
Contrôle de transmission

Bloc 4, INF 586Bloc 4, INF 586

Walid DabbousWalid Dabbous
INRIA Sophia AntipolisINRIA Sophia Antipolis

Plan

�� Contrôle dContrôle d ’erreur’erreur
�� de bit (au niveau liaison)de bit (au niveau liaison)
�� de paquet (au niveau transport)de paquet (au niveau transport)

�� Contrôle de flux Contrôle de flux
�� transporttransport
�� en particulier TCPen particulier TCP

Le contrôle d ’erreur

Error control
�� ErrorError detectiondetection & Correction& Correction
�� Basic Basic ideaidea isis to to addadd redundancyredundancy to to detectdetect or correct or correct errorserrors
�� Block code (n,k)Block code (n,k)

�� addadd nn--k k redundancyredundancy bits to k data bits to bits to k data bits to formform n bits n bits codewordcodeword
�� e.g. e.g. parityparity code (k+1, k) code (k+1, k) detectsdetects oddodd numbernumber of bit of bit errorserrors
�� rectangularrectangular code (code (parityparity alongalong rowsrows and and columncolumn of an of an arrayarray))

correctscorrects oneone bit bit errorerror, , withwith codingcoding delaydelay

�� HammingHamming codecode
�� validvalid codewordscodewords are «are « differentdifferent » » enoughenough, , soso thatthat errorederrored

codewordcodeword do do notnot ressemble ressemble validvalid codewordscodewords
�� distancedistance: : minimimminimim numbernumber of bit inversions to of bit inversions to transformtransform VCW1 to VCW2VCW1 to VCW2

�� to to detectdetect E E errorserrors : minimal distance : minimal distance isis E+1E+1
�� to to correctcorrect E E errorserrors : minimal distance : minimal distance isis 2E+12E+1

�� InterleavedInterleaved codescodes
�� transmit transmit columncolumn wisewise a a matrixmatrix of m of m consecutiveconsecutive CWsCWs
�� convertconvert burstburst errorserrors to «to « bitbit » » errorserrors
�� addadd memorymemory costcost and and delaydelay

CRC
�� Right nRight n--k bits are the remainder of dividing (nk bits are the remainder of dividing (n--k)k)--left shifted left shifted

“message” by a generator polynomial G(x) of degree (n“message” by a generator polynomial G(x) of degree (n--k)k)
�� Adequate choice of G(x) allows to detectAdequate choice of G(x) allows to detect

�� all single bit errors (E(x)=xall single bit errors (E(x)=xii, G has more than two terms), G has more than two terms)
�� almost all 2almost all 2--bit errors bit errors (E(x) = (E(x) = xxii+x+xjj; G has a factor with at least ; G has a factor with at least

three terms, chosen not to divide neither x nor three terms, chosen not to divide neither x nor xxmax(imax(i--jj))))
�� any odd number of errors (E has odd number of terms and G any odd number of errors (E has odd number of terms and G

has factor x+1)has factor x+1)
�� all bursts up to nall bursts up to n--k, where generator bit sequence length is nk, where generator bit sequence length is n--

k+1 (i.e. nk+1 (i.e. n--k check bits)k check bits)
�� longer bursts with probability 1longer bursts with probability 1--22--(n(n--k)k),if bursts are randomly ,if bursts are randomly

distributeddistributed

Hw/Sw Implementation

�� HardwareHardware
�� onon--thethe--fly with a shift registerfly with a shift register
�� easy to implement with Application Specific Integrated easy to implement with Application Specific Integrated

Circuit / Field Programmable Gate ArrayCircuit / Field Programmable Gate Array
�� SoftwareSoftware

�� Efficiency is importantEfficiency is important
�� touch each data byte only oncetouch each data byte only once
�� rectangular and rectangular and convolutionalconvolutional not suitablenot suitable
�� CRCCRC

Software schemes

�� TCP/UDP/IPTCP/UDP/IP
�� all use same schemeall use same scheme
�� treat data bytes as 16treat data bytes as 16--bit integersbit integers
�� add with endadd with end--around carry (add 1 to the sum)around carry (add 1 to the sum)
�� 1616--bit one’s complement of the sum = checksum bit one’s complement of the sum = checksum
�� needs only one lookup per 16needs only one lookup per 16--bit blockbit block
�� catches all 1catches all 1--bit errorsbit errors
�� incorrectly validates (uniformly distributed) errors with incorrectly validates (uniformly distributed) errors with

probability 1/65536probability 1/65536

Packet errors

�� Different from bit errorsDifferent from bit errors
�� causes of packet errorscauses of packet errors

�� not just erasure, but also duplication, insertion,etc.not just erasure, but also duplication, insertion,etc.

�� detection and correctiondetection and correction
�� retransmission, instead of redundancyretransmission, instead of redundancy

Causes of packet errors

�� LossLoss
�� due to uncorrectable bit errors (e.g. in wireless environment)due to uncorrectable bit errors (e.g. in wireless environment)
�� buffer loss on overflowbuffer loss on overflow

�� especially with bursty trafficespecially with bursty traffic

•• for the same load, the greater the burstiness, the more the for the same load, the greater the burstiness, the more the
lossloss

�� packet losses are bursty (correlation btw consecutive losses)packet losses are bursty (correlation btw consecutive losses)
�� loss rate depends on burstiness, load, and buffer sizeloss rate depends on burstiness, load, and buffer size

�� fragmented packets can lead to error multiplication fragmented packets can lead to error multiplication (TCP>ATM)(TCP>ATM)

�� packet loss rate versus cell loss ratepacket loss rate versus cell loss rate
�� longer the packet, more the losslonger the packet, more the loss

•• drop the entire packet at switch drop the entire packet at switch

Causes of packet errors (cont.)

�� DuplicationDuplication
�� same packet received twice (2same packet received twice (2ndnd is out of sequence)is out of sequence)

�� usually due to retransmissionusually due to retransmission

�� ReorderingReordering
�� packets received in wrong orderpackets received in wrong order

�� usually due to retransmissionusually due to retransmission
�� some routing techniques may also reorder some routing techniques may also reorder

�� InsertionInsertion
�� packet from some other conversation receivedpacket from some other conversation received

�� (undetectable) header corruption from another active (undetectable) header corruption from another active
connection (with different TCconnection (with different TC--identifier)identifier)

�� delayed packet from closed connection (with same TCdelayed packet from closed connection (with same TC--
identifier)identifier)

Packet error detection and correction

�� DetectionDetection
�� Sequence numbersSequence numbers
�� TimeoutsTimeouts

�� CorrectionCorrection
�� RetransmissionRetransmission

�� Bit level mechanisms activeBit level mechanisms active
�� no errors on headerno errors on header

Sequence numbers

�� In each headerIn each header
�� Incremented for nonIncremented for non--retransmitted packetsretransmitted packets
�� Sequence spaceSequence space

�� set of all possible sequence numbersset of all possible sequence numbers
�� for a 3for a 3--bit bit seqseq #, space is {0,1,2,3,4,5,6,7}#, space is {0,1,2,3,4,5,6,7}

Using sequence numbers to detect errors

�� Reordering & duplication (straightforward) Reordering & duplication (straightforward)
�� LossLoss

�� gap in sequence space allows gap in sequence space allows receiver receiver to detect lossto detect loss
�� e.g. received 0,1,2,5,6,7 => lost 3,4e.g. received 0,1,2,5,6,7 => lost 3,4

�� acksacks carry carry cumulativecumulative seqseq ##
�� redundant information redundant information
�� if no if no ackack for a while, for a while, sendersender suspects losssuspects loss

�� InsertionInsertion
�� if the received if the received seqseq # is “very different” from what is expected# is “very different” from what is expected

�� more on this latermore on this later

�� Two important considerationsTwo important considerations
�� choosing sequence number lengthchoosing sequence number length
�� choosing initial sequence numberchoosing initial sequence number

Sequence number bit length - s

�� Long enough so that sender does not confuse sequence Long enough so that sender does not confuse sequence
numbers on numbers on acksacks

�� E.g, sending at 100 packets/sec (R)E.g, sending at 100 packets/sec (R)
�� sender waits for 200 sender waits for 200 secssecs before giving up retransmitting (T)before giving up retransmitting (T)
�� receiverreceiver may wait up to 100 sec (A) before sending may wait up to 100 sec (A) before sending AckAck
�� packet can live in the network up to 5 minutes (300 s) packet can live in the network up to 5 minutes (300 s)

((maximum packet lifetime maximum packet lifetime or MPLor MPL))
�� can get an can get an ackack as late as 900 seconds after packet sent outas late as 900 seconds after packet sent out
�� sent out 900*100 = 90,000 packetssent out 900*100 = 90,000 packets
�� if sequence space smaller, then can have confusionif sequence space smaller, then can have confusion
�� so, so, ss > log (90,000), at least 17 bits> log (90,000), at least 17 bits

�� In general 2In general 2ss should be > R(2 MPL + T + A)should be > R(2 MPL + T + A)

Retransmission (200)

Packet in network (300)

Receiver wait (100)

Ack transit (300)

MPL

�� Lower bound on Lower bound on ss requires a bound on MPLrequires a bound on MPL
�� How can we bound it?How can we bound it?
�� Generation time in headerGeneration time in header

�� additional space and computationadditional space and computation
�� Counter in header decremented per hopCounter in header decremented per hop

�� the Time To Live (TTL)the Time To Live (TTL)
�� crafty, but workscrafty, but works
�� used in the Internetused in the Internet
�� assumes max. diameter, and a limit on forwarding timeassumes max. diameter, and a limit on forwarding time

Sequence number size (cont.)

�� If no retransmissions and If no retransmissions and acksacks, size can be smaller: only to , size can be smaller: only to
detect losses and reorderingdetect losses and reordering

�� then size depends on two thingsthen size depends on two things
�� reordering span: how much packets can be reorderedreordering span: how much packets can be reordered

�� e.g. span of 128 => e.g. span of 128 => seqseq # > 7 bits# > 7 bits

�� burst loss span: how many consecutive burst loss span: how many consecutive pktspkts. can be lost. can be lost
�� e.g. possibility of 16 consecutive lost packets => e.g. possibility of 16 consecutive lost packets => seqseq # > 4 bits# > 4 bits

�� both bounds are smaller than the both bounds are smaller than the retrxretrx casecase
�� In practice, do worst case design & hope that technology In practice, do worst case design & hope that technology

becomes obsolete before worst case hits!becomes obsolete before worst case hits!
�� DatalinkDatalink level sequence number shorter than transportlevel sequence number shorter than transport

�� usually no retransmissionusually no retransmission
�� delays are smallerdelays are smaller

Packet insertion in CO mode

�� Receiver should be able to distinguish packets from other Receiver should be able to distinguish packets from other
connectionsconnections

�� Why?Why?
�� receive packets on VCI 1receive packets on VCI 1
�� connection closesconnection closes
�� new connection also with VCI 1new connection also with VCI 1
�� delayed packet arrivesdelayed packet arrives
�� could be acceptedcould be accepted

�� SolutionSolution
�� flush packets on “connection closing”flush packets on “connection closing”
�� can’t do this for connectionless networks like the Internetcan’t do this for connectionless networks like the Internet

�� need for more sophisticated schemesneed for more sophisticated schemes

Packet insertion (cont.)

�� Packets carry source IP, Packets carry source IP, destdest IP, IP, source port number, source port number,
destination port numberdestination port number

�� How we can have insertion?How we can have insertion?
�� host A opens connection to B, source port 2345, host A opens connection to B, source port 2345, destdest port port

67896789
�� transport layer connection terminatestransport layer connection terminates
�� new connection opens, A and B assign the same port new connection opens, A and B assign the same port

numbersnumbers
�� delayed packet from old connection arrives with sequence delayed packet from old connection arrives with sequence

number in the range used by the newer connectionnumber in the range used by the newer connection
�� insertion!insertion!

Solutions

�� PerPer--connection connection incarnation numberincarnation number
�� incremented for each connection from each hostincremented for each connection from each host
�� -- takes up header spacetakes up header space
�� -- on a crash, incarnation numbers must be remembered on a crash, incarnation numbers must be remembered

�� need stable storage, which is expensiveneed stable storage, which is expensive
�� not popular in practicenot popular in practice

�� Reassign port numbers only after 1 MPLReassign port numbers only after 1 MPL
�� remember remember timetime each port was assignedeach port was assigned
�� -- needs stable storage to survive crashneeds stable storage to survive crash

Solutions (cont.)

�� Assign port numbers serially: new connections have new portsAssign port numbers serially: new connections have new ports
�� Unix starts at 1024Unix starts at 1024
�� this fails if we wrap around within 1 MPLthis fails if we wrap around within 1 MPL
�� also fails if computer crashes and we restart with 1024also fails if computer crashes and we restart with 1024

�� chose initial sequence numbers from a clockchose initial sequence numbers from a clock
�� new connections may have same port, but new connections may have same port, but seqseq # differs# differs
�� fails on a crashfails on a crash

�� Wait 1 MPL after boot up (30s to 2 min)Wait 1 MPL after boot up (30s to 2 min)
�� this flushes old packets from networkthis flushes old packets from network
�� used in most Unix systemsused in most Unix systems

Exchange of Initial Sequence Numbers

�� Standard solution, then, is Standard solution, then, is
�� choose port numbers serially (unless specified by user)choose port numbers serially (unless specified by user)
�� choose initial sequence numbers from a clockchoose initial sequence numbers from a clock
�� wait 1 MPL after a crashwait 1 MPL after a crash

�� Needs communicating ends to tell each other initial sequence Needs communicating ends to tell each other initial sequence
numbernumber

�� Easiest way is to tell this in a Easiest way is to tell this in a SYNchronizeSYNchronize packet (TCP) that packet (TCP) that
starts a connectionstarts a connection

�� 22--way handshakeway handshake
�� does not protect against delayed SYN packetsdoes not protect against delayed SYN packets

3-way handshake

�� Problem really is that Problem really is that SYNsSYNs themselves are not protected with themselves are not protected with
sequence numberssequence numbers

�� 33--way handshake protects against delayed way handshake protects against delayed SYNsSYNs

A
OPEN

B
Listen

Pick ISN = x
SYN, ISN = x

Pick ISN = y

SYN, ISN = y

Ack x Established

Ack y Established

Loss detection

�� At receiver, from a gap in sequence spaceAt receiver, from a gap in sequence space
�� send a send a nacknack to the senderto the sender

�� At sender, by looking at cumulative At sender, by looking at cumulative acksacks, and timing out if no , and timing out if no
ackack for a whilefor a while
�� need to choose timeout intervalneed to choose timeout interval

Nacks

�� Sounds good, but does not work wellSounds good, but does not work well
�� extra load during loss, even though in reverse directionextra load during loss, even though in reverse direction

�� If If nacknack is lost, receiver must retransmit itis lost, receiver must retransmit it
�� moves timeout problem to receivermoves timeout problem to receiver

�� So we need timeouts anywaySo we need timeouts anyway

Timeouts

�� Set timer on sending a packetSet timer on sending a packet
�� If timer goes off, and no If timer goes off, and no ackack, resend , resend
�� How to choose timeout value?How to choose timeout value?
�� Intuition is that we expect a reply in about one round trip timeIntuition is that we expect a reply in about one round trip time

(RTT)(RTT)

Timeout schemes

�� Static schemeStatic scheme
�� know RTT know RTT a prioria priori
�� timer set to this valuetimer set to this value
�� works well when RTT changes little (special purpose works well when RTT changes little (special purpose

systems)systems)
�� Dynamic schemeDynamic scheme

�� measure RTTmeasure RTT
�� timeout is a function of measured timeout is a function of measured RTTsRTTs

�� larger than RTT to deal with delay variationlarger than RTT to deal with delay variation

Old TCP scheme

�� RTTsRTTs are measured periodicallyare measured periodically
�� Smoothed RTT (Smoothed RTT (srttsrtt))
�� srtt(isrtt(i) = a * srtt(i) = a * srtt(i--1) + (11) + (1--a) * RTT(i)a) * RTT(i)
�� timeout =timeout = b * b * srttsrtt
�� a = 0.9, b = 2a = 0.9, b = 2
�� sensitive to choice of a sensitive to choice of a

�� a = 1 => timeout = 2 * initial a = 1 => timeout = 2 * initial srttsrtt
�� a = 0 => no historya = 0 => no history

�� doesn’t work too well in practice doesn’t work too well in practice

New TCP scheme (Jacobson)

�� introduce new error term = introduce new error term = mm
�� its smoothed estimate its smoothed estimate smsm : mean deviation from mean: mean deviation from mean
�� m(i) = | m(i) = | srtt(isrtt(i)) -- RTT(i) |RTT(i) |
�� sm(ism(i) = a * sm(i) = a * sm(i--1) + (11) + (1--a) * m(i)a) * m(i)
�� timeout = timeout = srttsrtt + b * + b * smsm
�� Different values of Different values of bb give different confidence intervalsgive different confidence intervals

Intrinsic problems

�� Hard to choose proper timers, even with new TCP schemeHard to choose proper timers, even with new TCP scheme
�� What should initial value of What should initial value of srttsrtt be?be?

�� Particularly hard if a is close to 1 (strong memory)Particularly hard if a is close to 1 (strong memory)

�� Measuring RTT is hard in presence of lossesMeasuring RTT is hard in presence of losses
�� AckAck may acknowledge more than one packet may acknowledge more than one packet --> hard to > hard to

determine the packet to derive RTT fromdetermine the packet to derive RTT from

�� Timeout => loss, delayed Timeout => loss, delayed ackack, or lost , or lost ackack
�� hard to distinguishhard to distinguish

�� Lesson: use timeouts rarelyLesson: use timeouts rarely

Retransmissions

�� Sender detects loss on timeoutSender detects loss on timeout
�� or other “signal”or other “signal”

�� Which packets to retransmit?Which packets to retransmit?
�� Need to first understand concept of error control windowNeed to first understand concept of error control window

Error control window

�� Set of packets sent, but not Set of packets sent, but not ackedacked
�� 1 2 1 2 3 4 5 6 73 4 5 6 7 8 9 8 9 (original window)(original window)
�� 1 2 3 1 2 3 4 5 6 74 5 6 7 8 9 8 9 ((recvrecv ackack for 3)for 3)
�� 1 2 3 1 2 3 4 5 6 7 84 5 6 7 8 9 9 (send 8)(send 8)

�� May want to restrict max size = window sizeMay want to restrict max size = window size

�� Sender blocked until Sender blocked until ackack comes backcomes back

Go back N retransmission

�� On a timeout, retransmit the entire error control windowOn a timeout, retransmit the entire error control window
�� Receiver only accepts inReceiver only accepts in--order packetsorder packets
�� + simple+ simple
�� +conservative: on loss signal, +conservative: on loss signal, retrxretrx every possible lost packetevery possible lost packet
�� + no buffer at receiver+ no buffer at receiver
�� -- can add to congestioncan add to congestion
�� -- wastes bandwidthwastes bandwidth
�� pp the packet loss probability, the packet loss probability, WW the windowthe window

�� efficiency = (1efficiency = (1--pp)/(1)/(1--pp++pp..WW))
�� low efficiency for high low efficiency for high WW and/or and/or pp

�� used in TCPused in TCP

Selective retransmission

�� Somehow find out which packets lost, then only retransmit themSomehow find out which packets lost, then only retransmit them
�� How to find lost packets?How to find lost packets?

�� each each ackack has a bitmap of received packetshas a bitmap of received packets
�� e.g. e.g. cum_ackcum_ack = 5, bitmap = 101 => received 5 and 7, but not 6= 5, bitmap = 101 => received 5 and 7, but not 6
�� wastes header spacewastes header space

�� sender may therefore periodically ask receiver for bitmapsender may therefore periodically ask receiver for bitmap
�� or do fast retransmit (guess that a loss or do fast retransmit (guess that a loss occuredoccured))

�� requires more complex procedures at both sender and receiversrequires more complex procedures at both sender and receivers
�� and requires to buffer and requires to buffer WW--1 packets 1 packets

Fast retransmit

�� Assume cumulative Assume cumulative acksacks
�� If sender sees repeated cumulative If sender sees repeated cumulative acksacks, packet likely lost, packet likely lost
�� 1, 2, 3, 4, 5 , 61, 2, 3, 4, 5 , 6
�� 1, 2, 3 3 31, 2, 3 3 3
�� Send Send cumulative_ackcumulative_ack + 1 = 4+ 1 = 4
�� Used in TCPUsed in TCP
�� Provides partial “selective” information for freeProvides partial “selective” information for free
�� does not work well in case of multiple error within a windowdoes not work well in case of multiple error within a window

SMART

�� AckAck carries cumulative sequence numbercarries cumulative sequence number
�� Also sequence number of packet causing Also sequence number of packet causing ackack
�� 1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10
�� 1 2 3 4 5 5 5 51 2 3 4 5 5 5 5
�� 1 2 3 4 5 x 7 8 x 101 2 3 4 5 x 7 8 x 10
�� (5,5) (5,7) (5,8) (5,10)(5,5) (5,7) (5,8) (5,10)
�� Sender creates bitmapSender creates bitmap
�� Does not use timersDoes not use timers
�� Not effective if retransmitted packet lost, Not effective if retransmitted packet lost,

�� sender periodically check if cumulative sender periodically check if cumulative ackack increased, and increased, and
retxretx N+1N+1

�� on worst case, on worst case, retrxretrx entire window as in goentire window as in go--backback--NN

FEC

�� ForwardForward ErrorError Correction Correction cancan alsoalso bebe performedperformed atat packetpacket levellevel
�� SendsSends «« parityparity checkcheck » » packetspackets
�� doesdoes notnot requirerequire retransmissionretransmission
�� adequateadequate for real time applicationfor real time application

�� audio/audio/videovideo conferencingconferencing
�� But But increasesincreases loadload and and errorerror rate!rate!
�� NotNot effective if «effective if « burstburst » » packetpacket losseslosses
�� increasesincreases end to end end to end delaydelay

�� waitwait for for entireentire FEC block FEC block beforebefore processingprocessing

Le contrôle de flux

Flow control problem

�� Consider file transferConsider file transfer
�� Sender sends a stream of packets representing fragments of a Sender sends a stream of packets representing fragments of a

filefile
�� Sender should try to match rate at which receiver and network Sender should try to match rate at which receiver and network

can process datacan process data
�� Can’t send too slow or too fastCan’t send too slow or too fast
�� Too slowToo slow

�� wastes time wastes time
�� Too fastToo fast

�� can lead to buffer overflowcan lead to buffer overflow
�� Main objective of flow controlMain objective of flow control

�� how to find the correct rate?how to find the correct rate?

Other considerations

�� SimplicitySimplicity
�� Low overhead Low overhead

�� use of network (bandwidth and buffers) resourcesuse of network (bandwidth and buffers) resources
�� Scaling to many sourcesScaling to many sources
�� FairnessFairness

�� if scarcity of resources, each source gets its “fair” shareif scarcity of resources, each source gets its “fair” share
�� StabilityStability

�� for fixed number of sources, transmission rate for each for fixed number of sources, transmission rate for each
source settles down to an equilibrium valuesource settles down to an equilibrium value

�� Many interesting tradeoffsMany interesting tradeoffs
�� low overhead for stabilitylow overhead for stability
�� simplicity for fairnesssimplicity for fairness

Where?

�� Can be atCan be at
�� application levelapplication level
�� transporttransport
�� networknetwork
�� linklink

�� At transport layer for end2end flow controlAt transport layer for end2end flow control
�� At At datalinkdatalink layer for hop by hop flow controllayer for hop by hop flow control

�� TerminologyTerminology
�� Flow control Flow control vsvs congestion controlcongestion control
�� congestion is overload of congestion is overload of intermediateintermediate network elementsnetwork elements

Model

�� Source sending at Source sending at λλ packet/s, sink acks every packet, packet/s, sink acks every packet,
intermediate servers, (variable) service rate intermediate servers, (variable) service rate µµ packet/s packet/s
(allocated or available), bottleneck is the slowest server, buff(allocated or available), bottleneck is the slowest server, buffer er
size at bottleneck B, round trip time (D) size at bottleneck B, round trip time (D)

�� Flow control: Flow control: raterate--matchingmatching withwith delaysdelays
�� For flow control For flow control purposepurpose: Ignore : Ignore allall but but thethe bottleneckbottleneck serverserver

Classification

�� Open loopOpen loop
�� Source describes its desired flow rateSource describes its desired flow rate
�� Network Network admits admits call and call and reservesreserves resourcesresources
�� Source sends at this rateSource sends at this rate

�� Closed loopClosed loop
�� Source monitors available service rateSource monitors available service rate

�� Explicit or implicit feedbackExplicit or implicit feedback

�� Sends at this rateSends at this rate
�� Due to speed of light delay, errors are bound to occurDue to speed of light delay, errors are bound to occur

�� HybridHybrid
�� Source asks for some minimum rateSource asks for some minimum rate
�� But can send more, if availableBut can send more, if available

Open loop flow control

�� Two phases to flow control, during:Two phases to flow control, during:
�� Call setupCall setup
�� Data transmissionData transmission

�� Call setupCall setup
�� Network prescribes traffic descriptor parametersNetwork prescribes traffic descriptor parameters
�� User chooses parameter valuesUser chooses parameter values
�� Network admits (may negotiate) or denies callNetwork admits (may negotiate) or denies call

�� if OK, bandwidth and buffers are reservedif OK, bandwidth and buffers are reserved

�� Data transmissionData transmission
�� User shapes its traffic within parameter rangeUser shapes its traffic within parameter range
�� Network Network policespolices usersusers
�� Scheduling policies give user Scheduling policies give user QoSQoS

Hard problems

� Choosing a descriptor at a source
� capture future behavior in a set of parameters

� Choosing a scheduling discipline at intermediate network
elements (see block 7 - scheduling)

� Admitting calls so that their performance objectives are met (call
admission control) (not studied in this course, chap 14 in
Keshav’s book).

� Or just ignore :-)

Traffic descriptors

�� Set of parameters that describes behavior of a data sourceSet of parameters that describes behavior of a data source
�� It is typically a behavior It is typically a behavior envelopeenvelope

�� Describes in fact worst case behaviorDescribes in fact worst case behavior
�� Three uses besides describing source behaviorThree uses besides describing source behavior

�� Basis for traffic contractBasis for traffic contract
�� if not violated by source, network “guarantees” QoSif not violated by source, network “guarantees” QoS

�� Input to Input to regulatorregulator
�� where source delays traffic where source delays traffic

�� Input to Input to policerpolicer
�� where operator delays or drops excess traffic where operator delays or drops excess traffic

Descriptor requirements

�� RepresentativityRepresentativity
�� adequately describes flow, so that network does not reserve adequately describes flow, so that network does not reserve

too little or too much resourcetoo little or too much resource
�� VerifiabilityVerifiability

�� network able easily to verify that descriptor holdsnetwork able easily to verify that descriptor holds
�� UsabilityUsability

�� Easy to describe and use for admission controlEasy to describe and use for admission control

Examples

� Representative, verifiable, but not useable
�� Time series of Time series of interarrivalinterarrival timestimes

�� potentially very long and unknown for interactive sourcespotentially very long and unknown for interactive sources
�� network may add jitter network may add jitter

�� Verifiable, and useable, but not representativeVerifiable, and useable, but not representative
�� peak ratepeak rate

�� may send at less than peak rate may send at less than peak rate --> waste resources> waste resources

Some common descriptors

�� Peak ratePeak rate
�� Average rateAverage rate
�� Linear bounded arrival processLinear bounded arrival process

�� will study each with the corresponding regulatorwill study each with the corresponding regulator

Peak rate

�� Highest ‘rate’ at which a source can send dataHighest ‘rate’ at which a source can send data
�� trivial bound: the link capacity trivial bound: the link capacity but does not give a true picturebut does not give a true picture

�� Two ways to compute itTwo ways to compute it
�� For networks with fixedFor networks with fixed--size packetssize packets

�� (min inter(min inter--packet spacing)packet spacing)--11

�� For networks with variableFor networks with variable--size packets, time window size packets, time window tt
�� bounds total data generated over bounds total data generated over allall intervals of intervals of duration duration tt

�� Regulator for fixedRegulator for fixed--size packets: buffer +size packets: buffer +
�� timer set on packet transmission to min intertimer set on packet transmission to min inter--packet spacingpacket spacing
�� if timer expires, send buffered packet, if anyif timer expires, send buffered packet, if any

�� ProblemProblem
�� sensitive to extremes: a single “drift” may result in a radical sensitive to extremes: a single “drift” may result in a radical

changechange

Average rate

�� Measure rate over some time period (Measure rate over some time period (windowwindow) ‘) ‘tt’’
�� Less susceptible to outliersLess susceptible to outliers
�� Parameters: Parameters: tt and and a a (number of bits to send during (number of bits to send during tt))
�� Two types: jumping window and moving windowTwo types: jumping window and moving window
�� Jumping windowJumping window

�� over consecutive intervals of length over consecutive intervals of length tt, only , only a a bits sentbits sent
�� sensitive to the choice of the starting time of 1sensitive to the choice of the starting time of 1stst windowwindow
�� regulator regulator reinitializesreinitializes every intervalevery interval

�� Moving windowMoving window
�� over all intervals of length over all intervals of length t, t, only only aa bits sentbits sent
�� regulator regulator forgetsforgets packets sent more thanpackets sent more than tt seconds agoseconds ago
�� removes dependency on starting timeremoves dependency on starting time

Linear Bounded Arrival Process

�� Source bounds # bits sent in any time interval by a linear Source bounds # bits sent in any time interval by a linear
function of timefunction of time

� the number of bits transmitted in any active interval of length t is
less than or equal to ρ.t + σ

� ρ is the long term rate allocated by network to source
� σ is the burst limit (max burst a source may send)
� a generalization of average rate descriptor

� also insensitive to outliers

Leaky bucket

�� A regulator for an LBAP A regulator for an LBAP
�� Token bucket fills up at rate Token bucket fills up at rate ρρ
�� Largest # tokens = Largest # tokens = σσ

Leaky bucket regulator

�� Leaky bucket can be used as both:Leaky bucket can be used as both:
�� a peak rate regulator (a peak rate regulator (ρρ = peak rate, = peak rate, σσ = 1)= 1)
�� or a movingor a moving--window average regulator (window average regulator (ρρ = average rate) = average rate)

�� VariantVariant
�� Token bucket + peak rate regulatorToken bucket + peak rate regulator

�� allows to control: average rate, peak rate and max burstallows to control: average rate, peak rate and max burst

�� Has both token and data bucketsHas both token and data buckets
�� Sum of sizes is what mattersSum of sizes is what matters
�� a larger token bucket offsets a smaller data buffera larger token bucket offsets a smaller data buffer

Choosing LBAP parameters

�� How to choose How to choose ρρ and and σσ (e.g. for a stored video source)(e.g. for a stored video source)
�� Minimal descriptorMinimal descriptor

�� no other descriptor has both a smaller no other descriptor has both a smaller ρρ and a smaller and a smaller σσ
�� presumably costs lesspresumably costs less

�� How to choose minimal descriptor?How to choose minimal descriptor?
�� Not uniqueNot unique
�� tradeoff between tradeoff between ρρ and and σσ

�� for given size of data buffer and max loss rate, for each for given size of data buffer and max loss rate, for each ρρ
there is a min there is a min σσ so that loss rate is metso that loss rate is met

�� Three way tradeoffThree way tradeoff
�� choice of choice of σ σ (data bucket size)(data bucket size)
�� loss rateloss rate
�� choice of choice of ρρ

Choosing minimal parameters

�� Keeping loss rate the sameKeeping loss rate the same
�� if if σσ is more, is more, ρρ is less (smoothing)is less (smoothing)
�� for each for each ρρ in the [A,P] range, we have minimum in the [A,P] range, we have minimum σσ

�� For “common” sources choose knee of curve (K)For “common” sources choose knee of curve (K)
�� either either ρρ or or σσ rapidly increases when moving away from kneerapidly increases when moving away from knee

P: Peak rate
A: average rate over a long interval

LBAP

�� “Popular” in practice (ATM) and in academia“Popular” in practice (ATM) and in academia
�� verifiableverifiable
�� sort of usablesort of usable

�� BUT do not accurately represent sources with large burstsBUT do not accurately represent sources with large bursts
�� otherwise otherwise σσ would be too largewould be too large
�� makes network expensivemakes network expensive
�� what about renegotiating what about renegotiating ρρ before burstsbefore bursts

�� possible for stored video!possible for stored video!
�� Or just after the start of a burst in the case of long burstsOr just after the start of a burst in the case of long bursts

•• buffer still fills while renegotiationbuffer still fills while renegotiation

Open loop vs. closed loop
�� Open loopOpen loop

�� describe trafficdescribe traffic
�� network admits/reserves resourcesnetwork admits/reserves resources
�� regulation/policingregulation/policing

�� Closed loopClosed loop
�� can’t can’t describedescribe traffic or traffic or
�� network doesn’t support network doesn’t support reservationreservation

�� resources are overbooked for higher multiplexing gain (SMG)resources are overbooked for higher multiplexing gain (SMG)

�� source monitors source monitors available bandwidthavailable bandwidth
�� perhaps allocated using GPSperhaps allocated using GPS--emulation in routersemulation in routers

�� adaptsadapts to it in order not to overload networkto it in order not to overload network
�� if not done properly eitherif not done properly either

�� excessive packet loss (higher “rate” than bottleneck)excessive packet loss (higher “rate” than bottleneck)
�� underutilize network resources (much slower than bottleneck)underutilize network resources (much slower than bottleneck)

Taxonomy

�� First generation (onFirst generation (on--off, stopoff, stop--andand--wait, staticwait, static--window)window)
�� ignores network stateignores network state
�� only match receiveronly match receiver

�� Second generationSecond generation
�� responsive to both sink and network statesresponsive to both sink and network states
�� three choicesthree choices

�� State measurementState measurement

•• explicit or implicitexplicit or implicit
�� ControlControl

•• flow control window size or rateflow control window size or rate
�� Point of controlPoint of control

•• endpoint or within networkendpoint or within network

Explicit vs. Implicit

�� ExplicitExplicit
�� Network tells source its current rateNetwork tells source its current rate
�� Better controlBetter control
�� More communication and computation overheadMore communication and computation overhead

�� Implicit (only in end to end schemes)Implicit (only in end to end schemes)
�� Endpoint figures out rate by looking at networkEndpoint figures out rate by looking at network
�� Less overheadLess overhead

�� Ideally, want overhead of implicit with effectiveness of expliciIdeally, want overhead of implicit with effectiveness of explicitt

Flow control window

�� Recall error control windowRecall error control window
�� Largest number of packet outstanding (sent but not Largest number of packet outstanding (sent but not ackedacked))

�� If endpoint has sent all packets in window, it must wait => slowIf endpoint has sent all packets in window, it must wait => slows s
down its ratedown its rate

�� Thus, window provides Thus, window provides bothboth error control and flow controlerror control and flow control
�� Flow control window is also called Flow control window is also called transmission transmission windowwindow
�� indirectly control a source’ rate by modifying transmission indirectly control a source’ rate by modifying transmission

windowwindow
�� but this coupling of error and flow control can be a problembut this coupling of error and flow control can be a problem

�� Few buffers at receiver => small window (if selective repeat) Few buffers at receiver => small window (if selective repeat)
=> slow rate!=> slow rate!

Adaptive window or adaptive rate

�� In adaptive rate, we directly control rateIn adaptive rate, we directly control rate
�� Needs a fine grain timer per connectionNeeds a fine grain timer per connection

�� set after a packet set after a packet trxtrx to inverse of to inverse of trxtrx raterate
�� Plusses for windowPlusses for window

�� easier to implement: no need for fineeasier to implement: no need for fine--grained timergrained timer
�� selfself--limitinglimiting

�� Plusses for ratePlusses for rate
�� better control (finer grain)better control (finer grain)
�� no coupling of flow control and error controlno coupling of flow control and error control

�� Rate control must be carefully engineered to avoid overhead Rate control must be carefully engineered to avoid overhead
and sending too much (in case of loss of rate limiting packet)and sending too much (in case of loss of rate limiting packet)

Hop-by-hop vs. end-to-end

�� HopHop--byby--hophop
�� make first generation flow responsive to network statemake first generation flow responsive to network state

�� control at each link, next server = sinkcontrol at each link, next server = sink

�� easy to implementeasy to implement
�� EndEnd--toto--endend

�� sender matches all the servers on its pathsender matches all the servers on its path
�� Plusses for hopPlusses for hop--byby--hop hop

�� simpler mechanismssimpler mechanisms
�� better controlbetter control
�� distributes buffer usage distributes buffer usage

�� Plusses for endPlusses for end--toto--endend
�� cheaper, does not require complexity in routerscheaper, does not require complexity in routers

Closed loop flow control schemes

 Explicit Implicit
Dynamic window Dynamic rate Dynamic window Dynamic rate

End�end DECbit ATM EERC TCP NetBLT, pp
Hop-by-hop Credit-based Mishra/Kanakia _ _

On-off flow control

� Receiver gives ON and OFF signals
� If ON, send at full speed
� If OFF, stop
� OK when RTT is small
� What if OFF is lost?
� Generates bursty traffic

� packet losses in intermediate elements
� Used in serial lines or LANs

� delays are small
� packet loss rare
� basis of the XON/XOFF protocol used to control serial I/O

devices (printers, mice)

Stop and Wait

�� Send a Send a singlesingle packetpacket
�� Wait for Wait for ackack before sending next packetbefore sending next packet
�� provides error and flow controlprovides error and flow control
�� inefficient if delay is largeinefficient if delay is large
�� Max throughputMax throughput

�� 1 packet per RTT1 packet per RTT

Static window

�� Stop and wait can send at most one Stop and wait can send at most one pktpkt per RTTper RTT
�� Here, we allow multiple packets per RTT (Here, we allow multiple packets per RTT (ww = transmission = transmission

window)window)

w = 3

What should window size be?

� Let bottleneck service rate along path = µ pkts/sec
� Let round trip time = R sec
� Let flow control window = w packet
� Sending rate is w packets in R seconds = w/R packets/s
� To keep bottleneck fully utilized

� w/R > µ => w > Rµ
� This is the bandwidth delay product or optimal window size

Static window

�� Works well if Works well if µµ and R are fixedand R are fixed
�� Even for a specific bottleneck, the rate changes with time!Even for a specific bottleneck, the rate changes with time!
�� Static choice of Static choice of ww can lead to problemscan lead to problems

�� too smalltoo small
� bottleneck underutilized

�� too largetoo large
� w - Rµ packets buffered at bottleneck

�� So, need to adapt windowSo, need to adapt window
�� Always try to get to the Always try to get to the current current optimal valueoptimal value

DECbit flow control (dynamic window)

�� IntuitionIntuition
�� every packet has a bit in headerevery packet has a bit in header
�� intermediate routers set bit if queue has built up => source intermediate routers set bit if queue has built up => source

window is too largewindow is too large
�� sink copies bit to sink copies bit to ackack
�� if bits set, source reduces window sizeif bits set, source reduces window size
�� in steady state, oscillate around optimal sizein steady state, oscillate around optimal size

DECbit evaluation

�� Only 1 bit is required Only 1 bit is required
�� does not require perdoes not require per--connection connection queuingqueuing at routersat routers
�� can adapt and oscillates around stable optimal window valuecan adapt and oscillates around stable optimal window value

�� (Additive Increase Multiplicative Decrease policy)(Additive Increase Multiplicative Decrease policy)

�� Requires perRequires per--connection router connection router actionsactions
�� Increase policy is conservativeIncrease policy is conservative

�� increase by 1 every two increase by 1 every two RTTsRTTs
�� bad performance on bad performance on eLePHaNtseLePHaNts (Long and Fat pipe Networks)(Long and Fat pipe Networks)

TCP Flow Control

�� ImplicitImplicit
�� Dynamic windowDynamic window
�� EndEnd--toto--endend

�� Very similar to Very similar to DECbitDECbit, but, but

�� no support from routersno support from routers
�� increase if no loss (usually detected using timeout)increase if no loss (usually detected using timeout)
�� window decrease on a timeout (or 3 duplicate acks)window decrease on a timeout (or 3 duplicate acks)
�� additive increase multiplicative decreaseadditive increase multiplicative decrease

TCP details

�� Window starts at 1Window starts at 1
�� Increases exponentially for a while, then linearlyIncreases exponentially for a while, then linearly
�� Exponentially => doubles every RTTExponentially => doubles every RTT
�� Linearly => increases by 1 every RTTLinearly => increases by 1 every RTT
�� During exponential phase, every During exponential phase, every ackack results in window increase results in window increase

by 1by 1
�� During linear phase, window increases by 1 when # During linear phase, window increases by 1 when # acksacks = =

window sizewindow size
�� Exponential phase is calledExponential phase is called slow startslow start
�� Linear phase is calledLinear phase is called congestion avoidance congestion avoidance

More TCP details

�� On a loss, current window size is stored in a variable called On a loss, current window size is stored in a variable called slow slow
start thresholdstart threshold or or ssthreshssthresh

�� Switch from exponential to linear (slow start to congestion Switch from exponential to linear (slow start to congestion
avoidance) when window size reaches thresholdavoidance) when window size reaches threshold

�� Loss detected either with timeout or duplicate cumulative Loss detected either with timeout or duplicate cumulative acksacks
((fast retransmitfast retransmit))

�� Two (early) versions of TCPTwo (early) versions of TCP
�� Tahoe: in both cases, drop window to 1Tahoe: in both cases, drop window to 1
�� Reno: on timeout, drop window to 1, and on fast retransmit Reno: on timeout, drop window to 1, and on fast retransmit

drop window to half previous size (also, do drop window to half previous size (also, do fast recoveryfast recovery: :
increase window by 1 for each duplicate increase window by 1 for each duplicate ackack, until new data , until new data
ackedacked))

TCP vs. DECbit

�� Both use dynamic window flow control and (stable) additiveBoth use dynamic window flow control and (stable) additive--
increase multiplicative decrease policyincrease multiplicative decrease policy

�� TCP uses implicit measurement of congestionTCP uses implicit measurement of congestion
�� probe a “black box”probe a “black box”

�� TCP source does not filter informationTCP source does not filter information
�� each packet loss indicates congestioneach packet loss indicates congestion
�� necessary because network operated at the necessary because network operated at the cliff cliff (close to (close to

overload)overload)

Evaluation

�� Effective over a wide range of bandwidthsEffective over a wide range of bandwidths
�� A lot of operational experienceA lot of operational experience
�� WeaknessesWeaknesses

�� loss => overload? (wireless)loss => overload? (wireless)
�� link level link level retrxretrx or FEC to make wireless link appear lossor FEC to make wireless link appear loss--freefree
�� link level “informs” TCP of link losses link level “informs” TCP of link losses

�� loss => selfloss => self--blame, problem with malicious users on FCFSblame, problem with malicious users on FCFS
�� overload detected only on a lossoverload detected only on a loss

�� in steady state, source in steady state, source inducesinduces lossloss

�� sensitive to choice of sensitive to choice of ssthreshssthresh for short transfersfor short transfers
�� if large can lead to if large can lead to multiplemultiple packet losses, packet losses, FastRTxFastRTx will not helpwill not help

�� needs per connection buffering at bottleneckneeds per connection buffering at bottleneck

Sample trace

TCP Vegas
�� Source computes Expected throughput = Source computes Expected throughput =

transmission_window_size/propagation_delaytransmission_window_size/propagation_delay
�� Numerator: knownNumerator: known
�� Denominator: measure Denominator: measure smallestsmallest RTT
� Also know actual throughput
� Difference = how much to reduce/increase rate
� Algorithm

�� send a special packetsend a special packet
�� on on ackack, compute expected and actual throughput, compute expected and actual throughput
�� if expected < actual, adjust propagation_delayif expected < actual, adjust propagation_delay
�� (expected (expected -- actual)* RTT packets are still in bottleneck bufferactual)* RTT packets are still in bottleneck buffer
�� adjust sending rate if this is out of L&H watermarksadjust sending rate if this is out of L&H watermarks

�� “performs better” than TCP Reno“performs better” than TCP Reno
�� but rate based and not TCP but rate based and not TCP renoreno--fairfair

NETBLT

� “First” rate-based flow control scheme
� Separates error control (window) and flow control (no coupling)
� So, losses and retransmissions do not affect the flow rate
� Application data sent as a series of buffers, each at a particular

rate
� Rate expressed as a burst size and a burst rate

� so granularity of rate control = burst
� In the original scheme, no rate adjustment
� Later, if received rate < sending rate, multiplicatively decrease

rate, otherwise linearly increase
� Change rate only once per buffer => slow

Packet pair

�� Improves basic ideas in NETBLTImproves basic ideas in NETBLT
�� better measurement of bottleneckbetter measurement of bottleneck
�� control based on predictioncontrol based on prediction
�� finer granularityfiner granularity

�� Assume all bottlenecks serve packets in Assume all bottlenecks serve packets in round robinround robin orderorder
�� Then, spacing between 2 packets of same connection at Then, spacing between 2 packets of same connection at

receiver (= receiver (= ackack spacing) = 1/(rate of slowest server)spacing) = 1/(rate of slowest server)
�� If If allall data sent as paired packets, no distinction between data data sent as paired packets, no distinction between data

and probesand probes
�� Implicitly determine service rates if routers are roundImplicitly determine service rates if routers are round--robinrobin--likelike

Packet pair

Packet-pair details

�� AcksAcks give time series of service rates in the pastgive time series of service rates in the past
�� We can use this to predict the next rateWe can use this to predict the next rate

�� but requires round robin in routers!but requires round robin in routers!

Sample trace

Four sources
sharing a bottlenck

Comparison among closed-loop schemes

�� OnOn--off, stopoff, stop--andand--wait, static window, wait, static window, DECbitDECbit, TCP, NETBLT, , TCP, NETBLT,
PacketPacket--pair, ATM Forum EERC pair, ATM Forum EERC (End2End Rate based flow Control)(End2End Rate based flow Control)

�� Which is best? No simple answerWhich is best? No simple answer
�� Some rules of thumbSome rules of thumb

�� flow control easier with Round Robin schedulingflow control easier with Round Robin scheduling
�� otherwise, assume cooperation, or police allocated ratesotherwise, assume cooperation, or police allocated rates

�� explicit schemes are more robustexplicit schemes are more robust
�� hophop--byby--hop schemes are more responsive, but more hop schemes are more responsive, but more

complexcomplex
�� try to separate error control and flow controltry to separate error control and flow control
�� rate based schemes are inherently unstable unless wellrate based schemes are inherently unstable unless well--

engineeredengineered

