Opening: Virtual Machines

Outline
@ Historical perspective
@ Motivations and examples
@ Software support

@ Hardware support




Historical Perspective
IBM VM

@ Starting point 1967: IBM VM System /370

@ Offers long-term portability of System/360 applications over a wide range of
machines and peripherals, although the processor’'s machine instructions
where quite different




Implementation Challenges

How Does it Work?

@ Main requirement: intercept any guest-specific action to redirect it to the
host's interface
> Machine language instructions
» Memory-mapped control registers
> Exceptions and interrupts
@ Good example: IBM System /370

@ Bad example: x86, where many exceptions, port 1/O, accesses to system
buses and memory-mapped PC motherboard registers were impossible to
“trap” (be reconfigured to trigger exceptions selectively)... until Core Duo 2
processor

References
@ First Attempt to Formalize and Classify: Popek and Goldberg 1974

@ James E. Smith and Ravi Nair: Virtual Machines: Versatile Platforms for
Systems and Processes, 2005




Implementing a Virtual Machine Monitor

Software

@ Most general case, when native virtualization is not possible, or to provide
sandboxing

@ Emulation and full-system simulation: e.g., QEMU, VMware

@ Binary translation: e.g., Dynamo (HPLabs), Transmeta Code Morphing,
Rosetta (Apple), IA32EL (Intel)

o Code caching
@ Dynamic optimization (similar to just-in-time compilation of Java bytecode)

@ Paravirtualization: e.g., Xen or User Mode Linux

Hardware

o Native virtualization (lightweight hypervisor): “traps” selectively on some
instructions or address ranges, e.g., Parallels

@ Reduce exception overhead and cost of switching to kernel mode

@ Support to accelerate instruction decoding (PowerPC)




Sophisticated Example

Virtualization Stack

Java application
1 JVM just-in-time compilation
Linux x86
1 VMWare full system emulation
Windows x86
1 Code Morphing
Transmeta Crusoe/Efficeon VLIW processor




Thank You!




