Controle de transmission

Bloc 4, INF 586

Walid Dabbous
INRIA Sophia Antipolis

Plan

m Contréle d 'erreur
de bit (au niveau liaison)
de paquet (au niveau transport)

m Contrdle de flux
transport
en particulier TCP

Le controle d 'erreur

Error control

Error detection & Correction
Basic idea is to add redundancy to detect or correct errors
Block code (n,k)

add n-k redundancy bits to k data bits to form n bits codeword

e.g. parity code (k+1, k) detects odd number of bit errors

rectangular code (parity along rows and column of an array)
corrects one bit error, with coding delay

Hamming code

valid codewords are « different » enough, so that errored
codeword do not ressemble valid codewords
+ distance: minimim number of bit inversions to transform VCW1 to VCW2
+ to detect E errors : minimal distance is E+1
+ to correct E errors : minimal distance is 2E+1

Interleaved codes
transmit column wise a matrix of m consecutive CWs
convert burst errors to « bit » errors
add memory cost and delay

CRC

Right n-k bits are the remainder of dividing (n-k)-left shifted
“message” by a generator polynomial G(x) of degree (n-k)
Adequate choice of G(x) allows to detect

all single bit errors (E(x)=x', G has more than two terms)

almost all 2-bit errors (E(x) = x'+xJ; G has a factor with at least
three terms, chosen not to divide neither x nor xmax(-))

any odd number of errors (E has odd number of terms and G
has factor x+1)

all bursts up to n-k, where generator bit sequence length is n-
k+1 (i.e. n-k check bits)

longer bursts with probability 1-2-" if bursts are randomly
distributed

Hw/Sw Implementation

m Hardware
on-the-fly with a shift register
easy to implement with Application Specific Integrated
Circuit / Field Programmable Gate Array
m Software
Efficiency is important
touch each data byte only once
rectangular and convolutional not suitable

CRC

Software schemes

m TCP/UDP/IP
all use same scheme
treat data bytes as 16-bit integers
add with end-around carry (add 1 to the sum)
16-bit one’s complement of the sum = checksum
needs only one lookup per 16-bit block
catches all 1-bit errors

incorrectly validates (uniformly distributed) errors with
probability 1/65536

Packet errors

m Different from bit errors
causes of packet errors
+ not just erasure, but also duplication, insertion,etc.

detection and correction
+ retransmission, instead of redundancy

Causes of packet errors

m Loss
due to uncorrectable bit errors (e.g. in wireless environment)
buffer loss on overflow
+ especially with bursty traffic

 for the same load, the greater the burstiness, the more the
loss
+ packet losses are bursty (correlation btw consecutive losses)
+ loss rate depends on burstiness, load, and buffer size
fragmented packets can lead to error multiplication (TCP>ATM)
+ packet loss rate versus cell loss rate
+ longer the packet, more the loss

 drop the entire packet at switch

Causes of packet errors (cont.)

m Duplication
same packet received twice (2" is out of sequence)
+ usually due to retransmission
m Reordering

packets received in wrong order
+ usually due to retransmission
+ some routing techniques may also reorder

m Insertion

packet from some other conversation received

+ (undetectable) header corruption from another active
connection (with different TC-identifier)

+ delayed packet from closed connection (with same TC-
identifier)

Packet error detection and correction

m Detection
Sequence numbers
Timeouts

m Correction
Retransmission

m Bit level mechanisms active
no errors on header

Sequence numbers

®m In each header
®m Incremented for non-retransmitted packets
m Sequence space
set of all possible sequence numbers
for a 3-bit seq #, space is {0,1,2,3,4,5,6,7}

Using sequence numbers to detect errors

m Reordering & duplication (straightforward)
m Loss
gap in sequence space allows receiver to detect loss
+ e.g. received 0,1,2,5,6,7 => lost 3,4
acks carry cumulative seq #
redundant information
if no ack for a while, sender suspects loss
m Insertion
if the received seq # is “very different” from what is expected
+ more on this later
m Two important considerations
choosing sequence number length
choosing initial sequence number

Sequence number bit length - s

m Long enough so that sender does not confuse sequence
numbers on acks

m E.g, sending at 100 packets/sec (R)
sender walits for 200 secs before giving up retransmitting (T)
receiver may wait up to 100 sec (A) before sending Ack

packet can live in the network up to 5 minutes (300 s)
(maximum packet lifetime or MPL)

can get an ack as late as 900 seconds after packet sent out

sent out 900*100 = 90,000 packets

if sequence space smaller, then can have confusion | fermisor 2%

so, s >log (90,000), at least 17 bits Packet i network (300)
m In general 2% should be > R(2 MPL + T + A) Receiver wit (100)

Ack transit (300)

MPL

Lower bound on s requires a bound on MPL
How can we bound it?
Generation time in header
additional space and computation
Counter in header decremented per hop
the Time To Live (TTL)
crafty, but works
used in the Internet
assumes max. diameter, and a limit on forwarding time

Sequence number size (cont.)

If no retransmissions and acks, size can be smaller: only to
detect losses and reordering

then size depends on two things

reordering span: how much packets can be reordered
+ €.g. span of 128 => seq # > 7 bits

burst loss span: how many consecutive pkts. can be lost
+ e.g. possibility of 16 consecutive lost packets => seq # > 4 bits

both bounds are smaller than the retrx case

In practice, do worst case design & hope that technology
becomes obsolete before worst case hits!

Datalink level sequence number shorter than transport
usually no retransmission
delays are smaller

Packet insertion in CO mode

m Receiver should be able to distinguish packets from other
connections

m Why?
receive packets on VCI 1
connection closes
new connection also with VCI 1
delayed packet arrives
could be accepted

m Solution
flush packets on “connection closing”
can'’t do this for connectionless networks like the Internet
+ need for more sophisticated schemes

Packet insertion (cont.)

m Packets carry source IP, dest IP, source port number,
destination port number

m How we can have insertion?

host A opens connection to B, source port 2345, dest port
6789

transport layer connection terminates

new connection opens, A and B assign the same port
numbers

delayed packet from old connection arrives with sequence
number in the range used by the newer connection

insertion!

Solutions

Per-connection incarnation number
incremented for each connection from each host
- takes up header space

- on a crash, incarnation numbers must be remembered
+ need stable storage, which is expensive
+ not popular in practice

Reassign port numbers only after 1 MPL
remember time each port was assigned
- needs stable storage to survive crash

Solutions (cont.)

Assign port numbers serially: new connections have new ports
Unix starts at 1024
this fails if we wrap around within 1 MPL
also fails if computer crashes and we restart with 1024
chose initial sequence numbers from a clock
new connections may have same port, but seq # differs
fails on a crash
Wait 1 MPL after boot up (30s to 2 min)
this flushes old packets from network
used in most Unix systems

Exchange of Initial Sequence Numbers

m Standard solution, then, is
choose port numbers serially (unless specified by user)
choose initial sequence numbers from a clock
wait 1 MPL after a crash
m Needs communicating ends to tell each other initial sequence
number
m Easiest way is to tell this in a SYNchronize packet (TCP) that
starts a connection
m 2-way handshake
does not protect against delayed SYN packets

3-way handshake

m Problem really is that SYNs themselves are not protected with
sequence numbers

m 3-way handshake protects against delayed SYNs

A B
OPEN Listen

SYN, ISN =x
Pick ISN =y

Ack x Established
\ Ack y Established

Loss detection

m At receiver, from a gap in sequence space
send a nack to the sender

m At sender, by looking at cumulative acks, and timing out if no
ack for a while

need to choose timeout interval

Nacks

m Sounds good, but does not work well

extra load during loss, even though in reverse direction
m If nack is lost, receiver must retransmit it

moves timeout problem to receiver
m So we need timeouts anyway

Timeouts

Set timer on sending a packet
If timer goes off, and no ack, resend
How to choose timeout value?

Intuition is that we expect a reply in about one round trip time
(RTT)

Timeout schemes

m Static scheme
know RTT a priori
timer set to this value

works well when RTT changes little (special purpose
systems)

m Dynamic scheme
measure RTT

timeout is a function of measured RTTs
+ larger than RTT to deal with delay variation

Old TCP scheme

RTTs are measured periodically
Smoothed RTT (srti)
srtt(i) = a *srtt(i-1) + (1-a) * RTT(i)
timeout = b * srit
a=09,b=2
sensitive to choice of a
a =1 =>timeout = 2 " initial srtt
a = 0 => no history
m doesn’t work too well in practice

New TCP scheme (Jacobson)

introduce new error term = m

its smoothed estimate sm : mean deviation from mean
m(i) = [srtt(i) - RTT(i) |

sm(i) =a *sm(i-1) + (1-a) * m(i)

timeout = srtt + b *sm

Different values of b give different confidence intervals

Intrinsic problems

m Hard to choose proper timers, even with new TCP scheme
What should initial value of srit be?
+ Particularly hard if a is close to 1 (strong memaory)
Measuring RTT is hard in presence of losses

+ Ack may acknowledge more than one packet -> hard to
determine the packet to derive RTT from

Timeout => loss, delayed ack, or lost ack
+ hard to distinguish

m Lesson: use timeouts rarely

Retransmissions

m Sender detects loss on timeout
or other “signal”
m Which packets to retransmit?
m Need to first understand concept of error control window

Error control window

Set of packets sent, but not acked
123456789 (original window)
123456789 (recv ack for 3)
123456789 (send 8)

May want to restrict max size = window size

Sender blocked until ack comes back

Go back N retransmission

On a timeout, retransmit the entire error control window
Receiver only accepts in-order packets
+ simple
+conservative: on loss signal, retrx every possible lost packet
+ no buffer at receiver
- can add to congestion
- wastes bandwidth
p the packet loss probability, W the window
efficiency = (1-p)/(1-p+p.W)
low efficiency for high W and/or p
m usedin TCP

Selective retransmission

m Somehow find out which packets lost, then only retransmit them

m How to find lost packets?

each ack has a bitmap of received packets
+ €.g. cum_ack = 5, bitmap = 101 => received 5 and 7, but not 6

+ wastes header space
sender may therefore periodically ask receiver for bitmap
or do fast retransmit (Quess that a loss occured)
®m requires more complex procedures at both sender and receivers

and requires to buffer W-1 packets

Fast retransmit

Assume cumulative acks

If sender sees repeated cumulative acks, packet likely lost
1,2,3,4,5,6

1,2,3 3 3

Send cumulative ack + 1 =4

Used in TCP

Provides partial “selective” information for free

does not work well in case of multiple error within a window

SMART

Ack carries cumulative sequence number
Also sequence number of packet causing ack
12345678910

12345 55 5

12345x78x10

(5,9) (5,7) (5,8) (5,10)

Sender creates bitmap

Does not use timers

Not effective if retransmitted packet lost,

sender periodically check if cumulative ack increased, and
retx N+1

on worst case, retrx entire window as in go-back-N

FEC

Forward Error Correction can also be performed at packet level
Sends « parity check » packets
does not require retransmission
adequate for real time application
audio/video conferencing
But increases load and error rate!
Not effective if « burst » packet losses
increases end to end delay
wait for entire FEC block before processing

I.e controle de flux

Flow control problem

m Consider file transfer
O]cSlender sends a stream of packets representing fragments of a
ile
m Sender should try to match rate at which receiver and network
can process data
m Can’t send too slow or too fast
m Too slow
wastes time
m Too fast
can lead to buffer overflow
m Main objective of flow control
how to find the correct rate?

Other considerations

m Simplicity
m Low overhead
use of network (bandwidth and buffers) resources
m Scaling to many sources
m Fairness
if scarcity of resources, each source gets its “fair” share
m Stability

for fixed number of sources, transmission rate for each
source settles down to an equilibrium value

m Many interesting tradeoffs
low overhead for stability
simplicity for fairness

Where?

m Can be at

application level

transport

network

link
m At transport layer for end2end flow control
m At datalink layer for hop by hop flow control

m Terminology
Flow control vs congestion control
congestion is overload of intermediate network elements

Model

m Source sending at A packet/s, sink acks every packet,
Intermediate servers, (variable) service rate u packet/s
(allocated or available), bottleneck is the slowest server, buffer
size at bottleneck B, round trip time (D)

SOURCE
I

> ||]] - | s
? A B K

0

m Flow control: rate-matching with delays
m For flow control purpose: Ignore all but the bottleneck server

Classification

Open loop
Source describes its desired flow rate
Network admits call and reserves resources
Source sends at this rate

Closed loop

Source monitors available service rate
+ Explicit or implicit feedback

Sends at this rate

Due to speed of light delay, errors are bound to occur
Hybrid

Source asks for some minimum rate

But can send more, if available

Open loop flow control

m Two phases to flow control, during:
Call setup
Data transmission
m Call setup
Network prescribes traffic descriptor parameters
User chooses parameter values

Network admits (may negotiate) or denies call
+ if OK, bandwidth and buffers are reserved

m Data transmission
User shapes its traffic within parameter range
Network polices users
Scheduling policies give user QoS

Hard problems

m Choosing a descriptor at a source
capture future behavior in a set of parameters

m Choosing a scheduling discipline at intermediate network
elements (see block 7 - scheduling)

m Admitting calls so that their performance objectives are met (call
admission control) (not studied in this course, chap 14 in
Keshav’s book).

m Orjustignore :-)

Traffic descriptors

m Set of parameters that describes behavior of a data source
m ltis typically a behavior envelope
Describes in fact worst case behavior
m Three uses besides describing source behavior
Basis for traffic contract
+ if not violated by source, network “guarantees” QoS
Input to regulator
+ where source delays traffic
Input to policer
+ where operator delays or drops excess traffic

Descriptor requirements

m Representativity

adequately describes flow, so that network does not reserve
too little or too much resource

m Verifiability

network able easily to verify that descriptor holds
m Usability

Easy to describe and use for admission control

Examples

m Representative, verifiable, but not useable

Time series of interarrival times
+ potentially very long and unknown for interactive sources
+ network may add jitter

m Verifiable, and useable, but not representative

peak rate
+ may send at less than peak rate -> waste resources

Some common descriptors

Peak rate
Average rate
Linear bounded arrival process

will study each with the corresponding regulator

Peak rate

Highest ‘rate’ at which a source can send data
trivial bound: the link capacity but does not give a true picture
Two ways to compute it
For networks with fixed-size packets
(min inter-packet spacing)-
For networks with variable-size packets, time window t
bounds total data generated over all intervals of
Regulator for fixed-size packets: buffer +
timer set on packet transmission to min inter-packet spacing
if timer expires, send buffered packet, if any
Problem

sensitive to extremes: a single “drift” may result in a radical
change

Average rate

Measure rate over some time period (window) ‘t

Less susceptible to outliers
Parameters: t and a (number of bits to send during)

Two types: jumping window and moving window

Jumping window
over consecutive intervals of length ¢, only a bits sent
sensitive to the choice of the starting time of 15t window
requlator reinitializes every interval

Moving window
over all intervals of length ¢, only a bits sent
regulator forgets packets sent more than t seconds ago

removes dependency on starting time

Linear Bounded Arrival Process

m Source bounds # bits sent in any time interval by a linear
function of time

m the number of bits transmitted in any active interval of length t is
less than or equal to p.t + o

m p isthe long term rate allocated by network to source
o Is the burst limit (max burst a source may send)
® a generalization of average rate descriptor

also insensitive to outliers

Leaky bucket

m A regulator for an LBAP
KBRS ARKIVE

m Token bucket fills up at rate p PERICDICALLY
m Largest # tokens = o ‘l:‘"
FOREN j,
BLUCKET — 1
X, TEST
=L :-‘-l:_/ — LOLTIPLT
| ¥ |
AT] A
BUFFER !

Leaky bucket regulator

m Leaky bucket can be used as both:

a peak rate regulator (o = peak rate, o= 1)

or a moving-window average regulator (o = average rate)
m Variant

Token bucket + peak rate regulator
+ allows to control: average rate, peak rate and max burst

m Has both token and data buckets
Sum of sizes is what matters
a larger token bucket offsets a smaller data buffer

Choosing LBAP parameters

m How to choose p and o (e.g. for a stored video source)

m Minimal descriptor
no other descriptor has both a smaller p and a smaller o
presumably costs less

m How to choose minimal descriptor?
Not unique

tradeoff between p and o

+ for given size of data buffer and max loss rate, for each p
there is a min o so that loss rate is met

m Three way tradeoff
choice of o (data bucket size)
loss rate
choice of p

Choosing minimal parameters

m Keeping loss rate the same
if o is more, p is less (smoothing)
for each pin the [A,P] range, we have minimum o
m For “common” sources choose knee of curve (K)
‘ either p or orapidly increases when moving away from knee

P: Peak rate
A: average rate over a long interval

kbl PO

...................

LBAP

“Popular” in practice (ATM) and in academia
verifiable
sort of usable

BUT do not accurately represent sources with large bursts
otherwise owould be too large
makes network expensive

what about renegotiating o before bursts
+ possible for stored video!
+ Or just after the start of a burst in the case of long bursts

* buffer still fills while renegotiation

Open loop vs. closed loop

m Open loop
describe traffic
network admits/reserves resources
regulation/policing
m Closed loop
can'’t describe traffic or
network doesn’t support reservation
+ resources are overbooked for higher multiplexing gain (SMG)
source monitors available bandwidth
+ perhaps allocated using GPS-emulation in routers
adapts to it in order not to overload network
if not done properly either
+ excessive packet loss (higher “rate” than bottleneck)
+ underutilize network resources (much slower than bottleneck)

Taxonomy

m First generation (on-off, stop-and-wait, static-window)
ignores network state
only match receiver

m Second generation
responsive to both sink and network states

three choices
+ State measurement
 explicit or implicit
+ Control
e flow control window size or rate
+ Point of control
e endpoint or within network

Explicit vs. Implicit

m Explicit
Network tells source its current rate
Better control
More communication and computation overhead
m Implicit (only in end to end schemes)
Endpoint figures out rate by looking at network
Less overhead
m ldeally, want overhead of implicit with effectiveness of explicit

Flow control window

Recall error control window
Largest number of packet outstanding (sent but not acked)

If endpoint has sent all packets in window, it must wait => slows
down its rate

Thus, window provides both error control and flow control
Flow control window is also called fransmission window

indirectly control a source’ rate by modifying transmission
window
but this coupling of error and flow control can be a problem

Few buffers at receiver => small window (if selective repeat)
=> slow rate!

Adaptive window or adaptive rate

m In adaptive rate, we directly control rate
m Needs a fine grain timer per connection
set after a packet trx to inverse of trx rate
m Plusses for window
easier to implement: no need for fine-grained timer
self-limiting
m Plusses for rate
better control (finer grain)
no coupling of flow control and error control

m Rate control must be carefully engineered to avoid overhead
and sending too much (in case of loss of rate limiting packet)

Hop-by-hop vs. end-to-end

m Hop-by-hop
make first generation flow responsive to network state
+ control at each link, next server = sink
easy to implement
m End-to-end
sender matches all the servers on its path
m Plusses for hop-by-hop
simpler mechanisms
better control
distributes buffer usage
m Plusses for end-to-end
cheaper, does not require complexity in routers

Closed loop flow control schemes

Explict Implictt
Dynamic window Dynamic rate - Dynamic window Dynamic rate
End2end DECoit ~ ATMEERC TCP NetBLT, pp

Hop-by-hop Credit-based MishralKanakia

On-off flow control

Receiver gives ON and OFF signals
If ON, send at full speed
If OFF, stop
OK when RTT is small
What if OFF is lost?
Generates bursty traffic
packet losses in intermediate elements
Used in serial lines or LANs
delays are small
packet loss rare

basis of the XON/XOFF protocol used to control serial I/O
devices (printers, mice)

Stop and Wait

Send a single packet

Wait for ack before sending next packet
provides error and flow control

inefficient if delay is large

Max throughput

1 packet per RTT

Al

L . L
SALRCE ROLUTER DESTINATION

—_—
‘ R __—_—_—_'___'____ TIME
J' |

__—'______
o "
- ALK
ALK
L b L

Static window

m Stop and wait can send at most one pkt per RTT

m Here, we allow multiple packets per RTT (w = transmission

window)
SOURCE ROUTER DESTINATEIN

[ILE

1_-—-_5:'_'“[']’

Il

What should window size be?

Let bottleneck service rate along path = u pkts/sec
Let round trip time = R sec
Let flow control window = w packet
Sending rate is w packets in R seconds = w/R packets/s
To keep bottleneck fully utilized
Ww/R>u=>w>Ru
m This is the bandwidth delay product or optimal window size

Static window

Works well if # and R are fixed
Even for a specific bottleneck, the rate changes with time!
Static choice of w can lead to problems
too small
+ bottleneck underutilized
too large
+ w- Ru packets buffered at bottleneck
So, need to adapt window
Always try to get to the current optimal value

DECDbit flow control (dynamic window)

m Intuition

every packet has a bit in header
intermediate routers set bit if queue has built up => source

window is too large
sink copies bit to ack

if bits set, source reduces window size
In steady state, oscillate around optimal size

SOURCTE [BILTER A ROLUTEE B LIS TP A I
s ", 7
O || FOoe— ||| FOe— O
il ¥ * |1 L3 =11 13
[BAaTA A TA [ATA

MK

MCK

-\-\-H"l

1
| oy

DECDbit evaluation

m Only 1 bit is required

does not require per-connection queuing at routers

m can adapt and oscillates around stable optimal window value
(Additive Increase Multiplicative Decrease policy)

m Requires per-connection router actions
m Increase policy is conservative
increase by 1 every two RTTs
bad performance on eLePHaNts (Long and Fat pipe Networks)

TCP Flow Control

Implicit
Dynamic window
End-to-end

Very similar to DEChbit, but

no support from routers

increase if no loss (usually detected using timeout)
window decrease on a timeout (or 3 duplicate acks)
additive increase multiplicative decrease

TCP details

Window starts at 1

Increases exponentially for a while, then linearly
Exponentially => doubles every RTT

Linearly => increases by 1 every RTT

During exponential phase, every ack results in window increase
by 1

During linear phase, window increases by 1 when # acks =
window size

m Exponential phase is called slow start
m Linear phase is called congestion avoidance

More TCP details

On a loss, current window size is stored in a variable called slow
start threshold or ssthresh

Switch from exponential to linear (slow start to congestion
avoidance) when window size reaches threshold

Loss detected either with timeout or duplicate cumulative acks
(fast retransmit)

Two (early) versions of TCP
Tahoe: in both cases, drop window to 1

Reno: on timeout, drop window to 1, and on fast retransmit
drop window to half previous size (also, do fast recovery:
increase window by 1 for each duplicate ack, until new data
acked)

TCP vs. DEChit

m Both use dynamic window flow control and (stable) additive-
increase multiplicative decrease policy

m TCP uses implicit measurement of congestion
probe a “black box”

m TCP source does not filter information
each packet loss indicates congestion

necessary because network operated at the cliff (close to
overload)

Evaluation

Effective over a wide range of bandwidths
A lot of operational experience
Weaknesses
loss => overload? (wireless)
+ link level retrx or FEC to make wireless link appear loss-free
+ link level “informs” TCP of link losses
loss => self-blame, problem with malicious users on FCFS
overload detected only on a loss
+ In steady state, source induces loss
sensitive to choice of ssthresh for short transfers
+ if large can lead to multiple packet losses, FastRTx will not help

needs per connection buffering at bottleneck

Sample trace

[
-
14

124

cargis=dion a
(ERC N -
[I

TCP Vegas

Source computes Expected throughput =
transmission_window_size/propagation_delay

Numerator: known
Denominator: measure smallest RTT
Also know actual throughput
Difference = how much to reduce/increase rate
Algorithm
send a special packet
on ack, compute expected and actual throughput
if expected < actual, adjust propagation_delay
(expected - actual)* RTT packets are still in bottleneck buffer
adjust sending rate if this is out of L&H watermarks
“performs better” than TCP Reno
but rate based and not TCP reno-fair

NETBLT

“First” rate-based flow control scheme
Separates error control (window) and flow control (no coupling)
So, losses and retransmissions do not affect the flow rate

Application data sent as a series of buffers, each at a particular
rate

Rate expressed as a burst size and a burst rate
so granularity of rate control = burst
In the original scheme, no rate adjustment

Later, if received rate < sending rate, multiplicatively decrease
rate, otherwise linearly increase

Change rate only once per buffer => slow

Packet pair

Improves basic ideas in NETBLT
better measurement of bottleneck
control based on prediction
finer granularity
Assume all bottlenecks serve packets in round robin order

Then, spacing between 2 packets of same connection at
receiver (= ack spacing) = 1/(rate of slowest server)

If all data sent as paired packets, no distinction between data
and probes

Implicitly determine service rates if routers are round-robin-like

Packet pair

ROMBOTTLENECK BOTTLENECE

SOURCE ROLUTER ROUTER SIMEK
K BATE = g
1 PET1
RTT B KT
T
W,
- -'_._.—I—'_'_'_'_'_ * o
L _._._'_,—I—'_'_'_.-
K
i, TIME
L L} i

Packet-pair details

m Acks give time series of service rates in the past
m We can use this to predict the next rate

m but requires round robin in routers!

Sample trace

Packiria

WK

120

T

Four sources
sharing a bottlenck

Comparison among closed-loop schemes

m On-off, stop-and-wait, static window, DECbit, TCP, NETBLT,
Packet-pair, ATM Forum EERC (End2End Rate based flow Control)

m Which is best? No simple answer
m Some rules of thumb

flow control easier with Round Robin scheduling
+ otherwise, assume cooperation, or police allocated rates

explicit schemes are more robust

hop-by-hop schemes are more responsive, but more
complex

try to separate error control and flow control

rate based schemes are inherently unstable unless well-
engineered

