Introduction au lambda-calcul la confluence

Pierre Lescanne

14 mars 2007 - 14: 06

Qu'est-ce que la confluence?

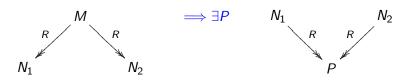
Lemme de substitution

La réduction parrallèle

La démonstration de la confluence

Propriété du losange

Confluence



Remarques

- 1. \xrightarrow{R} est confluente si \xrightarrow{R} a la propriété du losange.
- 2. Parfois on note la confluence :

où » est un flèche existentielle.

Confluence et convertibilité

Théorème (Church-Rosser) :

Si
$$R$$
 est confluente alors $M \underset{R}{\iff} N \iff \exists P(M \underset{R}{\longrightarrow} P \land N \underset{R}{\longrightarrow} P).$

Si
$$R$$
 est confluente alors
$$M \underset{R}{\longleftarrow} N \iff \exists P(M \underset{R}{\longrightarrow} P \land N \underset{R}{\longrightarrow} P).$$

Démonstration : \Leftarrow est évident car $\xrightarrow{R} \subseteq \xrightarrow{R}$ et \xrightarrow{R} et est symétrique et transitive.

Si
$$R$$
 est confluente alors
$$M \underset{R}{\iff} N \iff \exists P(M \underset{R}{\longrightarrow} P \land N \underset{R}{\longrightarrow} P).$$

$$M \stackrel{+}{\underset{R}{\longleftarrow}} M_1 \stackrel{+}{\underset{R}{\longrightarrow}} N_1 \dots \stackrel{+}{\underset{R}{\longleftarrow}} M_i \stackrel{+}{\underset{R}{\longrightarrow}} N_1 \dots$$

$$\dots N_{n-1} \stackrel{+}{\underset{R}{\longleftarrow}} M_n \stackrel{+}{\underset{R}{\longrightarrow}} N_n \stackrel{+}{\underset{R}{\longleftarrow}} N$$

▶ si
$$n = 0$$
 alors $M \underset{R}{\longleftarrow} N$ ou $M \underset{R}{\longrightarrow} N$.

Si
$$R$$
 est confluente alors
$$M \underset{R}{\longleftarrow} N \iff \exists P(M \underset{R}{\longrightarrow} P \land N \underset{R}{\longrightarrow} P).$$

Démonstration : \Longrightarrow .

▶ si $n \neq 0$, par confluence, dans $M \overset{+}{\underset{R}{\longleftarrow}} M_1 \overset{+}{\underset{R}{\longrightarrow}} N_1...N_{n-1} \overset{+}{\underset{R}{\longleftarrow}} M_n \overset{+}{\underset{R}{\longleftarrow}} N_n \overset{+}{\underset{R}{\longleftarrow}} N \text{ il}$ existe M'_n tel que $N_{n-1} \overset{+}{\underset{R}{\longleftarrow}} M'_n \overset{+}{\underset{R}{\longleftarrow}} N_n \overset{+}{\underset{R}{\longleftarrow}} N$ et $M \overset{+}{\underset{R}{\longleftarrow}} M_1 \overset{+}{\underset{R}{\longleftarrow}} N_1... \overset{+}{\underset{R}{\longleftarrow}} M_i \overset{+}{\underset{R}{\longleftarrow}} N_1...$ $...N_{n-1} \overset{+}{\underset{R}{\longleftarrow}} M'_n \overset{+}{\underset{R}{\longleftarrow}} N_n \overset{+}{\underset{R}{\longleftarrow}} N_n \overset{+}{\underset{R}{\longleftarrow}} N$

a un pic de moins, donc on a le résultat par induction.

Confluence et convertibilité

Corollaire: Si R est confluente

- 1. Si N est une forme normale de M alors $M \longrightarrow N$.
- 2. Un terme a au plus une forme normale.

Confluence de \rightarrow_{β}

Théorème:

Remarques préliminaires

- ► Si ___ a la propriété du losange, alors ___ a la propriété du losange.
- n'a pas la propriété du losange. Pourquoi?
- ▶ Il faut donc trouver une relation → telle que

 - $\circ \quad \xrightarrow{\parallel} \quad = \quad \xrightarrow{\beta} \quad ,$
 - + donc a la propriété du losange,
 - + ce qui signifie que $\xrightarrow{\beta}$ est confluente.

Qu'est-ce que la confluence?

Lemme de substitution

La réduction parrallèle

La démonstration de la confluence

Lemme de substitution

Si
$$x \notin FV(L)$$
 alors $M[x := N][y := L] \equiv M[y := L][x := N[y := L]]$

Si $x \notin FV(L)$ alors

$$M[x := N][y := L] \equiv M[y := L][x := N[y := L]]$$

 $\overline{\text{Démonstration}}$: Par induction sur la structure de M.

M est une variable

- ▶ $M \equiv x$, les deux côtés valent N[y := L],
- ▶ $M \equiv y$, les deux côtés valent L,
- ▶ $M \equiv z$, les deux côtés valent z,

Si
$$x \notin FV(L)$$
 alors
 $M[x := N][y := L] \equiv M[y := L][x := N[y := L]]$

Démonstration : Par induction sur la structure de M. M est une abstraction $M \equiv \lambda z. M_1$.

$$\begin{split} M[x := N][y := L] &\equiv (\lambda z. M_1)[x := N][y := L] \\ &\equiv \lambda z. (M_1[x := N][y := L]) \text{ (par définition)} \\ &\equiv \lambda z. (M_1[y := L][x := N[y := L]]) \text{ (par induction)} \\ &\equiv (\lambda z. M_1)[y := L][x := N[y := L]] \text{ (par définition)} \end{split}$$

M est une application facile.

Qu'est-ce que la confluence?

Lemme de substitution

La réduction parrallèle

La démonstration de la confluence

Définition de la réduction parallèle

Trois résultats

1. Si
$$M \xrightarrow{\beta} M'$$
 alors $M \xrightarrow{\| + \|} M'$ c'est-à-dire $\xrightarrow{\beta} \subseteq \| + \|$

2. Si
$$M$$
 \longrightarrow M' alors M \longrightarrow M' c'est-à-dire \longrightarrow \subseteq \longrightarrow

3. Si
$$M \longrightarrow M'$$
 et $N \longrightarrow N'$ alors
$$M[x := N] \longrightarrow M'[x := N']$$

En exercice.

Une propriété plus forte

On prouve une propriété plus forte (due à M. Takahashi) que la propriété du losange pour +> :

$$M \longrightarrow N \longrightarrow N \longrightarrow M^*$$
 (*)

où M^* est un terme déterminé par M mais indépendant de N.

Une propriété plus forte

On prouve une propriété plus forte que la propriété du losange pour +> :

$$M \longrightarrow N \Longrightarrow N \longrightarrow M^* \tag{*}$$

où M^* est un terme déterminé par M mais indépendant de N. Intuitivement M^* est le terme obtenu à partir de M en contractant tous ses redex simultanément.

Qu'est-ce que la confluence?

Lemme de substitution

La réduction parrallèle

La démonstration de la confluence

Le définition de *M**

- 1. $x^* \equiv x$
- 2. $(\lambda x.M)^* \equiv \lambda x.M^*$
- 3. $(M_1M_2)^* \equiv M_1^*M_2^*$ si M_1M_2 n'est pas un redex.
- 4. $((\lambda x.M_1)M_2)^* \equiv M_1^*[x := M_2^*]$

Exercices

Calculer

- 1. $((\lambda x.x) ((\lambda yzu.y (z u)) abc))^*$
- 2. $((\lambda x.x \ x) \ (\lambda y.y \ y))^*$

$$\boxed{M \longrightarrow N \longrightarrow N \longrightarrow M^*.}$$

Les cas correspondant aux parties 1., 2. et 3. de la définition M^* sont laissés en exercice.

$$M \longrightarrow N \longrightarrow N \longrightarrow M^*.$$

Si $M \equiv ((\lambda x. M_1) M_2) \longrightarrow N$, alors deux cas pour N,

- $ightharpoonup N \equiv (\lambda x. N_1) N_2$
- $N \equiv N_1[x := N_2]$

dans les deux cas, il y a des N_i (i=1 ou i=2) tels que $M_i \longrightarrow N_i$.

Par induction, $N_i \longrightarrow M_i^*$.

Pour chaque cas :

- ► Si $N \equiv (\lambda x. N_1)N_2$ alors $N \longrightarrow M_1^*[x := M_2^*] \equiv M^*$.
- ► Si $N \equiv N_1[x := N_2]$, alors nous avons $N \xrightarrow{\parallel} M_1^*[x := M_2^*] \equiv M^*$, par le résultat 3.

Résumons

```
De la propriété (*) pour
on déduit la propriété du losange pour
de laquelle on déduit la propriété du losange pour
de laquelle on déduit la propriété du losange pour
     parce que \longrightarrow = \longrightarrow ,
qui est la confluence de \longrightarrow .
Donc \xrightarrow{\beta} est confluent.
C.q.f.d.
```