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Steady-State Scheduling

Changing the objective:

Makespan minimization: reasonable for small set of tasks

On distributed heterogeneous platforms: large amount of work

No difference if program runs for 3 hours or 3 hours + 5
secondes

Total completion time may not be the right metric

Efficient resource utilization during steady-state:
throughput maximization

Neglect initialization and clean-up phases
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4 Congestion

Ci,j =
∑

(k,l)|nk,l>0

nk,l
i,j

5 Objective function

Cmax ≥ Ci,j , ∀i, j

Minimize Cmax

Linear program in rational numbers: polynomial-time solution. In
practice use Maple, Mupad, lp-solve,. . .

Solution:
number of messages nk,l

i,j of each edge to minimize total congestion



Equations (2/2)

4 Congestion

Ci,j =
∑

(k,l)|nk,l>0

nk,l
i,j

5 Objective function

Cmax ≥ Ci,j , ∀i, j

Minimize Cmax

Linear program in rational numbers: polynomial-time solution. In
practice use Maple, Mupad, lp-solve,. . .

Solution:
number of messages nk,l

i,j of each edge to minimize total congestion



Equations (2/2)

4 Congestion

Ci,j =
∑

(k,l)|nk,l>0

nk,l
i,j

5 Objective function

Cmax ≥ Ci,j , ∀i, j

Minimize Cmax

Linear program in rational numbers: polynomial-time solution. In
practice use Maple, Mupad, lp-solve,. . .

Solution:
number of messages nk,l

i,j of each edge to minimize total congestion



Equations (2/2)

4 Congestion

Ci,j =
∑

(k,l)|nk,l>0

nk,l
i,j

5 Objective function

Cmax ≥ Ci,j , ∀i, j

Minimize Cmax

Linear program in rational numbers: polynomial-time solution. In
practice use Maple, Mupad, lp-solve,. . .

Solution:
number of messages nk,l

i,j of each edge to minimize total congestion



Routing algorithm

1 Computing optimal solution Cmax of previous linear program

2 Consider periods of length Ω (to be defined later)
3 During each time-interval [pΩ, (p + 1)Ω], follow the optimal

solution: edge (i, j) forwards:

mk,l
i,j =

⌊
nk,l

i,jΩ
Cmax

⌋
packets that go from k to l.

(if available)

4 number of such periods:

⌈
Cmax

Ω

⌉
5 After time-step

T ≡
⌈

Cmax

Ω

⌉
Ω ≤ Cmax + Ω

sequentially process M residual packets in no longer than ML
time-steps, where L is the maximum length of a simple path
in the network
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Feasibility

∑
(k,l)

mk,l
i,j ≤

∑
(k,l)

nk,l
i,jΩ

Cmax
=

Ci,jΩ
Cmax

≤ Ω



Makespan

Define Ω as Ω =
√

Cmaxnc.

Total number of packets still inside network at time-step T is
at most

2|A|
√

Cmaxnc + |A|nc

Makespan:

Cmax ≤ C∗ ≤ Cmax+
√

Cmaxnc+2|A|
√

Cmaxnc|V |+|A|nc|V |

C∗ = Cmax + O(
√

Cmax)
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Steady-state scheduling

Background Approach pioneered by Bertsimas and Gamarnik

Rationale Maximize throughput
Simplicity Relaxation of makespan minimization problem

Ignore initialization and clean-up phases
Precise ordering/allocation of tasks/messages
not needed
Characterize resource activity during each
time-unit:
- which (rational) fraction of time is spent
computing for which application?
- which (rational) fraction of time is spent
receiving or sending to which neighbor?

Efficiency Periodic schedule, described in compact form
Adaptability Dynamically record observed performance during

current period, and inject this information to
compute optimal schedule for next period



Steady-state scheduling

Background Approach pioneered by Bertsimas and Gamarnik
Rationale Maximize throughput

Simplicity Relaxation of makespan minimization problem

Ignore initialization and clean-up phases
Precise ordering/allocation of tasks/messages
not needed
Characterize resource activity during each
time-unit:
- which (rational) fraction of time is spent
computing for which application?
- which (rational) fraction of time is spent
receiving or sending to which neighbor?

Efficiency Periodic schedule, described in compact form
Adaptability Dynamically record observed performance during

current period, and inject this information to
compute optimal schedule for next period



Steady-state scheduling

Background Approach pioneered by Bertsimas and Gamarnik
Rationale Maximize throughput
Simplicity Relaxation of makespan minimization problem

Ignore initialization and clean-up phases
Precise ordering/allocation of tasks/messages
not needed
Characterize resource activity during each
time-unit:
- which (rational) fraction of time is spent
computing for which application?
- which (rational) fraction of time is spent
receiving or sending to which neighbor?

Efficiency Periodic schedule, described in compact form
Adaptability Dynamically record observed performance during

current period, and inject this information to
compute optimal schedule for next period



Steady-state scheduling

Background Approach pioneered by Bertsimas and Gamarnik
Rationale Maximize throughput
Simplicity Relaxation of makespan minimization problem

Ignore initialization and clean-up phases

Precise ordering/allocation of tasks/messages
not needed
Characterize resource activity during each
time-unit:
- which (rational) fraction of time is spent
computing for which application?
- which (rational) fraction of time is spent
receiving or sending to which neighbor?

Efficiency Periodic schedule, described in compact form
Adaptability Dynamically record observed performance during

current period, and inject this information to
compute optimal schedule for next period



Steady-state scheduling

Background Approach pioneered by Bertsimas and Gamarnik
Rationale Maximize throughput
Simplicity Relaxation of makespan minimization problem

Ignore initialization and clean-up phases
Precise ordering/allocation of tasks/messages
not needed

Characterize resource activity during each
time-unit:
- which (rational) fraction of time is spent
computing for which application?
- which (rational) fraction of time is spent
receiving or sending to which neighbor?

Efficiency Periodic schedule, described in compact form
Adaptability Dynamically record observed performance during

current period, and inject this information to
compute optimal schedule for next period



Steady-state scheduling

Background Approach pioneered by Bertsimas and Gamarnik
Rationale Maximize throughput
Simplicity Relaxation of makespan minimization problem

Ignore initialization and clean-up phases
Precise ordering/allocation of tasks/messages
not needed
Characterize resource activity during each
time-unit:
- which (rational) fraction of time is spent
computing for which application?
- which (rational) fraction of time is spent
receiving or sending to which neighbor?

Efficiency Periodic schedule, described in compact form
Adaptability Dynamically record observed performance during

current period, and inject this information to
compute optimal schedule for next period



Steady-state scheduling

Background Approach pioneered by Bertsimas and Gamarnik
Rationale Maximize throughput
Simplicity Relaxation of makespan minimization problem

Ignore initialization and clean-up phases
Precise ordering/allocation of tasks/messages
not needed
Characterize resource activity during each
time-unit:
- which (rational) fraction of time is spent
computing for which application?
- which (rational) fraction of time is spent
receiving or sending to which neighbor?

Efficiency Periodic schedule, described in compact form

Adaptability Dynamically record observed performance during
current period, and inject this information to
compute optimal schedule for next period



Steady-state scheduling

Background Approach pioneered by Bertsimas and Gamarnik
Rationale Maximize throughput
Simplicity Relaxation of makespan minimization problem

Ignore initialization and clean-up phases
Precise ordering/allocation of tasks/messages
not needed
Characterize resource activity during each
time-unit:
- which (rational) fraction of time is spent
computing for which application?
- which (rational) fraction of time is spent
receiving or sending to which neighbor?

Efficiency Periodic schedule, described in compact form
Adaptability Dynamically record observed performance during

current period, and inject this information to
compute optimal schedule for next period



Overview

1 Packet routing without fixed path

2 Broadcast

3 Master-slave tasking



Broadcasting data

Key collective communication operation

Start: one processor has the data

End: all processors own a copy

Vast literature about broadcast, MPI Bcast

Standard approach: use a spanning tree

Finding the best spanning tree: NP-Complete problem
(even in the telephone model)
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Broadcasting longer messages

Message size goes from L to, say, 10L

Communication costs scale from cij to 10cij

ECEF heuristic: broadcast time becomes 90
LA heuristic: broadcast time becomes 70

Eh wait!
What about

PIPELINING?!



Introduction to Pipelined Communications

Complex applications on gridS require collective
communication schemes:

one-to-all Broadcast, Multicast, Scatter
all-to -one Reduce

all-to-all Gossip, All-to-All

Numerous studies of a single communication scheme, mainly
about one single broadcast

Pipelining communications:

data parallelism involves a large amount of data
not a single communication, but a series of same
communication schemes (e.g. a series of broadcasts from the
same source)
maximize throughput of the steady-state operation



Modeling the platform

G = (P,E, c)
Let P1, P2, . . . , Pn be the n
processors

(Pj , Pk) ∈ E denotes a
communication link between Pi

and Pj

c(Pj , Pk) denotes the time to
transfer one unit-size message
from Pj to Pk

one-port for incoming
communications

one-port for outgoing
communications

P0

P1

P2

P3

5
5

30

10

10

8



Pipelining Broadcasts

Send n messages from P0 to all other Pi’s

Let Topt(n) denote the optimal time for broadcasting the n
messages

Asymptotic optimality: lim
n→+∞

Talg(n)
Topt(n)

= 1

Usually, broadcasts are executed along one or several spanning
trees

What is the best broadcast throughput when using a single
tree, a DAG, or a general graph?
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With a tree

The throughput with the best tree is 2 messages every 3 tops

1

1

1

1

P1 P2

P4P3
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1/2 1/2

2/3

2/3 (t=1/3)

2/3 (t=2/3)
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P1 P2

P4P3
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With a DAG

The throughput with the best DAG is 4 messages every 5 tops

1

1

1

1

P1 P2

P4P3

P0

1/2 1/2 4/5 (t=2/5)

1/5 (t=1/5)4/5 (t=4/5)
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P1 P2
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With a general graph

Throughput with the best graph: 2 messages every 2 tops

Two different sorts of messages (even/odd numbered)

m1(i) denotes the message sent from P0 to P1 during period i

m2(i) denotes the message sent from P0 to P2 during period i

path for m1 messages path for m2 messages
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P4P3
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P1 P2

P4P3
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With a general graph

Throughput with the best graph: 2 messages every 2 tops

Two different sorts of messages (even/odd numbered)

m1(i) denotes the message sent from P0 to P1 during period i

m2(i) denotes the message sent from P0 to P2 during period i

step 1/2 step 2/2

m2(i− 1)m1(i− 4)

P1 P2

P4P3

P0

m1(i)

m1(i− 2)

m2(i− 4)
m1(i− 1)

P1 P2
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Problem Statement

Input: G = (P,E, c)
Output:

The best throughput p
q

A “compact” description of the behiavior of the nodes.

During q time steps

step 1: P
(1)
i1

sends 1 mess to P
(1)
j1

step 1: P
(1)
i2

sends 1 mess to P
(1)
j2

...

step q: P
(q)
in

sends 1 mess to P
(q)
jn

This is not likely to be polynomial
since the size of the description is
a priori of order O(nq)

During q time steps

step 1: P
(1)
i1

sends α
(1)
i1

mess to P
(1)
j1

step 1: P
(1)
i2

sends α
(1)
i2

mess to P
(1)
j2

...

step q: P
(q)
in

sends α
(q)
in

mess to P
(q)
jn

The size of such a description may
be polynomial



Broadcast: Linear Program (1)

xj,k
i denotes the fraction of the message

from P0 to Pi that uses edge (Pj , Pk)
The conditions are

∀i,
∑

x0,k
i = 1

∀i,
∑

xj,i
i = 1

∀j 6= 0, i,
∑

k xj,k
i =

∑
k xk,j

i

P0

P1

P3

P2

x0,1
1

x0,1
2

x0,1
3



Broadcast: Linear Program (2)

tj,k denotes the time to transfer all the messages
between Pj and Pk

tj,k ≤
∑

xj,k
i cj,k ????

too pessimistic since xj,k
i1

and xk,j
i2

may be
the same message

not good for a lower bound

or

∀i, tj,k ≥ xj,k
i cj,k ????

too optimistic since it supposes that all
the messages are sub-messages of the
largest one

OK for a lower bound, may not be feasible

...

Pk

Pj

xj,k
1

xj,k
2

xj,k
n

cj,k
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xj,k
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Broadcast: Linear Program (3)

one-port model, for a unit message

at most one sending operation:
∑

(Pj ,Pk)∈E

tj,k ≤ tout
j

at most one receiving operation:
∑

(Pk,Pj)∈E

tk,j ≤ tinj

and at last,

∀j, tout
j ≤ tbroadcast

∀j, tinj ≤ tbroadcast



Broadcast: Linear Program (4)

Minimize tbroadcast ,
subject to

∀i,
∑

x0,k
i = 1

∀i,
∑

xj,i
i = 1

∀i, ∀j 6= 0, i,
∑

xj,k
i =

∑
xk,j

i

∀i, j, k tj,k ≥ xj,k
i cj,k

∀j,
∑

(Pj ,Pk)∈E tj,k ≤ tout
j

∀j,
∑

(Pk,Pj)∈E tk,j ≤ tinj
∀j, tout

j ≤ tbroadcast

∀j, tinj ≤ tbroadcast



Caveats

The linear program provides a lower bound for the
broadcasting time of a unit-size divisible message

It is not obvious that this lower bound is feasible since we
considered that all the messages using the same
communication link are sub-messages of the largest one.

Consider the multicast of a message:

Some nodes not involved in receiving the messages

Ue the same equations, but if Pi does not belong to the
multicast set, then

∑
x0,k

i = 1 and
∑

xj,i
i = 1 are removed



Lower Bound ??? Multicast Example (1)

Consider the following platform,
where the multicast set consists
in the colored nodes:

The linear program provides the
following solution with through-
put 1:

P0

P1 P2

P3

P4P5 P6
1

1

1

1

1

1

1

1

2
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Lower Bound ??? Multicast Example (2)

Nevertheless, the obtained throughput is not feasible:

P0

P1 P2

P3

P4P5 P6

a

a

a

a

ab

b

b

b

b



Lower Bound ??? Broadcast Example

For broadcast, the bound is nevertheless tight:

P1 P2

P4P3

P0

11

1

1

1/2 1/2

=⇒ P1 P2

P4P3

P0

1/2
1/2 1/2

1/2 1/2
1/21/2

1/2

1/2

1/2

1 1

1/2

1/2

= 1
2

P1 P2

P4P3

P0

+ 1
2

P1 P2

P4P3

P0

2 disjoint broadcast trees T1 and T2, of weight 1
2 =⇒ 1 message

broacast at every top.

How to find the trees ?

How to keep the number of (weighted) trees relatively low ?



How many paths from P0 to Pi (1)

xj,k
i denotes the fraction of the message from P0 to Pi that uses

edge (Pj , Pk)
We know that

fraction of messages leaving P0
∑

x0,k
i = 1

fraction of messages arriving at Pi
∑

xj,i
i = 1

conservation law at Pi 6= P0, Pi
∑

xj,k
i =

∑
xk,j

i

The xi’s define a flow in G of total weight 1.



How many paths from P0 to Pi (2)

The x3’s define a flow in G of
total weight 1

In order to disconnect P3 from
P0, a total weight of 1 has to
be removed x1,3

3 = 1
x2,1

3 = 1
2

x0,2
3 = 1

2x0,1
3 = 1

2

P1 P2

P4P3

P0



How many paths from P0 to Pi (2)

The x3’s define a flow in G of
total weight 1

In order to disconnect P3 from
P0, a total weight of 1 has to
be removed x1,3

3 = 1
x2,1

3 = 1
2

x0,2
3 = 1

2x0,1
3 = 1

2

P1 P2

P4P3

P0



A nice graph theorem

c(P0, Pi) minimum weight to remove to disconnect = 1

c(P0) = min c(P0, Pi) = 1

nj,k=max
i

{
xj,k

i

}
is the fraction of messages through (Pj , Pk).

Theorem (Weighted version of Edmond’s branching Theorem)

Given a directed weighted G = (P,E, n), P0 ∈ P the source, we
can find P0−arborescences, T1, . . . , Tk, and weights λ1, . . . , λk

with ∀j, k,
∑

λiδ(Ti) ≤ nj,k with∑
λi = c(P0) = 1,

in strongly polynomial time, and k ≤ |E|+ |V |3.

This theorem provides:

the set of trees, their weights

and the number of trees is “low”: ≤ |E|+ |V |3.



A nice graph theorem (2)

1 Linear program: P1 P2

P4P3

P0

11

1

1

1/2 1/2

=⇒ P1 P2

P4P3

P0

1/2
1/2 1/2

1/2 1/2
1/21/2

1/2

1/2

1/2

1 1

1/2

1/2

2 Schrijver’s algorithm for weighted Edmond’s theorem

=⇒ 1
2

P1 P2

P4P3

P0

+ 1
2

P1 P2

P4P3

P0



Compact description of the solution?

Period duration = 2 (= lcm(denominators tree coeff.))

P0 sends even-numbered messages to P1 and odd-numbered
messages to P2

Complete description for time-steps 2i and 2i + 1:
- P0 sends m2i to P1 and m2i+1 to P2

- P1 sendsm2i−2 (recvd. from P0 at previous step) toP2 andP3

- P1 sends m2i−3 (recvd. from P2 at previous step) to P3

- P2 sendsm2i−1 (recvd. from P0 at previous step) toP1 andP4

- P2 sends m2i−4 (recvd. from P1 at previous step) to P4

Solution size: number of communications within one period
bounded by:

number of trees ≤ |E|+ |V |3
×

number of edges of one tree ≤ |V |
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From local to global (1)

1 Set of communications to execute within period T
2 One-port equations → local constraints
3 Pairwise-disjoint communications to be scheduled

simultaneously
⇒ extract a collection of matchings

P1 P2

P4P3

P0

1 (2 msg) 1 (2 msg)

1 (1 msg)1 (1 msg)

1 (1 msg)

1 (1 msg)

1
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From local to global (2)

Solution

Peel off bipartite communication graph

Idea 1: Split each communication of length L into L
communications of length 1 and use König’s edge-coloring
algorithm (but not polynomial)

Idea 2: Use Schrijver’s weighted edge-coloring algorithm:

extract a matching and substract minimum weight from
participating edges
zero out at least one edge for each matching
strongly polynomial
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From local to global (2)

Solution

Peel off bipartite communication graph

Idea 1: Split each communication of length L into L
communications of length 1 and use König’s edge-coloring
algorithm (but not polynomial)

Idea 2: Use Schrijver’s weighted edge-coloring algorithm:

extract a matching and substract minimum weight from
participating edges
zero out at least one edge for each matching
strongly polynomial



Conclusion

Complexity of steady-state problems
Ask biased question:
Can we determine best throughput and characterize a
solution achieving it, all that in polynomial time?

1 Broadcast: yes
2 Multicast: no, NP-complete
3 Scatter: yes (easier)
4 Reduce: yes (complicated too)

Makespan minimization versus throughput
Everything NP-hard.
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Overview

1 Packet routing without fixed path

2 Broadcast

3 Master-slave tasking



Master-slave platform

Master-slave tasking Simple yet efficient

Standard implementation Independent tasks are executed by
identical processors (the slaves) under the supervision
of a special processor (the master)

Heterogeneous version Computing times and communication times
are different from slave to slave
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Model

Set of independent tasks to be executed by p slaves

All tasks are identical: each represents the same amount of
computations

Need di time-units to transfer a task from M to Pi, and wi

time-units to execute it on Pi

Communications obey the one-port model: M can only send
one task at a given time-step

Overlap computations and communications
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Complexity results

Definition MasterSlave(P1(d1, w1), . . . , Pp(dp, wp), T (1), . . . , T (n)):
Given a master-slave platform with parameters
(d1, w1), . . . , (dp, wp), what it the minimum time to process n
tasks?

MasterSlave(P1(d1, w1), . . . , Pp(dp, wp), T (1), . . . , T (n)) can be
solved at cost O(n2p2) by a complicated greedy algorithm

If the interconnection network is a linear chain or a harpoon,
problem still polynomial
However, for tree-shaped platforms, problem becomes NP-complete
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P9 Pn−6

M

P3

P5

P10 Pn−5

Pn−4

P2

P4 Pn−1

P1

P8

P6 P7 Pn−2Pn−3

Pn

If the interconnection network is a linear chain or a harpoon,
problem still polynomial
However, for tree-shaped platforms, problem becomes NP-complete
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Hardness comes from the metric: makespan minimization

Not suited to large-scale distributed platforms

Modeling a collection of clusters, and acquiring all various
parameters: long, tedious and error-prone
Given difficulty and time needed to deploy applications on such
platforms, number of tasks expected to be very large

Concentrate on steady-state, and target complex platforms
(with cycles and multiple paths) while designing efficient
(asymptotically optimal) schedulings
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Each problem corresponds to a copy of the same task graph
GA = (VA, EA), the application graph

Tbegin et Tend are fictitious tasks, used to model the scattering of
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Platform graph

Target platform represented by platform graph GP = (VP , EP )
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Edge Pi → Pj is labeled with ci,j : time needed to send a
unit-length message from Pi to Pj

Communication model: full overlap, one-port for incoming and
outgoing messages
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Computations and communications

Pi requires wi,k time-units to process task Tk

(k ∈ {begin, 1, end}).

Edge ek,l : Tk → Tl in GA is labeled with datak,l: data volume
generated by Tk and used by Tl

Transfer time of a file ek,l from Pi to Pj : datak,l × ci,j
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Definitions

Allocation An allocation is a pair of mappings: π : VA 7→ VP

and σ : EA 7→ {paths in GP }

Schedule A schedule associated to an allocation (π, σ) is a pair
of mappings: tπ : VA 7→ R and application
tσ : EA × EP 7→ R, satisfying to:

precedence constraints
resource constraints on processors
resource constraints on network links
one-port constraints
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Activity variables

cons(Pi, Tk): average number of tasks of type Tk processed by Pi

every time-unit

∀Pi,∀Tk ∈ VA, 0 ≤ cons(Pi, Tk)× wi,k ≤ 1

sent(Pi → Pj , ek,l): average number of files of type ek,l sent from
Pi to Pj every time-unit

∀Pi, Pj , 0 ≤ sent(Pi → Pj , ek,l)× (datak,l × ci,j) ≤ 1
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Steady-state equations

One-port for outgoing communications Pi sends messages to its
neighbors sequentially

∀Pi,
∑

Pi→Pj

∑
ek,l∈EA

(
sent(Pi → Pj , ek,l)× datak,l × ci,j

)
≤ 1

One-port for ingoing communications Pi receives messages
sequentially

∀Pi,
∑

Pj→Pi

∑
ek,l∈EA

(
sent(Pj → Pi, ek,l)× datak,l × cj,i

)
≤ 1

Overlap Computations and communications take place
simultaneously

∀Pi,
∑

Tk∈VA

cons(Pi, Tk)× wi,k ≤ 1
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Conservation law

Consider a processor Pi and an edge ek,l of the application graph:

Files of type ek,l received:
∑

Pj→Pi

sent(Pj → Pi, ek,l)

Files of type ek,l generated: cons(Pi, Tk)
Files of type ek,l consumed: cons(Pi, Tl)

Files of type ek,l sent:
∑

Pi→Pj

sent(Pi → Pj , ek,l)

In steady state:

∀Pi,∀ek,l : Tk → Tl ∈ EA,∑
Pj→Pi

sent(Pj → Pi, ek,l) + cons(Pi, Tk) =

∑
Pi→Pj

sent(Pi → Pj , ek,l) + cons(Pi, Tl)



Upper bound for the throughput

Maximize ρ =
∑p

i=1 cons(Pi, Tend),
under the constraints

(1a) ∀Pi,∀Tk ∈ VA, 0 ≤ cons(Pi, Tk)× wi,k ≤ 1
(1b) ∀Pi, Pj , 0 ≤ sent(Pi → Pj , ek,l)× (datak,l × ci,j) ≤ 1

(1c) ∀Pi,
∑

Pi→Pj

∑
ek,l∈EA

(
sent(Pi → Pj , ek,l)× datak,l × ci,j

)
≤ 1

(1d) ∀Pi,
∑

Pj→Pi

∑
ek,l∈EA

(
sent(Pj → Pi, ek,l)× datak,l × cj,i

)
≤ 1

(1e) ∀Pi,
∑

Tk∈VA

cons(Pi, Tk)× wi,k ≤ 1

(1f) ∀Pi,∀ek,l ∈ EA : Tk → Tl,∑
Pj→Pi

sent(Pj → Pi, ek,l) + cons(Pi, Tk) =

∑
Pi→Pj

sent(Pi → Pj , ek,l) + cons(Pi, Tl)

How to design a schedule achieving this throughput?



Back to the example

Computations

cons(Pi, T1)
P1 0.025
P2 0.125
P3 0.125
P4 0.250

Total 21 tasks / 40 seconds

Communications

0.125

0.250

0.125
0.250

0.125 0.25

0.375

P1 P3

P4P2

sent(Pi → Pj , ek,l)
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Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations

A3 : 0.125

P1

P1 → P3

P3

P3 → P1

P1

P1 : 0.375

P1 → P3 : 0.375
P3 → P4 : 0.250

P4 → P2 : 0.125
P4 → P3 : 0.125

P3 → P1 : 0.250
P2 → P1 : 0.125
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Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations
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Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations
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P3 → P1

P1
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P4 → P3 : 0.125

P4 : 0.125

P1 : 0.125

P1 → P3 : 0.125

P3 → P1 : 0.125

Tbegin
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Tbegin

T1

Tend



Decomposition into a set of allocations (2/2)
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P4 → P2 → P1

P1 → P3 → P4

P4 → P3 → P1

P1

P1

P1

P1

P3

P1

P1

P2

P1

P1

P4

P1

P1

P4

P1

Tbegin

T1

Tend

Tbegin

T1

Tend

Tbegin

T1
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Tbegin

T1

Tend

Tbegin
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Tend
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Decomposition into a set of allocations (2/2)
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How to orchestrate these allocations?
1 10

1

1

1

1

210

2

P1

P2 P4

P3



Communication graph

A5 : 0.25

A4 : 0.25

A2 : 0.25

A3 : 0.25

A3 : 0.25

A5 : 0.25

A4 : 0.25

0.25
A5

A5
0.25

0.25 A2

0.25 A4

0.25

A4

P1

P2 P3

P3

Fraction of time spent transferring some ek,l file from Pi to Pj for
a given allocation



One-port constraints = matching
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Edge coloring (decomposition into matchings)

 0.25
A5

0.25
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0.25
A4 A4

0.25A2

0.25
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 = 1
4 ×


A4

A3

A3


︸ ︷︷ ︸

χ1

+1
4 ×

 A5

A4


︸ ︷︷ ︸

χ2

+

1
4 ×

 A4A2

A5


︸ ︷︷ ︸
χ3

+1
4 ×

 A5

A2 A5A4


︸ ︷︷ ︸

χ4

This decomposition is always possible



Edge coloring (decomposition into matchings)

 0.25
A5

0.25
A2

0.25
A5

0.25
A4 A4

0.25A2

0.25

A5 : 0.25

A5 : 0.25

A4 : 0.25

A4 : 0.25

A3 : 0.25

A3 : 0.25

 = 1
4 ×


A4

A3

A3


︸ ︷︷ ︸

χ1

+1
4 ×

 A5

A4


︸ ︷︷ ︸

χ2

+

1
4 ×

 A4A2

A5


︸ ︷︷ ︸
χ3

+1
4 ×

 A5

A2 A5A4


︸ ︷︷ ︸

χ4

This decomposition is always possible



Cyclic scheduling achieving optimal throughput

P1 → P2

P2 → P1

P1 → P3

P3 → P1

P2 → P4

P4 → P2

P3 → P4

P4 → P3

P2 → P3

P3 → P2

P4

P3

P2

P1

{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 { {χ3 χ4 {{χ1 χ2 {

0 40 80 120 160

A5A4A3A2A1



Cyclic scheduling achieving optimal throughput

P1 → P2

P2 → P1

P1 → P3

P3 → P1

P2 → P4

P4 → P2

P3 → P4

P4 → P3

P2 → P3

P3 → P2

P4

P3

P2

P1

{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 { {χ3 χ4 {{χ1 χ2 {

0 40 80 120 160

A5A4A3A2A1



Cyclic scheduling achieving optimal throughput

P1 → P2

P2 → P1

P1 → P3

P3 → P1

P2 → P4

P4 → P2

P3 → P4

P4 → P3

P2 → P3

P3 → P2

P4

P3

P2

P1

{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 { {χ3 χ4 {{χ1 χ2 {

0 40 80 120 160

A5A4A3A2A1



Cyclic scheduling achieving optimal throughput

P1 → P2

P2 → P1

P1 → P3

P3 → P1

P2 → P4

P4 → P2

P3 → P4

P4 → P3

P2 → P3

P3 → P2

P4

P3

P2

P1

{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 { {χ3 χ4 {{χ1 χ2 {

0 40 80 120 160

A5A4A3A2A1



Cyclic scheduling achieving optimal throughput

P1 → P2

P2 → P1

P1 → P3

P3 → P1

P2 → P4

P4 → P2

P3 → P4

P4 → P3

P2 → P3

P3 → P2

P4

P3

P2

P1

{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 { {χ3 χ4 {{χ1 χ2 {

0 40 80 120 160

A5A4A3A2A1



Cyclic scheduling achieving optimal throughput

P1 → P2

P2 → P1

P1 → P3

P3 → P1

P2 → P4

P4 → P2

P3 → P4

P4 → P3

P2 → P3

P3 → P2

P4

P3

P2

P1

{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 { {χ3 χ4 {{χ1 χ2 {

0 40 80 120 160

A5A4A3A2A1



Cyclic scheduling achieving optimal throughput

P1 → P2

P2 → P1

P1 → P3

P3 → P1

P2 → P4

P4 → P2

P3 → P4

P4 → P3

P2 → P3

P3 → P2

P4

P3

P2

P1

{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 { {χ3 χ4 {{χ1 χ2 {

0 40 80 120 160

A5A4A3A2A1



Cyclic scheduling achieving optimal throughput

P1 → P2

P2 → P1

P1 → P3

P3 → P1

P2 → P4

P4 → P2

P3 → P4

P4 → P3

P2 → P3

P3 → P2

P4

P3

P2

P1

{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 { {χ3 χ4 {{χ1 χ2 {

0 40 80 120 160

A5A4A3A2A1



Cyclic scheduling achieving optimal throughput

P1 → P2

P2 → P1

P1 → P3

P3 → P1

P2 → P4

P4 → P2

P3 → P4

P4 → P3

P2 → P3

P3 → P2

P4

P3

P2

P1

{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 { {χ3 χ4 {{χ1 χ2 {

0 40 80 120 160

A5A4A3A2A1



Cyclic scheduling achieving optimal throughput

P1 → P2

P2 → P1

P1 → P3

P3 → P1

P2 → P4

P4 → P2

P3 → P4

P4 → P3

P2 → P3

P3 → P2

P4

P3

P2

P1

{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 { {χ3 χ4 {{χ1 χ2 {

0 40 80 120 160

A5A4A3A2A1



Cyclic scheduling achieving optimal throughput

P1 → P2

P2 → P1

P1 → P3

P3 → P1

P2 → P4

P4 → P2

P3 → P4

P4 → P3

P2 → P3

P3 → P2

P4

P3

P2

P1

{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 { {χ3 χ4 {{χ1 χ2 {

0 40 80 120 160

A5A4A3A2A1



Cyclic scheduling achieving optimal throughput

P1 → P2

P2 → P1

P1 → P3

P3 → P1

P2 → P4

P4 → P2

P3 → P4

P4 → P3

P2 → P3

P3 → P2

P4

P3

P2

P1

{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 { {χ3 χ4 {{χ1 χ2 {

0 40 80 120 160

A5A4A3A2A1



Cyclic scheduling achieving optimal throughput

P1 → P2

P2 → P1

P1 → P3

P3 → P1

P2 → P4

P4 → P2

P3 → P4

P4 → P3

P2 → P3

P3 → P2

P4

P3

P2

P1

{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 { {χ3 χ4 {{χ1 χ2 {

0 40 80 120 160

A5A4A3A2A1



Cyclic scheduling achieving optimal throughput

P1 → P2

P2 → P1

P1 → P3

P3 → P1

P2 → P4

P4 → P2

P3 → P4

P4 → P3

P2 → P3

P3 → P2

P4

P3

P2

P1

{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 { {χ3 χ4 {{χ1 χ2 {

0 40 80 120 160

A5A4A3A2A1



Cyclic scheduling achieving optimal throughput

P1 → P2

P2 → P1

P1 → P3

P3 → P1

P2 → P4

P4 → P2

P3 → P4

P4 → P3

P2 → P3

P3 → P2

P4

P3

P2

P1

{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 { {χ3 χ4 {{χ1 χ2 {

0 40 80 120 160

A5A4A3A2A1



Cyclic scheduling achieving optimal throughput

P1 → P2

P2 → P1

P1 → P3

P3 → P1

P2 → P4

P4 → P2

P3 → P4

P4 → P3

P2 → P3

P3 → P2

P4

P3

P2

P1

{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 { {χ3 χ4 {{χ1 χ2 {

0 40 80 120 160

A5A4A3A2A1



Cyclic scheduling achieving optimal throughput

P1 → P2

P2 → P1

P1 → P3

P3 → P1

P2 → P4

P4 → P2

P3 → P4

P4 → P3

P2 → P3

P3 → P2

P4

P3

P2

P1

{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 { {χ3 χ4 {{χ1 χ2 {

0 40 80 120 160

A5A4A3A2A1



Cyclic scheduling achieving optimal throughput

P1 → P2

P2 → P1

P1 → P3

P3 → P1

P2 → P4

P4 → P2

P3 → P4

P4 → P3

P2 → P3

P3 → P2

P4

P3

P2

P1

{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 { {χ3 χ4 {{χ1 χ2 {

0 40 80 120 160

A5A4A3A2A1



Cyclic scheduling achieving optimal throughput

P1 → P2

P2 → P1

P1 → P3

P3 → P1

P2 → P4

P4 → P2

P3 → P4

P4 → P3

P2 → P3

P3 → P2

P4

P3

P2

P1

{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 { {χ3 χ4 {{χ1 χ2 {

0 40 80 120 160

A5A4A3A2A1



Cyclic scheduling achieving optimal throughput

P1 → P2

P2 → P1

P1 → P3

P3 → P1

P2 → P4

P4 → P2

P3 → P4

P4 → P3

P2 → P3

P3 → P2

P4

P3

P2

P1

{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 { {χ3 χ4 {{χ1 χ2 {

0 40 80 120 160

A5A4A3A2A1



Cyclic scheduling achieving optimal throughput

P1 → P2

P2 → P1

P1 → P3

P3 → P1

P2 → P4

P4 → P2

P3 → P4

P4 → P3

P2 → P3

P3 → P2

P4

P3

P2

P1

{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 { {χ3 χ4 {{χ1 χ2 {

0 40 80 120 160

A5A4A3A2A1



Asymptotically optimal schedule

The technique used in the example is

general
polynomial

The resulting schedule is asymptotically optimal: within T
time-steps, it differs from the optimal schedule by a constant
number of tasks (independent of T )



Extensions to collections of general task graphs

More difficult but possible

Maximizing throughput NP-hard /
Most application DAGs have polynomial number of joins
⇒ polynomial solution ,
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