
Online scheduling on master-slave platforms

Frédéric Vivien

November 27, 2006

Overview

1 The homogeneous case

2 With heterogeneous processors

The scheduling problem

The processors

I Parallel
I Identical
I Uniforms

The scheduling problem

The processors

I Parallel
I Identical
I Uniforms

The tasks

Described by:

I their computation requirements;

I their communication volume;

I their arrival dates.

The scheduling problem

The scheduler

I Gather the tasks

I Send them to the processors

Processeurs

Réseau
Liens

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	

� � � � �
� � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Mâıtre

Tâches

The scheduling problem

The aim

Distribute the tasks to the processors, in order to process these tasks

I While respecting the system constraints
I on the processors
I on the tasks

I While optimizing an objective function.

The scheduling problem

Formally

I n tasks, m processors

I pi ,j : processing time of task i on processor j

I ci ,j : time to send task i from the master to the slave j

I ri : arrival date

I Ci : completion time
I The main objective functions:

I makespan: max Ci

I maximal flow: max Ci − ri
I average flow:

∑
(Ci − ri)

The scheduling problem

Simplifying the problem

I identical independent tasks,

The scheduling problem

Simplifying the problem

I identical independent tasks,

Necessary to have efficient algorithms.

The scheduling problem

Simplifying the problem

I identical independent tasks,

I Fast communications.

The scheduling problem

Simplifying the problem

I identical independent tasks,

I Fast communications.

Si cj0 = min cj et cj0 > pj0 , then the optimal schedule is trivial.

Calcul Calcul

Comm Comm

Overview

1 The homogeneous case
Problem presentation
Solution for the general case

2 With heterogeneous processors

Our platform

Processeurs

Réseau
Lien

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	

� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �

� � � � �
� � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

Mâıtre

Our problem

The aim

Minimizing:

I the makespan

I the maximal flow

I the sum flow

And the three simultaneously and online, if possible !

Round-Robin achieves this.

Round-Robin

Cyclic task allocation:
sends task i to processor i mod m as soon as possible.

Our problem

The aim

Minimizing:

I the makespan

I the maximal flow

I the sum flow

And the three simultaneously and online, if possible !

Round-Robin achieves this.

Round-Robin

Cyclic task allocation:
sends task i to processor i mod m as soon as possible.

Our problem

The aim

Minimizing:

I the makespan

I the maximal flow

I the sum flow

And the three simultaneously and online, if possible !

Round-Robin achieves this.

Round-Robin

Cyclic task allocation:
sends task i to processor i mod m as soon as possible.

Our problem

The aim

Minimizing:

I the makespan

I the maximal flow

I the sum flow

And the three simultaneously and online, if possible !

Round-Robin achieves this.

Round-Robin

Cyclic task allocation:
sends task i to processor i mod m as soon as possible.

The optimal scheduler: Round-Robin

Principle of the proof

I Explicit an optimal ASAP algorithm (ASAP=As Soon As Pos-
sible) having a behavior similar to that of Round-Robin,

I Show that ASAP and Round-Robin complete at the same time
the execution of each task.

The optimal scheduler: Round-Robin

I Let S be an optimal scheduler minimizing
∑

(Ci − ri)

I We build an ASAP scheduler from S , also optimal for this met-
ric, and which:

I sends tasks to slaves by non-decreasing arrival dates

I makes slaves process tasks by non-decreasing arrival dates
I send tasks to slaves ASAP

We show by induction that ASAP and Round-Robin completes tasks
at the very same dates.

The optimal scheduler: Round-Robin

I Let S be an optimal scheduler minimizing
∑

(Ci − ri)
I We build an ASAP scheduler from S , also optimal for this met-

ric, and which:
I sends tasks to slaves by non-decreasing arrival dates

I makes slaves process tasks by non-decreasing arrival dates
I send tasks to slaves ASAP

We show by induction that ASAP and Round-Robin completes tasks
at the very same dates.

The optimal scheduler: Round-Robin

I Let S be an optimal scheduler minimizing
∑

(Ci − ri)
I We build an ASAP scheduler from S , also optimal for this met-

ric, and which:
I sends tasks to slaves by non-decreasing arrival dates

I makes slaves process tasks by non-decreasing arrival dates
I send tasks to slaves ASAP

We show by induction that ASAP and Round-Robin completes tasks
at the very same dates.

k

j

j

k

j

k

k

j

Pj

Pk

Comm

Comm

rj < rk

The optimal scheduler: Round-Robin

I Let S be an optimal scheduler minimizing
∑

(Ci − ri)
I We build an ASAP scheduler from S , also optimal for this met-

ric, and which:
I sends tasks to slaves by non-decreasing arrival dates

I makes slaves process tasks by non-decreasing arrival dates
I send tasks to slaves ASAP

We show by induction that ASAP and Round-Robin completes tasks
at the very same dates.

Pj

Pk

Comm

Comm

rj < rk

k

j j

k

j

k

j

k

The optimal scheduler: Round-Robin

I Let S be an optimal scheduler minimizing
∑

(Ci − ri)
I We build an ASAP scheduler from S , also optimal for this met-

ric, and which:
I sends tasks to slaves by non-decreasing arrival dates
I makes slaves process tasks by non-decreasing arrival dates

I send tasks to slaves ASAP

We show by induction that ASAP and Round-Robin completes tasks
at the very same dates.

The optimal scheduler: Round-Robin

I Let S be an optimal scheduler minimizing
∑

(Ci − ri)
I We build an ASAP scheduler from S , also optimal for this met-

ric, and which:
I sends tasks to slaves by non-decreasing arrival dates
I makes slaves process tasks by non-decreasing arrival dates
I send tasks to slaves ASAP

We show by induction that ASAP and Round-Robin completes tasks
at the very same dates.

The optimal scheduler: Round-Robin

I Let S be an optimal scheduler minimizing
∑

(Ci − ri)
I We build an ASAP scheduler from S , also optimal for this met-

ric, and which:
I sends tasks to slaves by non-decreasing arrival dates
I makes slaves process tasks by non-decreasing arrival dates
I send tasks to slaves ASAP

We show by induction that ASAP and Round-Robin completes tasks
at the very same dates.

The optimal scheduler: Round-Robin

I Let S be an optimal scheduler minimizing
∑

(Ci − ri)
I We build an ASAP scheduler from S , also optimal for this met-

ric, and which:
I sends tasks to slaves by non-decreasing arrival dates
I makes slaves process tasks by non-decreasing arrival dates
I send tasks to slaves ASAP

We show by induction that ASAP and Round-Robin completes tasks
at the very same dates.

Same reasoning when taking for S an optimal algorithm minimizing
the makespan or the maximal flow.

The optimal scheduler: Round-Robin

Conclusion

In the end, Round-Robin is an optimal algorithm for the minimization
of

I makespan,

I average flow,

I and maximal flow,

for an online problem (with arrival dates).

Overview

1 The homogeneous case

2 With heterogeneous processors
The online problem
A solution for a special online problem

The platform

Processeurs

Réseau
Lien

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	

� � � � �
� � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Mâıtre

The optimal scheduler...

does not exist!!

at least for the online problem and any of the three usual metrics.

Lower bounds on the competitiveness of online algorithms

Objective function
Platform type

Makespan Max-flow Sum-flow

Communication homogeneous 5
4

= 1.250 5−
√

7
2

≈ 1.177 2+4
√

2
7

≈ 1.093

Computation homogeneous 6
5

= 1.200 5
4

= 1.250 23
22

≈ 1.045

Heterogeneous 1+
√

3
2

≈ 1.366
√

2 ≈ 1.414
√

13−1
2

≈ 1.302

Finding a lower bound on the competitiveness (1)

P3(1, p2)

P2(1, p2)

P1(c1, p1)

temps0 τ

Idea:

I a fast processor with slow communications (c1 > 1);

I two identical and slow processors, but with fast communica-
tions;

I if only one task, one must choose the fast processor (c1 +p1 <
1 + p2).

Finding a lower bound on the competitiveness (1)

P3(1, p2)

P2(1, p2)

P1(c1, p1)

temps0 τ

Finding a lower bound on the competitiveness (1)

P3(1, p2)

P2(1, p2)

P1(c1, p1)

temps0 τ

We look at time τ ≥ 1 to see what has happened. Three possibili-
ties:

Finding a lower bound on the competitiveness (1)

P3(1, p2)

P2(1, p2)

P1(c1, p1)

temps0 τ

We look at time τ ≥ 1 to see what has happened. Three possibilities:

1 Optimal : task on P1, max-flow ≥ c1 + p1.

Finding a lower bound on the competitiveness (1)

P3(1, p2)

P2(1, p2)

P1(c1, p1)

temps0 τ

We look at time τ ≥ 1 to see what has happened. Three possibilities:

1 Optimal : task on P1, max-flow ≥ c1 + p1.

2 Nothing done: max-flow ≥ τ + c1 + p1, ratio ≥ τ+c1+p1
c1+p1

.

Finding a lower bound on the competitiveness (1)

P3(1, p2)

P2(1, p2)

P1(c1, p1)

temps0 τ

We look at time τ ≥ 1 to see what has happened. Three possibilities:

1 Optimal : task on P1, max-flow ≥ c1 + p1.

2 Nothing done: max-flow ≥ τ + c1 + p1, ratio ≥ τ+c1+p1
c1+p1

.

3 Task send to P2, max-flow ≥ 1 + p2. Ratio ≥ 1+p2
c1+p1

.

We want to force the algorithm to process the first task on P1.

Finding a lower bound on the competitiveness (1)

P3(1, p2)

P2(1, p2)

P1(c1, p1)

temps0 τ

We look at time τ ≥ 1 to see what has happened. We will choose
τ , c1, p1 and p2 such that:

min

{
1 + p2

c1 + p1
,
τ + c1 + p1

c1 + p1

}
≥ ρ

Finding a lower bound on the competitiveness (1)

P3(1, p2)

P2(1, p2)

P1(c1, p1)

temps0 τ

At time τ we send two new tasks.
We consider all the possible cases.

Finding a lower bound on the competitiveness (1)

P3(1, p2)

P2(1, p2)

P1(c1, p1)

temps0 τ

At time τ we send two new tasks.
The two tasks are executed on P1:

max{c1 + p1,

max{max{c1, τ}+ c1 + p1, c1 + 2p1} − τ,

max{max{c1, τ}+ c1 + p1 + max{c1, p1}, c1 + 3p1} − τ}

Finding a lower bound on the competitiveness (1)

P3(1, p2)

P2(1, p2)

P1(c1, p1)

temps0 τ

At time τ we send two new tasks.
The first of the two tasks is executed on P2 (or P3), and the other
one on P1.

max{c1 + p1,

(max{c1, τ}+ c2 + p2)− τ,

max{max{c1, τ}+ c2 + c1 + p1, c1 + 2p1} − τ}

Finding a lower bound on the competitiveness (1)

P3(1, p2)

P2(1, p2)

P1(c1, p1)

temps0 τ

At time τ we send two new tasks.
The first of the two tasks is executed on P1, and the other one on
P2 (or P3).

max{c1 + p1,

max{max{c1, τ}+ c1 + p1, c1 + 2p1} − τ,

(max{c1, τ}+ c1 + c2 + p2)− τ}

Finding a lower bound on the competitiveness (1)

P3(1, p2)

P2(1, p2)

P1(c1, p1)

temps0 τ

At time τ we send two new tasks.
One of the two tasks is executed on P2 and the other one on P3.

max{c1+p1, (max{c1, τ}+c2+p2)−τ, (max{c1, τ}+c2+c2+p2)−τ}

Finding a lower bound on the competitiveness (1)

P3(1, p2)

P2(1, p2)

P1(c1, p1)

temps0 τ

At time τ we send two new tasks.
The case where both tasks are executed on P2 (or both on P3) is
worse than the previous one, therefore, we do not need to study it.

Finding a lower bound on the competitiveness (1)

P3(1, p2)

P2(1, p2)

P1(c1, p1)

temps0 τ

At time τ we send two new tasks.
The (desired) optimal: the first task on P2, the second on P3, and
the third on P1.

max{c2+p2, (max{c2, τ}+c2+p2)−τ, (max{c2, τ}+c2+c1+p1)−τ}

Finding a lower bound on the competitiveness (2)

Lower bound on the competitiveness of any online algorithm:

min

τ+c1+p1
c1+p1

,

1+p2
c1+p1

,

min

8>>>>><>>>>>:

max{c1 + p1, max{max{c1, τ} + c1 + p1, c1 + 2p1} − τ, max{max{c1, τ} + c1 + p1 + max{c1, p1}, c1 + 3p1} − τ}
max{c1 + p1, (max{c1, τ} + c2 + p2)− τ, max{max{c1, τ} + c2 + c1 + p1, c1 + 2p1} − τ}
max{c1 + p1, max{max{c1, τ} + c1 + p1, c1 + 2p1} − τ, (max{c1, τ} + c1 + c2 + p2)− τ}
max{c1 + p1, (max{c1, τ} + c2 + p2)− τ, (max{c1, τ} + c2 + c2 + p2)− τ}

max{c2+p2,(max{c2,τ}+c2+p2)−τ,(max{c2,τ}+c2+c1+p1)−τ}

Problem : to find τ , c1, p1, and p2 (as c2 = 1) which maximizes
this lower bound.
Constraints : c1 + p1 < p2.

Finding a lower bound on the competitiveness (3)

1 Numeric resolution

2 Characterization of the shape of the optimal : τ < c1, p1 = 0,
etc.

3 New system:

min

τ+c1

c1
,

1+p2

c1
,

min

8>>>>>>><>>>>>>>:

3c1 − τ,

c1 + 1− τ + p2,

2c1 − τ + 1 + p2

c1 + 2 + p2 − τ
1+p2

= min

τ+c1

c1
,

1+p2

c1
,

c1+1−τ+p2,
1+p2

4 Solution: c1 = 2(1 +
√

2), p2 =
√

2c1 − 1, τ = 2, ρ =
√

2.

Finding a lower bound on the competitiveness (3)

1 Numeric resolution

2 Characterization of the shape of the optimal : τ < c1, p1 = 0,
etc.

3 New system:

min

τ+c1

c1
,

1+p2

c1
,

min

8>>>>>>><>>>>>>>:

3c1 − τ,

c1 + 1− τ + p2,

2c1 − τ + 1 + p2

c1 + 2 + p2 − τ
1+p2

= min

τ+c1

c1
,

1+p2

c1
,

c1+1−τ+p2,
1+p2

4 Solution: c1 = 2(1 +
√

2), p2 =
√

2c1 − 1, τ = 2, ρ =
√

2.

Finding a lower bound on the competitiveness (3)

1 Numeric resolution

2 Characterization of the shape of the optimal : τ < c1, p1 = 0,
etc.

3 New system:

min

τ+c1

c1
,

1+p2

c1
,

min

8>>>>>>><>>>>>>>:

3c1 − τ,

c1 + 1− τ + p2,

2c1 − τ + 1 + p2

c1 + 2 + p2 − τ
1+p2

= min

τ+c1

c1
,

1+p2

c1
,

c1+1−τ+p2,
1+p2

4 Solution: c1 = 2(1 +
√

2), p2 =
√

2c1 − 1, τ = 2, ρ =
√

2.

Finding a lower bound on the competitiveness (3)

1 Numeric resolution

2 Characterization of the shape of the optimal : τ < c1, p1 = 0,
etc.

3 New system:

min

τ+c1

c1
,

1+p2

c1
,

min

8>>>>>>><>>>>>>>:

3c1 − τ,

c1 + 1− τ + p2,

2c1 − τ + 1 + p2

c1 + 2 + p2 − τ
1+p2

= min

τ+c1

c1
,

1+p2

c1
,

c1+1−τ+p2,
1+p2

4 Solution: c1 = 2(1 +
√

2), p2 =
√

2c1 − 1, τ = 2, ρ =
√

2.

Online minimization of makespan

We can show that if a scheduler X knows:

I neither the number of tasks it will have to schedules,

I nor their arrival dates,

it cannot find an optimal schedule minimizing in any case one of the
three usual metrics.

We even obtain a lower bound on the competitiveness of any algo-
rithm of 5

4 for the makespan.

Let us give it more knowledge.

Online minimization of makespan

We can show that if a scheduler X knows:

I neither the number of tasks it will have to schedules,

I nor their arrival dates,

it cannot find an optimal schedule minimizing in any case one of the
three usual metrics.

We even obtain a lower bound on the competitiveness of any algo-
rithm of 5

4 for the makespan.

Let us give it more knowledge.

Scheduling the Last Job First

Optimal algorithm...

for makespan minimization when one knows in advance the total
number of tasks to schedule.

Scheduling the Last Job First

Principle

I Define a virtual completion time

I Allocate tasks as late as possible, taking into account the tasks
already scheduled

I Memorize the task allocation to processors

I Distribute tasks as soon as possible

Scheduling the Last Job First

Principle

I Define a virtual completion time

I Allocate tasks as late as possible, taking into account the tasks
already scheduled

I Memorize the task allocation to processors

I Distribute tasks as soon as possible

P1 : p = 2

P2 : p = 3

P2 : p = 4

Scheduling the Last Job First

Principle

I Define a virtual completion time

I Allocate tasks as late as possible, taking into account the tasks
already scheduled

I Memorize the task allocation to processors

I Distribute tasks as soon as possible

P1 : p = 2

P2 : p = 3

P2 : p = 4

l

Scheduling the Last Job First

Principle

I Define a virtual completion time

I Allocate tasks as late as possible, taking into account the tasks
already scheduled

I Memorize the task allocation to processors

I Distribute tasks as soon as possible

P1 : p = 2

P2 : p = 3

P2 : p = 4

k

l

Scheduling the Last Job First

Principle

I Define a virtual completion time

I Allocate tasks as late as possible, taking into account the tasks
already scheduled

I Memorize the task allocation to processors

I Distribute tasks as soon as possible

P1 : p = 2

P2 : p = 3

P2 : p = 4 j

k

l

Scheduling the Last Job First

Principle

I Define a virtual completion time

I Allocate tasks as late as possible, taking into account the tasks
already scheduled

I Memorize the task allocation to processors

I Distribute tasks as soon as possible

P1 : p = 2

P2 : p = 3

P2 : p = 4

i

j

k

l

Scheduling the Last Job First

Principle

I Define a virtual completion time

I Allocate tasks as late as possible, taking into account the tasks
already scheduled

I Memorize the task allocation to processors

I Distribute tasks as soon as possible

P1 : p = 2

P2 : p = 3

P2 : p = 4

i

j

k

l

Scheduling the Last Job First

Principle

I Define a virtual completion time

I Allocate tasks as late as possible, taking into account the tasks
already scheduled

I Memorize the task allocation to processors

I Distribute tasks as soon as possible

P1 : p = 2

P2 : p = 3

P2 : p = 4

j k , li

i

j

i

j

Arrivée :

l

k

k

l

	The homogeneous case
	Problem presentation
	Solution for the general case

	With heterogeneous processors
	The online problem
	A solution for a special online problem

