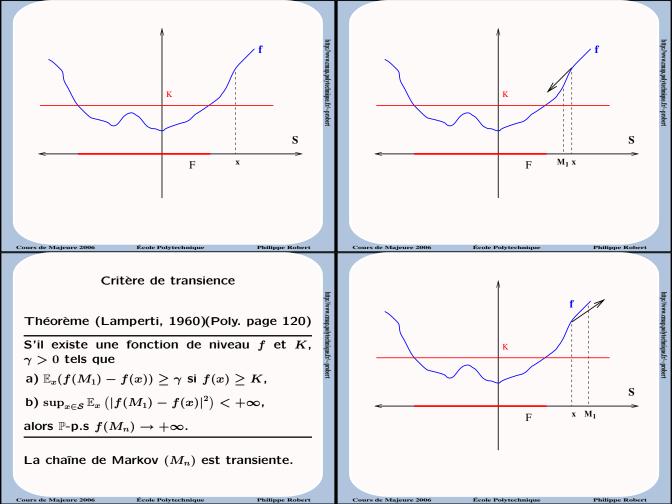
Cours de Majeure 2006

École Polytechnique

Philippe Robert

Philippe Robert

Cours de Majeure 2006



Philippe Robert

Ethernet

École Polytechnique Philippe Robert

Rappel du cadre : II

Chaque émetteur peut écouter le canal :

- 0 —un blanc pas d'essai de transmission sur le canal.
- 1 —un succès un seul émetteur transmet sur le canal.
- 2 —une collision au moins deux émetteurs essai ent une transmission.

Le canal délivre une information ternaire

Cours de Majeure 2006

Rappel du cadre

- -N émetteurs dispersés dans la nature. Le nombre N est inconnu, variable. Topologie inconnue
- Un seul canal de communication.
- Une station ayant un message doit le transmettre sur le canal.
- Deux émissions sur le canal en même temps ⇒ échec.

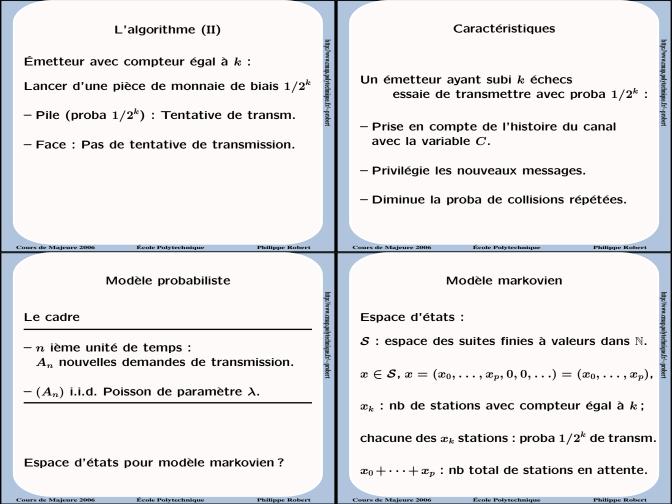
L'algorithme

(Poly. page 7) Metcalf (Harvard) 1973

Chaque émetteur : variable "compteur" C.

- À l'arrivée sur le canal : C=0 ;
- Chaque échec de transmission $C \rightarrow C + 1$.

(Poly. page 3)



Modèle markovien : transitions

Si
$$X(0) = x$$
, $x = (x_0, \dots, x_n)$,

$$(B_i^k, i \geq 1)$$
 Bernoulli paramètre $1/2^k$,

$$Y_k = \sum_{i=1}^{x_k} B_i^k,$$

 Y_k : nb de stations compteur k: essai transm.

$$Z_k = x_k - \sum_{i=1}^{x_k} B_i^k,$$

 Z_k : nb de stations compteur k: pas d'essai

Une chaîne de Markov (b(n)) sur $\mathbb N$ associée

Transitions :
$$b(0) = 0$$
 et (Poly. page 14)

$$-\mathbb{P}(b(n) = k \mid b(n-1) = k) = 1 - \frac{1}{2^k}$$

$$0 \downarrow 1/2 \downarrow 1/2^k \downarrow k \downarrow k+1 > 1/2^k \downarrow k$$

Cours de Majeure 2006

 $-\mathbb{P}(b(n) = k+1 \mid b(n-1) = k) = \frac{1}{2^k}$

$$X(1)=(A_1,Y_0,Y_1+Z_2,$$

Si X(0) = x et si collision

$$(X(n))$$
 chaîne de Markov irréductible sur ${\mathcal S}.$

Modèle markovien : transitions

- État :
$$Y(n)=(y_1(0),y_1(n),\ldots,y_k(n),\ldots)$$
 avec état initial $Y(0)=(0).$

$$\lambda \sum_{s=0}^n \mathbb{P}(b(s)=k).$$

Le nombre d'essais Z(n) de transmission à t=n suit une loi de Poisson de paramètre

$$u_n = \lambda \mathbb{E}(b(n+1)).$$

Proposition Si $\lambda > \log 2 \sim 0.693$ alors la chaîne de Markov

(Poly. page 16)

(X(n)) est transiente et \mathbb{P} -p.s. seul un nb fini de messages sont transmis.

Instabilité d'Ethernet

Instabilité d'Ethernet (II)

Preuve: $\nu_n = \lambda \mathbb{E}(b(n+1)) \sim \lambda \log n / \log 2$

$$\sum_{n\geq 1} \mathbb{P}(Z(n)=1) = \sum_{n\geq 1}
u_n e^{-
u_n} \!\!\sim rac{\lambda}{\log 2} \sum_{n\geq 1} rac{\log n}{n^{\lambda/\log 2}}$$

Si $\lambda > \log 2$, alors

$$\mathbb{E}\left(\sum_{n\geq 1}1_{\{Z(n)=1\}}
ight)=\sum_{n\geq 1}\mathbb{P}(Z(n)=1)<+\infty$$

 \mathbb{P} -p.s. un n.b. fini transmissions \Rightarrow transience.

Théorème, Aldous (1987)

Si $\lambda > 0$, \Rightarrow la chaîne (X(n)) est transiente.

Instabilité d'Ethernet (III)

si $\lambda < \log 2$,

P-p.s. un nombre infini de messages transmis.

Philippe Robert

Cours de Majeure 2006

Cours de Majeure 2006 École Polytechnique

L'algorithme (II)

- Si C > 0, pas d'essai de transmission.

Écoute du canal:

Cours de Majeure 2006

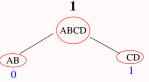
- 1. Si succès ou pas d'essai de transmission, $C \rightarrow C - 1$.
- 2. Si collision sur le canal, $C \rightarrow C + 1$.

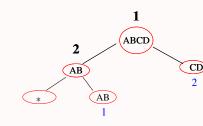
École Polytechnique

2 1 3 5 6 8 No No Ok Ok No Ok Ok No **ABCD** CD С AB AB Α CD AB CD В CD 1 D CD CD

École Polytechnique

Exemple





Philippe Robert

Philippe Robert

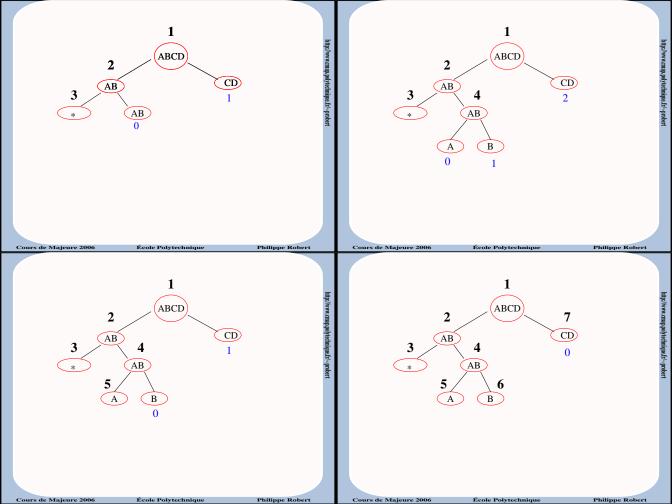
Cours de Majeure 2006

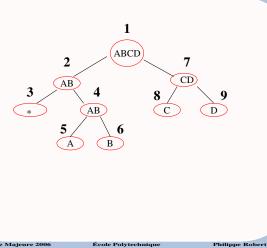
École Polytechnique

Cours de Majeure 2006

École Polytechnique

Philippe Robert





Caractéristiques

- Écoute continue du canal.
- Prise en compte de l'information ternaire même en cas de non-transmission.

École Polytechnique

Modèle probabiliste

Exemple

	1	2	3	4	5	6	7	8	9
С	No	No	Ø	No	Ok	Ok	No	Ok	Oł
0	ABCD	AB		AB	Α	В	CD	С	D
1		CD	AB	CD	В	CD		D	
2			CD		CD				

 $\begin{array}{|c|c|c|c|c|c|c|c|}\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\\hline (4) & {2 \choose 2} & {0 \choose 2} & {2 \choose 2} & {1 \choose 1} & {1 \choose 2} & {2 \choose 1} & {2 \choose 1} & {1 \choose 1} & {1 \choose 1} & {1 \choose 1} & {1 \choose 2} &$

Modele probabiliste

– Arrivées Poisson paramètre λ .

 $-X(n)=(x_0(n),x_1(n),\ldots).$

 $x_k(n)$: nb stations compteur k à t=n.

Cours de Majeure 2006

École Polytechnique

Philippe Robert

Cours de Majeure 2006

École Polytechnique

Philippe Robert

Un modèle simplifié

Le protocole à arrivées bloquées

 Découpage en sessions. Messages arrivés pendant la n-ième session

 R_n durée d'une session

- \Rightarrow transmis dans la (n+1)-ième.
- débutant avec n stations.

Transformée de Poisson

(Poly. page 23)

Philippe Robert

$$r(x) = \sum_{n \geq 0} r_n rac{x^n}{n!} \, e^{-x} = \mathbb{E}(r_{N[0,x]}) = \mathbb{E}(R_{N[0,x]})$$

$$(N[0,t],t\geq 0)$$
 Proc. Poisson intensité 1 indépendant de (R_n) .

avec

$$R_0 = R_1 = 1$$

$$R_1 = 1$$

Si n > 0 et $Y_n = n - X_n$

Relation de récurrence (II)

 $R_0 = R_1 = 1$. Pour n > 2,

École Polytechnique

Cours de Majeure 2006

Effacement d'un Poisson:

Relation de récurrence

 $R_n \stackrel{\text{dist}}{=} 1 + R_{X_n} + \overline{R}_{n-X_n}$

 $X_n = B_1 + B_2 + \cdots + B_n$

 (\overline{R}_n) indépendante de (R_n)

 $R_n \stackrel{\text{dist}}{=} 1 + R_{X_n} + \overline{R}_{Y_n} - 2_{\{n < 1\}}$

 $X_{N[0,x]}$ et $Y_{N[0,x]}$ indép. Poisson param. x/2.

 $r(x) = 2r(x/2) + 1 - 2(1+x)e^{-x}$

 (B_i) i.i.d. Bernoulli paramètre 1/2.

Suite (\overline{R}_n) même loi que (R_n)

École Polytechnique

Philippe Robert

Cours de Majeure 2006

Si $r_n = \mathbb{E}(R_n)$

2.885393 2.885392 2.885391 2.88539 2.885389 2.885388 2.885387

Transformée de Poisson (II)

Par itération

$$egin{align} r(x) &= \sum_{n \geq 0} \mathbb{E}(R_n) rac{x^k}{n!} \, e^{-x} \ &= 1 + \sum_{k \geq 0} 2^{k+1} \left(1 - \left(1 + rac{x}{2^k}
ight) e^{-x/2^k}
ight) \end{split}$$

En identifiant $\Rightarrow \mathbb{E}(R_n)$.

10000

Philippe Robert

 $\mathbb{E}(R_n)/n$: Temps moyen transm. 1 message.

Débit : $\lambda_c \neq \lim_{n \to +\infty} \frac{n}{\mathbb{E}(R_n)}$ - Pb: la limite n'existe pas!

arrivées bloquées est stable.

 $-(n/\mathbb{E}(R_n))$ oscille autour de $\log 2/2 \sim 0.3465735903$

- Mais $\liminf_{n\to+\infty} n/\mathbb{E}(R_n) \sim 0.34657 > 0$.

Débit asymptotique

Stabilité du protocole en arbre

Si $\lambda < 0.34657$ alors le protocole en arbre à

Evolution de $n \to \mathbb{E}(R_n)/n$

École Polytechnique

Théorème

(Poly. page 27)

Théorème

Si $\lambda < 0.36017$ alors le protocole en arbre à arrivées libres est stable.

30000

Philippe Robert

40000

Cours de Majeure 2006

Philippe Robert

Cours de Majeure 2006

École Polytechnique

20000

50000

Améliorations

Arbre d-aire

- Séparation en d groupes.
- d grand : Séparation plus rapide.
- $-\,d$ grand : Beaucoup de silences.

Valeur optimale d=3

Si $\lambda < 0.40159$ alors le protocole en arbre ternaire est stable.

Cours de Majeure 200

École Polytechnique

Philippe Robert

Protocole en arbre ternaire

ABCDEF

DE

Bornes théoriques (II)

ABC

ilippe Robert

Bornes théoriques

Protocole hybride basé sur l'arbre ternaire

 \exists protocole stable dès que $\lambda < 0.487$.

 $\Rightarrow \lambda_{\mathsf{max}} \geq 0.487$

Débit maximal : $\lambda_{\mathsf{max}} \leq 0.56$.

Conjecture : $\lambda_{\mathsf{max}} \leq 0.52$

Protocole en arbre :

AB

Utilisation quasi-optimale

de l'information ternaire donnée par le canal.

Faible impact industriel.

Cours de Majeure 2006

École Polytechnique

Philippe Robert

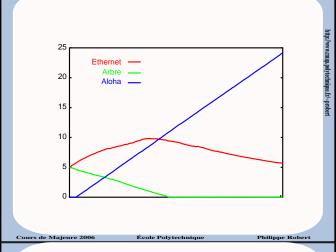
rt Cours de Majeure 2006

006

École Polytechnique

Philippe Robert

//www.cmap.polytechnique.fr/~prot



4. Algorithmes & Structures de données

Élection de leader

Contexte:

 N stations dispersées, pouvant tomber en panne;

Canal communication commun;

Problème

Cours de Majeure 2006

- Déterminer de façon distribuée un chef.

Application : Réseaux de capteurs.

Élection de leader : un algorithme

Chaque élément à un compteur ${\cal C}$

Si C=0: émission de son Id;

- un seul Id sur canal : Fin.

- Collision,

 $C
ightharpoonup \begin{cases} 0 \text{ avec proba } 1/2; \\ 1 \text{ avec proba } 1/2; \end{cases}$

 Silence. Éléments ayant émis dans l'unité précédente remettent leur compteur à 0.

École Polytechnique

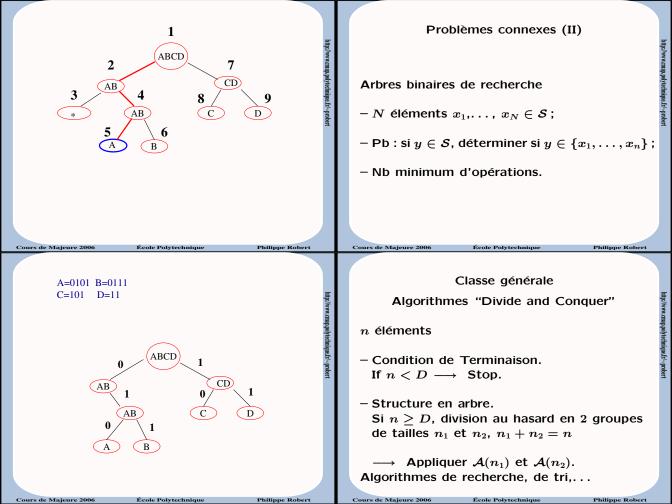
Philippe Robert

Cours de Majeure 2006

École Polytechnique

Philippe Robert

The state of the s



5. Protocoles à jeton

ф://ф

Cadre

- Stations situées sur un anneau.

Jeton circule sur l'anneau dans un seul sens.

L'algorithme

(Poly. page 32)

 \Rightarrow émission de la station.

– Pas d'émission sans jeton.

- Jeton capté par une station

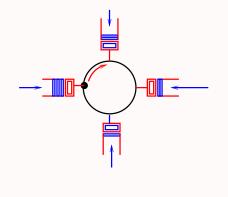
Philippe Robert

Histoire

- Cambridge ring (1974).

- IBM (1980). Token Ring.

- Normes industrielles IEEE 802.4 et 802.5.



Cours de Majeure 2006

- Hypothèse sur la topologie.
- Fragilité/Complexité due au jeton.

Modèles mathématiques

Réseaux avec polling.

École Polytechnique

Philippe Robert

Preuve du critère de Foster

Théorème (Poly. page 36) Temps de propagation négligeables :

 $\lambda < 1 \Rightarrow$ stabilité du réseau.

Topologie en anneau ⇒ débit maximum optimal.

Évolution:

Le protocole tend à disparaître.

Une idée de la preuve : La formule du cycle

 (M_n) chaîne de Markov ergodique de proba invariante π , $x_0 \in \mathcal{S}$,

$$T_{x_0}=\inf\{n>0: M_n=x_0\},$$

alors
$$\mathbb{E}_{x_0}(T_{x_0})<+\infty$$

et, (Poly. page 106)
$$T_{x_0-1}$$

$$\sum_{x\in\mathcal{S}}\pi(x)f(x)=rac{1}{\mathbb{E}_{x_0}(T_{x_0})}\mathbb{E}_{x_0}\left(\sum_{k=0}^{T_{x_0}-1}f(M_k)
ight).$$

École Polytechnique

Cours de Majeure 2006

Une extension

F ensemble fini

$$T_F=\inf\{n>0:M_n\in F\}.$$

 (M_n) chaîne de Markov irréductible proba invariante π alors

$$\mathbb{E}_x(T_F)<+\infty$$

est vérifié pour tout $x \in \mathcal{S}$.

Cours de Majeure 2006

Cours de Majeure 2006

Philippe Robert

Une extension

 (X_n) suite des points de F visités par (M_n) .

 $\{X_n, p > 0\} = \{M_n : M_n \in F\}.$

 (X_n) chaîne de Markov finie irréductible

 \Rightarrow proba invariante π_F .

Une extension

Alors π est donnée par (Poly. page 106)

$$\sum_{x \in \mathcal{S}} \pi(x) f(x) = rac{1}{\mathbb{E}_{\pi_F}(T_F)} \mathbb{E}_{\pi_F} \left(\sum_{k=0}^{T_F-1} f(M_k)
ight)$$

Formule du cycle généralisée

Réciproquement :

Si $\mathbb{E}_x(T_F) < +\infty$ pour tout $x \in \mathcal{S}$, π définie par la formule du cycle généralisée est invariante pour (M_n) .

Une extension

et K, $\gamma > 0$ tels que

a)
$$\mathbb{E}_x(f(M_1)-f(x)) \leq -\gamma$$
 Si $f(x) \geq K$,

b)
$$\mathbb{E}_x\left(f(M_1)
ight)<+\infty$$
 Si $f(x)\leq K$,

alors si
$$F = \{x \in \mathcal{S} : f(x) \leq K\}$$
 fini et $x \not\in F$

$$\mathbb{E}_x(T_F) \leq rac{f(x)}{\gamma}.$$

et
$$(M_n)$$
 ergodique.

Cours de Majeure 2006

École Polytechnique

Philippe Robert