
Temporal logics
Master Parisien de Recherche en Informatique

Part 1 of course 2.8 (September-October 2006)

Nicolas Markey

Lab. Spécification & Vérification
CNRS & ENS Cachan

Version 1.02 – October 11, 2006



2

Abstract

These notes have been written as a support for the course about temporal logics
taught at MPRI (Master Parisien de Recherche en Informatique) during the first
semester of year 2006-2007.

They contain most of what will be studied during the course, most often
with detailled proofs, and several exercises, ranked from easy ( ) to hard ( ).
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Chapter 1

Introduction

Logic (from classical Greek lìgoc, meaning word or thought) aims at studying
statements and arguments of reasoning. According to [Sha05],

Typically, a logic consists of a formal or informal language together
with a deductive system and/or a model-theoretic semantics. The
language is, or corresponds to, a part of a natural language like
English or Greek. The deductive system is to capture, codify, or
simply record which inferences are correct for the given language,
and the semantics is to capture, codify, or record the meanings, or
truth-conditions, or possible truth conditions, for at least part of the
language.

Historically, the study of logic independently started in India and China,
during the 6th century B.C., but has been much more developped by Greek
philosophers after the 4th century B.C. However, logic was really formalized in
the second half of the 19th century [Fre79], and has been much developped since
then.

It has been remarked since Aristotle that classical logic cannot express subtler
points such as possibility or necessity : that something is possible does not mean
that it is true or false, but rather that it might be true or false. The problem of
the future contingents, aiming at expressing that

There will be a sea battle tomorrow.

is an example of a sentence that cannot be captured by classical logic. Again,
while several philosophers studied the question since then, modal logics have
only been formally defined in 1918 [Lew18]. Several flavours of modal logics
have been developped since then: alethic logic is the logic to handle possibility
and necessity, deontic logic aims at reasoning about permission and obligation,
while epistemic logic deals with knowledge... Basically, all those logics use the
same two modalities ♦ (for possibly) and � (for necessarily), but with different
sets of axioms.
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6 CHAPTER 1. INTRODUCTION

In that bunch of logics, temporal logic is the logic to deal with the evolution
of truth values with time. Temporal logic has really been studied on its own by
Arthur N. Prior [Pri57, Pri67, Pri68], and by Hans W. Kamp [Kam68] in the
50’s and 60’s. It has then been introduced in the field of computer science by
Amir Pnueli [Pnu77] as a tool to describe and reason about the behaviors of
reactive systems, which has been the starting point of dazzling development of
model checking.

These notes present temporal logics with a point of view of a computer
scientist: they won’t focus on axiomatizations of the logics, but rather on the
problems of satisfiability and model-checking. Chapter 2 follows the history
above in defining propositional logic, first- and second-order logics, modal logics,
and temporal logics. Chapter 3 focuses on linear-time temporal logics, while
Chapter 4 deals with the branching-time framework.



Chapter 2

From propositional logic to
temporal logic

2.1 Propositional logic

If temporal logic is seen as a language for describing a movie, then propositional
logic can be seen as a language for describing a picture [Gor00]. The basic blocks
are atomic propositions, that can be combined with Boolean operators:

Definition 1 The syntax of propositional logic over a set AP of atomic pro-
positions is given by the following grammar:

PL 3 φ ::= p | ¬φ | φ ∨ φ | φ ∧ φ

where p ranges over AP.

The semantics of the Boolean operators ¬ (negation), ∨ (disjunction) and ∧ (con-
junction) are given as truth table displayed at table 2.1.

p ¬p
false true
true false

p q p ∨ q
false false false
false true true
true false true
true true true

p q p ∨ q
false false false
false true false
true false false
true true true

Table 2.1: Truth table of the three basic Boolean operators

Example. If AP = {“the sky is blue”, “the grass is green”}, then the following
formula is well-formed:

¬(“the sky is blue” ∨ ¬“the grass is green).

7
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It is true exactly when the sky is not blue and the grass is green.

Definition 2 Two Boolean formulas φ and ψ are equivalent if, under each
possible valuation v : AP→ {true, false}, the truth values of φ and ψ are equal.
This is denoted by φ ≡ ψ.

From that semantics, it is easy to derive the following results:

Theorem 3 (De Morgan’s laws)

¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ ¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ

Several other boolean operators can be defined from the main three ones.
For instance, it is usual to define the implication, denoted with ⇒, as

p⇒ q
def≡ ¬p ∨ q.

Similarly, exclusive or, written ⊕, is defined as

p⊕ q def≡ (p ∨ q) ∧ ¬(p ∧ q).

We conclude this section with a famous result, due to Stephen Cook [Coo71]:

Theorem 4 Deciding the satifiability of a formula of PL is NP-complete.

On the other hand, evaluating the truth value of a formula given a valuation of
the atomic propositions is NC1-complete (i.e., ALOGTIME-complete) [BCGR92].
We refer to [Pap94] for more details about those complexity classes.

Exercice 2.1. Prove Theorem 3.

Exercice 2.2. From De Morgan’s laws, we could define the syntax of
PL with only negation and conjunction (or only negation and disjunction), since
the third operator can be defined from the first two.

Prove that negation cannot be defined in terms of conjunction and disjunction.
Is it possible to define another binary boolean operator such that negation,
conjunction and disjunction can be defined using only that operator?

Exercice 2.3. Prove Theorem 4.

2.2 First- and second-order logics

First-order logic is an extension of propositional logic with quantification over a
set of items X. In that setting, atomic propositions are replaced by monadic
predicates, i.e., functions p : X → {true, false}.
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Definition 5 The syntax of first-order monadic logic is defined as:

FOML 3 φ ::= p(x) | ¬φ | φ ∨ ψ | φ ∧ ψ | ∃x ∈ X.φ | ∀x ∈ X.φ

where p ranges over the set MP of monadic predicates, x and y range over the
fixed set X, with the extra requirement that any variable that appears as the
argument of a predicate must be bound by an existential or universal quantifier.

The semantics is the natural one: a formula ∃x ∈ X.φ(x) holds if the function
φ : X → {true, false} is not always false, while ∀x ∈ X.φ(x) is true if φ always
equals true. In particular:

Theorem 6
¬(∃x ∈ X.φ(x)) ≡ ∀x ∈ X.¬φ(x).

Example. If X = {sky, grass} and MP = {is blue, is green}, then the following
is a well-formed formula:

∀x ∈ X.(is green(x) ∨ is blue(x)).

In the (interesting) case when X can be ordered, first-order logic can be
extended to also be able to use that order:

Definition 7 Let (X,≤) be an ordered set. The syntax of first-order monadic
logic of order is defined as:

FOMLO 3 φ ::= p(x) | x ≤ y | ¬φ | φ ∨ ψ | φ ∧ ψ | ∃x ∈ X.φ | ∀x ∈ X.φ

The semantics is immediately derived from that of FOML. Of course, since
the order is reflexive, it is possible to test for the equality of two items of X.

Example. If X is the set of nonnegative integers equipped with its classical
order, using predicates is odd and is even, the following formulas hold:

• Z+ has a minimal element:

∃x ∈ Z+. ∀y ∈ Z+. x ≤ y.

• among two successive integers, exactly one is odd:

∀x ∈ Z+. ∀y ∈ Z+. (x ≤ y)⇒[
(∀z ∈ Z+. (z ≤ x ∨ y ≤ z))⇒ (is odd(x)⊕ is odd(y))

]
.

In this case, we have a theorem similar to Theorem 4, but with a much higher
complexity:

Theorem 8 The satisfiability of a formula of FOMLO is decidable (and has
non-elementary complexity).
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Note that such a result depends on the underlying order. The result above holds
for classical linear orders such as 〈Z+,≤〉 [Sto74] or 〈R+,≤〉 [BG85].

Exercice 2.4. Over the set of nonnegative integers, using the monadic
predicate is prime, write a formula in FOMLO expressing (the conjecture) that
there exists infinitely many twin primes [Wik06].

Second-order logic is an extension of first-order logic in which one can also
quantify over subsets of the set X:

Definition 9 Let (X,≤) be an ordered set. The syntax of monadic second-order
logic of order is defined as:

SOMLO 3 φ ::= p(x) | x ≤ y | x ∈ Y | ¬φ | φ ∨ ψ | φ ∧ ψ
| ∃x ∈ X.φ | ∀x ∈ X.φ | ∃Z ⊆ X.φ | ∀Z ⊆ X.φ.

where p ranges over the set MP of monadic predicates, x and y range over the
fixed set X, Y ranges over the set of all subsets of X, with the extra requirement
that any variable that appears as the argument of a predicate must be bound by
an existential or universal quantifier.

Notice that we directly defined SOMLO, but obviously SOML can also be
defined, as in the case of first-order logic. Again, the semantics is rather obvious,
and we omit it. Also, clearly, Theorem 6 also holds for second-order quantification.
Last, we have the following:

Theorem 10 The satisfiability problem for SOMLO is decidable (and has non-
elementary complexity).

Let us insist again on the fact that this general result only holds in some
(interesting) special cases: discrete and continuous linear orders [Büc60, Rab],
and discrete tree orders [Rab].

Remark. Note that it is of course possible to define higher-order logics, with
quantification over sets of sets of X, and so on. In that hierarchy, propositional
calculus is sometimes refered to as zeroth-order logic.

Example. Assume that X is a totally ordered set. FOMLO can express that
X is has no minimal element:

∃x ∈ X. ∀y ∈ X. x ≤ y.

But FOMLO cannot express that X is well-ordered, i.e., that any non-empty
subset has a minimum element: this requires second-order quantification:

∀Y ⊆ X.(∃x ∈ Y. ∀y ∈ Y. x ≤ y)
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2.3 Modal logics

Roughly speaking, modal logics are extensions of propositional logic with new
operators that express possibility or necessity. Basically:

Definition 11 The syntax of modal logic is:

ML 3 φ ::= p | ¬φ | φ ∨ φ | φ ∧ φ | ♦φ | �φ

where p ranges over the set AP of atomic propositions.

The semantics of modal logics is generally defined over Kripke structures:

Definition 12 Let AP be a (finite) set of atomic propositions. A Kripke struc-
ture is a 3-tuple 〈W,R, l〉 s.t.:

• W is a non-empty set whose items are called worlds,

• R is a binary relation over W (often refered to as the accessibility relation).
It is required that for any w ∈ W , there exists w′ ∈ W s.t. (w,w′) ∈ R
(i.e., each world must have at least one successor).

• l : W → 2AP maps each world to the set of atomic propositions that hold in
that world.

A Kripke structure is in fact nothing more than a lebeled transition system,
and the name is only kept in honour of Saul Kripke, who used them in order to
define the semantics of modal logics.

Definition 13 Let K be a Kripke structure, w ∈ W be a world, and φ ∈ ML.
That formula φ holds in the world w (denoted w |= φ) is defined through the
following recursive rules:

• w |= p if, and only if, p ∈ l(p), for any atomic proposition p,

• w |= ¬ψ if, and only if, w 6|= ψ,

• w |= ψ1 ∨ ψ2 if, and only if, w |= ψ1 or w |= ψ2,

• w |= ψ1 ∧ ψ2 if, and only if, w |= ψ1 and w |= ψ2,

• w |= ♦ψ if, and only if, ∃w′ ∈W.((w,w′) ∈ R ∧ w′ |= ψ),

• w |= �ψ if, and only if, ∀w′ ∈W.((w,w′) ∈ R⇒ w′ |= ψ).

This captures the intuitive meaning that something possible is true in one of
the accessible worlds, while something necessary holds in any. Depending on the
nature (alethic, epistemic, ...) of the modal logic under study, Kripke structures
might be required to be reflexive, transitive, ...

The following result directly follows from this definition:

Theorem 14
¬♦φ ≡ �¬φ.
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2.4 Temporal logics

Temporal logic is, originally, a derivative of modal logic that focuses on the
succession of events along time. With no constraint on the Kripke structure,
modalities ♦ and � have their standard meaning, concerning the set of next
states. If we require that the Kripke structure be transitive (modeling the fact
that “being in the future” is transitive), then

• ♦φ means that φ will be true some time in the future, along some evolution.

• �φ means that φ will always hold, at any time in the future, and along
any evolution.

Still, this definition does not allow to express properties such as “φ is unavoid-
able”, i.e., that φ will eventually occur along any evolution. In fact, temporal
logic now comprises two main frameworks: the linear-time framework, and the
branching-time framework. The former aims at expressing properties along each
single evolution in the Kripke structure, while the latter adds quantification over
the possible evolutions.

In the linear-time setting, modalities ♦ and � are often written F and G,
resp., and are read “eventually in the future” and “always in the future”. It is
of course possible to define extra modalities. In a broad sense, a modality is
a n-ary predicate whose definition can be expressed in FOMLO. For example,
extra modalities have been defined for dealing with what happened in the past:
it is now standard to write them as F−1 and G−1, and to read them “sometime
in the past” and “always in the past”, resp. Two binary modalities are also
classically used: U, read “until”, and S, read “since”. Those modalities have
been introduced by Hans Kamp after he proved that they could not be expressed
with only unary modalities [Kam68]. The formal semantical definitions, as well
as many related results, will be given and explained in Chapter 3, which is
entirely devoted to the linear-time framework.

The branching-time framework can be seen as an extension of linear-time
temporal logics with path quantifiers, namely E (“there exists an evolution such
that...”) and A (“along any evolution, ...”). The intuition (which will be made
formal in Chapter 4, which entirely focuses on branching-time temporal logics)
indicates that EFφ corresponds to ♦φ, that AGφ corresponds to �φ, while
AFφ expresses that φ will eventually occur along any evolution.

2.5 Temporal logics in computer science

In 1977, Amir Pnueli introduced the use of (linear-time) temporal logics in
computer science [Pnu77], in order to (automatically) verify that a reactive
system (modeled as a Kripke structure, i.e., a labeled transition system) satisfies
some properties (expressed, for instance, as temporal logic formulas). Branching-
time logic have also quickly been introduced in this framework [CE81, QS82].

This technique, now called model-checking, has been much developped since
then: efficient algorithms and powerful data-types have been introduced and
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studied, and model-checking is now well-established and recognized as a powerful
tool for the verification of automatic systems [CGP99, BBF+01]. The principle
of model-checking is depicted on Figure 2.1.

system:

⇒

property:

G (request⇒F grant)

model-checking

algorithm

yes/no

Figure 2.1: Principles of model-checking

This course is mainly devoted to the study of temporal logics for model-
checking. The advantage of temporal logics in that framework is that they are
expressive enough (and not too difficult to manipulate) for most applications,
and have reasonably efficient verification algorithms. Satisfiability of a temporal
logic formula is a connected problem, and it will also be studied in this course.
Formally, those two problems are defined as follows:

Definition 15 satisfiability:

Input a formula φ;

Output true if there exists a structure on which φ evaluates to true.

model checking:

Input a formula φ and a structure s;

Output true if φ holds in the structure s.
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Chapter 3

Linear-time temporal logics

In the sequel, AP represents a non-empty, finite set of atomic propositions.

3.1 Linear structures

Linear-time temporal logics are those temporal logics that express properties
over each single evolution of the system. We first define formally how such an
evolution is represented.

Definition 16 A (labeled) linear structure is a tuple S = 〈T,≤, `〉 where:

• 〈T,≤〉 is a totally-ordered infinite set with a minimal element;

• ` : T → 2AP labels each point of T with a subset of AP.

In the sequel, we will always assume that T is (isomorphic to) either the
set of nonnegative integers, or the set of nonnegative reals. The set T is often
refered to as the time-line: when T = Z+, we say that the time-line is discrete,
while T = R+ corresponds to a continuous time-line.

Example. Let KS = 〈W,R, l〉 be a Kripke structure, and w ∈W . Informally,
an evolution of K from w is the infinite sequence of worlds (wi)i∈Z+ that are
successively traversed. In our formalism, this is represented as a linear-structure
〈Z+,≤, `〉 s.t. `(i) = l(wi).

Remark. It is often handy to represent and manipulate discrete linear struc-
tures as words over the alphabet 2AP. A linear structure 〈Z+,≤, `〉 would then be
represented as the word σ = σ0 σ1 . . ., with σi = `(i). In the sequel, we might
go from one representation to the other without further notice, as both are very
similar.

Linear-time temporal logic formulas will generally be evaluated at one precise
point along such a linear structure:

15
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Definition 17 A pointed linear structure is a couple 〈S, s〉 where S = 〈T,≤, `〉
is a linear structure, and s ∈ T . We write Mlin(T ) for the set of pointed linear
structures built on the time-line T .

A special subclass of pointed linear structures is that of initially pointed
linear structures, i.e., couples 〈S, 0〉 where S = 〈T,≤, `〉 and 0 is the minimal
element of T (refered to as the origin of the time-line). We write M0

lin(T ) for
the set of initially pointed linear structures built on T .

3.2 Linear-time temporal logics

We now define the formal semantics of the modalities that we already mentionned
in the introduction.

Definition 18 Let 〈S, s〉 ∈ Mlin(T ) be a pointed linear structure. We define the
following one-place modalities, together with their (inductive) semantics:

• F (eventually):

〈S, s〉 |= Fφ def⇔ ∃t. (s ≤ t ∧ 〈S, t〉 |= φ).

• G (always in the future):

〈S, s〉 |= Gφ
def⇔ ∀t. (s ≤ t⇒ 〈S, t〉 |= φ).

• X (next):

〈S, s〉 |= Xφ
def⇔ ∃t. (s < t ∧ ∀u. (u ≤ s ∨ t ≤ u) ∧ 〈S, t〉 |= φ).

• F−1 (sometime in the past):

〈S, s〉 |= F−1 φ
def⇔ ∃t. (t ≤ s ∧ 〈S, t〉 |= φ).

• G−1 (always in the past):

〈S, s〉 |= G−1 φ
def⇔ ∀t. (t ≤ s⇒ 〈S, t〉 |= φ).

• X−1 (previous):

〈S, s〉 |= X−1 φ
def⇔ ∃t. (s < t ∧ ∀u. (s ≤ u ∨ u ≤ t) ∧ 〈S, t〉 |= φ).

We also define two two-place modalities:

• U (until):

〈S, t〉 |= φUψ
def⇔ ∃t. (s ≤ t ∧ (〈S, t〉 |= ψ) ∧

∀u. ((s ≤ u ∧ u < t)⇒ 〈S, u〉 |= φ)).
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• S (since):

〈S, t〉 |= φSψ def⇔ ∃t. (t ≤ s ∧ (〈S, t〉 |= ψ) ∧
∀u. ((u ≤ s ∧ t < u)⇒ 〈S, u〉 |= φ)).

Remark. Several remarks are in order here:

• modalities X and X−1 are only interesting over discrete time-lines;

• one-place modalities, except X and X−1, can be expressed using only two-
place ones;

• it is possible to define strict versions of the above modalities, that would
not take the current position into account. Those modalities are denoted
with a tilde. For instance:

– Ũ (strict until):

〈S, t〉 |= φ Ũψ
def⇔ ∃t. (s < t ∧ (〈S, t〉 |= ψ) ∧

∀u. ((s < u ∧ u < t)⇒ 〈S, u〉 |= φ)).

– S̃ (strict since):

〈S, t〉 |= φ S̃ψ def⇔ ∃t. (t < s ∧ (〈S, t〉 |= ψ) ∧
∀u. ((u < s ∧ t < u)⇒ 〈S, u〉 |= φ)).

With those definitions, all modalities (both strict and non-strict) can be
defined from the above two.

Using those modalities, we can define different linear-time temporal logics:

Definition 19 Given a set of n modalities {M1, ...,Mn}, the logic L(M1, ...,Mn)
is the set of formulas built on the following grammar:

L(M1, ...,Mn) 3 φ ::= p | ¬φ | φ ∨ φ | φ ∧ φ |
M1(φ, ..., φ) | · · · | Mn(φ, ..., φ).

Several logics built on this schema have a special name:

LTL = L(U ,X ) LTLs = L( Ũ )
LTL+Past = L(U ,X , S ,X−1 ) LTL+Pasts = L( Ũ , S̃ )

It might be surprising to define two flavours of LTL and LTL+Past. However,
both definitions coexist in the literature: LTLs and LTL+Pasts are the standard
definitions for the general case, while LTL and LTL+Past are often prefered in
the discrete-time case.

Note that, in the remarks above, we did not formally defined what we mean
with “can be expressed”. The formal definition relies on the notion of equivalence
of two formulas:
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Definition 20 Two linear-time temporal logic formulas φ and ψ are equivalent
over a set of pointed structures M when

∀m ∈M. (m |= φ ⇔ m |= ψ).

Definition 21 A formula φ can be expressed in a logic L over a set of struc-
tures M whenever there exists a formula ψ ∈ L that is equivalent to φ over M.

Exercice 3.5. Prove all claims of the remarks following Definition 18.
Prove that LTL and LTLs are equally expressive.

Exercice 3.6. This exercice aims at showing that modality U cannot
be expressed in the logic L(F ,F−1 ). We restrict here to discret-time, but a
similar proof could be carried out for other time-lines.

For each positive integer i, consider the word σi defined with the following
rules:

• for any j 6= i, σi3j = a, σi3j+1 = b, σi3j+2 = c;

• σi3i = a, σi3i+1 = c, σi3i+2 = b;

That is, σi almost equals (abc)ω, except that b and c are swapped in the i-th
copy. Prove the following three results:

• the set of positions where formula F (c ∧ cU b) hold along σi is [0, 3i+ 1].

• if φ is a formula containing at most i modalities among F, G, F−1 and G−1

(and no other modalities), then if φ holds at some position k ≥ 3i, then φ
also holds at position k + 3.

• formula F (c ∧ cU b) cannot be expressed in L(F ,F−1 ).

Deduce that also modality X cannot be defined in L(F ,F−1 ).

Exercice 3.7. A fairness property is a property stating that something
occurs repeatedly, infinitely often. Prove that fairness properties can be expressed
in LTL. Symmetrically, what is the meaning of formula F−1 G−1 φ?

Before we study the complexity of satisfiability and model-checking of those
logics, we have to define the notion of size of a formula. In fact, two definition
coexist:

Definition 22 The size of a formula φ ∈ L(M1, ...,Mn) is defined inductively
as follows:

|p| = 1
|¬φ1| = 1 + |φ1|

|φ1 ∨ φ2| = 1 + |φ1|+ |φ2|
|φ1 ∧ φ2| = 1 + |φ1|+ |φ2|

|M(φ1, ..., φn| = 1 + |φ1|+ · · ·+ |φn| .
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In other words, the size of a formula is the number of symbols (excluding
parenthesis) needed for writing a formula. The size of a formula could also
be defined as the number of nodes of the tree-representation of the formula
(where, for instance, formula M(φ1, ..., φn) would correspond to one node with n
successors corresponding to subformulas φ1 to φn).

If, in such a tree-representation, we merge the states correpsonding to identical
subformulas, we get a directed acyclic graph (DAG for short). The number
of nodes of this DAG is another way of defining the size of the corresponding
formula, called the DAG-size. There is another way of defining this measure:

Definition 23 The DAG-size of a formula φ, written |φ|DAG is the number of
subformulas of φ, where the set of subformulas is defined inductively as follows:

SFp = {p}
SF¬φ1 = {¬φ1} ∪ SFφ1

SFφ1 ∨ φ2 = {φ1 ∨ φ2} ∪ SFφ1 ∪ SFφ2

SFφ1 ∧ φ2 = {φ1 ∧ φ2} ∪ SFφ1 ∪ SFφ2

SFMi(φ1, ..., φn) = {M(φ1, ..., φn)} ∪ SFφ1 ∪ · · · ∪ SFφn.

Both definitions satisfy the following relation:

Theorem 24 For any φ ∈ L(M1, ...,Mn), we have

|φ| ≤ |φ|DAG ≤ a
|φ|

where a is the maximal arity of the modalities in {M1, ...,Mn}.

Exercice 3.8. Prove Theorem 24.

3.3 Expressive completeness of LTL+Past and
LTL

We keep on focusing on the expressiveness of LTL and LTL+Past in this section.

Theorem 25 Any formula in LTL or LTL+Past can be expressed in FOMLO
using at most three variables.

Exercice 3.9. Prove Theorem 25.
In many cases, the converse fails to hold, and FOMLO, even with only

three variables, contains formulas that can’t be expressed in LTL or LTL+Past.
However, there are some interesting special cases:

Theorem 26 ([Kam68]) OverMlin(Z+) andMlin(R+), any formula of FOMLO
can be expressed in LTL+Past.
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Theorem 27 ([GPSS80]) Over M0
lin(Z+), any formula of FOMLO can be ex-

pressed in LTL.

Those theorems state that, in certain circumstances, LTL or LTL+Past contain
all the expressive power of the formalism it is built on (namely first-order logic).
This property is called expressive completeness.

The proofs of those results are very technical, and way beyond the scope of
this course. In fact, the important point is the following corollary:

Corollary 28 Over M0
lin(Z+), any formula in LTL+Past can be translated in

LTL.

Exercice 3.10. Prove that Theorem 27 does not hold over Mlin(Z+)

(i.e., over general pointed linear structure) and overM0
lin(R+). For this second

part, consider the following two linear structures:

• S1 = 〈R+,≤, `1〉 with `1(t) =

{
a if t ∈ Z+

∅ otherwise

• S2 = 〈R+,≤, `2〉 with `2(t) =

{
a if t ∈ Z+ or 1/t ∈ Z+

∅ otherwise

and prove that they satisfy exactly the same set of LTL formulas, while there
exists a formula in LTL+Past that holds only of 〈S1, 0〉.

Several other expressiveness results exist. Related to the above ones is the
following:

Theorem 29 ([EVW02]) Any formula of FOMLO involving at most two vari-
ables can be expressed in L(F̃ , F̃

−1
), and conversely.

Again, the proof of this result is rather technical, and the interested reader
is invited to consult the original paper.

We conclude this section with another important expressiveness result:

Theorem 30 ([Wol83]) Over discrete time, that “φ holds at any even position
along a linear structure” cannot be expressed in LTL+Past.

Exercice 3.11. Explain why the tentative formulas below do not express
the property of Theorem 30:

φ ∧G (φ⇔ X¬φ) φ ∧G (φ⇒ XXφ)

Considering the following family of words, prove Theorem 30:

σi = ai · b · aω.
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3.4 Satisfiability of LTL is PSPACE-hard

In this and the next sections of this chapter, we only consider the case of discrete
time. This section is again (slightly) related to expressiveness: we prove that
LTL and LTL+Past can encode, with a polynomial-size formula, the behavior of
a linear-space Turing machine.

Theorem 31 ([SC85]) Satisfiability of an LTL formula is PSPACE-hard.

Note that satisfiability here means the existence of a Kripke structure all of
whose executions satisfy the LTL formula.

Proof. The proof is based on the following lemma:

Lemma 32 Let T be a linear-space deterministic Turing machine. Then one
can build, using logarithmic space, a polynomial-size LTL formula φ such that:

T halts on the empty word if, and only if, φ is satisfiable.

Proving this lemma obviously completes the proof of Theorem 31, since the
halting problem for linear-space deterministic Turing machines is known to be
PSPACE-complete.

Proof (of Lemma 32). We fix the notations: T = 〈Q, qi, qf ,Σ,#, δ, n〉, where
Q is the set of states of the Turing machine, qi and qf are the initial and final
states, Σ is the alphabet, # is a special symbol (required not to belong to Σ)
representing an empty cell, δ : Q× (Σ∪{#})→ Q×Σ×{←,→} is the transition
function (remember that our machine is deterministic), and n, given in unary, is
the size of the tape.

The intuition of the reduction is as follows: we build a formula that will be
true only on words that represent the successive configurations of the Turing
machine. The set of atomic propositions is defined as follows:

AP = Q ∪ Σ ∪ {#, .}

where the new symbol . will be used as a configuration separator. In order to
be accepted, a word will thus have to begin with the following pattern:

. q,# # # # #

1 configuration = n letters

. a q′,# # #

This example corresponds to a transition δ(q,#) = (q′, a,→).
We have several properties to enforce:

1. the path should begin with ., and this symbol must repeat precisely every
n+ 1 letters: in order to express this, we first define

φsep = . ∧
∧

p∈AP,p 6=.

¬p.



22 CHAPTER 3. LINEAR-TIME TEMPORAL LOGICS

Then

φ1 = φsep ∧G (φsep ⇒ X (¬. ∧X (¬. ∧X . . .X (¬.︸ ︷︷ ︸
n times

∧Xφsep) . . .)))

2. exactly one tape head (whose position is represented by writing the current
state in the correspondig cell) must appear in each configuration: we first
define

φhead =
∨
q∈Q

(
q ∧

∧
q′∈Q,q′ 6=q

¬q′
)
.

Then

φ2 = G (φsep ⇒ ((¬φhead)U (φhead ∧X ((¬φhead)Uφsep))))

3. there is one letter (possibly #) in each cell: we first define

φletter =
∨

p∈Σ∪{#}

(
p ∧

∧
p′∈Σ∪{#},p′ 6=p

¬p′
)
.

Then:
φ3 = G (¬.⇒ φletter).

4. we have to ensure that the content of the tape is preserved from one
configuration to the next one, except for the cell the tape is on:

φ4 = G
(
¬φhead ⇒

∧
p∈Σ∪{#}

(p⇒ Xn+1 p)
)
.

5. if a transition can be applied from a configuration, then the next configur-
ation must be modified accordingly:

φ5 =
∧

δ(q,a)=(q′,b,→)

G ((q ∧ a)⇒ Xn+1 (b ∧X q′)).

Several technical details are omitted here: of course, the same kind of
formula has to be written for transitions in which the tape head goes to
the left, but we should also take care of the left- and right-end of the tape,
as well as the case where no transition can be applied. Those details are
left to the meticulous reader.

6. last, we require that the tape is initially empty, and that the execution
must reach the accepting location:

φ6 = X (#Uφsep) ∧ F qf .

It is now a matter of bravery to prove that this formula satisfies the conditions
of the lemma. ��

As direct corollaries, we obtain the following results:
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Corollary 33 ([SC85]) LTL model-checking in PSPACE-hard.

Corollary 34 Model-checking and satisfiability are PSPACE-hard for LTL+Past.

Exercice 3.12. Prove Corollary 33.

Exercice 3.13. Quantified boolean formula (QBF) is another instance
of a PSPACE-complete problem. An instance of QBF is a formula

∃p1. ∀p2. . . . ∀p2n. φ(p1, p2, . . . , p2n)

where φ(p1, p2, . . . , pn) is a formula of PL built on atomic propositions p1 to p2n

(which can be assumed to be in conjunctive normal form). Give a direct reduction
(in logarithmic space) of QBF to LTL model-checking.

3.5 LTL+Past and Büchi automata

The main goal of this section is to prove that LTL+Past satisfiability (and model-
checking) are PSPACE-complete. Several proofs of this result exist, and we
present below the automata-theoretic approach to LTL+Past model-checking.

3.5.1 Büchi automata

This approach involves finite-state automata on infinite words. We first define
this formalism:

Definition 35 A finite-state automaton is a tuple A = 〈Q,Q0,Σ, δ〉 where:

• Q is a finite set of states (or locations);

• Q0 ⊆ Q is the set of initial locations;

• Σ is a finite alphabet;

• δ ⊆ Q× Σ×Q it the transition relation.

Here is how an automaton “reads” words on the alphabet Σ:

Definition 36 Let A = 〈Q,Q0,Σ, δ〉 be an automaton, and σ ∈ Σω be an infinite
word on Σ. An execution of A over σ is an infinite sequence ρ = (qi)i∈Z+ of
locations of the automaton s.t.:

• q0 ∈ Q0;

• for any i ∈ Z+, (qi, σi, qi+1) ∈ δ.

It remains to define when such an automaton accepts its input word. This
decision is based on the set of repeated locations along the execution:
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Definition 37 Let ρ = (qi)i∈Z+ be an execution of an automaton A = 〈Q,Q0,
Σ, δ〉 over a word σ. The set of repeated states of the execution is defined as

Inf(ρ) = {q ∈ Q | ∀i ∈ Z+. ∃j ∈ Z+. (j ≥ i ∧ qj = q)}

(i.e., Inf(ρ) is the set of locations that are traversed infinitely often along ρ).

Note that, since we required that Q be finite while executions are infinite,
the set of repeated states is always non-empty.

Definition 38 A generalized Büchi automaton is a tuple A = 〈Q,Q0,Σ, δ, F 〉
where:

• 〈Q,Q0,Σ, δ〉 is a finite-state automaton;

• F = {F1, ..., Fp} ⊆ P(Q) is a set of sets of states.

We are now in a position to define when a word is accepted by such an
automaton:

Definition 39 Let A = 〈Q,Q0,Σ, δ, F 〉 be a generalized Büchi automaton, and
σ ∈ Σω be an infinite word on Σ. Then w is accepted by A if, and only if, there
exists an execution ρ = (qi)i∈Z+ s.t.

for each set Fi ∈ F , Inf(ρ) ∩ F 6= ∅.

We write L(A) ⊆ Σω for the language of A, i.e., the set of words that are
accepted by A.

Example. Figure 3.1 is a graphical representation of a Büchi automaton over
Σ = {a, b} that accepts precisely the words containing an infinite number of a’s.
In this simple example, there is only one set of accepting sets (i.e., F = {{qa}}),
and that state is marked with a double line.

qa qb

a b
a

b

Figure 3.1: An example of a Büchi automaton

Exercice 3.14. Definition 38 defined generalized Büchi automata. Clas-
sical Büchi automata are a special case of generalized üchi automata where the
acceptance condition is based on only one set of states: F = {F1}. Prove that
generalized Büchi automata are not more expressive than classical ones, in the
sense that any generalized Büchi automaton can be transformed (using at most
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logarithmic space) into a polynomial-size classical Büchi automaton accepting
the same language.

Exercice 3.15. Prove that the set of languages definable by Büchi
automata is closed under union and intersection. Prove that this result still
holds for deterministic Büchi automata.

Theorem 40 The set of languages accepted by deterministic Büchi automata is
not closed under complementation.

Proof. The proof is based on a characterization of languages recognized by
deterministic Büchi automata in terms of languages recognized by deterministic
automata on finite words:

Definition 41 A finite-state automaton over finite words is a tuple A = 〈Q,Q0,
Σ, δ, F 〉 where

• 〈Q,Q0,Σ, δ〉 is a finite-state automaton;

• F ⊆ Q is the set of final states.

Similarly to the case of infinite words, an execution is an automaton over
a finite word σ = σ0 · · ·σk is a finite sequence ρ = q0 · · · qk+1 s.t. q0 ∈ Q0 and
(qi, σi, qi+1) ∈ δ for each i ≤ k. Then σ is accepted whenever qk+1 ∈ F .

We prove that a language is accepted by a deterministic Büchi automaton if,
and only if, it is the limit of a language accepted by a deterministic automaton
over finite words:

Definition 42 Let L be an infinite set of finite words. The limit of L is defined
as

lim(L) = {σ ∈ Σω | ∀i ∈ Z+. ∃j ≥ i. σ0 · · ·σj ∈ L}.

That is, lim(L) is the set of infinite words having infinitely many prefixes in L.

Exercice 3.16. Compute the following languagues

lim({ba · bn | n ∈ Z+}) lim({am · b · an | m,n ∈ Z+})
lim({(ab)m · bn | m,n ∈ Z+}) lim({anbn | n ∈ Z+})

Theorem 43 A set of infinite words L′ is accepted by a deterministic Büchi
automaton if, and only if, there exists a set of finite words L that is accepted by
a deterministic automaton and s.t. L′ = lim(L).
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Proof. Let A = 〈Q, {q0},Σ, δ, F 〉 be a deterministic automaton over finite words,
and A′ = 〈Q, {q0},Σ, δ, F 〉 be the same automaton, but seen as a deterministic
Büchi automaton. Let σ ∈ Σω. Then if σ ∈ L(A′), the execution ρ of A′ over σ
enters infinitely many times in one of the states of F , say qf . Each prefix of ρ
is an execution of A over a corresponding prefix of σ. Thus, infinitely many
prefixes of σ are accepted by A. The converse implication follows the same lines.

�

Theorem 44 The set L of infinite words over Σ = {a, b} containing only finitely
many a’s is not accepted by a deterministic Büchi automaton.

Proof. Assume L is accepted by such an automaton. Then L = lim(L), for
some language L of finite words. Then bω ∈ L, thus bn1 ∈ L for some n1. In
the same way, bn1 · a · bω ∈ L, which entails that bn1 · a · bn2 ∈ L for some n2.
Repeating the same argument again and again, we obtain an infinite sequence
(wi)i∈Z of words of L s.t. wi is a prefix of wi+1 and wi contains i occurrences
of a. Since L is the limit of L, it contains a word having infinitely many a’s,
which is a contradiction. �

We complete the proof by remarking that the automaton of Fig. 3.1 accepts
precisely the complement of the language L used in the above theorem. �

Exercice 3.17. Prove that non-deterministic Büchi automata are closed
under complement. From Theorem 40, it follows that Büchi automata are not
determinizable.

3.5.2 From LTL+Past to Büchi automata

This section is entirely devoted to the proof of the following result:

Theorem 45 ([LPZ85]) Let φ be a formula in LTL+Past. Then one can build
a (generalized) Büchi automaton A over the alphabet Σ = 2AP, having at most
22|φ| states, and such that:

for any word w ∈ Σω. w ∈ L(A)⇔ 〈w, 0〉 |= φ.

Note that we cite [LPZ85] here because it handles LTL+Past, but a the
original translation of LTL to Büchi automata appeared in [WVS83].

Proof. We begin with the intuition behind this construction, and then give the
technical details.

Each state of our automaton will correspond to a set of subformulas of φ
that are or have to be fulfilled if the execution is accepting. For example, from a
state corresponding to (among others) Xψ, outgoing transitions will go to states
corresponding to (among others) ψ. That way, the automaton will “propagate”
the subformulas that still have to be fulfilled. The (generalized) Büchi condition
will enforce that “until” formulas are eventually fulfilled.
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We now turn to the formal proof. We first need to define the set of subformulas:

Definition 46 Let φ be a formula in LTL+Past. The closure Cl(φ) of φ is the
smallest set of formulas containing φ and closed under the following rules:

• for any ψ ∈ LTL+Past, ψ ∈ Cl(φ) if, and only if, ¬ψ ∈ Cl(φ) (where we
identify ¬¬ψ with ψ);

• if ψ1 ∧ ψ2 ∈ Cl(φ) or if ψ1 ∨ ψ2 ∈ Cl(φ), then both ψ1 and ψ2 are in Cl(φ);

• if Xψ ∈ Cl(φ) or if X−1 ψ ∈ Cl(φ), then ψ ∈ Cl(φ);

• if ψ1 Uψ2 ∈ Cl(φ), then ψ1, ψ2 and X (ψ1 Uψ2) are in Cl(φ);

• if ψ1 Sψ2 ∈ Cl(φ), then ψ1, ψ2 and X−1 (ψ1 Sψ2) are in Cl(φ).

With this definition, we have the following result:

Proposition 47
|Cl(φ)| ≤ 4 |φ| .

Exercice 3.18. Prove Proposition 47.

Of course, we have to enforce that a state cannot represent both a sub-
formula ψ and its negation. Conversely, we will also require that each state
represent exactly one of ψ and ¬ψ:

Definition 48 Let φ be a formula in LTL+Past. A subset S of Cl(φ) is said to
be maximal consistent if the following conditions are fulfilled:

• for any ψ ∈ Cl(φ), ψ ∈ S if, and only if, ¬ψ /∈ S;

• for any ψ1 ∧ ψ2 ∈ Cl(φ), ψ1 ∧ ψ2 ∈ S if, and only if, both ψ1 and ψ2 are
in S;

• for any ψ1 ∨ ψ2 ∈ Cl(φ), ψ1 ∨ ψ2 ∈ S if, and only if, at least one of ψ1

and ψ2 is in S;

• for any ψ1 Uψ2 ∈ Cl(φ), ψ1 Uψ2 ∈ S if, and only if, either ψ2 ∈ S, or
both ψ1 and X (ψ1 Uψ2) are in S;

• for any ψ1 Sψ2 ∈ Cl(φ), ψ1 Sψ2 ∈ S if, and only if, either ψ2 ∈ S, or both
ψ1 and X−1 (ψ1 Sψ2) are in S.

Note that this definition does not forbid that a maximal consistent set
contains both X p and X¬p.

Proposition 49 For any LTL+Past formula φ, there are at most 22|φ| maximal
consistent subsets of Cl(φ).
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This result directly follows from Proposition 47.

We now turn to the formal definition of the automaton corresponding to φ.
As should now be clear, the set of states will precisely be the set of maximal
consistent subsets of Cl(φ). And if a subset contains a subformula Xψ, its
successors will have to contain ψ.

Definition 50 Let φ be a formula in LTL+Past. The Büchi automaton associ-
ated to φ is the generalized Büchi automaton Aφ = 〈Q,Q0, 2AP, δ, F 〉 satisfying
the following conditions:

• Q is the set of maximal consistent subsets of Cl(φ);

• Q0 is the subset of Q consisting of those maximal consistent subsets that
contain φ and contain ¬X−1 ψ for any subformula X−1 ψ ∈ Cl(φ);

• (q, σ, q′) ∈ δ if, and only if, the following conditions are fulfilled:

– for any p ∈ AP, we have p ∈ q if, and only if, p ∈ σ;
– for any subformula Xψ ∈ Cl(φ), we have Xψ ∈ q if, and only if,
ψ ∈ q′;

– for any subformula X−1 ψ ∈ Cl(φ), we have ψ ∈ q if, and only if,
X−1 ψ ∈ q′.

• the set of accepting sets of states is defined as follows:

F =
{
{q ∈ Q | ψ2 ∈ q or ¬(ψ1 Uψ2) ∈ q}

∣∣∣∣ ψ1 Uψ2 ∈ Cl(φ)
}
.

The size of this automaton clearly fulfills the requirements of Theorem 45.
The following lemma will conclude the proof that our construction is correct:

Lemma 51 Let φ ∈ LTL+Past, and w ∈ (2AP)ω. Let ρ = (qi)i∈Z+ be an
execution of Aφ on input word w, starting in some initial state q0, and accepted
by Aφ. Then for any ψ ∈ Cl(φ), and for any n ∈ Z+,

ψ ∈ qn ⇔ 〈w, n〉 |= ψ.

Proof. The proof is by induction of the structure of ψ:

• if ψ is an atomic proposition p, the proof is rather obvious: assuming p ∈ qn,
we get, by construction of the transitions, that, for any (qn, σ, q′) ∈ δ, p ∈ σ.
Thus p ∈ wn and 〈w, n〉 |= p. The converse follows the same lines;

• the proofs for boolean combinators is straightforward;

• if ψ = Xψ1: by construction, ψ ∈ qn if, and only if, ψ1 ∈ qn+1. By
induction hypothesis, this is equivalent to 〈w, n+ 1〉 |= ψ1, which in turns
exactly means that 〈w, n〉 |= ψ. The proof for ψ = X−1 ψ1 is similar;
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• if ψ = ψ1 Sψ2, we prove both implications by induction on n. First, if
ψ ∈ q0, since q0 is an initial state, we know that is does not contain
X−1 (ψ1 Sψ2). By construction, q0 must contain ψ2, and by induction
hypothesis, 〈w, 0〉 |= ψ2, hence 〈w, 0〉 |= ψ. The converse follows the same
lines.

Now, if the result holds up to some posittion n− 1, assume that φ ∈ qn.
Then, by construction of maximal consistent sets, either ψ2 ∈ qn, or both
ψ1 and X−1 (ψ1 Sψ2) are in qn. The former case is straightforward. In the
latter, by construction, we get that ψ1 Sψ2 ∈ qn−1. We get that 〈w, n〉 |=
ψ1 (from the induction hypothesis on ψ) and 〈w, n − 1〉 |= φ1 Sψ2 (by
induction hypothesis in n). This immediately yields that 〈w, n〉 |= ψ1 Sψ2.
Again, the other direction is symmetric.

• we conclude this proof with the case ψ = ψ1 Uψ2. Assume ψ ∈ qn.
Since the run is accepted by the automaton, we know that one state
of {q ∈ Q | ψ2 ∈ q or ¬(ψ1 Uψ2) ∈ q} will be encountered after qn
along ρ. We reason by induction on the distance d between qn and the
next such state. If d = 0, then ψ2 ∈ qn, since it can’t be the case
that ¬(ψ1 Uψ2) ∈ qn. By induction hypothesis, we get the result. Now,
assuming the result holds up to distance d − 1 with d > 1, suppose the
distance between qn and the next accepting state for ψ1 Uψ2 is d. Then qn
is not accepting, and thus it does not contain ψ2. It shall then contain both
ψ1 and X (ψ1 Uψ2). It follows that qn+1 contains ψ1 Uψ2. The distance
between qn+1 and the next accepting state is then d− 1, which entails, by
indcution on d, that 〈w, n+ 1〉 |= ψ1 Uψ2. now, since qn contains ψ1, we
obtains that 〈w, n〉 |= ψ1 Uψ2.

Conversely, if 〈w, n〉 |= ψ1 Uψ2, then there exists an integer d s.t. 〈w, n+
d〉 |= ψ2, and for any i ∈ [0, d), 〈w, n+ i〉 |= ψ1. By induction hypothesis,
qn+d contains ψ2, thus also ψ1 Uψ2, and all qn+i contain ψ1. An easy
inductive argument proves that ψ1 Uψ2 ∈ qn, and concludes the proof.

��

Example. Figure 3.2 displays the Büchi automaton corresponding to formula
aU (b ∧X−1 b). the closure of this formula contains 12 subformulas, thus the
automaton could contain up to 26, i.e., 64 states. Still, consistency requirements
lower this value to 16. For the sake of clarity, labels are not shown on transitions,
since they correspond, by construction, to the set of atomic propositions labeling
the source state.

Exercice 3.19. Compute the Büchi automaton corresponding to aU (b∧
X−1 b). Can you build a smaller Büchi automaton that accepts the same language?
Can you build a deterministic Büchi automaton that accepts the same language?
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a

a

b

a,b

b

a,b

a

a

b

a,b

b

a,b

Figure 3.2: The Büchi automaton corresponding to formula aU (b ∧X−1 b).

3.5.3 Application to verification

The transformation above has very interesting algorithmic consequences: the
satisfiability of an LTL+Past formula is equivalent to the non-emptiness of the
language accepted by the associated Büchi automaton. While testing for the
non-emptiness for Büchi automata is NLOGSPACE-complete (this in PTIME), the
naive approach only yields an EXPTIME algorithm since the Büchi automaton
associated to an LTL+Past formula has exponential size. This does not match
the lower bound that we established in Theorem 31.

Still, this automata-theoretic approach can yield an optimal algorithm:

Theorem 52 Satisfiability of an LTL+Past formula can be achieved in PSPACE.

Proof. Instead of building the whole Büchi automaton associated to the for-
mula φ under study, the technique consists in building an accepting execution of
the automaton “on the fly”, in a non-deterministic manner (which is fine since
PSPACE = NPSPACE).

The algorithm first guesses an initial state q0 and a set of accepting states q1
to qp (one state per set of accepting states of the generalized Büchi condition).
It then guesses, on the fly, sequences of states of the Büchi automaton that run
from q0 to q1, from q1 to q2, and so on, and from qp to q1. Here, “on the fly”
means that the algorithm generates a set of subformulas of φ, check that it is
maximal consistent, and that there is a transition from the previous state to this
one.

Clearly, the language of the automaton is non-empty if, and only if, such
choices are possible. Now, this algorithm only needs polynomial space, since it
only has to store the states q0 to qp, plus the previous- and current state of the
sequence it is guessing during the second phase, and a small amount of auxiliary
informations.

This algorithm runs in space O(|φ|2) and in time O(|φ|2 × 22|φ|). �
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Exercice 3.20. Explain the above space- and time bounds of the al-
gorithm for LTL+Past satisfiability.

An immediate corollary of this algorithm is the “ultimately-periodic model
property” for LTL+Past:

Corollary 53 If a formula φ in LTL+Past is satisfiable, then there exist two
finite words u, v ∈ (2AP)∗ s.t. 〈u · vω, 0〉 |= φ and |u|+ |v| ≤ |φ| · 22|φ|.

The same complexity can be achieved for model-checking:

Theorem 54 LTL+Past model-checking is in PSPACE.

Proof. The algorithm is very similar, but the algorithm now guesses pairs of
states: one state of the Büchi automaton corresponding to the formula φ, and
one state of the Kripke structure K.

While one state of the Büchi automaton is stored in space O(|φ|), one state
of the Kripke structure only requires space O(log(|K|)). This algorithm thus
performs in space O(|φ|2 · log(|K|)), and time O(|φ|2 × |K| × 22|φ|). �

Exercice 3.21. Explain the above space- and time bounds of the al-
gorithm for LTL+Past model-checking.

Remark. It is important to notice that, practically, the time-complexity of
LTL+Past model-checking is exponential only in the size of the formula (which
is generally rather small), while it is linear in the size of the Kripke structure
(which is often very large). The same difference applies to space-complexity:
the algorithm is (non-deterministic) logarithmic space in the size of the Kripke
structure, and polynomial only in the size of the formula.

As a corollary of these results and those of Section 3.4, we get:

Theorem 55 Model-checking and satisfiability for LTL and LTL+Past are PSPACE-
complete.

When the full expressiveness of LTL+Past is not needed, it is possible to find
sublogics that enjoy better complexity. We present one such case here.

Definition 56 The fragment of LTL without temporal nesting, denoted with LTL1,
is the fragment of LTL defined by the following grammar:

LTL1 3 φm ::=φp | ¬φm | φm ∨ φm | φm ∧ φm | Xφp | φpUφp

φp ::=> | p | ¬φp | φp ∨ φp | φp ∧ φp

where p ranges over AP.

We now prove that, from the ultimately-periodic-model property of LTL+Past,
we can derive a small-model property, that is claimed as follows:
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Proposition 57 ([DS02]) If a formula φ in LTL1 is satisfiable, then there exist
two finite words u, v ∈ (2AP)∗ s.t. 〈u · vω, 0〉 |= φ and |u|+ |v| ≤ |φ| · 2 |φ|.

Proof. The proof consists in “extracting” polynomialy many witnesses from
the exponential ultimately-periodic witness given by Corollary 53.

Let φ ∈ LTL1, and w = u · vω be an ultimately-periodic word witnessing φ.
We select a family of witnesses as follows:

• 0 is a witness;

• if φ contains a subformula of the form Xψ, then 1 is a witness;

• for any subformula ψ1 Uψ2 of φ, several cases may arise:

– if w, 0 |= ψ1 Uψ2, then the smallest i s.t. w, i |= ψ2 is a witness;

– if w, 0 6|= ψ1 Uψ2 but w, 0 |= Fψ2, then the smallest i s.t. w, i 6|= ψ1

is a witness;

– otherwise, we select no witness.

Clearly, this procedure selects at most |φ| integers, all of which are less than |u|+
|v|. We write {i0, i1, ..., ik} for the (ordered) set of witnesses, with i0 = 0.
We define two words u′ = wi0wi1 · · ·wip and v′ = wip+1wip+2 · · ·wik , with
ip < |u| ≤ ip+1. That way, u′ is a subword of u, v′ is a subword of v, and
both subwords have size linear in the size of φ. It remains to show that u′ · v′ω
satisfies φ. In the sequel, we write w′ for u′ · v′ω.

The proof is by induction on the structure of φ: the base cases (including the
case where φ = Xφ1) are obvious, and we focus on the case where φ = φ1 Uφ2.
We prove that w |= φ iff w′ |= φ.

Assume w, 0 |= φ. Then there exists a position i s.t. w, i |= φ2, and such that
all intermediate positions satisfy φ1. If we assume that i is the smallest such
position, then state wi occurs in w′ as w′i′ (and we have w′, i′ |= φ2 since φ2 is a
propositional logic formula), and all intermediate positions along w′ correspond
to intermediate positions along w (and each of them thus satisfy φ1). As a
consequence, w′, 0 |= φ.

Conversely, if w, 0 6|= φ, then two cases may arise: either w, 0 6|= Fφ2, in
which case it is also the case for w′, or w, 0 |= Fφ2, but some earlier position
not satisfying φ1 occurs in w′. In both cases, w′, 0 6|= φ. �

Theorem 58 Deciding the satisfiability of a formula of LTL1 is NP-complete.

Proof. The algorithm consists in guessing an ultimately-periodic witness u · vω,
and verifying that it really satisfies the formula. We know that the first part can
be achieved in polynomial time. The second part is an easy labeling algorithm:
it consists in labeling each state of the witness with the subformulas it satisfies
(using the obvious fact that two positions p and p+ |v|, with p ≥ |u|, satisfy the
same subformulas). �
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Theorem 59 Model-checking LTL1 is NP-complete.

Proof. The argument is similar: from a path satisfying φ ∈ LTL1, we know that
only polynomialy many witnesses are needed. Clearly, there exists a polynomial
path containing those witnesses. The algorithm consists again in guessins a path
and checking that it really satisfies the formula. �

3.5.4 Application to expressiveness

The automata-theoretic approach also gives a surprising way of proving the
following expressiveness result:

Theorem 60 ([LMS02]) LTL+Past can be exponentially more succinct than
LTL.

That is, there exists a sequence of formulas of LTL+Past whose translations
in LTL are exponentially larger.

Proof. We consider the following property:

Any two states that agree on atomic propositions p1 to pn also
agree on proposition p0.

(3.1)

This formula can easily be expressed in LTL, e.g. by enumerating the set of
valuations for p1 to pn:∧

a0,a1,...,an∈{>,⊥}

(F (
∧

i∈[0,n]

pi = ai))⇒ (G ((
∧

i∈[1,n]

pi = ai)⇒ p0 = a0)).

The set of words satisfying this property can thus be accepted by a Büchi
automaton. It turns out that we have the following lemma:

Lemma 61 ([EVW02]) Any Büchi automaton that accepts exactly the set of
words satisfying Equation (3.1) has at least 22n

states.

Proof. Let {a0, a1, ..., a2n−1} be the set of letters built on atomic proposi-
tions {p1, ..., pn} (note that p0 is not included here). There are 2n such letters.

For each subset K ⊆ {0, 1, ..., 2n− 1}, we define a set of letters {b0, ..., b2n−1}
as follows:

bi =

{
ai if i /∈ K
ai ∪ {p0} otherwise.

Then, with each subset K, we associate a finite word wK = b0 b1 ... b2n−1. Clearly,
whenever K 6= K ′, then wK 6= wK′ . Thus, this construction defines 22n

different
finite words. It is clear also that for any K, the word wKω satisfies Equation (3.1),
while the word wK′ · wKω does not, as soon as K 6= K ′.

Now, let A be an automaton accepting exactly the words satisfying Equa-
tion (3.1). Let SK be the set of states that can be reached from an initial state
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of A after reading the finite word wK . Clearly, this set is non-empty, since wK
is the prefix of an accepted word. Now, if SK ∩SK′ 6= ∅ for two different sets K
and K ′, then the word wK′ · wKω would be accepted by the automaton. Thus
the sets SK do not intersect, which entails that A has at least 22n

states. �

As a corollary of Theorem 45, any LTL+Past formula expressing the property
of equation (3.1) has size at least 2n−1.

We now consider a slightly different property:

Any state that agrees with the initial state on atomic proposi-
tions p1 to pn also agree with the initial state on proposition p0.

(3.2)

This formula can be captured by a polynomial-size LTL+Past formula:

G

(
∧

i∈[1,n]

(pi ⇔ F−1 G−1 pi))⇒ (p0 ⇔ F−1 G−1 p0)

 . (3.3)

It can thus also be expressed in LTL (again, possibly by enumerating the
set of initial valuations). Let φ be an LTL formula expressing the property of
Equation (3.2). Since φ is a pure-future formula, formula Gφ precisely expresses
the property of Equation (3.1), and thus has size at least 2n−1. Thus |φ| ≥
2n−1−1. Thus LTL can only express the LTL+Past formula (3.3) with exponential-
size formulas.

Exercice 3.22. The proof above requires infinitely many atomic propos-
itions. This is in contradiction with our original requirement that the set AP
must be finite. Prove that the result still holds with only a finite number of
atomic propositions.



Chapter 4

Branching-time temporal
logics

4.1 Tree structures

Similarly to linear-time temporal logics, branching-time temporal logics express
properties on the evolutions of a system along time. The difference is that
branching-time logics consider the whole set of possible evolutions of the system,
while linear-time logics only deal with one execution at a time. We begin with
formally defining tree structures, which are the branching-time equivalent to
linear structures (see Definition 16).

Definition 62 A (labeled) tree structure is a tuple S = 〈T,≤, `〉 where:

• 〈T,≤〉 is a tree-ordered (infinite) set (i.e., a partially-ordered set such that,
for each t ∈ T , the set 〈{u ∈ T | u ≤ t},≤〉 is totally ordered and has a
least element) with the following two additional requirements:

– a branch is a maximal totally-ordered subset of T . Each branch of a
tree structure is required to be infinite. We write Br(t) for the set of
branches of T containing t;

– a root is a minimal element of T . It is required that a tree structure
has finitely many roots (and, sometimes, only one);

• ` : T → 2AP labels each point of T with a subset of AP.

It should be remarked that a branch is well-ordered, and can thus be seen
as a linear structure. As in the case of linear time, only two kinds of tree
structures are really relevant to computer science: those in which all branches
are isomorphic to R+, and those in which all branches are isomorphic to Z+. In
the sequel, we will only consider discrete-time, where all branches are isomorphic
to Z+.

35
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Definition 63 Let K = 〈W,R, l〉 be a Kripke structure, and w ∈ W . The
computation tree of K from w is the tree structure 〈T,≤, `〉 where

• T is the set of finite words over W whose first letter is w, and s.t., for any
two consecutive letters wi and wi+1, (wi, wi+1) ∈ R;

• ≤ is the lexicographic order over T ;

• ` maps each word to the label of its last letter: `(w0, w1, ..., wn) = l(wn).

Exercice 4.23. Prove that the computation tree of a finite-state Kripke
structure is a tree structure whose branches are isomorphic to Z+.

Definition 64 A pointed tree structure is a couple 〈S, s〉 where S = 〈T,≤, `〉
is a tree structure, and s ∈ T . We write Mbr(T ) for the set of pointed tree
structures built on the time-line T .

4.2 Branching-time temporal logics

There are two ways of defining branching-time temporal logics:

• either as an extension of LTL (or LTL+Past) with path quantifiers;

• or as a truly modal logic, i.e., a logic built on boolean operators and a set
of modalities.

We will mostly use the first definition here, and will only mention links with
the second definition as exercises. Thus, given a pointed tree structure 〈S, s〉,
we define two path quantifiers as follows:

• E (there exists a path):

〈S, s〉 |= Eφ def⇔ ∃b ∈ Br(s). 〈b, s〉 |= φ.

• A (for all paths):

〈S, s〉 |= Aφ def⇔ ∀b ∈ Br(s). 〈b, s〉 |= φ.

This definition is rather informal for the moment, but will be make more precise
at Definition 67.

Example. Formula E(F p ∧ F q) means that, along some path, a state labeled
with p and one labeled with q are reachable. This is of course different from EF (p ∧ q),
which requires that one state labeled with both p and q is reahcable, but also
from EF p ∧ EF q, which states that p is reachable in one branch and q in
another (but, of course, possibly the same) branch.

Similarly, AG p means that all reachable states are labeled with p. This is
equivalent to saying that any state that is not labeled with p is not reachable.
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In fact, we again have an obvious duality between our two new operators:

Proposition 65 Both path quantifiers are dual to each other: for any φ ∈
LTL+Past,

Aφ ≡ ¬E¬φ.

We now define the syntax of three important families of branching-time
temporal logics:

Definition 66 Given a set {M1, ...,Mn} of n first-order definable modalities,
we define the following three branching-time logics:

• the syntax of B(M1, ...,Mn) is given by:

B(M1, ...,Mn) 3 φb ::= p | ¬φb | φb ∨ φb | φb ∧ φb | Eφl | Aφl
φl ::=M1(φb, ..., φb) | · · · | Mn(φb, ..., φb)

where p ranges over AP.

• the syntax of B+(M1, ...,Mn) is given by:

B+(M1, ...,Mn) 3 φb ::= p | ¬φb | φb ∨ φb | φb ∧ φb | Eφl | Aφl
φl ::=¬φl | φl ∨ φl | φl ∧ φl |

M1(φb, ..., φb) | · · · | Mn(φb, ..., φb)

where p ranges over AP.

• the syntax of B∗(M1, ...,Mn) is given by:

B∗(M1, ...,Mn) 3 φb ::= p | ¬φb | φb ∨ φb | φb ∧ φb | Eφl | Aφl
φl ::=φb | ¬φl | φl ∨ φl | φl ∧ φl |

M1(φl, ..., φl) | · · · | Mn(φl, ..., φl)

where p ranges over AP.

Formulas defined as φl are called path formulas, while those defined as φb
are state formulas.

Again, for modalities U and X, the corresponding logics have been given
special names (“CTL” stands for “computational tree logic”):

CTL = B(U ,X ) CTLs = B( Ũ )

CTL+ = B+(U ,X ) CTL+
s = B+( Ũ )

CTL∗ = B∗(U ,X ) CTL∗s = B∗( Ũ )

Example. In CTL, each modality has to be preceeded with a path quantifier:
EF p is a CTL formula, but E(F p ∧ F q) and E(FG p) are not (at least, syn-
tactically).
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Clearly enough, CTL+ contains CTL: CTL+ allows boolean combinations of
modalities in the scope of path quantifiers. Still, modalities cannot be directly
nested. Thus, EF p and E(F p ∧ F q) are two formulas of CTL+, but E(FG p)
does not follow the syntax of CTL+.

Last, it is clear again that CTL∗ subsumes CTL+: CTL∗ allows the nesting
of modalities. All three formulas EF p, E(F p ∧ F q) and E(FG p) are CTL∗

formulas.

We now define the precise semantics of CTL∗. The semantics of the other
logics will follow.

Definition 67 Let S = 〈T,≤, `〉 be a tree structure, s ∈ T , and b ∈ Br(s). Let
φb, ψb be two state formulas for CTL∗ semantics, and φl, ψl be two path formulas
for CTL∗ semantics. We recursively define two relations, denoted with |=b and |=l,
for the satisfaction of state- and path formulas, respectively:

〈S, s〉 |=b p ⇔ p ∈ `(t)
〈S, s〉 |=b ¬φb ⇔ 〈S, s〉 6|=b φb

〈S, s〉 |=b φb ∨ ψb ⇔ 〈S, s〉 |=b φb or 〈S, s〉 |=b ψb

〈S, s〉 |=b φ ∧ ψ ⇔ 〈S, s〉 |=b φb and 〈S, s〉 |=b ψb

〈S, s〉 |=b Eφl ⇔ ∃b ∈ Br(s). 〈S, b, s〉 |=l φl

〈S, s〉 |=b Aφl ⇔ ∀b ∈ Br(s). 〈S, b, s〉 |=l φl

〈S, b, s〉 |=l φb ⇔ 〈S, s〉 |=b φb

〈S, b, s〉 |=l ¬φl ⇔ 〈S, b, s〉 6|=l φl

〈S, b, s〉 |=l φl ∨ ψl ⇔ 〈S, b, s〉 |=l φl or 〈S, b, s〉 |=l ψl

〈S, b, s〉 |=l φl ∧ ψl ⇔ 〈S, b, s〉 |=l φl and 〈S, b, s〉 |=l ψl

〈S, b, s〉 |=l Xφl ⇔ ∃t ∈ b. t > s ∧ ∀u. (u ≤ s ∨ t ≤ u) ∧ 〈S, b, t〉 |=l φl

〈S, b, s〉 |=l φlUψl ⇔ ∃t ∈ b. (s ≤ t ∧ (〈S, b, s〉 |=l ψl))∧
∀u ∈ b. ((s ≤ u ∧ u ≤ t)⇒ 〈S, b, u〉 |=l φl)

In the sequel, we write |= for |=b.
Given a Kripke structure K = 〈W,R, l〉, some state w ∈W , and a CTL for-

mula φ, we write K, w |= φ when 〈SK,w, w〉 |= φ, where SK,w is the computation
tree of K from w.

Of course, in a similar way as for linear-time, we can define a strict version Ũ
of U . It is also possible to define other one-place modalities, e.g. F and G,
from U.
Exercice 4.24. Prove, by exhibiting a witnessing Kripke structure, that
the following formulas are satisfiable:

E(F p ∧ F q) ∧ ¬EF (p ∧ EF q) EG (¬p ∧ EF p)

EG (EF p) ∧ ¬EGF p EGF p ∧ ¬EG (AF p)
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Exercice 4.25. Let A = 〈WA, RA, lA〉 and B = 〈WB, RB, lB〉 be two
Kripke structures. A bisimulation on A and B is a relation B ⊆WA ×WB s.t.:

• for any (a, b) ∈ B, lA(a) = lB(b);

• for any (a, b) ∈ B, for any (a, a′) ∈ RA, there exists (b, b′) ∈ RB s.t. (a′, b′) ∈
B;

• symmetrically, for any (a, b) ∈ B, for any (b, b′) ∈ RB, there exists (a, a′) ∈
RB s.t. (a′, b′) ∈ B;

Two states a ∈ A and b ∈ B are bisimilar if there exists a bisimilation B
s.t. (a, b) ∈ B.

As a classical counter-example, the initial states of the Kripke structures
depicted on Figure 4.1 are not bisimilar. Find a CTL formula that holds on only
one of those Kripke structures.

Prove that two states are bisimilar if, and only if, they satisfy the same
formulas of CTL.

A

B

B

C

D

A B

C

D

Figure 4.1: Two Kripke structures that are not bisimilar

Exercice 4.26. Prove that E(pU q ∧¬(rU s)) can be expressed in CTL
over discrete time. Prove that CTL+ is not more expressive than CTL.

Exercice 4.27. As mentionned at the beginning of this section, it is
possible to define CTL in a really modal way. Define two one-place modalities EX
and AX, and two two-place modalities EU and AU, and prove that CTL is
equivalent to the logic defined from atomic propositions, boolean combinators,
and those four modalities.

There is a characterization of CTL∗ in terms of monadic second-order logic,
analogous to Theorems 25, 26 and 27:

Lemma 68 CTL∗ can be expressed in SOMLO.

Exercice 4.28. Prove Lemma 68.

Exercice 4.29. Show that monadic second-order logic is strictly more
expressive than CTL∗.

Still, there exists a fragment of monadic second-order logic that precisely
characterizes CTL∗: monadic path logic (MPL) is the restriction of monadic
second-order logic where second-order quantification is restricted to quantify
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only on infinite branches, rather than on any set of states. MPL is then still
more expressive than CTL∗ because it can express that a state has, for instance,
exactly two successors labeled with p, while CTL∗ can only say that one or all of
the successors have that property. By refining a little bit more:

Theorem 69 ([MR99]) Any formula in MPL that is invariant under bisimu-
lation can be expressed in CTL∗.

Bisimulation has been defined at Exercice 4.25: it allows here to consider only
formulas of MPL that, roughly, will not count the number of successors of nodes.

4.3 Between CTL and CTL∗

A fairness property is a property stating that something occurs infinitely often
(cf. Exercise 3.7). LTL can express this class of properties: formula GF p
precisely states that p occurs infinitely often along p (along infinite paths).

Of course, CTL∗ can express fairness: formula AGF p states that p occurs
infinitely often along any path. Unfortunately, CTL cannot express fairness.

Exercice 4.30. Using the families of Kripke structures depicted on
Figure 4.2 prove that CTL cannot express fairness.

a1

p

b1

¬p
M1 c1

p

d1

¬p
N1

ai

p

bi

¬p p

Ni−1

Mi ci

p

di

¬p p

Ni−1

Ni

Figure 4.2: Two families of structures that CTL cannot distinguish.

Of course, CTL∗ can express fairness, but also much more. Intermediate
logics have been defined in order to extend CTL with only fairness:

Definition 70 Let S = 〈T,≤, `〉 be a tree structure, s ∈ T , and b ∈ Br(s). Let
φl be a path formula for CTL∗ semantics. Modality

∞
F is defined as follows:

〈S, b, s〉 |=l

∞
Fφl ⇔ ∀t ∈ b. ∃u ∈ b. t ≤ u ∧ 〈S, b, u〉 |=l φl

With this definition, formula E
∞
Fφ is precisely equivalent to the CTL∗ formula

EGFφ. With this modality, the following two logics are defined:

ECTL = B(U ,X ,
∞
F ) ECTL+ = B+(U ,X ,

∞
F )
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4.4 Model-checking branching-time logics

One important feature of CTL is that it enjoys very efficient model-checking
algorithms:

Theorem 71 CTL model-checking is PTIME-complete.

Proof. We begin with PTIME-hardness, proving that the CIRCUIT-VALUE
problem can be encoded in a CTL model-checking problem. CIRCUIT-VALUE
consists in computing the value of the root of a directed acyclic graph whose
nodes represent boolean connectives, and having two leaves > and ⊥. An
example of such a circuit is depicted on Figure 4.3. This problem is known to be

∧

∨ ∧

¬ ∧ ∨

∨ ∧

> ⊥

Figure 4.3: The CIRCUIT-VALUE problem

PTIME-complete [GHR95]. It is now rather easy to build a Kripke structure K
and a CTL formula φ s.t. K |= φ if, and only if, the circuit evaluates to true.

We now prove that CTL model-checking can be achieved in PTIME. We are
given a Kripke structure K = 〈W,R, l〉, one of its states w ∈ W , and a CTL
formula φ. The principle of the algorithm is to recursively label each state
of K with the subformulas that hold at that state. For this proof, we use the
modal definition of CTL, as presented at Exercise 4.27. Moreover, it is easy
to prove that the whole expressive power of CTL can be obtained from only
modalities EX , EU and AF . We thus only describe our labeling algorithm
for those modalities, plus atomic propositions and boolean operators:

• for atomic propositions: a state q ∈W is labeled with an atomic proposi-
tion p if, and only if, p ∈ l(q);

• if φ1 ∨ φ2 is a subformula of φ, assuming the labeling procedure has
already been applied to subformulas φ1 and φ2, we label each state q ∈W
with φ1 ∨ φ2 if, and only if, it is already labeled with φ1 or with φ2;

• the algorithm is similar for conjunction and negation of subformulas;
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• if EXφ1 is a subformula of φ, a state q ∈W is labeled with EXφ1 if, and
only if, one of its successors by R is labeled with φ1;

• if E(φ1 Uφ2) is a subformula, we begin with labeling each state satis-
fying φ2 with E(φ1 Uφ2); Then, each state labeled with φ1 and having
one of its successors by R labeled with E(φ1 Uφ2) is in turn labeled
with E(φ1 Uφ2). The procedure is applied until a fixpoint is reached;

• if AFφ1 is a subformula, we begin with labeling states satisfying φ1

with AFφ1. Then, if all the successors of a state have been labeled
with AFφ1, then we also label that state with AFφ1. This procedure is
applied until a fixpoint is reached.

In the end, K, w |= φ if, and only if, w has been labeled with φ.
That the algorithm terminates (i.e., that a fixpoint is reached in each pro-

cedure described above) is rather obvious: the number of labeled states can only
increase, and it is bounded with the size of W . For each subformula, it is easy
to implement the above procedures so that they execute in time O(|W |2). The
global algorithm is thus in time O(|φ| · |W |2).

We now prove that this algorithm is correct. Following the algorithm, the
proof is by induction on the structure of φ: we prove that each procedure
describes above labels exactly the set of states that satisfy the corresponding
formula:

• it is obvious for atomic propositions and for boolean combinations;

• for subformula EXφ1: a state is labeled with this subformula if, and
only if, it has an immediate successor satisfying φ1, i.e., if, and only if, it
satisfies EXφ1;

• for subformula E(φ1 Uφ2): a state is labeled with this formula either
because it is labeled with φ2, or because it is labeled with φ1 and has a
successor labeled with E(φ1 Uφ2). By an obvious induction, this entails
that it satisfies E(φ1 Uφ2). Conversely, if a state q satisfies E(φ1 Uφ2),
then there is a finite path from q to a state satisfying φ2 with intermediary
states labeled with φ1. It is then obvious that all the states of that path
will eventually be labeled with E(φ1 Uφ2);

• for AFφ1: again, a state can be labeled with AFφ1 either because it is
labeled with φ1, or because all of its successors are labeled with AFφ1. An
easy inductive argument proves that it then satisfies AFφ1. Conversely,
if a state q satisfies AFφ1, then there exists a finite “distance” within
which all paths issued from this state will have encountered φ1 (because
the Kripke structure is finite). Again, by induction on this distance, we
prove that q will be labeled with AFφ1.

�

Exercice 4.31. Write the reduction of CIRCUIT-VALUE to CTL model-
checking.
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Exercice 4.32. Using the programming language of your choice, write
the complete labeling algorithms for CTL model-checking.

Exercice 4.33. Our algorithm only involves modalities EX, EU and AF,
as we explained that any CTL formula can be written with only those modalities.
Prove this fact. From a formula φ ∈ CTL, prove that the size of the resulting
formula can be exponential in the size of the original formula. Does our algorithm
suffer from this exponential blowup?

Exercice 4.34. Prove that, unless NP = PTIME, CTL+ cannot be
model-checked in polynomial time.

Exercice 4.35. Prove that ECTL model-checking is PTIME-complete.

Since CTL∗ contains LTL, we know that CTL∗ model-checking is PSPACE-hard.
It turns out that this lower bound is optimal:

Theorem 72 ([EH86]) CTL∗ model-checking is PSPACE-complete.

Proof. The algorithm again consists in labeling states with the subformulas
they satisfy. Given a formula Aφ, we transform φ into a pure LTL formula be
replacing its state subformulas with new, fresh atomic propositions, assuming
(by induction) that the Kripke structure has already been labeled with those
atomic propositions. It then suffices to apply the standard LTL model-checking
algorithm, for each state of the Kripke structure, on order to find all the states
that satifsy Aφ.

Subformulas Eφ are handled as ¬A¬φ. From the complexity of LTL model-
checking, the time-complexity of the algorithm is O(|φ|3 · |K|2 · 22|φ|), and
space-complexity O(|K| · |φ|2). �

Remark. As for LTL (see the remark following Theorem 54), the time-complexity
is only exponential in the formula, and remains polynomial in the size of the
Kripke structure. Still, the space needed for this algorithm is polynomial also
in the size of the Kripke structure. In fact, compared to LTL and CTL, CTL∗

is often considered to be too complex and too expressive. The logic ECTL+ is
often considered to be the rigth extension of CTL in terms of its expressiveness.
The model-checking problem for this logic is ∆P

2 -complete (i.e., higher than NP
and coNP, and below PSPACE) [LMS01].

Using a similar argument and the result of Theorem 58, we get an upper
bound for CTL+ model-checking:

Theorem 73 Model-checking CTL+ is in ∆P
2 .

The class ∆P
2 , also written PTIMENP, is the class of problem solvable in

deterministic polynomial time with an access to an NP oracle (i.e., a device
that answers in one step to instances of an NP-complete problem). This class
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contains NP and co-NP, and is contained in PSPACE. It is not known whether
those inclusions are strict.

We now prove that this algorithm is optimal:

Theorem 74 Model-checking CTL+ is ∆P
2 -hard.

Proof. We first have to find a starting point, i.e., a ∆P
2 -complete problem. We

will use the following one:

SNSAT:

Input: p families of variables Zr = {z1
r , ..., z

m
r }, p variables xr, p boolean

formulae φr in 3-CNF, with φr involving variables in Zr ∪{x1, ..., xr−1}.

Output: The value of zp, defined by

x1
def= ∃Z1. φ1(Z1)

x2
def= ∃Z2. φ2(z1, Z2)

x3
def= ∃Z3. φ3(z1, , z2, Z3)

. . .

xp
def= ∃Zp. φk(z1, ..., zp−1, Zp)

This problem is obviously in ∆P
2 , and turns out to be complete for that

class [LMS01, CGS02]. We prove that it can be encoded as a CTL+ model-
checking problem.

xn

xn

C

xn−1

xn−1

C

x1

x1

C

z11

z11

z12

z12

zm
p

zm
p

Figure 4.4: The Kripke structure used for encoding SNSAT

Let I be an instance of the SNSAT problem. This instance defines a unique
valuation vI of variables x1, ..., xr.

The Kripke structure used in this reduction is depicted on Figure 4.4. As
is usual in this kind of reduction, a valuation of the variables will correspond
to a trajectory in that structure (visiting v if, and only if, variable v is false).
Nodes C will be used for ensuring that, when a variable xi is set to false, then it
is really the case that there is no valuation that fulfills φi.
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We now recursively define a sequence of formulas as follows:

ψ0 = >

ψk = E

[
G [(x1 ∨ . . . ∨ xp)⇒ EX (C ∧ EX¬ψk−1)]
∧ G¬C ∧

∧p
i=1[(Fxi)⇒ φF

i (x1, ..., xi−1, Zi)]

]
where φF

i (x1, ..., xi−1, Zi) is the formula φi in which each variable v ∈ {x1, ..., xi−1}∪
Zi is replaced with F v.

Roughly, formula ψk selects a trajectory that nevers goes in a C-state, thus
defining a valuation for variables in x1, ..., xn, and ensures that the valuation of
the xi’s are correct. Formally:

Lemma 75 For any k ∈ Z+ and r ≤ p,

(1) if k ≥ 2r − 1, then vI(xr) = > if, and only if, xr |= ψk;

(2) if k ≥ 2r, then vI(xr) = ⊥ if, and only if, xr |= ψk.

Proof. The proof is by induction on k. The case when k = 0 holds vacuously.
Assume the result holds up to some k ≥ 0. Let r ≤ p.

• Let w be a valuation of all the variables of Z1 ∪ · · · ∪ Zp ∪ {x1, ..., xp}
that coincides with vI on {x1, ..., xp}, and such that w(xi) = > iff
φi(w(x1), ..., w(xi−1), w(Zi)).

To w corresponds a trajectory πw of the Kripke structure. We consider
the suffix of πw that starts in xr or xr. We prove that if k ≥ 2r − 1
(resp. k ≥ 2r), then π witnesses the fact that xr |= ψk (resp. xr |= ψk).

Clearly, π satisfies G¬C. From the requirement on w, we also have that

π |=
p∧
i=1

[(Fxi)⇒ φi(x1, ..., xi−1, Zi)].

Now, when π visits a state xi, then vI(xi) = ⊥. If i = r (in which case
we are proving (2), since otherwise π cannot visit xi), then k ≥ 2r ≥ 2i;
otherwise, i < r, and also k ≥ 2i. Thus k − 1 ≥ 2i− 1, and by induction
hypothesis, since it is not the case that vI(xi) = >, we get that xi 6|= ψk−1.
Thus xi |= EX (C ∧ EX¬ψk−1).

Conversely, assume k ≥ 2r − 1 and xr |= ψk (resp. k ≥ 2r and xr |=
ψk). Then there is a trajectory π from xr (resp. xr) witnessing ψk, thus
satisfying G¬C and defining a valuation w of variables Z1 ∪ · · ·Zp ∪
{x1, ..., xr}. We prove, by induction on i, that w(xi) = vI(xi) for i ≤ r.
When i = 1, if w(x1) = >, then π visits x1, and thus valuation w is
a witness that φ1(Z1) is satisfiable. Conversely, if w(x1) = ⊥, then π
visits x1, and we get that x1 |= ¬ψk−1. We claim that k − 1 ≥ 1: indeed,
the contrary would mean that r = 1 and that π starts in x1. Thus we can
apply the induction hypothesis: that x1 |= ¬ψk−1 implies that vI(x1) = ⊥.

Assume w(xj) = vI(xj) for any j < i.
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– if w(xi) = >, then we know that φi(w(x1), ..., w(xi−1), Zi) is true.
Since w(xj) = vI(xj), it follows that φi(v〉(x1), ..., vI(xi−1), Zi) is
satisfiable, and that vI(xi) = >.

– conversely, if w(xi) = ⊥, then xi |= EX (C ∧ EX¬ψk−1), and xi 6|=
ψk−1. If i < r, then k − 1 ≥ 2i − 1, and the induction hypothesis
yields vI(xi) = ⊥. If i = r, then we know that π visits xr, so that
we must be in the case where k ≥ 2r. Then k − 1 ≥ 2i− 1, and the
induction hypothesis entails that vI(xi) = ⊥. �

As an immediate consequence, we get that vI(xn) = > if, and only if,
xn |= ψ2n−1, which concludes the proof.

Corollary 76 Model-checking CTL+ is ∆P
2 -complete.

4.5 CTL and alternating tree automata

4.5.1 Alternating tree automata

In the case of LTL and LTL+Past, satisfiability and model-checking are handled
very similarly (by the automata-theoretic approach). In the case of branching-
time logics, this is not the case: satisfiability is much harder. Still, satisfiability
can be checked very nicely with automata theory. This requires some new stuff
to be introduced.

Definition 77 A tree automaton is a tuple A = 〈Q,Q0,Σ, δ〉 where

• Q is a finite set of states;

• Q0 ⊆ Q is the set of initial states;

• Σ is a finite alphabet;

• δ ⊆ Q× σ × {� ,♦ } ×Q is the transition relation.

A tree automaton takes a tree as input:

Definition 78 Let A = 〈Q,Q0,Σ,∆〉 be a tree automaton, and T = 〈T,≤, `〉
be a tree-structure (with a single root t0) with ` : T → Σ. An execution of A on
the input tree T is a labeled tree TA = 〈T,≤, `′〉 sith `′ : T → Q s.t.:

• `′(t0) ∈ Q0;

• for any t ∈ T , there exists (m, q) ∈ {� ,♦ } ×Q s.t. :

– (`′(t), `(t),m, q) ∈ δ;
– if m = ♦ , then there exists a successor node t′ of t s.t. `′(t′) = q;

– if m = � , then for any immediate successor t′ of t, `(t′) = q.
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The acceptance condition is again given in terms of the states that repeat
infinitely often along branches:

Definition 79 A Büchi tree automaton is a tuple A = 〈Q,Q0,Σ, δ, F 〉 where

• 〈Q,Q0,Σ, δ〉 is a tree automaton;

• F ⊆ Q is a set of accepting states.

Definition 80 A single-root tree T = 〈T,≤, `〉 is accepted by a Büchi tree
automaton A = 〈Q,Q0,Σ, δ, F 〉 is there exists an execution TA = 〈T,≤, `′〉 of A
over T s.t., for any branch b of TA,

Inf(b) ∩ F 6= ∅

where Inf(b) = {q ∈ Q | ∀t ∈ b. ∃u ∈ b. t ≤ u ∧ `′(t) = q}.

Example. Let A = 〈{qa, qb}, {qa}, {a, b}, δ, {qa}〉 be the automaton with the
following transition relation:

δ = {(qa, a,� , qa), (qa, b,� , qb), (qb, a,� , qa), (qb, b,� , qb)}.

Figure 4.5 displays an example of an input tree, and an execution tree. State qa is

a

b a

b b a b

a b b b a b a b

qa

qa qa

qb qb qa qa

qb qb qb qb qa qa qb qb

Figure 4.5: Execution of a tree automaton

entered each time an a is read. Since that state must appear infinitely often, the
intuition is that A accepts exactly those trees whose all branches contain infinitely
many a’s. It can easily proved that this intuition is correct: this automaton
accepts the set of tree structures satisfying formula A

∞
F a.

Exercice 4.36. Let A = 〈{q0, q1, q2}, {q0}, {a, b}, δ, {q0, q1}〉 be the auto-
maton with the following transition relation:

δ = {(q0, a,♦ , q1), (q0, b,♦ , q1), (q1, a,♦ , q1), (q1, b,♦ , q2),
(q2, a,♦ , q2), (q2, b,♦ , q2)}.
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Prove that this automaton accepts exactly the set of trees satisfying a CTL
formula.

We now extend non-deterministic automata (on both words or trees) to
alternating automata. The intuition is as follows: compared to a deterministic
automaton, a non-deterministic one may propose several possible transitions
at each step, and one of them has to be fired. This is a disjunctive choice.
Symmetrically, we could imgaine an automaton in which several of the possible
transitions has to be fired: that is, several executions would be launched from
from one single state. Alternating automata extend non-deterministic automata
with such “conjunctive choices”.

Definition 81 A positive boolean formula over a set AP of atomic propositions
is a formula built on the ofllowing grammar:

PBF(AP) 3 φ ::=> | ⊥ | p | φ ∨ φ | φ ∧ φ

where p ranges over AP.

That a valuation of AP satisfies such a formula is defined in the obvious
way. Given a subset T ⊆ AP, and φ ∈ PBF(AP), we will use the convenient
notation T |= φ to mean that vT |= φ where vT (t) = > if, and only if, t ∈ T ,
and v(t) = ⊥ otherwise.

In an alternating automaton, the transition function maps each pair (q, a)
to a positive boolean formula on the states (roughly). For instance, if δ(q, a) =
q1 ∧ (q2 ∨ q3), then one execution must continue in state q1, and another one
either in state q2 or in state q3. Of course, non-deterministic automata are a
special case of alternating automata.

We now formalize this notion for tree automata:

Definition 82 An alternating tree automaton is a tuple A = 〈Q, δ0,Σ, δ〉 where

• Q is a finite set of states;

• δ0 ∈ PBF({♦ ,� } ×Q) is the initial condition;

• Σ is a finite alphabet;

• δ : Q× Σ→ PBF({♦ ,� } ×Q) is the transition function.

Definition 83 Let A = 〈Q,Q0,Σ, δ〉 be an alternating tree automaton, and T =
〈T,≤, `〉 be a single-root tree. An execution of A on input T is a tree TA =
〈T ′,4, `′〉 where

• `′ : T ′ → T ×Q associates, with each node of T ′, a corresponding node in
the input tree and a state of the automaton. We write `′T and `′Q for the
first and second component of `′;

• the set of roots of T ′ satisfy the initial condition (in a sense that will be
made clear later);
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• for any state t′ ∈ T ′, the set of successors of t′ satisfy the transition
formula δ(`′Q(t′), `(`′T (t′))), in a sense that is made clear below.

We now explain what it means for a formula in PBF({♦ ,� } × Q) to be
satisfied. Let t′ be a node of TA, t = `T (t′) be the corresponding node in T ,
and S be the set of successors of t in T . Let S′ be the set of successors of t′

in TA. Then:

• S′ |= (♦ , q) if, and only if, S′ contains a node labeled with (u, q) where u ∈
S;

• S′ |= (� , q) if, and only if, for each u ∈ S, S′ contains a node labeled
with (u, q).

Boolean combinations keep their usual meaning. For the initial condition, the
rules are the same, but S is made of only the root of the input tree.

Now, the acceptance condition is a Büchi condition:

Definition 84 An alternating Büchi tree automaton is a tuple A = 〈Q, δ0,Σ,
δ, F 〉 where 〈Q, δ0,Σ, δ〉 is an alternating tree automaton and F ⊆ Q is the set of
accepting states. An input tree T is accepted if there exists an execution tree TA
s.t. any branch runs infinitely often in at least one state of F .

A special subclass of alternating automata will be useful here:

Definition 85 An alternating automaton A = 〈Q, δ0,Σ, δ〉 is linear-weak if
there exists an order v on Q s.t., for any σ ∈ Σ, for any q ∈ Q, for any q′ that
occurs in δ(q, σ), q′ v q.

4.5.2 From CTL to alternating Büchi tree automata

We can now state the important result linking CTL and linear-weak alternating
Büchi tree automata:

Theorem 86 ([KVW00, Wil99]) Given a CTL formula φ, one can construct,
in linear time, a linear-weak alternating Büchi tree automaton Aφ s.t. a single-
root tree T is accepted by Aφ if, and only if, it satisfies φ.

Proof. The set of states of the automaton is the set of subformulas of φ that
are not conjunctions or disjunctions of subformulas, and their negations. The
initial condition is δ0 = φ: it only requires to begin from states corresponding
to φ (note that possibly no state corresponds to φ, if it is a boolean combination
of subformulas). The alphabet is 2AP.
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The transition function is defined as follows:

δ(p, σ) = > if, and only if, p ∈ σ
δ(p, σ) = ⊥ if, and only if, p /∈ σ

δ(¬p, σ) = ⊥ if, and only if, p ∈ σ
δ(¬p, σ) = > if, and only if, p /∈ σ

δ(EXφ1, σ) = (♦ , φ1)
δ(AXφ1, σ) = (� , φ1)

δ(E(φ1 Uφ2), σ) = δ(φ2, σ) ∨ (δ(φ1, σ) ∧ (♦ , E(φ1 Uφ2))
δ(A(φ1 Uφ2), σ) = δ(φ2, σ) ∨ (δ(φ1, σ) ∧ (� , A(φ1 Uφ2))
δ(¬E(φ1 Uφ2), σ) = δ(¬φ2, σ) ∧ (δ(¬φ1, σ) ∨ (� ,¬E(φ1 Uφ2))
δ(¬A(φ1 Uφ2), σ) = δ(¬φ2, σ) ∧ (δ(¬φ1, σ) ∨ (♦ ,¬A(φ1 Uφ2))

It is clear enough that this automaton is linear-weak (the order being given by
the “subformula” relation). Last, a state is in the accepting set if, and only if, it
corresponds to a formula of the form ¬E(φ1 Uφ2) or ¬A(φ1 Uφ2).

We now prove that this construction is correct, i.e., that a tree is accepted by
this automaton if, and only if, it satisfies φ. To that aim, for each subformula ψ
of φ, we define the automaton Aψ to be the same automaton as Aφ, but with
formula ψ as initial condition. We prove that a tree T = 〈T,≤, `〉 is accepted
by Aψ if, and only if, 〈T , 0〉 |= ψ.

The proof is by induction on the structure of the formula:

• for atomic propositions and negations thereof, this is immediate;

• if ψ = ψ1 ∨ ψ2 of ψ = ψ1 ∧ ψ2, the result follows rather easily from the
induction hypothesis;

• if ψ = EXψ1: if 〈T , 0〉 |= EXψ1, then one successor of node 0 satisfies ψ1,
and, by induction hypothesis, the corresponding subtree is accepted by Aψ1 .
It then suffices to add an extra node, labeled with (0, ψ), at the root of an
accepting execution tree in order to get an accepting execution tree for Aψ
on input T .

Conversely, if T is accepted by Aψ, then an accepting execution tree
will start with a node labeled with (0, ψ), having one single son labeled
with (t, ψ1), where t is a successor of 0. By induction, the subtree of T
rooted at t satisfies ψ1, which entails that 〈T , 0〉 |= EXψ1.

• the arguments are similar for AXψ1;

• if ψ = E(ψ1 Uψ2): first assume that 〈T , 0〉 |= E(ψ1 Uψ2). Then there
exists a node t s.t. 〈T , t〉 |= ψ2, while each intermediate node ui (numbered
from 0 to n − 1 with u0 = 0 and t being a successor of un−1) sat-
isfy 〈T , ui〉 |= ψ1. By induction, there exist accepting execution trees
for the corresponding subtrees in the corresponding automata. From those
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trees, we build a new one as follows: from the root of the execution tree
for u0, add an extra edge to the root of the execution tree of Aψ1 for u1;
from this node, add an extra edge to the root of the execution tree for u2,
and so on. Last, from the root of the execution tree for un−1, add an edge
to to execution tree of Aψ2 on the subtree rooted at t. We then set the
labeling as follows: nodes labeled with (ui, ψ1) are now labeled with (ui, ψ).
It is then easy to check that this is an execution tree of Aψ on input tree T ,
and that it is accepting.

Conversely, assume that T is accepted by Aψ, and consider an accepting
execution tree. There can’t be an infinite branch whose nodes are labeled
with ψ as second item, since this would contradict acceptance. Thus, there
exists a finite sequence of nodes t′0, ..., t

′
n, with t′0 = 0 and t′i+1 being a

successor of t′i, and labeled with (ti, ψ) where ti+1 is a successor of ti
in T . Since the transition condition must be fulfilled, it must be the
case at each t′i, i < n, has successors satisfying δ(ψ1, `(ti)). From each
corresponding subtrees, we can easily build execution trees showing that the
subtree of T rooted at ti is accepted by Aψ1 and, by induction hypothesis,
that 〈T , ti〉 |= ψ1. Similarly, t′n has a set of successors satisfying δ(ψ2, `(tn)),
from which we can prove that 〈T , tn〉 |= ψ2. This entails that 〈T , 0〉 |= ψ.

• the arguments for the other cases are very similar, and left to the intrepid
reader. �

Exercice 4.37. Given an alternating Büchi tree automaton A, prove
that there exists a Büchi tree automaton A′ that accepts exactly the same set of
trees, and has size at most exponential in the size of A.

4.5.3 Application to verification

Since checking the emptiness of the language accepted by an alternating Büchi
(tree) automaton is in EXPTIME, we get the following result:

Theorem 87 CTL satisfiability is in EXPTIME.

Exercice 4.38. By encoding the behavior of a linear-space alternating
Turing machine (see [Pap94]), prove that CTL satisfiability is EXPTIME-hard.

Remark. Note that the automaton can also be used for model-checking, and
yields a polynomial-time algorithm [KVW00].

Remark. Infinite words are a special case of infinite trees, and CTL, when
interpreted on infinite words, is obviously equivalent to LTL. It follows that the
construction above can be adapted to the linear-time case. A direct construction
is given in [Var96]. In this case, the converse translation is also possible: linear-
weak alternating Büchi automata are exactly as expressive as LTL.
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4.6 Alternating-time temporal logics

Alternating-time temporal logics are special kinds of branching-time logics that
are especially powerful in order to reason about “game structures”, in which
several agents concurrently act upon the system. This approach is very interesting
for modeling systems that are embedded in an environment (assumed to be
hostile), and that we want to control in order to enforce some properties. We
begin with some definitions of all those notions.

4.6.1 Game structures

Definition 88 ([AHK02]) A Concurrent Game Structure (CGS for short) is
a 6-tuple C = 〈A,Q,AP, `, c, δ〉 s.t:

• A = {A1, ..., Ak} is a finite set of agents (or players);

• Q is a finite set of locations;

• AP is a finite set of atomic propositions, resp.;

• ` : Q → 2AP is a function labeling each location by the set of atomic
propositions that hold for that location;

• c : Q×A→ P(Z+) r {∅} defines the (finite) set of possible moves of each
agent in each location.

• δ : Q × Z+k → Q, where k = |A|, is a (partial) function defining the
transition table. With each location and each set of moves of the agents, it
associates the resulting location.

The intuitive semantics is as follows: in a given state q, each agent Ai has
several possible moves, represented as integers given by c(q, Ai). Once all the
agents have chosen a move, the transition table returns the successor state, where
the execution can continue.

Definition 89 Let C = 〈A,Q,AP, `, c, δ〉 be a CGS, and q ∈ Q. The set of
successors of q, denoted with succ(q), is defined as

succ(q) = {q′ ∈ Q | ∃a1, ..., ak ∈ Z+ s.t. q′ = δ(q, a1, ..., ak) and
for all i ≤ k, ai ∈ c(q, Ai)}.

Definition 90 Let C = 〈A,Q,AP, `, c, δ〉 be a CGS. A computation of C is an
infinite sequence ρ = (qi)i∈Z+ s.t. for any i, qi+1 ∈ succ(qi).

Definition 91 A strategy for player Ai ∈ A is a function si : Q∗ → Z+ that
maps each finite prefix of a computation to a move, with the requirement that,
for any finite sequence (q0, ..., qn), si(q0, ..., qn) ∈ c(qn, Ai).

If B ⊆ A is a set of agents (also called a coalition), then a strategy for
coalition B is a set of strategies, one for each agent in B.
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An important class of stratgies consists in those strategies that only depend
on the current state, and not on the whole history:

Definition 92 A strategy s is memoryless is, for any two finite sequences (q0, ..., qn)
and (q′0, ..., q

′
m), if qn = q′m, then s(q0, ..., qn) = s(q′0, ..., s

′
m).

We should now define what it means to play according to a strategy:

Definition 93 Let C = 〈A,Q,AP, `, c, δ〉 be a CGS, B ⊆ A be a coalition of
agents, sB be a strategy for this coalition, and (q0, ..., qn) be a finite prefix of
a computation. We write succ((q0, ..., qn), sb) for the set of possible successors
under the strategy sB, defined formally as

succ((q0, ..., qn), sB) = {q′ ∈ succ(qn) | ∃a1, ..., ak ∈ Z+ s.t.
q′ = δ(q, a1, ..., ak) and

for all i ≤ k, ai ∈ c(q, Ai) and
for all i ≤ k. (Ai ∈ B ⇒ ai = sAi(q0, ..., qn))}.

A computation ρ = (q′i)i∈Z+ is an outcome of the strategy sB with history (q0, ..., qn)
if, for any i, we have

q′i+1 ∈ succ((q0, ..., qn, q′0, ..., q
′
i), sB).

We write Out((q0, ..., qn), sB) for the set of outcomes of sB with history (q0, ..., qn).

Example. We consider a very simple example, with only two players, depicted
on Figure 4.6. In such a representation, edges are labeled with tuples, with the
following meaning: an edge (q, q′) is labeled with 〈a1, a2〉 when δ(q, a1, a2) = q′.
That is, this transition corresponds to move a1 of player A1 and to move a2 of
player A2.

In the example of Figure 4.6, player A1 has only one possible move in state p,
and two moves in q. Conversely, A2 has only one move from q, and two from p.
This is an example of a turn-based CGS, where, in each state, at most one
player has several moves.

Example. Consider the example of Figure 4.7. This example is not turn-based
anymore, since both players have two possible moves in the topmost state. From
that state, it is clear enough that player A1 has no strategy to be sure to go
to state p: whichever move she plays, the other player simply has to play the
opposite in order to avoid state p. Conversely, player A2 has no strategy to avoid
state p: whatever she plays, the opponent simply has to play the same move in
order to end up in state p.

This property is called non-determinedness. It must be mentionned that many
cases of asynchronous games are determined: if a player has no strategy to
achieve some goal, then the opponent has a strategy to avoid that goal. Synchron-
ous games do not have this property.
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p q

〈1,1〉

〈2,1〉

〈1,2〉 〈1,1〉

Figure 4.6: A simple CGS

p q

〈1,1〉,〈2,2〉 〈2,1〉,〈1,2〉

Figure 4.7: Another CGS

Remark. It can be noticed that our definition of a CGS does not allow for
non-determinism: one all the payers have chosen their move, there is exactly
one possible next state. However, non-determinism can be modeled by adding
one extra player, that would, in some sense, “resolve” non-determinism.

Definition 94 Let n ∈ Z+. A (labeled) alternating tree structure is a tuple S =
〈T,≤, `,m〉 s.t.:

• 〈T,≤, `〉 is a tree structure;

• m labels each edge (t, t′) with a set of n-tuples of integers, with the require-
ment that, for any t ∈ T , there exist sets of integers C1, ..., Cn such that
the set

{〈a1, ..., an〉 | ∃t′ ∈ T. m(t, t′) = 〈a1, ..., an〉}

is equal to the set

{〈a1, ..., an〉 | ∀i ≤ n. ai ∈ Ci}.

Of course, this definition corresponds to computation trees of CGSs, in the
following sense:

Definition 95 Let C = 〈A,Q,AP, `, c, δ〉 be a CGS. Let q ∈ Q, B ⊆ A be a
coalition of agents, and sB be a strategy for this coalition. The computation tree
of C from q under strategy sB is the alternating tree structure 〈T,≤, `,m〉 where

• T is the set of finite words (q0, q1, ..., qk) on Q s.t. q0 = q and, for any two
consecutive letters qi and qi+1, qi+1 ∈ succ((q0, ..., qi), sB);

• ≤ is the lexicographical order;

• `(q0, ..., qk) = `(qk);

• m(qi, qi+1) is the set {〈a1, ..., an〉 | qi+1 = δ(qi, 〈a1, ..., an〉) and aj =
sAj (q0, ..., qi) if Aj ∈ B}.
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Exercice 4.39. Prove that the computation tree of a CGS is indeed an
alternating tree structure.

Of course, CTL can be evaluated on such a computation tree, but it can also
be enriched in order to take the extra labeling of the edges into account. This
yields the logic ATL (for Alternating-time Temporal Logic):

Definition 96 Given a set M1, ...,Mn of first-order definable modalities, the
syntax of the alternating-time temporal logic A(M1, ...,Mn) is given by:

A(M1, ...,Mn) 3 φb ::= p | ¬φb | φb ∨ φb | φb ∧ φb | 〈〈B〉〉φl | JBKφl
φl ::=M1(φb, ..., φb) | · · · | Mn(φb, ..., φb)

where p ranges over AP and B ranges over the subsets of A. The logic ATL is
then defined as A(X , U ) .

The semantics is as follows:

Definition 97 Let S = 〈T,≤, `,m〉 be an alternating tree structure, t ∈ T ,
(t0, ..., tn−1) be the (ordered) set of predecessors of t, and φl be a path formula
of ATL. We define the semantics of ATL as an extension of the semantics
of CTL∗ (see Definition 67) with the following two rules:

〈S, t〉 |=b 〈〈B〉〉φl ⇔ ∃ strategy sB .
∀b ∈ Br(t). if b ∈ Out((t0, ..., tn−1), sB),
then 〈S, b, t〉 |=l φl

〈S, t〉 |=b JBKφl ⇔ ∀ strategy sB .
∃b ∈ Br(t). b ∈ Out((t0, ..., tn−1), sB) and
〈S, b, t〉 6|=l φl

Quantifiers 〈〈B〉〉 and JBK quantify over strategies: formula 〈〈B〉〉φl is read
“there is a strategy for coalition B to enforce φl”, while JBKφl is dual, and can
be read “coalition B has no strategy to prevent φl from happening”.

It should be remarked that ATL subsumes CTL, because both existential and
universal path quantifiers can be expressed in terms of 〈〈 · 〉〉:

Eφl ≡ 〈〈A〉〉φl Aφl ≡ 〈〈∅〉〉φl

Remark. The original definition of ATL, which appeared in [AHK97, AHK02],
is not exactly the one described above: it was a “modal” definition, where formulas
are built from atomic propositions, boolean combinators, and the following three
kinds of modalities: 〈〈B〉〉X, 〈〈B〉〉U and 〈〈B〉〉G. However, this definition is
strictly less expressive than the above one [LMO06].

Exercice 4.40. The “weak until” modality is a relaxed version of the
“until” modality, where the eventuality might not occur. It is defined as

φWψ
def≡ φUψ ∨Gφ.
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Prove the following equivalences (over discrete time):

EφWψ ≡ EφUψ ∨ EGφ

φWψ ≡ ¬(¬ψU (¬φ ∧ ¬ψ))
EφWψ ≡ ¬A(¬ψU (¬φ ∧ ¬ψ))

Give counter-examples proving that the following tentative formulas do not
express 〈〈B〉〉W:

〈〈B〉〉φUψ ∨ 〈〈A〉〉Gφ 6≡ 〈〈B〉〉φWψ

¬ 〈〈ArB〉〉 (¬ψU (¬φ ∧ ¬ψ)) 6≡ 〈〈B〉〉φWψ

Prove that those formulas are equivalent on turn-based CGSs.

4.6.2 ATL model-checking

This section is devoted to proving the following result:

Theorem 98 If the number of players is fixed, then ATL model-checking is
PTIME-complete.

Remark. It is important to insist here on the fact that the number of players
must be fixed in order to achieve this complexity. The problem comes from the
fact that, if each of the n players have m possible moves, the transition table
given by δ has size mn, but could be encoded is a more succinct way than just
the whole explicit table. The above complexity result still holds if the number of
players is a parameter of the problem provided that the transition table is given
explicitely.

Proof. Hardness in PTIME follows from that of CTL, and we only have to
develop a PTIME algorithm in order to prove our statement. The algorithm is
similar to that of CTL: it consists in recursively label the states of the structures
with the subformulas that hold true in those states.

Let C = 〈A,Q,AP, `, c, δ〉 be a CGS with a fixed number of players, and φ ∈
ATL. For each subformula ψ of φ, we label the states of C according to the
following rules (omitting the trivial cases of atomic propositions and boolean
combinators, for which the algorithm is similar to that of CTL):

• if ψ = 〈〈B〉〉Xψ1: assuming the labeling algorithm has already been
applied for ψ1, we label a state q with ψ if, and only if, there exists a set
of moves ai1 , ..., ai|B| , one for each player in B, s.t.

{q′ ∈ Q | ∃aj1 , ..., aj|A|−|B| . q
′ = δ(q, a1, ..., an)} ⊆

{q′ ∈ Q | q′ is labeled with ψ1}.

This can easily be proved in linear-time by reading the transition table.
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• if ψ = JBKXφ1: we label with ψ those states from which coalition B
cannot avoid going in a location labeled with ψ1. Formally, we label a
state q if, for any set of moves ai1 , ..., ai|B| , we have

{q′ ∈ Q | ∃aj1 , ..., aj|A|−|B| . q
′ = δ(q, a1, ..., an)}∩
{q′ ∈ Q | q′ is labeled with ψ1} 6= ∅.

• if ψ = 〈〈B〉〉 (ψ1 Uψ2): we recursively label the states of the structure:
at the first stage, the states that have been labeled with ψ2 are labeled
with ψ. We then apply the following procedure until a fixpoint is reached:
if a state q is labeled with ψ1, and if there is a set of moves ai1 , ..., ai|B| ,
one for each player in B, s.t.

{q′ ∈ Q | ∃aj1 , ..., aj|A|−|B| . q
′ = δ(q, a1, ..., an)} ⊆

{q′ ∈ Q | q′ is labeled with ψ}

then we label q with ψ.

• last, if ψ = JBK (ψ1 Uψ2), then we again begin with labeling with ψ all
the states that are labeled with ψ2, and then recursively label with ψ each
state that is labeled with ψ1 and satisfies the following condition:

{q′ ∈ Q | ∃aj1 , ..., aj|A|−|B| . q
′ = δ(q, a1, ..., an)}∩
{q′ ∈ Q | q′ is labeled with ψ} 6= ∅.

The procedure stops when a fixpoint is reached.

That the algorithm terminates in polynomial time is rather obvious: it runs
in time O(|δ| · |φ|). That it is correct can be proved following the same lines as
for the algorithm for CTL. �

Exercice 4.41. Prove that the algorithm is correct.

Remark. The algorithm above only computes the set of states in which for-
mula φ holds, but, for each subformula of the form 〈〈B〉〉φ and for each state, a
winning strategy is easily obtained from the sets of moves that witness the fact
that we label this state. This entails in particular that if there exists a strategy
for coalition B to enforce φ, with φ a path formula in ATL, then there exists a
memoryless strategy, i.e., a strategy that only depends on the current state, and
not on the whole history of the computation.

Exercice 4.42. Prove that memoryless strategies still exist if we extend
ATL with the modality

∞
F (with the semantics derived from that of CTL∗).

Prove that ATL+, where we allow boolean combinations of modalities in the
scope of strategy quantifiers, can be translated in ATL, and thus also benefits
from memoryless strategies.
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Prove that if we combine both extensions (modality
∞
F and boolean combina-

tions of modalities), we lose the existence of a memoryless strategy.

Exercice 4.43. It should be noticed that we did not specify the way the
transition table should be represented. The naive representation is as a (huge)
table of size O(|Q| ×M |A|), where M is the maximal number of possible choices
af any agent in any location. Still, there are more succinct representations,
e.g. involving boolean formulas on the choices of the agents. Prove that, under
this encoding, ATL model-checking is NP-hard.
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[Büc60] J. Richard Büchi. Weak second-order arithmetic and finite automata.
Zeitschrift fur Mathematische Logik und Grundlagen der Mathematik,
6:66–92, 1960.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of
synchronization skeletons using branching-time temporal logic. In
Dexter Kozen, editor, Proceedings of the 3rd Workshop Logics of
Programs, volume 131 of Lecture Notes in Computer Science, pages
52–71. Springer, 1981.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. MIT Press, 1999.

[CGS02] Marco Cadoli, Andrea Giovanardi, and Marco Schaerf. An algorithm
to evaluate quantified boolean formulae. Journal of Automated
Reasoning, 28(2):101–142, 2002.

59



60 BIBLIOGRAPHY

[Coo71] Stephen A. Cook. The complexity of theorem proving procedures.
In Proceedings of the 3rd Annual ACM Symposium on the Theory of
Computing (STOC’71), pages 151–158. ACM Press, 1971.
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