Steady-State Scheduling (2)

Frédéric Vivien
e-mail: Frederic.Vivien@ens-lyon.fr

9 octobre 2006

Overview

(1) Packet routing without fixed path
(2) Broadcast
(3) Master-slave tasking

Steady-State Scheduling

Changing the objective:

- Makespan minimization: reasonable for small set of tasks
- On distributed heterogeneous platforms: large amount of work
- No difference if program runs for 3 hours or 3 hours +5 secondes
- Total completion time may not be the right metric
- Efficient resource utilization during steady-state: throughput maximization
- Neglect initialization and clean-up phases

Overview

(1) Packet routing without fixed path

(2) Broadcast

3 Master-slave tasking

Packet routing without fixed path

- n_{c} collections of packets to be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l

Packet routing without fixed path

- n_{c} collections of packets to be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l
- rule: one edge cannot carry two packets at the same time

Packet routing without fixed path

- n_{c} collections of packets to be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l
- rule: one edge cannot carry two packets at the same time

Packet routing without fixed path

- n_{c} collections of packets to be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l
- rule: one edge cannot carry two packets at the same time

Packet routing without fixed path

- n_{c} collections of packets to be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l
- rule: one edge cannot carry two packets at the same time

Packet routing without fixed path

- n_{c} collections of packets to be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l
- rule: one edge cannot carry two packets at the same time

Packet routing without fixed path

- n_{c} collections of packets to be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l
- rule: one edge cannot carry two packets at the same time

Packet routing without fixed path

- n_{c} collections of packets to be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l
- rule: one edge cannot carry two packets at the same time

Packet routing without fixed path

- n_{c} collections of packets to be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l
- rule: one edge cannot carry two packets at the same time

Packet routing without fixed path

- n_{c} collections of packets to
 be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l
- rule: one edge cannot carry two packets at the same time

Packet routing without fixed path

- n_{c} collections of packets to
 be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l
- rule: one edge cannot carry two packets at the same time

Packet routing without fixed path

- n_{c} collections of packets to be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l
- rule: one edge cannot carry two packets at the same time

Packet routing without fixed path

- n_{c} collections of packets to
 be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l
- rule: one edge cannot carry two packets at the same time

Packet routing without fixed path

- n_{c} collections of packets to be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l
- rule: one edge cannot carry two packets at the same time
- $n_{i, j}^{k, l}$: total number of packets routed from k to l and crossing edge (i, j)

Packet routing without fixed path

- n_{c} collections of packets to be routed
- packets of a same collection may follow different paths
- $n^{k, l}$: total number of packets to be routed from k to l
- rule: one edge cannot carry two packets at the same time
- $n_{i, j}^{k, l}$: total number of packets routed from k to l and crossing edge (i, j)
- Congestion:

$$
C_{i, j}=\sum_{i, j}^{k, l} n_{i, j}^{k,} \quad C_{\max }=\max _{i, j} C_{i, j}
$$

Equations (1/2)

(1) Initialization

$$
\sum_{j \mid(k, j) \in A} n_{k, j}^{k, l}=n^{k, l}
$$

Equations (1/2)

(1) Initialization

$$
\sum_{j \mid(k, j) \in A} n_{k, j}^{k, l}=n^{k, l}
$$

(2) Reception

$$
\sum_{i \mid(i, l) \in A} n_{i, l}^{k, l}=n^{k, l}
$$

Equations (1/2)

(1) Initialization

$$
\sum_{j \mid(k, j) \in A} n_{k, j}^{k, l}=n^{k, l}
$$

(2) Reception

$$
\sum_{i \mid(i, l) \in A} n_{i, l}^{k, l}=n^{k, l}
$$

(3) Conservation law

$$
\sum_{i \mid(i, j) \in A} n_{i, j}^{k, l}=\sum_{i \mid(j, i) \in A} n_{j, i}^{k, l} \quad \forall(k, l), j \neq k, j \neq l
$$

Equations (2/2)

(1) Congestion

$$
C_{i, j}=\sum_{(k, l) \mid n^{k, l}>0} n_{i, j}^{k, l}
$$

Equations (2/2)

(1) Congestion

$$
C_{i, j}=\sum_{(k, l) \mid n^{k, l}>0} n_{i, j}^{k, l}
$$

(5) Objective function

$$
C_{\max } \geq C_{i, j}, \quad \forall i, j
$$

Minimize $C_{\text {max }}$

Equations (2/2)

(9) Congestion

$$
C_{i, j}=\sum_{(k, l) \mid n^{k, l}>0} n_{i, j}^{k, l}
$$

(5) Objective function

$$
C_{\max } \geq C_{i, j}, \quad \forall i, j
$$

Minimize $C_{\text {max }}$
Linear program in rational numbers: polynomial-time solution. In practice use Maple, Mupad, Ip-solve,...

Equations (2/2)

(c) Congestion

$$
C_{i, j}=\sum_{(k, l) \mid n^{k, l}>0} n_{i, j}^{k, l}
$$

(3) Objective function

$$
C_{\max } \geq C_{i, j}, \quad \forall i, j
$$

Minimize $C_{\text {max }}$
Linear program in rational numbers: polynomial-time solution. In practice use Maple, Mupad, Ip-solve,...

Solution:
number of messages $n_{i, j}^{k, l}$ of each edge to minimize total congestion

Routing algorithm

(1) Computing optimal solution $C_{\max }$ of previous linear program

Routing algorithm

(1) Computing optimal solution $C_{\text {max }}$ of previous linear program
(2) Consider periods of length Ω (to be defined later)

Routing algorithm

(1) Computing optimal solution $C_{\text {max }}$ of previous linear program
(2) Consider periods of length Ω (to be defined later)
(3) During each time-interval $[p \Omega,(p+1) \Omega]$, follow the optimal solution: edge (i, j) forwards:

$$
m_{i, j}^{k, l}=\left\lfloor\frac{n_{i, j}^{k, l} \Omega}{C_{\max }}\right\rfloor
$$

packets that go from k to l. (if available)

Routing algorithm

(1) Computing optimal solution $C_{\text {max }}$ of previous linear program
(2) Consider periods of length Ω (to be defined later)
(3) During each time-interval $[p \Omega,(p+1) \Omega]$, follow the optimal solution: edge (i, j) forwards:

$$
m_{i, j}^{k, l}=\left\lfloor\frac{n_{i, j}^{k, l} \Omega}{C_{\max }}\right\rfloor
$$

packets that go from k to l. (if available)
(9) number of such periods: $\left\lceil\frac{C_{\max }}{\Omega}\right\rceil$

Routing algorithm

(1) Computing optimal solution $C_{\max }$ of previous linear program
(2) Consider periods of length Ω (to be defined later)
(3) During each time-interval $[p \Omega,(p+1) \Omega]$, follow the optimal solution: edge (i, j) forwards:

$$
m_{i, j}^{k, l}=\left\lfloor\frac{n_{i, j}^{k, l} \Omega}{C_{\max }}\right\rfloor \quad \text { packets that go from }
$$

(9) number of such periods: $\left\lceil\frac{C_{\max }}{\Omega}\right\rceil$
(5) After time-step

$$
T \equiv\left\lceil\frac{C_{\max }}{\Omega}\right\rceil \Omega \leq C_{\max }+\Omega
$$

sequentially process M residual packets in no longer than $M L$ time-steps, where L is the maximum length of a simple path in the network

Feasibility

$$
\sum_{(k, l)} m_{i, j}^{k, l} \leq \sum_{(k, l)} \frac{n_{i, j}^{k, l} \Omega}{C_{\max }}=\frac{C_{i, j} \Omega}{C_{\max }} \leq \Omega
$$

Makespan

- Define Ω as $\Omega=\sqrt{C_{\max } n_{c}}$.

Makespan

- Define Ω as $\Omega=\sqrt{C_{\max } n_{c}}$.
- Total number of packets still inside network at time-step T is at most

$$
2|A| \sqrt{C_{\max } n_{c}}+|A| n_{c}
$$

Makespan

- Define Ω as $\Omega=\sqrt{C_{\max } n_{c}}$.
- Total number of packets still inside network at time-step T is at most

$$
2|A| \sqrt{C_{\max } n_{c}}+|A| n_{c}
$$

- Makespan:

$$
\begin{gathered}
C_{\max } \leq C^{*} \leq C_{\max }+\sqrt{C_{\max } n_{c}}+2|A| \sqrt{C_{\max } n_{c}}|V|+|A| n_{c}|V| \\
C^{*}=C_{\max }+O\left(\sqrt{C_{\max }}\right)
\end{gathered}
$$

Steady-state scheduling

Background Approach pioneered by Bertsimas and Gamarnik

Steady-state scheduling

Background Approach pioneered by Bertsimas and Gamarnik Rationale Maximize throughput

Steady-state scheduling

Background Approach pioneered by Bertsimas and Gamarnik Rationale Maximize throughput Simplicity Relaxation of makespan minimization problem

Steady-state scheduling

Background Approach pioneered by Bertsimas and Gamarnik Rationale Maximize throughput Simplicity Relaxation of makespan minimization problem

- Ignore initialization and clean-up phases

Steady-state scheduling

Background Approach pioneered by Bertsimas and Gamarnik Rationale Maximize throughput Simplicity Relaxation of makespan minimization problem

- Ignore initialization and clean-up phases
- Precise ordering/allocation of tasks/messages not needed

Steady-state scheduling

Background Approach pioneered by Bertsimas and Gamarnik Rationale Maximize throughput
Simplicity Relaxation of makespan minimization problem

- Ignore initialization and clean-up phases
- Precise ordering/allocation of tasks/messages not needed
- Characterize resource activity during each time-unit:
- which (rational) fraction of time is spent computing for which application?
- which (rational) fraction of time is spent receiving or sending to which neighbor?

Steady-state scheduling

Background Approach pioneered by Bertsimas and Gamarnik Rationale Maximize throughput
Simplicity Relaxation of makespan minimization problem

- Ignore initialization and clean-up phases
- Precise ordering/allocation of tasks/messages not needed
- Characterize resource activity during each time-unit:
- which (rational) fraction of time is spent computing for which application?
- which (rational) fraction of time is spent receiving or sending to which neighbor?
Efficiency Periodic schedule, described in compact form

Steady-state scheduling

Background Approach pioneered by Bertsimas and Gamarnik Rationale Maximize throughput
Simplicity Relaxation of makespan minimization problem

- Ignore initialization and clean-up phases
- Precise ordering/allocation of tasks/messages not needed
- Characterize resource activity during each time-unit:
- which (rational) fraction of time is spent computing for which application?
- which (rational) fraction of time is spent receiving or sending to which neighbor?
Efficiency Periodic schedule, described in compact form
Adaptability Dynamically record observed performance during current period, and inject this information to compute optimal schedule for next period

Overview

(1) Packet routing without fixed path
(2) Broadcast
(3) Master-slave tasking

Broadcasting data

- Key collective communication operation
- Start: one processor has the data
- End: all processors own a copy

Broadcasting data

- Key collective communication operation
- Start: one processor has the data
- End: all processors own a copy
- Vast literature about broadcast, MPI_Bcast
- Standard approach: use a spanning tree

Broadcasting data

- Key collective communication operation
- Start: one processor has the data
- End: all processors own a copy
- Vast literature about broadcast, MPI_Bcast
- Standard approach: use a spanning tree
- Finding the best spanning tree: NP-Complete problem (even in the telephone model)

Heuristic: Earliest completing edge first (ECEF)

Heuristic: Earliest completing edge first (ECEF)

Next node: minimize $\left(R_{i}\right)+c_{i j}, P_{j} \notin \mathcal{T}$

Heuristic: Earliest completing edge first (ECEF)

Next node: minimize $\left(R_{i}\right)+c_{i j}, P_{j} \notin \mathcal{T}$

Heuristic: Earliest completing edge first (ECEF)

Next node: minimize $\left(R_{i}\right)+c_{i j}, P_{j} \notin \mathcal{T}$

Heuristic: Earliest completing edge first (ECEF)

Next node: minimize $\left(R_{i}\right)+c_{i j}, P_{j} \notin \mathcal{T}$

Heuristic: Earliest completing edge first (ECEF)

Broadcast finishing times (t)

Heuristic: Look-ahead (LA)

Next node: $\operatorname{minimize}\left(R_{i}\right)+c_{i j}+\left(\min c_{j k}\right), P_{j}, P_{k} \notin \mathcal{T}$

Heuristic: Look-ahead (LA)

Next node: $\operatorname{minimize}\left(R_{i}\right)+c_{i j}+\left(\min c_{j k}\right), P_{j}, P_{k} \notin \mathcal{T}$

Heuristic: Look-ahead (LA)

Next node: $\operatorname{minimize}\left(R_{i}\right)+c_{i j}+\left(\min c_{j k}\right), P_{j}, P_{k} \notin \mathcal{T}$

Heuristic: Look-ahead (LA)

Next node: $\operatorname{minimize}\left(R_{i}\right)+c_{i j}+\left(\min c_{j k}\right), P_{j}, P_{k} \notin \mathcal{T}$

Heuristic: Look-ahead (LA)

Broadcast finishing times (t)

Broadcasting longer messages

- Message size goes from L to, say, $10 L$
- Communication costs scale from $c_{i j}$ to $10 c_{i j}$

Broadcasting longer messages

- Message size goes from L to, say, $10 L$
- Communication costs scale from $c_{i j}$ to $10 c_{i j}$
- ECEF heuristic: broadcast time becomes 90
- LA heuristic: broadcast time becomes 70

Broadcasting longer messages

Introduction to Pipelined Communications

- Complex applications on gridS require collective communication schemes:

```
one-to-all Broadcast, Multicast, Scatter
all-to -one Reduce
all-to-all Gossip, All-to-All
```

- Numerous studies of a single communication scheme, mainly about one single broadcast
- Pipelining communications:
- data parallelism involves a large amount of data
- not a single communication, but a series of same communication schemes (e.g. a series of broadcasts from the same source)
- maximize throughput of the steady-state operation

Modeling the platform

- $G=(P, E, c)$
- Let $P_{1}, P_{2}, \ldots, P_{n}$ be the n processors
- $\left(P_{j}, P_{k}\right) \in E$ denotes a communication link between P_{i} and P_{j}
- $c\left(P_{j}, P_{k}\right)$ denotes the time to transfer one unit-size message from P_{j} to P_{k}
- one-port for incoming
 communications
- one-port for outgoing communications

Pipelining Broadcasts

- Send n messages from P_{0} to all other P_{i} 's

Pipelining Broadcasts

- Send n messages from P_{0} to all other P_{i} 's
- Let $T_{\text {opt }(n)}$ denote the optimal time for broadcasting the n messages

Pipelining Broadcasts

- Send n messages from P_{0} to all other P_{i} 's
- Let $T_{o p t(n)}$ denote the optimal time for broadcasting the n messages
- Asymptotic optimality: $\quad \lim _{n \rightarrow+\infty} \frac{T_{\text {alg }}(n)}{T_{\text {opt }}(n)}=1$

Pipelining Broadcasts

- Send n messages from P_{0} to all other P_{i} 's
- Let $T_{\text {opt }(n)}$ denote the optimal time for broadcasting the n messages
- Asymptotic optimality: $\quad \lim _{n \rightarrow+\infty} \frac{T_{\text {alg }}(n)}{T_{\text {opt }}(n)}=1$
- Usually, broadcasts are executed along one or several spanning trees

Pipelining Broadcasts

- Send n messages from P_{0} to all other P_{i} 's
- Let $T_{\text {opt }(n)}$ denote the optimal time for broadcasting the n messages
- Asymptotic optimality: $\quad \lim _{n \rightarrow+\infty} \frac{T_{\text {alg }}(n)}{T_{\text {opt }}(n)}=1$
- Usually, broadcasts are executed along one or several spanning trees
- What is the best broadcast throughput when using a single tree, a DAG, or a general graph?

With a tree

The throughput with the best tree is 2 messages every 3 tops

With a DAG

The throughput with the best DAG is 4 messages every 5 tops

With a general graph

- Throughput with the best graph: 2 messages every 2 tops
- Two different sorts of messages (even/odd numbered)
- $m_{1}(i)$ denotes the message sent from P_{0} to P_{1} during period i
- $m_{2}(i)$ denotes the message sent from P_{0} to P_{2} during period i
path for m_{1} messages

path for m_{2} messages

With a general graph

- Throughput with the best graph: 2 messages every 2 tops
- Two different sorts of messages (even/odd numbered)
- $m_{1}(i)$ denotes the message sent from P_{0} to P_{1} during period i
- $m_{2}(i)$ denotes the message sent from P_{0} to P_{2} during period i
all communications

With a general graph

- Throughput with the best graph: 2 messages every 2 tops
- Two different sorts of messages (even/odd numbered)
- $m_{1}(i)$ denotes the message sent from P_{0} to P_{1} during period i
- $m_{2}(i)$ denotes the message sent from P_{0} to P_{2} during period i

Problem Statement

- Input: $G=(P, E, c)$
- Output:
- The best throughput $\frac{p}{q}$
- A "compact" description of the behiavior of the nodes.

During q time steps

- step 1: $P_{i_{1}}^{(1)}$ sends 1 mess to $P_{j_{1}}^{(1)}$
- step 1: $P_{i_{2}}^{(1)}$ sends 1 mess to $P_{j_{2}}^{(1)}$
-
- step $q: P_{i_{n}}^{(q)}$ sends 1 mess to $P_{j_{n}}^{(q)}$

This is not likely to be polynomial since the size of the description is a priori of order $O(n q)$

During q time steps

- step 1: $P_{i_{1}}^{(1)}$ sends $\alpha_{i_{1}}^{(1)}$ mess to $P_{j_{1}}^{(1)}$
- step 1: $P_{i_{2}}^{(1)}$ sends $\alpha_{i_{2}}^{(1)}$ mess to $P_{j_{2}}^{(1)}$
- !
- step $q: P_{i_{n}}^{(q)}$ sends $\alpha_{i_{n}}^{(q)}$ mess to $P_{j_{n}}^{(q)}$

The size of such a description may be polynomial

Broadcast: Linear Program (1)

$x_{i}^{j, k}$ denotes the fraction of the message from P_{0} to P_{i} that uses edge $\left(P_{j}, P_{k}\right)$ The conditions are

- $\forall i, \quad \sum x_{i}^{0, k}=1$
- $\forall i, \quad \sum x_{i}^{j, i}=1$
- $\forall j \neq 0, i, \quad \sum_{k} x_{i}^{j, k}=\sum_{k} x_{i}^{k, j}$

Broadcast: Linear Program (2)

$t_{j, k}$ denotes the time to transfer all the messages between P_{j} and P_{k}

- $t_{j, k} \leq \sum x_{i}^{j, k} c_{j, k}$????
- too pessimistic since $x_{i_{1}}^{j, k}$ and $x_{i_{2}}^{k, j}$ may be the same message
- not good for a lower bound

Broadcast: Linear Program (2)

$t_{j, k}$ denotes the time to transfer all the messages between P_{j} and P_{k}

- $t_{j, k} \leq \sum x_{i}^{j, k} c_{j, k}$????
- too pessimistic since $x_{i_{1}}^{j, k}$ and $x_{i_{2}}^{k, j}$ may be the same message
- not good for a lower bound
or
- $\forall i, \quad t_{j, k} \geq x_{i}^{j, k} c_{j, k}$????
- too optimistic since it supposes that all the messages are sub-messages of the largest one

- OK for a lower bound, may not be feasible

Broadcast: Linear Program (3)

one-port model, for a unit message

- at most one sending operation:

$$
\sum_{\left.P_{j}, P_{k}\right) \in E} t_{j, k} \leq t_{j}^{o u t}
$$

- at most one receiving operation:

$$
\sum_{\left(P_{k}, P_{j}\right) \in E} t_{k, j} \leq t_{j}^{i n}
$$

and at last,

- $\forall j, \quad t_{j}^{o u t} \leq t^{b r o a d c a s t}$
- $\forall j, \quad t_{j}^{i n} \leq t^{\text {broadcast }}$

Broadcast: Linear Program (4)

Minimize $t^{\text {broadcast }}$,
SUBJECT TO

$$
\begin{cases}\forall i, & \sum x_{i}^{0, k}=1 \\ \forall i, & \sum x_{i}^{j, i}=1 \\ \forall i, \forall j \neq 0, i, & \sum x_{i}^{j, k}=\sum x_{i}^{k, j} \\ \forall i, j, k & t_{j, k} \geq x_{i}^{j, k} c_{j, k} \\ \forall j, & \sum_{\left(P_{j}, P_{k}\right) \in E} t_{j, k} \leq t_{j}^{o u t} \\ \forall j, & \sum_{\left(P_{k}, P_{j}\right) \in E} t_{k, j} \leq t_{j}^{\text {in }} \\ \forall j, & t_{j}^{\text {out }} \leq t^{\text {broadcast }} \\ \forall j, & t_{j}^{i n} \leq t^{\text {broadcast }}\end{cases}
$$

Caveats

- The linear program provides a lower bound for the broadcasting time of a unit-size divisible message
- It is not obvious that this lower bound is feasible since we considered that all the messages using the same communication link are sub-messages of the largest one.

Consider the multicast of a message:

- Some nodes not involved in receiving the messages
- Ue the same equations, but if P_{i} does not belong to the multicast set, then $\sum x_{i}^{0, k}=1$ and $\sum x_{i}^{j, i}=1$ are removed

Lower Bound ??? Multicast Example (1)

Consider the following platform, where the multicast set consists in the colored nodes:

The linear program provides the following solution with throughput 1:

Lower Bound ??? Multicast Example (1)

Consider the following platform, where the multicast set consists in the colored nodes:

The linear program provides the following solution with throughput 1:

Lower Bound ??? Multicast Example (1)

Consider the following platform, where the multicast set consists in the colored nodes:

The linear program provides the following solution with throughput 1:

Lower Bound ??? Multicast Example (1)

Consider the following platform, where the multicast set consists in the colored nodes:

The linear program provides the following solution with throughput 1:

Lower Bound ??? Multicast Example (2)

Nevertheless, the obtained throughput is not feasible:

Lower Bound ??? Broadcast Example

For broadcast, the bound is nevertheless tight:

2 disjoint broadcast trees T_{1} and T_{2}, of weight $\frac{1}{2} \Longrightarrow 1$ message broacast at every top.

- How to find the trees ?
- How to keep the number of (weighted) trees relatively low ?

How many paths from P_{0} to $P_{i}(1)$

$x_{i}^{j, k}$ denotes the fraction of the message from P_{0} to P_{i} that uses edge $\left(P_{j}, P_{k}\right)$
We know that

$$
\begin{cases}\text { fraction of messages leaving } P_{0} & \sum x_{i}^{0, k}=1 \\ \text { fraction of messages arriving at } P_{i} & \sum x_{i}^{j, i}=1 \\ \text { conservation law at } P_{i} \neq P_{0}, P_{i} & \sum x_{i}^{j, k}=\sum x_{i}^{k, j}\end{cases}
$$

The x_{i} 's define a flow in G of total weight 1.

How many paths from P_{0} to P_{i} (2)

- The x_{3} 's define a flow in G of total weight 1
- In order to disconnect P_{3} from P_{0}, a total weight of 1 has to be removed

How many paths from P_{0} to P_{i} (2)

- The x_{3} 's define a flow in G of total weight 1
- In order to disconnect P_{3} from P_{0}, a total weight of 1 has to be removed

A nice graph theorem

- $c\left(P_{0}, P_{i}\right)$ minimum weight to remove to disconnect $=1$
- $c\left(P_{0}\right)=\min c\left(P_{0}, P_{i}\right)=1$
- $n_{j, k}=\max _{i}\left\{x_{i}^{j, k}\right\}$ is the fraction of messages through $\left(P_{j}, P_{k}\right)$.

Theorem (Weighted version of Edmond's branching Theorem)

Given a directed weighted $G=(P, E, n), P_{0} \in P$ the source, we can find P_{0}-arborescences, T_{1}, \ldots, T_{k}, and weights $\lambda_{1}, \ldots, \lambda_{k}$ with $\forall j, k, \sum \lambda_{i} \delta\left(T_{i}\right) \leq n_{j, k}$ with

$$
\sum \lambda_{i}=c\left(P_{0}\right)=1
$$

in strongly polynomial time, and $k \leq|E|+|V|^{3}$.
This theorem provides:

- the set of trees, their weights
- and the number of trees is "low": $\leq|E|+|V|^{3}$.

A nice graph theorem (2)

(1) Linear program:

(2) Schrijver's algorithm for weighted Edmond's theorem

Compact description of the solution?

- Period duration $=2(=\operatorname{lcm}($ denominators tree coeff. $))$

Compact description of the solution?

- Period duration $=2$ ($=\operatorname{lcm}$ (denominators tree coeff. $)$)
- P_{0} sends even-numbered messages to P_{1} and odd-numbered messages to P_{2}

Compact description of the solution?

- Period duration $=2$ ($=\operatorname{lcm}$ (denominators tree coeff. $)$)
- P_{0} sends even-numbered messages to P_{1} and odd-numbered messages to P_{2}
- Complete description for time-steps $2 i$ and $2 i+1$:
- P_{0} sends $m_{2 i}$ to P_{1} and $m_{2 i+1}$ to P_{2}
- P_{1} sends $m_{2 i-2}$ (recvd. from P_{0} at previous step) to P_{2} and P_{3}
- P_{1} sends $m_{2 i-3}$ (recvd. from P_{2} at previous step) to P_{3}
- P_{2} sends $m_{2 i-1}$ (recvd. from P_{0} at previous step) to P_{1} and P_{4}
- P_{2} sends $m_{2 i-4}$ (recvd. from P_{1} at previous step) to P_{4}

Compact description of the solution?

- Period duration $=2$ ($=\operatorname{lcm}$ (denominators tree coeff.))
- P_{0} sends even-numbered messages to P_{1} and odd-numbered messages to P_{2}
- Complete description for time-steps $2 i$ and $2 i+1$:
- P_{0} sends $m_{2 i}$ to P_{1} and $m_{2 i+1}$ to P_{2}
- P_{1} sends $m_{2 i-2}$ (recvd. from P_{0} at previous step) to P_{2} and P_{3}
- P_{1} sends $m_{2 i-3}$ (recvd. from P_{2} at previous step) to P_{3}
- P_{2} sends $m_{2 i-1}$ (recvd. from P_{0} at previous step) to P_{1} and P_{4}
- P_{2} sends $m_{2 i-4}$ (recvd. from P_{1} at previous step) to P_{4}
- Solution size: number of communications within one period bounded by:

$$
\text { number of trees } \quad \leq|E|+|V|^{3}
$$

$$
\times
$$

number of edges of one tree

From local to global (1)

(1) Set of communications to execute within period T
(2) One-port equations \rightarrow local constraints

- Pairwise-disjoint communications to be scheduled simultaneously
\Rightarrow extract a collection of matchings

From local to global (1)

(1) Set of communications to execute within period T
(2) One-port equations \rightarrow local constraints

- Pairwise-disjoint communications to be scheduled simultaneously
\Rightarrow extract a collection of matchings

From local to global (1)

(1) Set of communications to execute within period T
(2) One-port equations \rightarrow local constraints

- Pairwise-disjoint communications to be scheduled simultaneously
\Rightarrow extract a collection of matchings

From local to global (2)

Solution

- Peel off bipartite communication graph

From local to global (2)

Solution

- Peel off bipartite communication graph
- Idea 1: Split each communication of length L into L communications of length 1 and use König's edge-coloring algorithm (but not polynomial)

From local to global (2)

Solution

- Peel off bipartite communication graph
- Idea 1: Split each communication of length L into L communications of length 1 and use König's edge-coloring algorithm (but not polynomial)
- Idea 2: Use Schrijver's weighted edge-coloring algorithm:

From local to global (2)

Solution

- Peel off bipartite communication graph
- Idea 1: Split each communication of length L into L communications of length 1 and use König's edge-coloring algorithm (but not polynomial)
- Idea 2: Use Schrijver's weighted edge-coloring algorithm:
- extract a matching and substract minimum weight from participating edges

From local to global (2)

Solution

- Peel off bipartite communication graph
- Idea 1: Split each communication of length L into L communications of length 1 and use König's edge-coloring algorithm (but not polynomial)
- Idea 2: Use Schrijver's weighted edge-coloring algorithm:
- extract a matching and substract minimum weight from participating edges
- zero out at least one edge for each matching

From local to global (2)

Solution

- Peel off bipartite communication graph
- Idea 1: Split each communication of length L into L communications of length 1 and use König's edge-coloring algorithm (but not polynomial)
- Idea 2: Use Schrijver's weighted edge-coloring algorithm:
- extract a matching and substract minimum weight from participating edges
- zero out at least one edge for each matching
- strongly polynomial

Conclusion

Complexity of steady-state problems
Ask biased question:
Can we determine best throughput and characterize a solution achieving it, all that in polynomial time?
(1) Broadcast: yes
(2) Multicast: no, NP-complete
(3) Scatter: yes (easier)
(9) Reduce: yes (complicated too)

Makespan minimization versus throughput Everything NP-hard.

Bibliography - Broadcast

- Complexity:

On broadcasting in heterogeneous networks, S. Khuller and Y.A. Kim, 15th ACM SODA (2004), 1011-1020

- Heuristics:

Efficient collective communication in distributed heterogeneous systems, P.B. Bhat, C.S. Raghavendra and V.K. Prasanna, JPDC 63 (2003), 251-263

- Steady-state:

Pipelining broadcasts on heterogeneous platforms, O.
Beaumont et al., IEEE TPDS 16, 4 (2005), 300-313

Overview

(1) Packet routing without fixed path

(2) Broadcast
(3) Master-slave tasking

Master-slave platform

Master-slave tasking Simple yet efficient

Master-slave platform

Master-slave tasking Simple yet efficient
Standard implementation Independent tasks are executed by identical processors (the slaves) under the supervision of a special processor (the master)

Master-slave platform

Master-slave tasking Simple yet efficient
Standard implementation Independent tasks are executed by identical processors (the slaves) under the supervision of a special processor (the master)

Heterogeneous version Computing times and communication times are different from slave to slave

Model

- Set of independent tasks to be executed by p slaves

Model

- Set of independent tasks to be executed by p slaves
- All tasks are identical: each represents the same amount of computations

Model

- Set of independent tasks to be executed by p slaves
- All tasks are identical: each represents the same amount of computations

Model

- Set of independent tasks to be executed by p slaves
- All tasks are identical: each represents the same amount of computations

- Need d_{i} time-units to transfer a task from M to P_{i}, and w_{i} time-units to execute it on P_{i}

Model

- Set of independent tasks to be executed by p slaves
- All tasks are identical: each represents the same amount of computations

- Need d_{i} time-units to transfer a task from M to P_{i}, and w_{i} time-units to execute it on P_{i}
- Communications obey the one-port model: M can only send one task at a given time-step

Model

- Set of independent tasks to be executed by p slaves
- All tasks are identical: each represents the same amount of computations

- Need d_{i} time-units to transfer a task from M to P_{i}, and w_{i} time-units to execute it on P_{i}
- Communications obey the one-port model: M can only send one task at a given time-step
- Overlap computations and communications

Complexity results

Definition MasterSlave $\left(P_{1}\left(d_{1}, w_{1}\right), \ldots, P_{p}\left(d_{p}, w_{p}\right), T^{(1)}, \ldots, T^{(n)}\right)$: Given a master-slave platform with parameters $\left(d_{1}, w_{1}\right), \ldots,\left(d_{p}, w_{p}\right)$, what it the minimum time to process n tasks?

Complexity results

Definition MasterSlave $\left(P_{1}\left(d_{1}, w_{1}\right), \ldots, P_{p}\left(d_{p}, w_{p}\right), T^{(1)}, \ldots, T^{(n)}\right)$: Given a master-slave platform with parameters $\left(d_{1}, w_{1}\right), \ldots,\left(d_{p}, w_{p}\right)$, what it the minimum time to process n tasks?

MasterSlave $\left(P_{1}\left(d_{1}, w_{1}\right), \ldots, P_{p}\left(d_{p}, w_{p}\right), T^{(1)}, \ldots, T^{(n)}\right)$ can be solved at cost $O\left(n^{2} p^{2}\right)$ by a complicated greedy algorithm

Complexity results

Definition MasterSlave $\left(P_{1}\left(d_{1}, w_{1}\right), \ldots, P_{p}\left(d_{p}, w_{p}\right), T^{(1)}, \ldots, T^{(n)}\right)$: Given a master-slave platform with parameters $\left(d_{1}, w_{1}\right), \ldots,\left(d_{p}, w_{p}\right)$, what it the minimum time to process n tasks?

MasterSlave $\left(P_{1}\left(d_{1}, w_{1}\right), \ldots, P_{p}\left(d_{p}, w_{p}\right), T^{(1)}, \ldots, T^{(n)}\right)$ can be solved at cost $O\left(n^{2} p^{2}\right)$ by a complicated greedy algorithm

If the interconnection network is a linear chain or a harpoon, problem still polynomial

Complexity results

Definition MasterSlave $\left(P_{1}\left(d_{1}, w_{1}\right), \ldots, P_{p}\left(d_{p}, w_{p}\right), T^{(1)}, \ldots, T^{(n)}\right)$: Given a master-slave platform with parameters $\left(d_{1}, w_{1}\right), \ldots,\left(d_{p}, w_{p}\right)$, what it the minimum time to process n tasks?

MasterSlave $\left(P_{1}\left(d_{1}, w_{1}\right), \ldots, P_{p}\left(d_{p}, w_{p}\right), T^{(1)}, \ldots, T^{(n)}\right)$ can be solved at cost $O\left(n^{2} p^{2}\right)$ by a complicated greedy algorithm

If the interconnection network is a linear chain or a harpoon, problem still polynomial However, for tree-shaped platforms, problem becomes NP-complete

A model not well-suited. . .

- Hardness comes from the metric: makespan minimization

A model not well-suited. . .

- Hardness comes from the metric: makespan minimization
- Not suited to large-scale distributed platforms

A model not well-suited. . .

- Hardness comes from the metric: makespan minimization
- Not suited to large-scale distributed platforms
- Modeling a collection of clusters, and acquiring all various parameters: long, tedious and error-prone

A model not well-suited. . .

- Hardness comes from the metric: makespan minimization
- Not suited to large-scale distributed platforms
- Modeling a collection of clusters, and acquiring all various parameters: long, tedious and error-prone
- Given difficulty and time needed to deploy applications on such platforms, number of tasks expected to be very large

A model not well-suited. . .

- Hardness comes from the metric: makespan minimization
- Not suited to large-scale distributed platforms
- Modeling a collection of clusters, and acquiring all various parameters: long, tedious and error-prone
- Given difficulty and time needed to deploy applications on such platforms, number of tasks expected to be very large
- Concentrate on steady-state, and target complex platforms (with cycles and multiple paths) while designing efficient (asymptotically optimal) schedulings

Application graph

n problem instances $\mathcal{P}^{(1)}, \mathcal{P}^{(2)}, \ldots, \mathcal{P}^{(n)}$, where n is large

Application graph

n problem instances $\mathcal{P}^{(1)}, \mathcal{P}^{(2)}, \ldots, \mathcal{P}^{(n)}$, where n is large
Each problem corresponds to a copy of the same task graph $G_{A}=\left(V_{A}, E_{A}\right)$, the application graph

Application graph

n problem instances $\mathcal{P}^{(1)}, \mathcal{P}^{(2)}, \ldots, \mathcal{P}^{(n)}$, where n is large
Each problem corresponds to a copy of the same task graph $G_{A}=\left(V_{A}, E_{A}\right)$, the application graph

$T_{\text {begin }}$ et $T_{\text {end }}$ are fictitious tasks, used to model the scattering of input files and the gathering of output files

Platform graph

Target platform represented by platform graph $G_{P}=\left(V_{P}, E_{P}\right)$

Platform graph

Target platform represented by platform graph $G_{P}=\left(V_{P}, E_{P}\right)$

Edge $P_{i} \rightarrow P_{j}$ is labeled with $c_{i, j}$: time needed to send a unit-length message from P_{i} to P_{j}

Platform graph

Target platform represented by platform graph $G_{P}=\left(V_{P}, E_{P}\right)$

Edge $P_{i} \rightarrow P_{j}$ is labeled with $c_{i, j}$: time needed to send a unit-length message from P_{i} to P_{j}
Communication model: full overlap, one-port for incoming and outgoing messages

Computations and communications

P_{i} requires $w_{i, k}$ time-units to process task T_{k}
($k \in\{$ begin, 1, end $\}$).

Computations and communications

P_{i} requires $w_{i, k}$ time-units to process task T_{k}
($k \in\{$ begin, 1, end $\}$).

Computations and communications

P_{i} requires $w_{i, k}$ time-units to process task T_{k}
($k \in\{$ begin, 1, end $\}$).

Edge $e_{k, l}: T_{k} \rightarrow T_{l}$ in G_{A} is labeled with $d a t a_{k, l}$: data volume generated by T_{k} and used by T_{l}

Computations and communications

P_{i} requires $w_{i, k}$ time-units to process task T_{k}
($k \in\{$ begin, 1, end $\}$).

Edge $e_{k, l}: T_{k} \rightarrow T_{l}$ in G_{A} is labeled with $d a t a_{k, l}$: data volume generated by T_{k} and used by T_{l}
Transfer time of a file $e_{k, l}$ from P_{i} to $P_{j}: d a t a_{k, l} \times c_{i, j}$

Definitions

Allocation An allocation is a pair of mappings: $\pi: V_{A} \mapsto V_{P}$ and $\sigma: E_{A} \mapsto\left\{\right.$ paths in $\left.G_{P}\right\}$

Definitions

Allocation An allocation is a pair of mappings: $\pi: V_{A} \mapsto V_{P}$ and $\sigma: E_{A} \mapsto\left\{\right.$ paths in $\left.G_{P}\right\}$
Schedule A schedule associated to an allocation (π, σ) is a pair of mappings: $t_{\pi}: V_{A} \mapsto \mathbb{R}$ and application $t_{\sigma}: E_{A} \times E_{P} \mapsto \mathbb{R}$, satisfying to:

- precedence constraints
- resource constraints on processors
- resource constraints on network links
- one-port constraints

Activity variables

cons $\left(P_{i}, T_{k}\right)$: average number of tasks of type T_{k} processed by P_{i} every time-unit

$$
\forall P_{i}, \forall T_{k} \in V_{A}, 0 \leq \operatorname{cons}\left(P_{i}, T_{k}\right) \times w_{i, k} \leq 1
$$

Activity variables

$\operatorname{cons}\left(P_{i}, T_{k}\right)$: average number of tasks of type T_{k} processed by P_{i} every time-unit

$$
\forall P_{i}, \forall T_{k} \in V_{A}, 0 \leq \operatorname{cons}\left(P_{i}, T_{k}\right) \times w_{i, k} \leq 1
$$

$\operatorname{sent}\left(P_{i} \rightarrow P_{j}, e_{k, l}\right)$: average number of files of type $e_{k, l}$ sent from P_{i} to P_{j} every time-unit

$$
\forall P_{i}, P_{j}, 0 \leq \operatorname{sent}\left(P_{i} \rightarrow P_{j}, e_{k, l}\right) \times\left(\text { data }_{k, l} \times c_{i, j}\right) \leq 1
$$

Steady-state equations

One-port for outgoing communications P_{i} sends messages to its neighbors sequentially

$$
\forall P_{i}, \sum_{P_{i} \rightarrow P_{j}} \sum_{e_{k, l} \in E_{A}}\left(\operatorname{sent}\left(P_{i} \rightarrow P_{j}, e_{k, l}\right) \times d a t a_{k, l} \times c_{i, j}\right) \leq 1
$$

Steady-state equations

One-port for outgoing communications P_{i} sends messages to its neighbors sequentially

$$
\forall P_{i}, \sum_{P_{i} \rightarrow P_{j}} \sum_{e_{k, l} \in E_{A}}\left(\operatorname{sent}\left(P_{i} \rightarrow P_{j}, e_{k, l}\right) \times d a t a_{k, l} \times c_{i, j}\right) \leq 1
$$

One-port for ingoing communications P_{i} receives messages sequentially

$$
\forall P_{i}, \sum_{P_{j} \rightarrow P_{i}} \sum_{e_{k, l} \in E_{A}}\left(\operatorname{sent}\left(P_{j} \rightarrow P_{i}, e_{k, l}\right) \times d a t a_{k, l} \times c_{j, i}\right) \leq 1
$$

Steady-state equations

One-port for outgoing communications P_{i} sends messages to its neighbors sequentially

$$
\forall P_{i}, \sum_{P_{i} \rightarrow P_{j}} \sum_{e_{k, l} \in E_{A}}\left(\operatorname{sent}\left(P_{i} \rightarrow P_{j}, e_{k, l}\right) \times d a t a_{k, l} \times c_{i, j}\right) \leq 1
$$

One-port for ingoing communications P_{i} receives messages sequentially

$$
\forall P_{i}, \sum_{P_{j} \rightarrow P_{i}} \sum_{e_{k, l} \in E_{A}}\left(\operatorname{sent}\left(P_{j} \rightarrow P_{i}, e_{k, l}\right) \times d a t a_{k, l} \times c_{j, i}\right) \leq 1
$$

Overlap Computations and communications take place simultaneously

$$
\forall P_{i}, \quad \sum_{T_{k} \in V_{A}} \operatorname{cons}\left(P_{i}, T_{k}\right) \times w_{i, k} \leq 1
$$

Conservation law

Consider a processor P_{i} and an edge $e_{k, l}$ of the application graph:
Files of type $e_{k, l}$ received: $\sum_{P_{j} \rightarrow P_{i}} \operatorname{sent}\left(P_{j} \rightarrow P_{i}, e_{k, l}\right)$
Files of type $e_{k, l}$ generated: $\operatorname{cons}\left(P_{i}, T_{k}\right)$
Files of type $e_{k, l}$ consumed: $\operatorname{cons}\left(P_{i}, T_{l}\right)$
Files of type $e_{k, l}$ sent: $\sum_{P_{i} \rightarrow P_{j}} \operatorname{sent}\left(P_{i} \rightarrow P_{j}, e_{k, l}\right)$
In steady state:

$$
\begin{aligned}
\forall P_{i}, \forall e_{k, l} & : T_{k} \rightarrow T_{l} \in E_{A}, \\
& \sum_{P_{j} \rightarrow P_{i}} \operatorname{sent}\left(P_{j} \rightarrow P_{i}, e_{k, l}\right)+\operatorname{cons}\left(P_{i}, T_{k}\right)=
\end{aligned}
$$

$$
\sum_{P_{i} \rightarrow P_{j}} \operatorname{sent}\left(P_{i} \rightarrow P_{j}, e_{k, l}\right)+\operatorname{cons}\left(P_{i}, T_{l}\right)
$$

Upper bound for the throughput

MAXIMIZE $\rho=\sum_{i=1}^{p} \operatorname{cons}\left(P_{i}, T_{\text {end }}\right)$,
UNDER THE CONSTRAINTS

$$
\left\{\begin{array}{l}
\text { (1a) } \forall P_{i}, \forall T_{k} \in V_{A}, 0 \leq \operatorname{cons}\left(P_{i}, T_{k}\right) \times w_{i, k} \leq 1 \\
\text { (1b) } \forall P_{i}, P_{j}, 0 \leq \operatorname{sent}\left(P_{i} \rightarrow P_{j}, e_{k, l}\right) \times\left(\text { data }_{k, l} \times c_{i, j}\right) \leq 1 \\
\text { (1c) } \forall P_{i}, \sum_{P_{i} \rightarrow P_{j}} \sum_{e_{k, l} \in E_{A}}\left(\operatorname{sent}\left(P_{i} \rightarrow P_{j}, e_{k, l}\right) \times \operatorname{data}_{k, l} \times c_{i, j}\right) \leq 1 \\
\text { (1d) } \forall P_{i}, \sum_{P_{j} \rightarrow P_{i}} \sum_{e_{k, l} \in E_{A}}\left(\operatorname{sent}\left(P_{j} \rightarrow P_{i}, e_{k, l}\right) \times \operatorname{data}_{k, l} \times c_{j, i}\right) \leq 1 \\
\text { (1e) } \forall P_{i}, \sum_{T_{k} \in V_{A}} \operatorname{cons}\left(P_{i}, T_{k}\right) \times w_{i, k} \leq 1 \\
\text { (1f) } \forall P_{i}, \forall e_{k, l} \in E_{A}: T_{k} \rightarrow T_{l},
\end{array}\right.
$$

$$
\sum_{P_{j} \rightarrow P_{i}} \operatorname{sent}\left(P_{j} \rightarrow P_{i}, e_{k, l}\right)+\operatorname{cons}\left(P_{i}, T_{k}\right)=
$$

$$
\sum_{P_{i} \rightarrow P_{j}} \operatorname{sent}\left(P_{i} \rightarrow P_{j}, e_{k, l}\right)+\operatorname{cons}\left(P_{i}, T_{l}\right)
$$

How to design a schedule achieving this throughput?

Back to the example

Computations

	$\operatorname{cons}\left(P_{i}, T_{1}\right)$
P_{1}	0.025
P_{2}	0.125
P_{3}	0.125
P_{4}	0.250
Total	21 tasks $/ 40$ seconds

Communications

$$
\operatorname{sent}\left(P_{i} \rightarrow P_{j}, e_{k, l}\right)
$$

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (1/2)

Steady state $=$ superposition of several allocations

Decomposition into a set of allocations (2/2)

(

Decomposition into a set of allocations (2/2)

| $T_{\text {begin }} P_{1}$ |
| :---: | :---: | :---: | :---: | :---: |
| | ${ }^{\text {P }} P_{1} \rightarrow P_{2}$ | $\downarrow P_{1} \rightarrow P_{3}$ | $\downarrow_{1} \rightarrow P_{3} \rightarrow P_{4}$ | $\downarrow P_{1} \rightarrow P_{3} \rightarrow P_{4}$ |
| $T_{1} P_{1}$ | $T_{1} P_{2}$ | $T_{1}{ }^{P_{3}}$ | $T_{1} P_{4}$ | $T_{1} P_{4}$ |
| | $P_{2} \rightarrow P_{1}$ | $P_{3} \rightarrow P_{1}$ | $P_{4} \rightarrow P_{2} \rightarrow P_{1}$ | $P_{4} \rightarrow P_{3} \rightarrow P_{1}$ |
| $T_{P_{1} \text { end }}$ | $\left(T_{\text {end }}\right)$ | $T_{\text {end }}$ P_{1} | $\left(T_{\text {end }}\right)_{P_{1}}$ | $\left(T_{\text {end }}\right)_{P_{1}}$ |
| \mathcal{A}_{1} | \mathcal{A}_{2} | \mathcal{A}_{3} | \mathcal{A}_{4} | \mathcal{A}_{5} |
| 0,025 | 0,125 | 0,125 | 0,125 | 0,125 |

This decomposition is always possible

Decomposition into a set of allocations (2/2)

$T_{\text {begin }} P_{1}$	$T_{\text {beging }} P_{1}$	$T_{\text {begin }} P_{1}$	$T_{\text {begin }} P_{1}$	$T_{\text {begin }} P_{1}$
	$\downarrow P_{1} \rightarrow P_{2}$	$\downarrow P_{1} \rightarrow P_{3}$	$\downarrow P_{1} \rightarrow P_{3} \rightarrow P_{4}$	$\downarrow P_{1} \rightarrow P_{3} \rightarrow P_{4}$
$T_{1} P_{1}$	$T_{1} P_{2}$	$T_{1} P^{P_{3}}$	$T_{1} P_{4}$	$T_{1} P_{4}$
	$P_{2} \rightarrow P_{1}$	$P_{3} \rightarrow P_{1}$	$P_{4} \rightarrow P_{2} \rightarrow P_{1}$	$P_{4} \rightarrow P_{3} \rightarrow P_{1}$
$T_{\text {end }} P_{P_{1}}$	$T_{\text {end }}$	$\left.T_{\text {end }}\right)_{P_{1}}$	$\left.T_{\text {end }}\right)_{P_{1}}$	$\left(T_{\text {end }}\right)_{P_{1}}$
\mathcal{A}_{1}	\mathcal{A}_{2}	\mathcal{A}_{3}	\mathcal{A}_{4}	\mathcal{A}_{5}
0,025	0,125	0,125	0,125	0,125

How to orchestrate these allocations?

Communication graph

Fraction of time spent transferring some $e_{k, l}$ file from P_{i} to P_{j} for a given allocation

One-port constraints $=$ matching

Edge coloring (decomposition into matchings)

Edge coloring (decomposition into matchings)

This decomposition is always possible

Cyclic scheduling achieving optimal throughput

Asymptotically optimal schedule

- The technique used in the example is
- general
- polynomial
- The resulting schedule is asymptotically optimal: within T time-steps, it differs from the optimal schedule by a constant number of tasks (independent of T)

Extensions to collections of general task graphs

- More difficult but possible
- Maximizing throughput NP-hard $)^{-}$
- Most application DAGs have polynomial number of joins \Rightarrow polynomial solution ©

Bibliography

國 Packet routing：
Asymptotically optimal algorithms for job shop scheduling and packet routing，D．Bertsimas and D．Gamarnik，
In Journal of Algorithms 33， 2 （1999），296－318
國 Steady－state for independent tasks：
Scheduling strategies for master－slave tasking on heterogeneous processor platforms，C．Banino et al．， In IEEE TPDS 15， 4 （2004），319－330
國 Steady－state for DAGs：complete reseach report
Assessing the impact and limits of steady－state scheduling for mixed task and data parallelism on heterogeneous platforms．，O．Beaumont et al．，
LIP research report，RR－2004－20，http：
／／www．ens－lyon．fr／LIP／Pub／Rapports／RR／RR2004／RR2004－20．ps．gz

With bounded multi－port model：
Distributed adaptive task allocation in heterogeneous computing environments to maximize throughnut B Honc and V K Pracanna

