Scheduling

Bloc 7, INF 586

Walid Dabbous
INRIA Sophia Antipolis

Outline

What is scheduling

Why we need it

Requirements of a scheduling discipline
Fundamental choices

Scheduling best effort connections
Scheduling guaranteed-service connections

Scheduling

m Sharing resources always results in contention
file systems
long distance trunks
web sites

m A scheduling discipline resolves contention:
who's next?

m Key to fairly sharing resources and providing performance
guarantees

Components of a scheduling discipline

m A scheduling discipline does two things:
decides service order
manages queue of service requests
m Example:
consider queries awaiting web server
scheduling discipline decides service order
and also if some query should be ignored
+ storage is limited
m Allocates different service qualities to different users by its
choice of service order (allocate different delays)
choice of which request to drop (allocate different loss rate)

Where to schedule?

= Anywhere where contention may occur
m When statistical fluctuations result in queuing
not in circuit switched networks
m At every layer of protocol stack
e.g. the web server application
m We will focus on network layer:
bandwidth on a specific link
output queue buffers at routers
+ assumed sufficiently fast switch fabrics

Outline

What is scheduling

Why we need it

Requirements of a scheduling discipline
Fundamental choices

Scheduling best effort connections
Scheduling guaranteed-service connections

Why do we need one?

m Because future applications need it
m We expect two types of future applications
“elastic” or best-effort (adaptive, non-real time)
+ €.g. email, some types of file transfer
guaranteed service (non-adaptive, real time)
+ e.g. packet voice, interactive video

What can scheduling disciplines do?

m Give different users different qualities of service
m Scheduling disciplines can allocate

bandwidth

delay

loss
m Required to provide “performance guarantees”
m They also determine how fair the network is

even if best effort applications do not require performance
bounds

The Conservation Law

FCFS is the simplest possible scheduling discipline but
provides no differentiation among connections
More sophisticated scheduling discipline provides this

but sum of mean delays (weighted by load share) is
independent from the scheduling discipline

N connections at a scheduler, 4, mean rate for connection /, x;
mean service time for a packet from connection /. o, mean
utilization of a link due to connection /, g; mean waiting time for a
packet from connection i at (work-conserving) scheduler:

i piqi = Cst
i=1

Outline

What is scheduling

Why we need it

Requirements of a scheduling discipline
Fundamental choices

Scheduling best effort connections
Scheduling guaranteed-service connections

Requirements

m An ideal scheduling discipline
IS easy to implement
is fair (for best effort connections)
provides performance bounds (for GS connections)
allows easy admission control decisions (for GS)
+ to decide whether a new flow can be allowed

Requirements: 1. Ease of implementation

m Scheduling discipline has to make a decision once every few
microseconds!

m Should be implementable in a few instructions in hardware

for hardware: critical constraint is VLSI space required to
maintain scheduling state and time to access this state

+ single shared buffer is easy
+ per-connection queuing not feasible

m Work per packet should scale less than linearly with number of
active connections

O(N) does not scale (N=100.000 simultaneous connections
In wide-area routers)

Requirements: 2. Fairness

m Scheduling discipline allocates a resource (bw, buffers)

m An allocation is fair if it satisfies max-min fairness
maximizes the minimum share of a source whose demand is not fully satisfied
resources allocated in order of increasing demand
No source gets more than its demand
Sources with unsatisfied demand get an equal share of the resource

m Intuitively
each connection gets no more than what it wants
the excess, if any, is equally shared

Transfer half of excess

Unsatisfied demand
/7 A

Fairness (contd.)

Fairness is intuitively a good idea for best effort connection

GS connections should pay the network

for network operators fairness is not a concern
Fairness is a global objective, but scheduling is local
Each endpoint must restrict its flow to the smallest fair allocation
Dynamics + delay => global fairness may never be achieved
But it also provides protection

traffic hogs cannot overrun others

automatically builds “firewalls” around heavy users

NB: policing at network entrance provides protection, but not
fairness

Requirements: 3. Performance bounds

m Whatis it?
A way to obtain a desired level of service
restricted by conservation law
+ cannot give all connections delay lower than FCFS
m Contract between user and network
user somehow communicates perf req to operator
hard to guarantee end to end performance bounds

m Performance bounds can be deterministic (holds for every
packet) or statistical (probabilistic bound)

m Common parameters are
bandwidth
delay
delay-jitter
loss (will consider zero loss)

Bandwidth

Specified as minimum bandwidth measured over a prespecified
interval

E.g. > SMbps over intervals of > 1 sec

Meaningless without an interval!

Can be a bound on average (sustained) rate or peak rate
Peak is measured over a ‘small’ interval

Average is asymptote as intervals increase without bound

m Bw bound required for all GS connections

Delay and delay-jitter

m Bound on some parameter of the delay distribution curve

F Y

DENSITY -l\'.I
[\

/ || AVERAGE
l || DELAY

/ o
':{
/I

PROPAGATION
CREL A

—_—

|.|
|-|.

WORST CAsE
DELAY

—_—

DELAY JITTEE———¥ LELAY

m GS networks are expected to specify and guarantee only the

deterministic or statistical worst-case delay (every other
connection behaves in the worst possible manner)

Reg'ments: 4. Ease of admission control

m Admission control needed to provide QoS

m Decide given the currents connections whether to accept a new
one without jeopardizing the performance of existing connections

m Overloaded resource cannot guarantee performance

but performance guarantees should not lead to network
underutilization

m Choice of scheduling discipline affects ease of admission control
algorithm

Outline

What is scheduling

Why we need it

Requirements of a scheduling discipline
Fundamental choices

Scheduling best effort connections
Scheduling guaranteed-service connections

Fundamental choices

m Degrees of freedom in designing a scheduling discipline

1. Number of priority levels

2. Work-conserving vs. non-work-conserving
3. Degree of aggregation within a level

4. Service order within a level

Choices: 1. Priority scheduling

m Packet is served from a given priority level only if no packets
exist at higher levels (multilevel priority with exhaustive service)

m Highest level gets lowest delay

m Watch out for starvation! (admission control for all but lowest
priority whose ‘server’ is on ‘vacation’ when server higher priority)

m Usually map priority levels to delay classes

Low bandwidth urgent messages | ' "O"Y

Real time

Non-real time

Choices: 2. Work conserving vs. non-
work-conserving

m Work conserving discipline is never idle when packets await
service

m Why bother with non-work conserving?
m Avoid burst ‘accumulation’ that
requires larger buffers
results in higher jitter

Non-work-conserving disciplines

m Key conceptual idea: delay packet till eligible
m Reduces delay-jitter => fewer buffers in network
m How to choose eligibility time?
rate-jitter regulator
+ bounds maximum outgoing rate
+ E(1) = A(1); E(k+1) = max(E(k)+Xmin, A(k+1))
+ where Xmin is inverse of peak rate
delay-jitter regulator
+ compensates for variable delay at previous hop
+ E(0,k) = A(0,k); E(i+1,k) = E(i,k) + D + L
+ D is max delay at previous switch, L max delay on
transmission link between switch | and i+1

Do we need non-work-conservation?

Can remove delay-jitter at an endpoint instead

but also reduces size of switch buffers...
Increases mean delay

not a problem for playback applications
Wastes bandwidth

can serve best-effort packets instead
Always punishes a misbehaving source

even if bandwidth is available

Bottom line: not too bad, implementation cost may be the
biggest problem (calendar queue)

Choices: 3. Degree of aggregation

m More aggregation
less state
cheaper
+ smaller VLSI
+ less to advertise
BUT: less individualization
m Solution

aggregate to a class, members of class have same
performance requirement

no protection within class
+ ‘share’ burst effect

Choices: 4. Service within a priority level
and an aggregation class

m In order of arrival (FCFS) or in order of a service tag
m Service tags => can arbitrarily reorder queue

Need to sort queue, which can be expensive
m FCFS

bandwidth hogs win (no protection)

+ greediness is rewarded

no guarantee on delays

m Service tags

with appropriate choice, both protection and delay bounds
possible

Outline

What is scheduling

Why we need it

Requirements of a scheduling discipline
Fundamental choices

Scheduling best effort connections
Scheduling guaranteed-service connections

Scheduling best-effort connections

m Main requirement is (max-min) fairness

m Achievable using Generalized processor sharing (GPS)
Visit each non-empty (virtual) queue in turn
Serve infinitesimal from each

+ in any finite time interval it can visit every logical queue
at least one

achieves max-min fairness by definition
may serve data in proportion to given weight

0
:- g o—=

More on GPS

GPS is unimplementable!

we cannot serve infinitesimals, only packets
No packet discipline can be as fair as GPS

while a packet is being served, we are unfair to others
Degree of unfairness can be bounded

Define: work(i,a,b) = # bits transmitted for connection i in time
[a,b]

Absolute fairness bound (AFB) for discipline S
Max (work_GPS(i,a,b) - work_S(i, a,b))
Relative fairness bound (RFB) for discipline S

Max (work_S(i,a,b) - work_S(j,a,b))

What next?

m We can't implement GPS

m So, lets see how to emulate it

m We want to be as fair as possible

m But also have an efficient implementation

Weighted round robin

RR: Serve a packet from each non-empty queue in turn
Unfair if packets are of different length or weights are not equal
Different weights, fixed packet size

serve more than one packet per visit, after normalizing to
obtain integer weights

Different weights, variable size packets
normalize weights by mean packet size

+ e.g. weights {0.5, 0.75, 1.0}, mean packet sizes {50, 500,
1500}

+ normalize weights: {0.5/50, 0.75/500, 1.0/1500} = { 0.01,
0.0015, 0.000666}, normalize again {60, 9, 4}

Problems with Weighted Round Robin

m With variable size packets and different weights, need to know
mean packet size in advance

what about compressed video?
m Fair on time scales longer than a round time
Can be unfair for long periods of time
+ iIf a connection has a small weight
+ or number of connections is large
m E.g.

T3 trunk with 500 connections, each connection has mean

packet length 500 bytes, 250 with weight 1, 250 with weight
10

Each packet takes 500 * 8/45 Mbps = 88.8 microseconds
Round time =2750 * 88.8 = 244.2 ms

Deficit round-robin

Modifies WRR to handle variable packet sizes

without knowing mean packet size of each connection in
advance

Initialize ‘deficit counter’ to zero
visit each queue
if (DC + quantum) > size of packet at head of queue -> serve
+ and decrement deficit counter
Easy to implement
But fair on large time scale

Example

2000

A | 800

B | 12000

C | 500

1000

1200

800

1500

Weighted Fair Queueing (WFQ)

Deals better with variable size packets and weights
like DRR
GPS is fairest discipline
Find the finish time of a packet, had we been doing GPS
Then serve packets in order of their finish times

WFQ

Suppose, in each round, the server served one bit from each
active connection

Round number is the number of rounds already completed
can be fractional

If a packet of length p arrives to an empty queue when the round
number is R, it will complete service when the round number is
R + p => finish numberis R + p

independent of the number of other connections!

If a packet arrives to a non-empty queue, and the previous
packet has a finish number of f, then the packet’s finish number
is f+p

Serve packets in order of finish numbers

Evaluation

Pros
like GPS, it provides protection
can obtain worst-case end-to-end delay bound

gives users incentive to use intelligent congestion control
(and also provides rate information implicitly)

Cons
needs per-connection state
Implementation complexity
explicit sorting of output queue

Outline

What is scheduling

Why we need it

Requirements of a scheduling discipline
Fundamental choices

Scheduling best effort connections
Scheduling guaranteed-service connections

Scheduling guaranteed-service
connections

m With best-effort connections, goal is fairness

m With guaranteed-service connections
what performance guarantees are achievable?
how easy is admission control?

m We now study some scheduling disciplines that provide
performance guarantees

WFQ

Turns out that WFQ also provides performance guarantees
Bandwidth bound

ratio of weights * link capacity

e.g. connections with weights 1, 2, 7; link capacity 10

connections get at least 1, 2, 7 units of b/w each
End-to-end delay bound

assumes that the connection doesn’t send ‘too much’
(otherwise its packets will be stuck in queues)

more precisely, connection should be leaky-bucket regulated
#bits sentintime [t,, t,]<=p (I,-1,) +©

Parekh-Gallager theorem

m Let a connection be allocated weights at each WFQ scheduler
along its path, so that the least bandwidth it is allocated is g

m Let it be leaky-bucket regulated such that # bits sent in time [t,,
bl<=p(ty-t) +o0

m Let the connection pass through K schedulers, where the kth
scheduler has a link rate r(k)

m Letthe largest packet allowed in the network be Pmax
m The transmission delay is bounded by:

D*() <o)/ gl)+ %Pmax(i)/g(i,k) + ZK:PmaX/ r(k)

Significance

m Theorem shows that WFQ can provide worst-case end-to-end
delay bounds

m So WFQ provides both fairness and performance guarantees
m Bound holds regardless of cross traffic behavior

m Can be generalized for networks where schedulers are variants
of WFQ, and the link service rate changes over time

m But bounds are VERY large and useless

Problems

To get a delay bound, need to pick g

the lower the delay bounds, the larger g needs to be

large g => exclusion of more competitors from link

g can be very large, in some cases 80 times the peak rate!
Sources must be leaky-bucket regulated

but choosing leaky-bucket parameters is problematic
WFQ couples delay and bandwidth allocations

low delay requires allocating more bandwidth

wastes bandwidth for low-bandwidth low-delay sources

Delay-Earliest Due Date

Earliest-due-date: packet with earliest deadline selected
Delay-EDD prescribes how to assign deadlines to packets
A source is required to send slower than its peak rate
Bandwidth at scheduler reserved at peak rate

admission control ensures that delay bound will be met

Deadline = ‘expected’ arrival time + delay bound (time at which it
should be sent, had it been received according to the contract)

If a source sends faster than contract, delay bound will not
apply

Each packet gets a hard delay bound

E2E Delay bound is independent of bandwidth requirement
but reservation is at a connection’s peak rate

Implementation requires per-connection state and a priority
queue

Rate-controlled scheduling

m A class of disciplines
two components: regulator and scheduler

incoming packets are placed in regulator where they wait to
become eligible

then they are put in the scheduler
m Regulator shapes the traffic, scheduler provides performance

guarantees

=P

REGULATOR

S
|

ELIGIBLE

|i PACKETS

=EBE

CUTPLT
>

SCHEDULER

Analysis

First regulator on path monitors and regulates traffic =>
bandwidth bound

End-to-end delay bound
delay-jitter regulator

+ reconstructs traffic => end-to-end delay is fixed (= worst-
case delay at each hop)

rate-jitter regulator
+ partially reconstructs traffic

+ can show that end-to-end delay bound is smaller than
(sum of delay bound at each hop + delay at first hop)

Decoupling

m Can give a low-bandwidth connection a low delay without
overbooking

m E.g consider connection A with rate 64 Kbps sent to a router
with rate-jitter requlation and multipriority FCFS scheduling

ELIGIBLE

IIL/l*-.-c'm;m

CUTrUT
>

BPLT :DI
I

—F

=EEH

REGULATOR SCHEDULER

m After sending a packet of length P, next packet is eligible at time
(now + P/64 Kbps)

m If placed at highest-priority queue, all packets from A get low
delay

m Can decouple delay and bandwidth bounds, unlike WFQ

Evaluation

Pros
flexibility: ability to emulate other disciplines
can decouple bandwidth and delay assignments
end-to-end delay bounds are easily computed

do not require complicated schedulers to guarantee
protection

can provide delay-jitter bounds

Cons
require an additional regulator at each output port
delay-jitter bounds at the expense of increasing mean delay
delay-jitter regulation is expensive (clock synch, timestamps)

Summary

Two sorts of applications: best effort and guaranteed service
Best effort connections require fair service

provided by GPS, which is unimplementable

emulated by WFQ and its variants

Guaranteed service connections require performance
guarantees

provided by WFQ, but this is expensive
may be better to use rate-controlled schedulers

