Online scheduling on master-slave platforms

Frédéric Vivien

November 27, 2006

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

2 With heterogeneous processors

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The tasks

Described by:

- their computation requirements;
- their communication volume;
- their arrival dates.

The aim

Distribute the tasks to the processors, in order to process these tasks

- While respecting the system constraints
 - on the processors
 - on the tasks
- While optimizing an objective function.

Formally

- n tasks, m processors
- *p_{i,j}*: processing time of task *i* on processor *j*
- c_{i,j}: time to send task i from the master to the slave j

- r_i: arrival date
- C_i: completion time
- The main objective functions:
 - ▶ makespan: max C_i
 - maximal flow: max $C_i r_i$
 - average flow: $\sum (C_i r_i)$

Simplifying the problem

identical independent tasks,

Simplifying the problem

identical independent tasks,

Necessary to have efficient algorithms.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○へ⊙

Simplifying the problem

identical independent tasks,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fast communications.

Simplifying the problem

- identical independent tasks,
- Fast communications.

Si $c_{j_0} = min c_j$ et $c_{j_0} > p_{j_0}$, then the optimal schedule is trivial.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Overview

1 The homogeneous case

- Problem presentation
- Solution for the general case

3

Our platform

◆□▶ ◆□▶ ◆ ミト ◆ ミト ・ ミー の へ ()

The aim

Minimizing:

- ▶ the *makespan*
- the maximal flow

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

the sum flow

The aim

Minimizing:

- the makespan
- the maximal flow
- the sum flow

And the three simultaneously and online, if possible !

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The aim

Minimizing:

- ▶ the *makespan*
- the maximal flow
- the sum flow

And the three simultaneously and online, if possible !

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Round-Robin achieves this.

The aim

Minimizing:

- ▶ the *makespan*
- the maximal flow
- the sum flow

And the three simultaneously and online, if possible !

Round-Robin achieves this.

Round-Robin

Cyclic task allocation:

sends task *i* to processor *i mod m* as soon as possible.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Principle of the proof

- Explicit an optimal ASAP algorithm (ASAP=As Soon As Possible) having a behavior similar to that of Round-Robin,
- Show that ASAP and Round-Robin complete at the same time the execution of each task.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Let S be an optimal scheduler minimizing $\sum (C_i - r_i)$

- Let S be an optimal scheduler minimizing $\sum (C_i r_i)$
- ► We build an *ASAP* scheduler from *S*, also optimal for this metric, and which:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

sends tasks to slaves by non-decreasing arrival dates

- Let S be an optimal scheduler minimizing $\sum (C_i r_i)$
- We build an ASAP scheduler from S, also optimal for this metric, and which:
 - sends tasks to slaves by non-decreasing arrival dates

 $r_j < r_k$

- Let S be an optimal scheduler minimizing $\sum (C_i r_i)$
- ▶ We build an *ASAP* scheduler from *S*, also optimal for this metric, and which:
 - sends tasks to slaves by non-decreasing arrival dates

 $r_j < r_k$

- Let S be an optimal scheduler minimizing $\sum (C_i r_i)$
- ► We build an *ASAP* scheduler from *S*, also optimal for this metric, and which:
 - sends tasks to slaves by non-decreasing arrival dates
 - makes slaves process tasks by non-decreasing arrival dates

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Let S be an optimal scheduler minimizing $\sum (C_i r_i)$
- We build an ASAP scheduler from S, also optimal for this metric, and which:
 - sends tasks to slaves by non-decreasing arrival dates
 - makes slaves process tasks by non-decreasing arrival dates

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

send tasks to slaves ASAP

- Let S be an optimal scheduler minimizing $\sum (C_i r_i)$
- ► We build an *ASAP* scheduler from *S*, also optimal for this metric, and which:
 - sends tasks to slaves by non-decreasing arrival dates
 - makes slaves process tasks by non-decreasing arrival dates
 - send tasks to slaves ASAP

We show by induction that *ASAP* and *Round-Robin* completes tasks at the very same dates.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Let S be an optimal scheduler minimizing $\sum (C_i r_i)$
- ► We build an *ASAP* scheduler from *S*, also optimal for this metric, and which:
 - sends tasks to slaves by non-decreasing arrival dates
 - makes slaves process tasks by non-decreasing arrival dates
 - send tasks to slaves ASAP

We show by induction that *ASAP* and *Round-Robin* completes tasks at the very same dates.

Same reasoning when taking for S an optimal algorithm minimizing the *makespan* or the maximal flow.

Conclusion

In the end, *Round-Robin* is an optimal algorithm for the minimization of

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ─ ○ ○ ○

- makespan,
- average flow,
- and maximal flow,

for an online problem (with arrival dates).

Overview

2 With heterogeneous processors

- The online problem
- A solution for a special online problem

The platform

The optimal scheduler...

does not exist!!

at least for the online problem and any of the three usual metrics.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Lower bounds on the competitiveness of online algorithms

Platform type	Objective function								
	Makespan			Max-flow			Sum-flow		
Communication homogeneous	<u>5</u> 4	=	1.250	$\frac{5-\sqrt{7}}{2}$	\approx	1.177	$\frac{2+4\sqrt{2}}{7}$	\approx	1.093
Computation homogeneous	6 5	=	1.200	<u>5</u> 4	=	1.250	$\frac{23}{22}$	\approx	1.045
Heterogeneous	$\frac{1+\sqrt{3}}{2}$	\approx	1.366	$\sqrt{2}$	\approx	1.414	$\frac{\sqrt{13}-1}{2}$	\approx	1.302

Idea:

- ▶ a fast processor with slow communications (c₁ > 1);
- two identical and slow processors, but with fast communications;
- ▶ if only one task, one must choose the fast processor (c₁ + p₁ < 1 + p₂).

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ のへ⊙

We look at time $\tau \geq 1$ to see what has happened. Three possibilities:

We look at time $\tau \ge 1$ to see what has happened. Three possibilities: • Optimal : task on P_1 , max-flow $\ge c_1 + p_1$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We look at time $\tau \geq 1$ to see what has happened. Three possibilities:

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ─ ○ ○ ○

- Optimal : task on P_1 , max-flow $\geq c_1 + p_1$.
- **2** Nothing done: max-flow $\geq \tau + c_1 + p_1$, ratio $\geq \frac{\tau + c_1 + p_1}{c_1 + p_1}$.

We look at time $\tau \geq 1$ to see what has happened. Three possibilities:

- Optimal : task on P_1 , max-flow $\geq c_1 + p_1$.
- 3 Nothing done: max-flow $\geq \tau + c_1 + p_1$, ratio $\geq \frac{\tau + c_1 + p_1}{c_1 + p_1}$.

③ Task send to P_2 , max-flow $\geq 1 + p_2$. Ratio $\geq \frac{1+p_2}{c_1+p_1}$.

We want to force the algorithm to process the first task on P_1 .

We look at time $\tau \ge 1$ to see what has happened. We will choose τ , c_1 , p_1 and p_2 such that:

$$\min\left\{\frac{1+p_2}{c_1+p_1}, \frac{\tau+c_1+p_1}{c_1+p_1}\right\} \ge \rho$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ─ ○ ○ ○

At time τ we send two new tasks. We consider all the possible cases.

At time τ we send two new tasks. The two tasks are executed on P_1 :

$$\begin{aligned} \max\{c_1 + p_1, \\ \max\{\max\{c_1, \tau\} + c_1 + p_1, c_1 + 2p_1\} - \tau, \\ \max\{\max\{c_1, \tau\} + c_1 + p_1 + \max\{c_1, p_1\}, c_1 + 3p_1\} - \tau\} \end{aligned}$$

At time τ we send two new tasks.

The first of the two tasks is executed on P_2 (or P_3), and the other one on P_1 .

$$\max\{c_1 + p_1, \\ (\max\{c_1, \tau\} + c_2 + p_2) - \tau, \\ \max\{\max\{c_1, \tau\} + c_2 + c_1 + p_1, c_1 + 2p_1\} - \tau\}_{\mathbb{P}}$$

At time τ we send two new tasks.

The first of the two tasks is executed on P_1 , and the other one on P_2 (or P_3).

$$\max\{c_1 + p_1, \\ \max\{\max\{c_1, \tau\} + c_1 + p_1, c_1 + 2p_1\} - \tau, \\ (\max\{c_1, \tau\} + c_1 + c_2 + p_2) - \tau\}$$

At time τ we send two new tasks.

One of the two tasks is executed on P_2 and the other one on P_3 .

 $\max\{c_1+p_1, (\max\{c_1,\tau\}+c_2+p_2)-\tau, (\max\{c_1,\tau\}+c_2+c_2+p_2)-\tau\}$

At time τ we send two new tasks.

The case where both tasks are executed on P_2 (or both on P_3) is worse than the previous one, therefore, we do not need to study it.

At time τ we send two new tasks.

The (desired) optimal: the first task on P_2 , the second on P_3 , and the third on P_1 .

 $\max\{c_2+p_2, (\max\{c_2,\tau\}+c_2+p_2)-\tau, (\max\{c_2,\tau\}+c_2+c_1+p_1)-\tau\}$

Lower bound on the competitiveness of any online algorithm:

$$\min \begin{cases} \frac{\tau + c_1 + p_1}{c_1 + p_1}, \\ \frac{1 + p_2}{c_1 + p_1}, \\ \\ \min \begin{cases} \max\{c_1 + p_1, \max\{\max\{c_1, \tau\} + c_1 + p_1, c_1 + 2p_1\} - \tau, \max\{\max\{c_1, \tau\} + c_1 + p_1 + \max\{c_1, p_1\}, c_1 + 3p_1\} \\ \max\{c_1 + p_1, \max\{c_1, \tau\} + c_2 + p_2) - \tau, \max\{\max\{c_1, \tau\} + c_2 + c_1 + p_1, c_1 + 2p_1\} - \tau\} \\ \max\{c_1 + p_1, \max\{\max\{c_1, \tau\} + c_1 + p_1, c_1 + 2p_1\} - \tau, (\max\{c_1, \tau\} + c_1 + c_2 + p_2) - \tau\} \\ \max\{c_1 + p_1, (\max\{c_1, \tau\} + c_2 + p_2) - \tau, (\max\{c_1, \tau\} + c_2 + c_2) - \tau\} \\ \max\{c_2 + p_2, (\max\{c_2, \tau\} + c_2 + p_2) - \tau, (\max\{c_2, \tau\} + c_2 + c_1 + p_1) - \tau\} \end{cases}$$

Problem : to find τ , c_1 , p_1 , and p_2 (as $c_2 = 1$) which maximizes this lower bound.

(日)、(型)、(E)、(E)、(E)、(O)()

Constraints : $c_1 + p_1 < p_2$.

- Numeric resolution
- ② Characterization of the shape of the optimal : $\tau < c_1$, $p_1 = 0$, etc.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Numeric resolution
- Characterization of the shape of the optimal : \(\tau < c_1\), \(p_1 = 0\), etc.</p>
- In the system is a system in the system in the system is a system in the system in the system is a system in the system in the system is a system in the system in the system is a system in the system in the system is a system in the system in the system is a system in the system in the system is a system in the system

$$\min \begin{cases} \frac{\tau + c_1}{c_1}, \\ \frac{1 + p_2}{c_1}, \\ \\ min \begin{cases} 3c_1 - \tau, \\ c_1 + 1 - \tau + p_2, \\ 2c_1 - \tau + 1 + p_2 \\ \frac{1 + p_2}{c_1 + 2 + p_2 - \tau} \end{cases} = \min \begin{cases} \frac{\tau + c_1}{c_1}, \\ \frac{1 + p_2}{c_1}, \\ \frac{c_1 + 1 - \tau + p_2, \\ \frac{c_1 + 1 - \tau + p_2}{1 + p_2} \end{cases}$$

(日)、(型)、(E)、(E)、(E)、(O)()

- Numeric resolution
- Characterization of the shape of the optimal : \(\tau < c_1\), \(p_1 = 0\), etc.</p>
- I New system:

$$\min \begin{cases} \frac{\tau + c_1}{c_1}, \\ \frac{1 + p_2}{c_1}, \\ \\ \min \begin{cases} 3c_1 - \tau, \\ c_1 + 1 - \tau + p_2, \\ 2c_1 - \tau + 1 + p_2 \\ \frac{1 + p_2}{c_1 + p_2 - \tau} \end{cases} = \min \begin{cases} \frac{\tau + c_1}{c_1}, \\ \frac{1 + p_2}{c_1}, \\ \frac{c_1 + 1 - \tau + p_2, }{1 + p_2} \end{cases}$$

Solution: $c_1 = 2(1 + \sqrt{2}), p_2 = \sqrt{2}c_1 - 1, \tau = 2, \rho = \sqrt{2}.$

We can show that if a scheduler X knows:

- neither the number of tasks it will have to schedules,
- nor their arrival dates,

it cannot find an optimal schedule minimizing in any case one of the three usual metrics.

We even obtain a lower bound on the competitiveness of any algorithm of $\frac{5}{4}$ for the *makespan*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We can show that if a scheduler X knows:

- neither the number of tasks it will have to schedules,
- nor their arrival dates,

it cannot find an optimal schedule minimizing in any case one of the three usual metrics.

We even obtain a lower bound on the competitiveness of any algorithm of $\frac{5}{4}$ for the *makespan*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let us give it more knowledge.

Optimal algorithm...

for makespan minimization when one knows in advance the total number of tasks to schedule.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Principle

Define a virtual completion time

$$P_2: p = 4$$

 $P_2: p = 3$
 $P_1: p = 2$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三回 - のへで

- Define a virtual completion time
- Allocate tasks as late as possible, taking into account the tasks already scheduled

$$P_2: p = 4$$

 $P_2: p = 3$
 $P_1: p = 2$

- Define a virtual completion time
- Allocate tasks as late as possible, taking into account the tasks already scheduled

- Define a virtual completion time
- Allocate tasks as late as possible, taking into account the tasks already scheduled

- Define a virtual completion time
- Allocate tasks as late as possible, taking into account the tasks already scheduled

- Define a virtual completion time
- Allocate tasks as late as possible, taking into account the tasks already scheduled
- Memorize the task allocation to processors

- Define a virtual completion time
- Allocate tasks as late as possible, taking into account the tasks already scheduled
- Memorize the task allocation to processors
- Distribute tasks as soon as possible

