Indications

19 octobre 2007

1 Graphes aléatoires

- 1. $1-(1-p^2)^{n-2}$ (intersection de n-2 évênements indépendants).
- 2. C'est $p(1-(1-p^2)^{n-2})$ par indépendance.
- 3. $P[E_x] \leq (n-1)(1-p^2)^{n-2}$ ce qui tend vers 0 quand $n \to +\infty$.
- 4. Fixons un sommets x. L'évênement "x n'est pas inclus dans un triangle" est inclus dans l'union de E_x et de l'évênement $F_x : \forall y \ \neg \{x,y\} \in E$. Or $P[F_x] = (1-p)^{n-1}$, ce qui tend vers 0 quand n tend vers l'infini. Avec la question précédente on en déduit ("probabilité de l'union") que la limite cherchée est 1.
- 5. Soit E l'union de tous les E_x et F l'union de tous les F_x . Si $E \cup F$ n'est pas réalisé alors tout sommet est inclus dans un triangle. Mais $P(E) \leq nP(E_x)$ et $P(F) \leq nP(F_x)$ donc ces deux probabilités tendent encore vers 0. La limite cherchée est donc 1.
- 6. C'est $\binom{n}{3}p^3$ (linéarité de l'espérance).
- 7. On a

$$P[\exists x, y \ x \neq y \land \forall z \ \neg(\{z, x\} \in E \land \{z, y\} \in E)] \le \binom{n}{2} (1 - p^2)^{(n-2)}$$

(question 1 et probabilité de l'union) ce qui tend vers 0 quand n tend vers l'infini. On en déduit que la première limite est 1.

On a $P[\text{diamètre}(G(n,p)) < 2] = P[G(n,p) \text{ est une clique}] = p^n$, ce qui tend vers 0 quand n tend vers l'infini. On en déduit que la seconde limite est 1 également.

2 Pile ou Face?

Source: Concrete Maths.

1. (a)
$$EX = \sum_{n \ge 1} P(X \ge n) = \sum_{n \ge 1} q^{n-1} = 1/(1-q) = 1/p$$
.

(b)
$$H(z) = \sum_{k=0}^{+\infty} P(X=k)z^k$$
 mais $P(X=k) = q^{k-1}p$ pour $k \ge 1$, d'ou $H(z) = pz/(1-qz)$.

On a
$$H'(z) = p/(1-qz)^2$$
 d'ou $EX = H'(1) = 1/p$.

- 2. On a $H''(z)=2pq/(1-qz)^3.$ La variance est donc égale à $H''(1)+H'(1)-H'(1)^2=q/p^2.$
- 3. On a $P(Y = 2) = p^2$ et pour $k \ge 1$,

$$P(Y = k + 2) = pqP(Y = k) + qP(Y = k + 1).$$

Le résultat en découle en multipliant chaque membre par k+2, et en sommant terme à terme. On trouve $e=1/p+1/p^2$.

4. On multiplie maintenant chaque membre par z^{k+2} au lieu de k+2. On obtient

$$H(z) - p^2 z^2 = pqz^2 H(z) + qzH(z),$$

d'ou
$$H(z) = p^2 z^2 / (1 - qz - pqz^2)$$
.

On a
$$H'(z) = (2p^2z - p^2qz^2)/(1 - qz - pqz^2)^2$$
 d'ou $H'(1) = 1/p + 1/p^2$.

- 5. Voir le dessin.
- 6. $H_0=qzH_0+pzH_1,\ H_1=qzH_0+pzH_2,\ H_2=pzH_2+qz$ d'ou $H_0=\frac{p^2qz^3}{(1-pz)(1-qz-pqz^2)}.$ Le cas particulier : $z^3/(z^3-8z+8).$
- 7. On a $p_1=pp_2+qp_3$, $p_2=pp_2+q$, $p_3=pp_1$ (voir le dessin de la chaine). D'ou $p_A=p_1=p/(1-pq)$. Cas particulier : $p_A=2/3$.