
Opening: Virtual Machines

Outline

Historical perspective

Motivations and examples

Software support

Hardware support



Historical Perspective
IBM VM

Starting point 1967: IBM VM System/370

Offers long-term portability of System/360 applications over a wide range of
machines and peripherals, although the processor’s machine instructions
where quite different



Implementation Challenges

How Does it Work?

Main requirement: intercept any guest-specific action to redirect it to the
host’s interface

I Machine language instructions
I Memory-mapped control registers
I Exceptions and interrupts

Good example: IBM System/370

Bad example: x86, where many exceptions, port I/O, accesses to system
buses and memory-mapped PC motherboard registers were impossible to
“trap” (be reconfigured to trigger exceptions selectively)... until Core Duo 2
processor

References

First Attempt to Formalize and Classify: Popek and Goldberg 1974

James E. Smith and Ravi Nair: Virtual Machines: Versatile Platforms for
Systems and Processes, 2005



Implementing a Virtual Machine Monitor

Software

Most general case, when native virtualization is not possible, or to provide
sandboxing

Emulation and full-system simulation: e.g., QEMU, VMware

Binary translation: e.g., Dynamo (HPLabs), Transmeta Code Morphing,
Rosetta (Apple), IA32EL (Intel)

Code caching

Dynamic optimization (similar to just-in-time compilation of Java bytecode)

Paravirtualization: e.g., Xen or User Mode Linux

Hardware

Native virtualization (lightweight hypervisor): “traps” selectively on some
instructions or address ranges, e.g., Parallels

Reduce exception overhead and cost of switching to kernel mode

Support to accelerate instruction decoding (PowerPC)



Sophisticated Example

Virtualization Stack

Java application
↓ JVM just-in-time compilation

Linux x86
↓ VMWare full system emulation

Windows x86
↓ Code Morphing

Transmeta Crusoe/Efficeon VLIW processor



Thank You!


