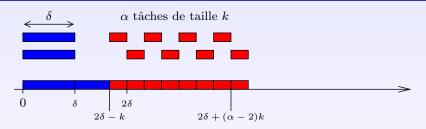
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



We want to forbid this case (each size-k job being executed at its release date.

The algorithm being $\frac{1}{2}\Delta^{\sqrt{2}-1}$ -competitive, T_1 and T_2 must be completed at the latest at time: $2 \cdot \frac{1}{2}\Delta^{\sqrt{2}-1} \cdot \delta = 2 \cdot \frac{1}{2}\left(\frac{\delta}{k}\right)^{\sqrt{2}-1} \cdot \delta$

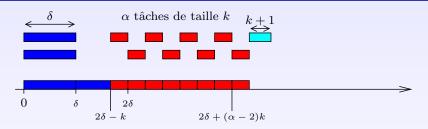
・ロト・(型ト・(ヨト・(型ト・(ロト



We want to forbid this case (each size-k job being executed at its release date.

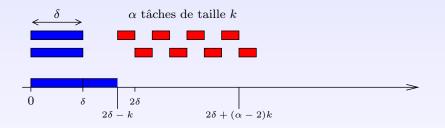
The algorithm being $\frac{1}{2}\Delta^{\sqrt{2}-1}$ -competitive, T_1 and T_2 must be completed at the latest at time: $2 \cdot \frac{1}{2}\Delta^{\sqrt{2}-1} \cdot \delta = 2 \cdot \frac{1}{2}\left(\frac{\delta}{k}\right)^{\sqrt{2}-1} \cdot \delta$ We let $\alpha = \lceil 1 + k - \frac{2\delta}{k} \rceil$ and then $2\delta + (\alpha - 1)k \ge 2 \cdot \frac{1}{2}\left(\frac{\delta}{k}\right)^{\sqrt{2}-1} \cdot \delta$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

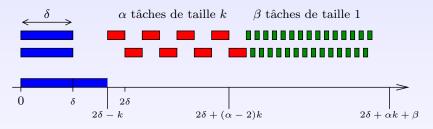


We want to forbid this case (each size-k job being executed at its release date.

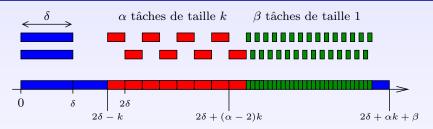
The algorithm being $\frac{1}{2}\Delta^{\sqrt{2}-1}$ -competitive, T_1 and T_2 must be completed at the latest at time: $2 \cdot \frac{1}{2}\Delta^{\sqrt{2}-1} \cdot \delta = 2 \cdot \frac{1}{2}\left(\frac{\delta}{k}\right)^{\sqrt{2}-1} \cdot \delta$ We let $\alpha = \lceil 1 + k - \frac{2\delta}{k} \rceil$ and then $2\delta + (\alpha - 1)k \ge 2 \cdot \frac{1}{2}\left(\frac{\delta}{k}\right)^{\sqrt{2}-1} \cdot \delta$.



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙



The job $T_{2+\alpha+j}$ arrives at time $2\delta + (\alpha - 1)k + (j-1)$.



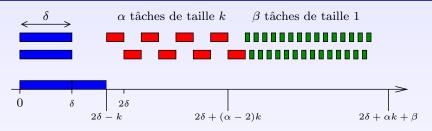
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Achievable stretch (off-line)

Stretch of each job of size k or 1 : 1.

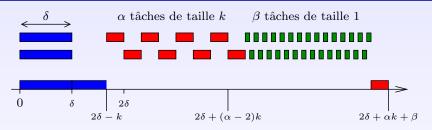
Stretch of
$$T_1$$
 or T_2 : $\frac{2\delta + \alpha k + \beta}{\delta}$

$$\mathsf{Optimal \ stretch} \leq \frac{2\delta + \alpha k + \beta}{\delta}$$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Achievable stretch (online)

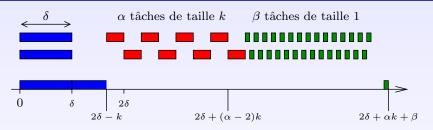


・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Achievable stretch (online)

The last completed job is of size k.

$$\mathsf{Stretch} \geq \frac{(2\delta + \alpha k + \beta) - (2\delta + (\alpha - 2)k)}{k} = 2 + \frac{\beta}{k}$$

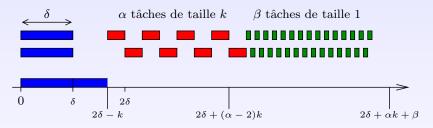


Achievable stretch (online)

The last completed job is of size 1.

$$\mathsf{Stretch} \geq \frac{(2\delta + \alpha k + \beta) - (2\delta + (\alpha - 1)k + (\beta - 1))}{1} = k + 1.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Achievable stretch (online)

$$\mathsf{Stretch} \geq \min\left\{2 + rac{eta}{k}, k+1
ight\}$$

We let: $\beta = \lceil k(k-1) \rceil$

Then: stretch $\geq k + 1$.

The adversary: summing things up

$$\alpha = \left\lceil 1 + k - \frac{2\delta}{k} \right\rceil$$

 $\beta = \lceil k(k-1) \rceil$

$$\mathsf{Optimal \ stretch} \leq \frac{2\delta + \alpha k + \beta}{\delta}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Achieved stretch $\geq k + 1$.

The adversary: summing things up

$$\alpha = \left\lceil 1 + k - \frac{2\delta}{k} \right\rceil$$

 $\beta = \lceil k(k-1) \rceil$

$$\mathsf{Optimal \ stretch} \leq \frac{2\delta + \alpha k + \beta}{\delta}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Achieved stretch $\geq k + 1$.

We let
$$k = \delta^{2-\sqrt{2}}$$

The adversary: summing things up

$$\alpha = \left\lceil 1 + k - \frac{2\delta}{k} \right\rceil$$

 $\beta = \lceil k(k-1) \rceil$

$$\mathsf{Optimal} \; \mathsf{stretch} \leq rac{2\delta + lpha k + eta}{\delta}$$

Achieved stretch $\geq k + 1$.

We let
$$k = \delta^{2-\sqrt{2}}$$

Therefore
$$k + 1 > \left(\frac{1}{2}\delta^{\sqrt{2}-1}\right) \left(\frac{2\delta + \alpha k + \beta}{\delta}\right)$$

・ロト・4回ト・モート・モー・ショー・ショー・

Existing approximation algorithms

Two greedy approximation algorithms which are $\sqrt{\Delta}\text{-competitive:}$

Existing approximation algorithms

Two greedy approximation algorithms which are $\sqrt{\Delta}\text{-competitive:}$

Sender, Muthukrishnan, and Rajaraman (2002) For each job J_j , we define a pseudo-stretch $\widehat{S}_j(t)$:

$$\widehat{\mathcal{S}}_{j}(t) = \begin{cases} \frac{t - r_{j}}{\sqrt{\Delta}} & \text{ si } 1 \leq p_{j} \leq \sqrt{\Delta}, \\ \frac{t - r_{j}}{\Delta} & \text{ si } \sqrt{\Delta} < p_{j} \leq \Delta. \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The jobs are scheduled by non increasing pseudo-stretch.

Existing approximation algorithms

Two greedy approximation algorithms which are $\sqrt{\Delta}$ -competitive:

Bender, Muthukrishnan, and Rajaraman (2002)
 For each job J_j, we define a pseudo-stretch S_j(t):

$$\widehat{\mathcal{S}}_{j}(t) = \begin{cases} \frac{t - r_{j}}{\sqrt{\Delta}} & \text{ si } 1 \leq p_{j} \leq \sqrt{\Delta}, \\ \frac{t - r_{j}}{\Delta} & \text{ si } \sqrt{\Delta} < p_{j} \leq \Delta. \end{cases}$$

The jobs are scheduled by non increasing pseudo-stretch.

- Bender, Chahrabarti, and Muthukrishnan (1998).
 Each time a job arrives:
 - Compute the off-line max-stretch S.
 - ▶ Jobs are scheduled *earliest deadline first* with the deadlines defined by $\sqrt{\Delta} \times S$.

Problem : only tries to optimize the most constraining jobs.

A non guaranteed heuristic

Each time a job arrives:

- Preempt the running job (if any).
- Ocmpute the best achievable max-stretch, S, taking into account the already taken decisions.
- $\textcircled{\sc 0}$ With the deadlines and time intervals defined by the max-stretch $\mathcal S,$ solve:

$$\begin{aligned} \text{MINIMIZE} \quad & \sum_{j=1}^{n} w_j \left(\left(\sum_t \left(\sum_{i=1}^{m} \alpha_{i,j}^{(t)} \right) \frac{\sup I_t(\mathcal{S}) + \inf I_t(\mathcal{S})}{2} \right) r_j \right) \quad \text{, WHILE} \\ & \left(\begin{array}{c} (\text{Oa}) \quad \forall i, \forall j, \forall t, \quad r_j \geq \sup I_t(\mathcal{S}) \Rightarrow \alpha_{i,j}^{(t)} = 0 \\ (\text{Ob}) \quad \forall i, \forall j, \forall t, \quad d_j(\mathcal{S}) \leq \inf I_t(\mathcal{S}) \Rightarrow \alpha_{i,j}^{(t)} = 0 \\ (\text{Oc}) \quad \forall t, \forall i, \quad \sum_j \alpha_{i,j}^{(t)} \cdot c_{i,j} \leq \sup I_t(\mathcal{S}) - \inf I_t(\mathcal{S}) \\ (\text{Od}) \quad \forall j, \quad \sum_t \sum_i \alpha_{i,j}^{(t)} = 1 \end{aligned} \end{aligned}$$

(Pseudo-approximation of a rational relaxation of sum-stretch.)

Conclusion

Minimizing the average stretch

- Off-line case: looks difficult.
- Online case: rather easy.

Minimizing the max-stretch

Off-line case: in polynomial time.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Online: very difficult.

and in practice ?

Outline

The problem

- 2 Flow or average stretch minimization
- 3 Minimizing the maximum stretch: off-line case
- 4 Minimizing the maximum stretch: online case

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

5 Simulation results

6 Conclusion

Simulation parameters

- platforms containing 3, 10, or 20 homogeneous clusters of 10 processors;
- applications with 3, 10, or 20 distinct databases;
- availability of the databases of 30%, 60%, or 90% each;

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

workload of 0.75, 1.0, 1.25, 1.5, 2.0, or 3.0.

Simulation results

	Max-stretch			Sum-stretch		
	Mean	SD	Max	Mean	SD	Max
OFFLINE:	1.0000	0.0000	1.0000	1.3570	0.2658	2.4006
OfflinePareto:	1.0000	0.0000	1.0000	1.2487	0.2301	3.0291
Online:	1.0030	0.0129	1.1847	1.0386	0.0392	1.3554
Online-EDF:	1.0030	0.0129	1.1847	1.0378	0.0384	1.3609
Online-EGDF:	1.0295	0.0598	1.5476	1.0020	0.0054	1.0962
SWRPT:	1.0321	0.0644	1.6702	1.0003	0.0015	1.0363
SRPT:	1.0548	0.1022	1.9885	1.0043	0.0075	1.0894
SPT:	1.0483	0.0932	1.7630	1.0019	0.0050	1.0876
Bender98:	1.0377	0.0922	2.1521	1.0027	0.0070	1.0737
Bender02:	2.7554	2.5492	21.4543	1.1786	0.2882	4.9793
MCT:	35.1396	23.0246	145.9341	45.6123	33.4706	148.0354
FCFS-DIV:	4.6077	6.1197	56.5935	1.3342	0.7059	12.9306
RAND:	4.1106	6.1035	62.2086	1.2149	0.4912	10.8549

Table: Aggregate statistics over all 162 platform/application configurations.

Simulation results (on one processor)

	Max-stretch			Sum-stretch		
	Mean	SD	Max	Mean	SD	Max
Offline	1.0000	0.0000	1.0000	1.0413	0.0593	1.6735
Online	1.0016	0.0149	1.6344	1.0549	0.0893	1.8134
SWRPT	1.1316	0.2071	3.1643	1.0001	0.0009	1.0398
SRPT	1.1242	0.2003	3.0753	1.0139	0.0212	1.2576
SPT	1.1961	0.2667	3.9752	1.0229	0.0296	1.3573
Bender98	1.1200	0.1766	2.5428	1.0194	0.0279	1.4466
Bender02	3.5422	2.4870	21.4819	2.9872	1.9599	15.0019
MCT	8.7762	9.1900	80.7465	6.8979	7.7409	88.2449
RAND	11.3059	11.1981	125.3726	5.8227	6.3942	68.0009

Table: Aggregate statistics for a single machine for all application configurations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

The problem

- 2 Flow or average stretch minimization
- 3 Minimizing the maximum stretch: off-line case
- 4 Minimizing the maximum stretch: online case

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

5 Simulation results

Conclusion

Minimizing the average stretch

- Off-line case: looks difficult.
- Online case: rather easy.

Minimizing the max-stretch

- Off-line case: in polynomial time.
- Online: very difficult.

In practice

- The approximation algorithms are out.
- ▶ SWRPT and our online heuristics are very efficient.
- SWRPT can induce starvation.
- Sum-stretch does not seem to be a pertinent metrics.

More generally...

- Study of the (theoretical) off-line problem as the online solution will always be at best as good as the off-line.
- Comparison of online and off-line solutions to quantify the quality of the online solutions.
- Transposing results from a model to another one (from divisible loads to the model with preemption, back and forth).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・