Modeling and verifying reactive systems Temporal logics

Nicolas Markey

Lab. Specification et Verification ENS Cachan & CNRS, France

Why verification?

 Computers (in a broad sense) are ubiquitous and ever more complex:

Why verification?

 Computers (in a broad sense) are ubiquitous and ever more complex:

• they are (more or less) notoriously buggy:

How to verify those systems?

• "naive" approach: build it and try it!

How to verify those systems?

• "naive" approach: build it and try it!

- more "mathematical" approaches
 - (formal) testing;
 - static analysis;
 - model-checking;
 - ...

* ヨト * ヨト

Two related problems

Definition		
The model-checking problem is defined as follows:		
input: output:	a model and a formula true iff the formula holds in the model.	

Two related problems

Definition		
The model-checking problem is defined as follows:		
input: output:	a model and a formula true iff the formula holds in the model.	

			1.1.1	
1.1	\mathbf{n}	in	111	n
L	er			
_	· · ·			· · · ·

The satisfiability problem is defined as follows:

input:	a formula				
output:	true iff there exists a model in which				
	the formula holds.				

Complete model = product of those small modules

Definition

The syntax of propositional logics is defined as

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi$$

where *p* ranges over a (finite) set of atomic propositions AP. The semantics is given by truth tables, e.g., for $p \land q$:

Definition

The syntax of propositional logics is defined as

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi$$

where p ranges over a (finite) set of atomic propositions AP.

The semantics is given by truth tables, e.g., for $p \land q$:

Examples

 $door_0.closed \ \lor \ cabin.ground \ floor$

Definition

The syntax of propositional logics is defined as

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi$$

where p ranges over a (finite) set of atomic propositions AP.

The semantics is given by truth tables, e.g., for $p \land q$:

Examples

 \neg (door₀.open \land door₁.open)

Definition

The syntax of propositional logics is defined as

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi$$

where p ranges over a (finite) set of atomic propositions AP.

The semantics is given by truth tables, e.g., for $p \land q$:

Examples

 \neg (door₀.open \land door₁.open) $\equiv \neg$ door₀.open $\lor \neg$ door₁.open

Verifying properties: propositional logic

Theorem (Jones, 1975)

Checking if a state q' is reachable from a state q in a finite state system S is NLOGSPACE-complete.

Proof.

- algorithm in NLOGSPACE:
 - "guess" the path step by step. We only have to remember the current position (stored as a binary-encoded integer).
- hardness in NLOGSPACE:
 - build the *configuration graph* of a non-deterministic logarithmic-space Turing machine,
 - check whether an accepting state is reachable.

Verifying properties: propositional logic

Theorem (Cook, 1973)

Deciding the satisfiability of a propositional logic formula is NP-complete.

Proof.

- algorithm in NP:
 - guess the values of atomic propositions, and check if they make the formula true.
- hardness in NP:
 - we can consider a non-deterministic Turing machine having exactly two choices at each step;
 - encode each cell, at each step, with *m* boolean variables;
 - build a circuit encoding the executions of the Turing machine. This can be done with only logarithmic space because the transitions only depend on a small amount of "local" information;
 - sat. of a formula is equivalent to sat. of a circuit.

Definition

First-order logic is an extension of propositional logic with (first-order) quantification:

 $\varphi ::= p(x) \mid x < y \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x \in X. \varphi \mid \forall x \in X. \varphi$

where p ranges over a finite set of predicates, X is an ordered set, and x and y range over this set.

Definition

First-order logic is an extension of propositional logic with (first-order) quantification:

 $\varphi ::= p(x) \mid x < y \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x \in X. \varphi \mid \forall x \in X. \varphi$

where p ranges over a finite set of predicates, X is an ordered set, and x and y range over this set.

In our case, the order is given by the transition system:

Examples

 \neg ($\exists x. \text{door}_1 \text{open}(x) \land \neg \text{cabin.first floor}(x)$)

Definition

First-order logic is an extension of propositional logic with (first-order) quantification:

 $\varphi ::= p(x) \mid x < y \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x \in X. \varphi \mid \forall x \in X. \varphi$

where p ranges over a finite set of predicates, X is an ordered set, and x and y range over this set.

In our case, the order is given by the transition system:

Examples

 $\forall x. \operatorname{call}_2(x) \Rightarrow (\exists y. y > x \land \operatorname{door}_2.\operatorname{open}(y))$

Definition

First-order logic is an extension of propositional logic with (first-order) quantification:

 $\varphi ::= p(x) \mid x < y \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x \in X. \varphi \mid \forall x \in X. \varphi$

where p ranges over a finite set of predicates, X is an ordered set, and x and y range over this set.

In our case, the order is given by the transition system:

Examples

 $\forall x. \operatorname{call}_2(x) \Rightarrow (\exists y. y > x \land \operatorname{door}_2.\operatorname{open}(y))$

Unfortunately, verifying first-order properties is very hard.

Definition

Modal logic is an extension of propositional logic with "modalities" for expressing that something is possible or necessary:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \Box \varphi$$

where *p* ranges over AP.

Definition

Modal logic is an extension of propositional logic with "modalities" for expressing that something is possible or necessary:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \Box \varphi$$

where *p* ranges over AP.

Temporal logics are a special kind of modal logics where

- \diamond is read "eventually in the future",
- □ is read "always in the future".

Definition

Modal logic is an extension of propositional logic with "modalities" for expressing that something is possible or necessary:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \Box \varphi$$

where *p* ranges over AP.

Temporal logics are a special kind of modal logics where

- \diamond is read "eventually in the future",
- □ is read "always in the future".

Example

$$\Box(call_2 \Rightarrow \diamond door_2.open)$$

Definition

Modal logic is an extension of propositional logic with "modalities" for expressing that something is possible or necessary:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \Box \varphi$$

where *p* ranges over AP.

Temporal logics are a special kind of modal logics where

- \diamond is read "eventually in the future",
- is read "always in the future".

Temporal logics are an acceptable compromise between expressiveness and complexity.

Two notions of time

 linear-time framework: properties deal with one execution at a time:

Example

 $\Box(call_2 \Rightarrow \diamond door_2.open)$

This formula states that a request (at the second floor) is eventually granted.

Two notions of time

 linear-time framework: properties deal with one execution at a time:

Example

 $\Box(call_2 \Rightarrow \diamond door_2.open)$

This formula states that a request (at the second floor) is eventually granted.

 branching-time framework: properties deal with the execution tree of the system:

Example

□(◇door₀.open)

This formula states that it is always possible to reach the ground floor.

Outline of the course

Introduction

- 2 Definitions and examples
 - Linear-time temporal logics
 - Branching-time temporal logics

3 Linear-time temporal logics

- Expressiveness of LTL and LTL+Past
- How hard is LTL verification?
- Algorithms for verifying LTL formulas
- Back to expressiveness

Branching-time temporal logics

- Expressiveness of branchig-time logics
- Complexity
- Alternating-time Temporal Logic

Outline of the course

Introduction

2 Definitions and examples

- Linear-time temporal logics
- Branching-time temporal logics

3 Linear-time temporal logics

- Expressiveness of LTL and LTL+Past
- How hard is LTL verification?
- Algorithms for verifying LTL formulas
- Back to expressiveness
- 4 Branching-time temporal logics
 - Expressiveness of branchig-time logics
 - Complexity
 - Alternating-time Temporal Logic

The linear-time framework

Definition

A (*labelled*) *linear structure* over a (finite) set AP of atomic propositions is a triple $S = \langle T, <, \ell \rangle$ where

- T is an infinite set,
- < is a linear order on T s.t. T has a minimal element, and
- $\ell: T \to 2^{AP}$ is a labelling function.
The linear-time framework

Definition

A *(labelled) linear structure* over a (finite) set AP of atomic propositions is a triple $S = \langle T, <, \ell \rangle$ where

- T is an infinite set,
- < is a linear order on T s.t. T has a minimal element, and
- $\ell: T \to 2^{AP}$ is a labelling function.

Example

An execution of a Kripke structure is a linear structure $\langle \mathbb{Z}^+, <, \ell \rangle$ as follows:

 $\widetilde{\mathbf{F}} \varphi \quad (\text{or } \Diamond \varphi) : \quad \langle \mathcal{S}, t \rangle \models \widetilde{\mathbf{F}} \varphi \quad \Leftrightarrow \quad \exists u > t. \ \langle \mathcal{S}, u \rangle \models \varphi \\ (\text{"eventually" } \varphi)$

 $\widetilde{\mathbf{G}} \varphi \quad (\text{or } \Box \varphi) : \quad \langle \mathcal{S}, t \rangle \models \widetilde{\mathbf{G}} \varphi \quad \Leftrightarrow \quad \forall u > t. \ \langle \mathcal{S}, u \rangle \models \varphi$ ("always" φ)

 $\widetilde{\mathbf{F}} \varphi \quad (\text{or } \Diamond \varphi) : \quad \langle \mathcal{S}, t \rangle \models \widetilde{\mathbf{F}} \varphi \quad \Leftrightarrow \quad \exists u > t. \ \langle \mathcal{S}, u \rangle \models \varphi \\ (\text{"eventually" } \varphi)$

$$\widetilde{\mathbf{G}} \varphi \quad (\text{or } \Box \varphi) : \quad \langle \mathcal{S}, t \rangle \models \widetilde{\mathbf{G}} \varphi \quad \Leftrightarrow \quad \forall u > t. \ \langle \mathcal{S}, u \rangle \models \varphi$$

("always" φ)

Examples

Liveness properties: $\widetilde{\mathbf{F}} \operatorname{open}_i$

 $\widetilde{\mathbf{F}} \varphi \quad (\text{or } \Diamond \varphi) : \quad \langle S, t \rangle \models \widetilde{\mathbf{F}} \varphi \quad \Leftrightarrow \quad \exists u > t. \ \langle S, u \rangle \models \varphi \\ (\text{``eventually''} \varphi)$

$$\widetilde{\mathbf{G}} \varphi \quad (\text{or } \Box \varphi) : \quad \langle \mathcal{S}, t \rangle \models \widetilde{\mathbf{G}} \varphi \quad \Leftrightarrow \quad \forall u > t. \ \langle \mathcal{S}, u \rangle \models \varphi$$

("always" φ)

Examples

Liveness properties: $\widetilde{\mathbf{F}}$ open;Safety properties: $\widetilde{\mathbf{G}}$ (open; \Rightarrow i-th floor)

 $\widetilde{\mathbf{F}} \varphi \quad (\text{or } \Diamond \varphi) : \quad \langle \mathcal{S}, t \rangle \models \widetilde{\mathbf{F}} \varphi \quad \Leftrightarrow \quad \exists u > t. \ \langle \mathcal{S}, u \rangle \models \varphi \\ (\text{``eventually''} \varphi)$

$$\widetilde{\mathbf{G}} \varphi \quad (\text{or } \Box \varphi) : \quad \langle \mathcal{S}, t \rangle \models \widetilde{\mathbf{G}} \varphi \quad \Leftrightarrow \quad \forall u > t. \ \langle \mathcal{S}, u \rangle \models \varphi$$

("always" φ)

Examples

Duality:
$$\widetilde{\mathbf{F}} \varphi \equiv \neg \widetilde{\mathbf{G}} \neg \varphi$$

 $\widetilde{\mathbf{F}} \varphi \quad (\text{or } \Diamond \varphi) : \quad \langle S, t \rangle \models \widetilde{\mathbf{F}} \varphi \quad \Leftrightarrow \quad \exists u > t. \ \langle S, u \rangle \models \varphi \\ (\text{``eventually''} \varphi)$

$$\widetilde{\mathbf{G}} \varphi \quad (\text{or } \Box \varphi) : \quad \langle \mathcal{S}, t \rangle \models \widetilde{\mathbf{G}} \varphi \quad \Leftrightarrow \quad \forall u > t. \ \langle \mathcal{S}, u \rangle \models \varphi$$

("always" φ)

Examples

Distributivity:

 $\widetilde{\mathbf{F}} \varphi \lor \widetilde{\mathbf{F}} \psi \equiv \widetilde{\mathbf{F}} (\varphi \lor \psi)$ $\widetilde{\mathbf{F}} \varphi \land \widetilde{\mathbf{F}} \psi \not\equiv \widetilde{\mathbf{F}} (\varphi \land \psi)$

 $\widetilde{\mathbf{F}} \varphi \quad (\text{or } \Diamond \varphi) : \quad \langle \mathcal{S}, t \rangle \models \widetilde{\mathbf{F}} \varphi \quad \Leftrightarrow \quad \exists u > t. \ \langle \mathcal{S}, u \rangle \models \varphi \\ (\text{``eventually''} \varphi)$

$$\widetilde{\mathbf{G}} \varphi \quad (\text{or } \Box \varphi) : \quad \langle \mathcal{S}, t \rangle \models \widetilde{\mathbf{G}} \varphi \quad \Leftrightarrow \quad \forall u > t. \ \langle \mathcal{S}, u \rangle \models \varphi$$

("always" φ)

Examples

Distributivity:

$$\widetilde{\mathbf{G}} \varphi \lor \widetilde{\mathbf{G}} \psi \not\equiv \widetilde{\mathbf{G}} (\varphi \lor \psi)$$
$$\widetilde{\mathbf{G}} \varphi \land \widetilde{\mathbf{G}} \psi \equiv \widetilde{\mathbf{G}} (\varphi \land \psi)$$

 $\widetilde{\mathbf{F}} \varphi \quad (\text{or } \Diamond \varphi) : \quad \langle \mathcal{S}, t \rangle \models \widetilde{\mathbf{F}} \varphi \quad \Leftrightarrow \quad \exists u > t. \ \langle \mathcal{S}, u \rangle \models \varphi \\ (\text{"eventually" } \varphi)$

$$\widetilde{\mathbf{G}} \varphi \quad (\text{or } \Box \varphi) : \quad \langle \mathcal{S}, t \rangle \models \widetilde{\mathbf{G}} \varphi \quad \Leftrightarrow \quad \forall u > t. \ \langle \mathcal{S}, u \rangle \models \varphi$$

("always" φ)

 $\widetilde{\mathbf{G}}\widetilde{\mathbf{F}}\varphi$

Examples

Fairness properties:

("infinitely often" φ)

 $\widetilde{\mathbf{F}} \varphi \quad (\text{or } \Diamond \varphi) : \quad \langle \mathcal{S}, t \rangle \models \widetilde{\mathbf{F}} \varphi \quad \Leftrightarrow \quad \exists u > t. \ \langle \mathcal{S}, u \rangle \models \varphi \\ (\text{"eventually" } \varphi)$

$$\widetilde{\mathbf{G}} \varphi \quad (\text{or } \Box \varphi) : \quad \langle \mathcal{S}, t \rangle \models \widetilde{\mathbf{G}} \varphi \quad \Leftrightarrow \quad \forall u > t. \ \langle \mathcal{S}, u \rangle \models \varphi$$

("always" φ)

Examples

Fairness properties:

 $\widetilde{\mathbf{G}}\,\widetilde{\mathbf{F}}\,\varphi \ \equiv \ \widetilde{\mathbf{F}}\,\varphi$

("infinitely often" φ)

 $\widetilde{\mathbf{F}} \varphi \quad (\text{or } \Diamond \varphi) : \quad \langle S, t \rangle \models \widetilde{\mathbf{F}} \varphi \quad \Leftrightarrow \quad \exists u > t. \ \langle S, u \rangle \models \varphi \\ (\text{``eventually''} \varphi)$

$$\widetilde{\mathbf{G}} \varphi \quad (\text{or } \Box \varphi) : \quad \langle \mathcal{S}, t \rangle \models \widetilde{\mathbf{G}} \varphi \quad \Leftrightarrow \quad \forall u > t. \ \langle \mathcal{S}, u \rangle \models \varphi$$

("always" φ)

Examples

Non-strict modalities:

$$\mathbf{F} \varphi \stackrel{\text{def}}{\equiv} \varphi \lor \widetilde{\mathbf{F}} \varphi$$
$$\mathbf{G} \varphi \stackrel{\text{def}}{\equiv} \varphi \land \widetilde{\mathbf{G}} \varphi$$

Past-time counterparts:

$$\widetilde{\mathbf{F}}^{-1} \varphi \quad (\text{or } \mathbf{\Phi} \varphi) : \quad \langle \mathcal{S}, t \rangle \models \widetilde{\mathbf{F}}^{-1} \varphi \quad \Leftrightarrow \quad \exists u < t. \ \langle \mathcal{S}, u \rangle \models \varphi$$
("sometimes in the past" φ)

$$\widetilde{\mathbf{G}}^{-1} \varphi \quad (\text{or } \blacksquare \varphi) : \quad \langle \mathcal{S}, t \rangle \models \widetilde{\mathbf{G}}^{-1} \varphi \quad \Leftrightarrow \quad \forall u < t. \ \langle \mathcal{S}, u \rangle \models \varphi$$
 ("always in the past" φ)

Past-time counterparts:

$$\widetilde{\mathbf{F}}^{-1} \varphi \quad (\text{or } \mathbf{\Phi} \varphi) : \quad \langle \mathcal{S}, t \rangle \models \widetilde{\mathbf{F}}^{-1} \varphi \quad \Leftrightarrow \quad \exists u < t. \ \langle \mathcal{S}, u \rangle \models \varphi$$
("sometimes in the past" φ)

$$\widetilde{\mathbf{G}}^{-1} \varphi \quad (\text{or } \blacksquare \varphi) : \quad \langle \mathcal{S}, t \rangle \models \widetilde{\mathbf{G}}^{-1} \varphi \quad \Leftrightarrow \quad \forall u < t. \langle \mathcal{S}, u \rangle \models \varphi$$
 ("always in the past" φ)

Examples

Duality:
$$\widetilde{\mathbf{F}}^{-1} \varphi \equiv \neg \widetilde{\mathbf{G}}^{-1} \neg \varphi$$

Past-time counterparts:

$$\mathbf{\overline{F}}^{-1} \varphi \quad (\text{or } \mathbf{\Diamond} \varphi) : \quad \langle \mathcal{S}, t \rangle \models \mathbf{\overline{F}}^{-1} \varphi \quad \Leftrightarrow \quad \exists u < t. \ \langle \mathcal{S}, u \rangle \models \varphi$$
("sometimes in the past" φ)

$$\widetilde{\mathbf{G}}^{-1} \varphi \quad (\text{or } \blacksquare \varphi) : \quad \langle \mathcal{S}, t \rangle \models \widetilde{\mathbf{G}}^{-1} \varphi \quad \Leftrightarrow \quad \forall u < t. \langle \mathcal{S}, u \rangle \models \varphi$$
("always in the past" φ)

Examples

Duality: Precedence properties:

$$\widetilde{\mathbf{F}}^{-1} \varphi \equiv \neg \widetilde{\mathbf{G}}^{-1} \neg \varphi$$
$$\widetilde{\mathbf{G}}(\varphi \Rightarrow \widetilde{\mathbf{F}}^{-1} \psi)$$

Past-time counterparts:

$$\widetilde{\mathbf{F}}^{-1} \varphi \quad (\text{or } \mathbf{\Phi} \varphi) : \quad \langle \mathcal{S}, t \rangle \models \widetilde{\mathbf{F}}^{-1} \varphi \quad \Leftrightarrow \quad \exists u < t. \ \langle \mathcal{S}, u \rangle \models \varphi$$
("sometimes in the past" φ)

$$\widetilde{\mathbf{G}}^{-1} \varphi \quad (\text{or } \blacksquare \varphi) : \quad \langle \mathcal{S}, t \rangle \models \widetilde{\mathbf{G}}^{-1} \varphi \quad \Leftrightarrow \quad \forall u < t. \ \langle \mathcal{S}, u \rangle \models \varphi$$
 ("always in the past" φ)

Examples

Non-strict versions:

$$\mathbf{F}^{-1} \varphi \stackrel{\text{def}}{\equiv} \varphi \vee \widetilde{\mathbf{F}}^{-1} \varphi$$
$$\mathbf{G}^{-1} \varphi \stackrel{\text{def}}{\equiv} \varphi \wedge \widetilde{\mathbf{G}}^{-1} \varphi$$

Past-time counterparts:

$$\widetilde{\mathbf{F}}^{-1} \varphi \quad (\text{or } \mathbf{\Phi} \varphi) : \quad \langle \mathcal{S}, t \rangle \models \widetilde{\mathbf{F}}^{-1} \varphi \quad \Leftrightarrow \quad \exists u < t. \ \langle \mathcal{S}, u \rangle \models \varphi$$
("sometimes in the past" φ)

$$\widetilde{\mathbf{G}}^{-1} \varphi \quad (\text{or } \blacksquare \varphi) : \quad \langle \mathcal{S}, t \rangle \models \widetilde{\mathbf{G}}^{-1} \varphi \quad \Leftrightarrow \quad \forall u < t. \ \langle \mathcal{S}, u \rangle \models \varphi$$
("always in the past" φ)

Examples

 $\widetilde{\mathbf{G}}^{-1} \widetilde{\mathbf{F}}^{-1} \varphi \equiv \bot$ except at origin $\widetilde{\mathbf{F}}^{-1} \widetilde{\mathbf{G}}^{-1} \varphi \equiv \top$ except at origin

Past-time counterparts:

$$\widetilde{\mathbf{F}}^{-1} \varphi \quad (\text{or } \mathbf{\Phi} \varphi) : \quad \langle \mathcal{S}, t \rangle \models \widetilde{\mathbf{F}}^{-1} \varphi \quad \Leftrightarrow \quad \exists u < t. \ \langle \mathcal{S}, u \rangle \models \varphi$$
("sometimes in the past" φ)

$$\widetilde{\mathbf{G}}^{-1} \varphi \quad (\text{or } \blacksquare \varphi) : \quad \langle \mathcal{S}, t \rangle \models \widetilde{\mathbf{G}}^{-1} \varphi \quad \Leftrightarrow \quad \forall u < t. \ \langle \mathcal{S}, u \rangle \models \varphi$$
 ("always in the past" φ)

Examples

"Initially": $\mathbf{G}^{-1} \mathbf{F}^{-1} \varphi \equiv \mathbf{F}^{-1} \mathbf{G}^{-1} \varphi$

Past-time counterparts:

$$\mathbf{\overline{F}}^{-1} \varphi \quad (\text{or } \mathbf{\Diamond} \varphi) : \quad \langle \mathcal{S}, t \rangle \models \mathbf{\overline{F}}^{-1} \varphi \quad \Leftrightarrow \quad \exists u < t. \langle \mathcal{S}, u \rangle \models \varphi$$
("sometimes in the past" φ)

$$\widetilde{\mathbf{G}}^{-1} \varphi \quad (\text{or } \blacksquare \varphi) : \quad \langle \mathcal{S}, t \rangle \models \widetilde{\mathbf{G}}^{-1} \varphi \quad \Leftrightarrow \quad \forall u < t. \ \langle \mathcal{S}, u \rangle \models \varphi$$
 ("always in the past" φ)

Examples

"Initially":
$$\mathbf{G}^{-1} \mathbf{F}^{-1} \varphi \equiv \mathbf{F}^{-1} \mathbf{G}^{-1} \varphi \stackrel{\text{def}}{\equiv} \mathbf{I} \varphi$$

Past-time counterparts:

$$\mathbf{\overline{F}}^{-1} \varphi \quad (\text{or } \mathbf{\Diamond} \varphi) : \quad \langle \mathcal{S}, t \rangle \models \mathbf{\overline{F}}^{-1} \varphi \quad \Leftrightarrow \quad \exists u < t. \ \langle \mathcal{S}, u \rangle \models \varphi$$
("sometimes in the past" φ)

$$\widetilde{\mathbf{G}}^{-1} \varphi \quad (\text{or } \blacksquare \varphi) : \quad \langle \mathcal{S}, t \rangle \models \widetilde{\mathbf{G}}^{-1} \varphi \quad \Leftrightarrow \quad \forall u < t. \ \langle \mathcal{S}, u \rangle \models \varphi$$
 ("always in the past" φ)

Examples

"Initially": $\mathbf{G}^{-1} \mathbf{F}^{-1} \varphi \equiv \mathbf{F}^{-1} \mathbf{G}^{-1} \varphi \stackrel{\text{def}}{\equiv} \mathbf{I} \varphi$ "Until": $\widetilde{\mathbf{F}}(\psi \land \widetilde{\mathbf{G}}^{-1} \varphi)$

Theorem (Kamp, 1968)

"Until" cannot be expressed using only \widetilde{F} , \widetilde{G} , \widetilde{F}^{-1} , and \widetilde{G}^{-1} .

➡ skip proof

Theorem (Kamp, 1968)

"Until" cannot be expressed using only \widetilde{F} , \widetilde{G} , \widetilde{F}^{-1} , and \widetilde{G}^{-1} .

Theorem (Kamp, 1968)

"Until" cannot be expressed using only \widetilde{F} , \widetilde{G} , \widetilde{F}^{-1} , and \widetilde{G}^{-1} .

Proof (sketch).

Consider the following linear structure:

Theorem (Kamp, 1968)

"Until" cannot be expressed using only \widetilde{F} , \widetilde{G} , \widetilde{F}^{-1} , and \widetilde{G}^{-1} .

Proof (sketch).

Consider the following linear structure:

Lemma

For any $n \in \mathbb{Z}^+$, formula

F(*blue* ∧ *blue* "*until*" *red*)

holds along \mathcal{A}_n on a bounded subset of \mathbb{R}^+ containing n.

Theorem (Kamp, 1968) "Until" cannot be expressed using only $\widetilde{\mathbf{F}}$, $\widetilde{\mathbf{G}}$, $\widetilde{\mathbf{F}}^{-1}$, and $\widetilde{\mathbf{G}}^{-1}$. Proof (sketch).

Consider the following linear structure:

Lemma

Let $n \in \mathbb{Z}^+$, and φ be a formula built on $\widetilde{\mathbf{F}}$, $\widetilde{\mathbf{G}}$, $\widetilde{\mathbf{F}}^{-1}$, and $\widetilde{\mathbf{G}}^{-1}$. Let $t \ge |\varphi|$ and $u \ge |\varphi|$ labelled with the same atomic propositions. Then

$$\langle \mathcal{A}_n, t \rangle \models \varphi \quad \iff \quad \langle \mathcal{A}_n, u \rangle \models \varphi$$

Lemma

Let $n \in \mathbb{Z}^+$, and φ be a formula built on $\widetilde{\mathbf{F}}$, $\widetilde{\mathbf{G}}$, $\widetilde{\mathbf{F}}^{-1}$, and $\widetilde{\mathbf{G}}^{-1}$. Let $t \ge |\varphi|$ and $u \ge |\varphi|$ labelled with the same atomic propositions. Then

$$\langle \mathcal{A}_n, t \rangle \models \varphi \quad \iff \quad \langle \mathcal{A}_n, u \rangle \models \varphi$$

Proof. By induction on the structure of the formula:

Lemma

Let $n \in \mathbb{Z}^+$, and φ be a formula built on $\widetilde{\mathbf{F}}$, $\widetilde{\mathbf{G}}$, $\widetilde{\mathbf{F}}^{-1}$, and $\widetilde{\mathbf{G}}^{-1}$. Let $t \ge |\varphi|$ and $u \ge |\varphi|$ labelled with the same atomic propositions. Then

$$\langle \mathcal{A}_n, t \rangle \models \varphi \quad \iff \quad \langle \mathcal{A}_n, u \rangle \models \varphi$$

Proof. By induction on the structure of the formula:

- obvious for atomic propositions,
- straightforward for boolean combinators,

Lemma

Let $n \in \mathbb{Z}^+$, and φ be a formula built on $\widetilde{\mathbf{F}}$, $\widetilde{\mathbf{G}}$, $\widetilde{\mathbf{F}}^{-1}$, and $\widetilde{\mathbf{G}}^{-1}$. Let $t \ge |\varphi|$ and $u \ge |\varphi|$ labelled with the same atomic propositions. Then

$$\langle \mathcal{A}_n, t \rangle \models \varphi \quad \iff \quad \langle \mathcal{A}_n, u \rangle \models \varphi$$

Proof. By induction on the structure of the formula:

• if
$$\varphi = \widetilde{\mathbf{F}} \psi$$
, then
 $\langle \mathcal{A}_n, t \rangle \models \varphi \Rightarrow \langle \mathcal{A}_n, t' \rangle \models \psi$ for some $t' \ge t \ge |\psi|$
 $\Rightarrow \langle \mathcal{A}_n, u' \rangle \models \psi$ for any $u' \ge |\psi|$ labeled as t'
 $\Rightarrow \langle \mathcal{A}_n, u \rangle \models \varphi$.

Now, if $\widetilde{\mathbf{F}}(\mathbf{blue} \land \mathbf{blue}$ "until"**red**) can be expressed as a formula φ built on $\widetilde{\mathbf{F}}, \widetilde{\mathbf{G}}, \widetilde{\mathbf{F}}^{-1}$, and $\widetilde{\mathbf{G}}^{-1}$, let $n = |\varphi|$. Then

- the set of positions along *A_n* where φ holds is bounded and contains n;
- since φ holds at position n along A_n, it also holds at any future position that is labeled by the same atomic propositions.

This is a contradiction.

 $\begin{array}{l} \varphi ~ \widetilde{\mathbf{U}} ~ \psi : ~ \langle \mathcal{S}, t \rangle \models \varphi ~ \widetilde{\mathbf{U}} ~ \psi ~ \Leftrightarrow ~ \exists u > t. ~ (\langle \mathcal{S}, u \rangle \models \psi ~ \text{and} \\ (\varphi ``until" ~ \psi) ~ & \forall v > t. ~ (v < u \Rightarrow \langle \mathcal{S}, v \rangle \models \varphi)) \end{array}$

 $\varphi \ \widetilde{\mathbf{U}} \ \psi : \ \langle \mathcal{S}, t \rangle \models \varphi \ \widetilde{\mathbf{U}} \ \psi \ \Leftrightarrow \ \exists u > t. \ (\langle \mathcal{S}, u \rangle \models \psi \text{ and} \\ (\varphi \text{``until''} \psi) \qquad \qquad \forall v > t. \ (v < u \Rightarrow \langle \mathcal{S}, v \rangle \models \varphi))$

Examples

Equivalences:

$$\widetilde{\mathbf{F}} \varphi \equiv \top \widetilde{\mathbf{U}} \varphi$$
$$\widetilde{\mathbf{F}}^{-1} \varphi \equiv \top \widetilde{\mathbf{S}} \varphi$$

 $\begin{array}{l} \varphi ~ \widetilde{\mathbf{U}} ~ \psi : ~ \langle \mathcal{S}, t \rangle \models \varphi ~ \widetilde{\mathbf{U}} ~ \psi ~ \Leftrightarrow ~ \exists u > t. ~ (\langle \mathcal{S}, u \rangle \models \psi ~ \text{and} \\ (\varphi ``until" ~ \psi) ~ & \forall v > t. ~ (v < u \Rightarrow \langle \mathcal{S}, v \rangle \models \varphi)) \end{array}$

$$\begin{array}{ll} \varphi ~\widetilde{\mathbf{S}} ~\psi : ~\langle \mathcal{S}, t \rangle \models \varphi ~\widetilde{\mathbf{S}} ~\psi ~\Leftrightarrow ~\exists u < t. ~(\langle \mathcal{S}, u \rangle \models \psi ~\text{and} \\ (\varphi ~\text{"since"} ~\psi) & \forall v < t. ~(v > u \Rightarrow \langle \mathcal{S}, v \rangle \models \varphi)) \end{array}$$

Examples

Non-strict modalities: $\varphi \mathbf{U} \psi \stackrel{\text{def}}{=} \psi \lor (\varphi \land \varphi \widetilde{\mathbf{U}} \psi)$ $\varphi \mathbf{S} \psi \stackrel{\text{def}}{=} \psi \lor (\varphi \land \varphi \widetilde{\mathbf{S}} \psi)$

 $\varphi \ \widetilde{\mathbf{U}} \ \psi : \ \langle \mathcal{S}, t \rangle \models \varphi \ \widetilde{\mathbf{U}} \ \psi \ \Leftrightarrow \ \exists u > t. \ (\langle \mathcal{S}, u \rangle \models \psi \ \text{and} \\ (\varphi \text{``until''} \psi) \qquad \qquad \forall v > t. \ (v < u \Rightarrow \langle \mathcal{S}, v \rangle \models \varphi))$

$$\begin{array}{l} \varphi ~\widetilde{\mathbf{S}} ~\psi : ~ \langle \mathcal{S}, t \rangle \models \varphi ~\widetilde{\mathbf{S}} ~\psi ~ \Leftrightarrow ~ \exists u < t. ~ (\langle \mathcal{S}, u \rangle \models \psi ~ \text{and} \\ (\varphi ~\text{``since''} ~\psi) ~ & \forall v < t. ~ (v > u \Rightarrow \langle \mathcal{S}, v \rangle \models \varphi)) \end{array}$$

Examples

"Next" modality: $\perp \widetilde{\mathbf{U}} \ \varphi \stackrel{\text{\tiny def}}{=} \mathbf{X} \ \varphi$ in discrete time

 $\varphi \ \widetilde{\mathbf{U}} \ \psi : \ \langle \mathcal{S}, t \rangle \models \varphi \ \widetilde{\mathbf{U}} \ \psi \ \Leftrightarrow \ \exists u > t. \ (\langle \mathcal{S}, u \rangle \models \psi \text{ and} \\ (\varphi \text{``until''} \psi) \qquad \qquad \forall v > t. \ (v < u \Rightarrow \langle \mathcal{S}, v \rangle \models \varphi))$

$$\begin{array}{ll} \varphi ~\widetilde{\mathbf{S}} ~\psi : ~\langle \mathcal{S}, t \rangle \models \varphi ~\widetilde{\mathbf{S}} ~\psi ~\Leftrightarrow ~\exists u < t. ~(\langle \mathcal{S}, u \rangle \models \psi ~\text{and} \\ (\varphi ~\text{"since"} ~\psi) & \forall v < t. ~(v > u \Rightarrow \langle \mathcal{S}, v \rangle \models \varphi)) \end{array}$$

Examples

"Next" modality:
$$\perp \widetilde{\mathbf{U}} \varphi \stackrel{\text{def}}{\equiv} \mathbf{X} \varphi$$
 in discrete time
 $\perp \widetilde{\mathbf{U}} \varphi \equiv \perp$ in dense time

 $\begin{array}{l} \varphi \; \widetilde{\mathbf{U}} \; \psi : \; \langle \mathcal{S}, t \rangle \models \varphi \; \widetilde{\mathbf{U}} \; \psi \; \Leftrightarrow \; \exists u > t. \; (\langle \mathcal{S}, u \rangle \models \psi \; \text{and} \\ (\varphi \; \text{``until"} \; \psi) \; & \forall v > t. \; (v < u \Rightarrow \langle \mathcal{S}, v \rangle \models \varphi)) \end{array}$

Examples

"Next" modality: $\perp \widetilde{\mathbf{U}} \ \varphi \stackrel{\text{def}}{\equiv} \mathbf{X} \varphi$ in discrete time "Previous" modality: $\perp \widetilde{\mathbf{S}} \ \varphi \stackrel{\text{def}}{\equiv} \mathbf{X}^{-1} \varphi$ in discrete time

Duality

Examples

Duality is an important notion in logic:

$$\neg (\neg p \land \neg q) \equiv p \lor q$$
$$\neg (\neg p \lor \neg q) \equiv p \land q$$
$$\neg (\neg p \lor \neg q) \equiv p \land q$$
$$\neg \mathbf{F} \neg p \equiv \mathbf{G} p$$
$$\neg \mathbf{G} \neg p \equiv \mathbf{F} p$$
$$\neg \mathbf{X} \neg p \equiv \mathbf{X} p$$

What is the dual of $\widetilde{\mathbf{U}}$?
Duality

Examples

Duality is an important notion in logic:

$$\neg (\neg p \land \neg q) \equiv p \lor q$$
$$\neg (\neg p \lor \neg q) \equiv p \land q$$
$$\neg (\neg p \lor \neg q) \equiv p \land q$$
$$\neg \mathbf{F} \neg p \equiv \mathbf{G} p$$
$$\neg \mathbf{G} \neg p \equiv \mathbf{F} p$$
$$\neg \mathbf{X} \neg p \equiv \mathbf{X} p$$

What is the dual of $\widetilde{\mathbf{U}}$?

$$\varphi \stackrel{\widetilde{\mathbf{R}}}{\mathbf{R}} \psi : \langle \mathcal{S}, t \rangle \models \varphi \stackrel{\widetilde{\mathbf{R}}}{\mathbf{R}} \psi \iff \forall u > t. (\langle \mathcal{S}, u \rangle \not\models \psi \Rightarrow \\ (\varphi \text{ "releases" } \psi) \qquad \qquad \exists v > t. (v < u \land \langle \mathcal{S}, v \rangle \models \varphi))$$

Duality

What is the dual of $\widetilde{\mathbf{U}}$?

$$\begin{array}{ll} \varphi ~ \widetilde{\mathbf{R}} ~ \psi : ~ \langle \mathcal{S}, t \rangle \models \varphi ~ \widetilde{\mathbf{R}} ~ \psi ~ \Leftrightarrow ~ \forall u > t. ~ (\langle \mathcal{S}, u \rangle \not\models \psi \Rightarrow \\ (\varphi ~ "releases" ~ \psi) & \exists v > t. ~ (v < u \land \langle \mathcal{S}, v \rangle \models \varphi)) \end{array}$$

Proposition $On \langle \mathbb{Z}^+, <, \ell \rangle,$ $\varphi \ \widetilde{\mathbf{R}} \ \psi \equiv \widetilde{\mathbf{G}} \ \psi \lor \psi \ \widetilde{\mathbf{U}} \ (\varphi \land \psi).$

This equivalence fails to hold on $\langle \mathbb{R}^+, <, \ell \rangle$.

LTL and LTL+Past

Definition

Given modalities M_1 to M_n and a set AP of atomic propositions, the logic $\mathcal{L}_{AP}(M_1, ..., M_n)$ is defined by the following grammar:

 $\mathcal{L}_{\mathsf{AP}}(M_1,...,M_n) \ni \varphi, \psi, \ldots ::= \top \mid p \mid \neg \varphi \mid \varphi \lor \psi \mid M_i(\varphi,\psi,...)$

where p ranges over AP, and i over $\{1, ..., n\}$.

LTL and LTL+Past

Definition

Given modalities M_1 to M_n and a set AP of atomic propositions, the logic $\mathcal{L}_{AP}(M_1, ..., M_n)$ is defined by the following grammar:

 $\mathcal{L}_{\mathsf{AP}}(M_1,...,M_n) \ni \varphi, \psi, \ldots ::= \top \mid p \mid \neg \varphi \mid \varphi \lor \psi \mid M_i(\varphi,\psi,...)$

where p ranges over AP, and i over $\{1, ..., n\}$.

Definition

- LTL+Past = $\mathcal{L}(\widetilde{\mathbf{U}}, \widetilde{\mathbf{S}})$
- LTL = $\mathcal{L}(\widetilde{\mathbf{U}})$

LTL and LTL+Past

Definition

Given modalities M_1 to M_n and a set AP of atomic propositions, the logic $\mathcal{L}_{AP}(M_1, ..., M_n)$ is defined by the following grammar:

 $\mathcal{L}_{\mathsf{AP}}(M_1,...,M_n) \ni \varphi, \psi, \ldots ::= \top \mid p \mid \neg \varphi \mid \varphi \lor \psi \mid M_i(\varphi,\psi,...)$

where p ranges over AP, and i over $\{1, ..., n\}$.

Definition

- LTL+Past = $\mathcal{L}(\widetilde{\mathbf{U}}, \widetilde{\mathbf{S}})$
- LTL = $\mathcal{L}(\widetilde{\mathbf{U}})$
- LTL = $\mathcal{L}(\mathbf{U}, \mathbf{X})$ often prefered in discrete-time.

Both definitions of LTL are not exactly equivalent.

Examples of properties

Examples

• any request is eventually granted:

```
G(button_2.call \Rightarrow F(door_2.open))
```

Examples of properties

Examples

any request is eventually granted:

```
G(button_2.call \Rightarrow F(door_2.open))
```

• the doors open only on request:

G [door₂.closed \Rightarrow

(button₂.call ∨ button.go second floor) **R** door₂.closed]

Examples of properties

Examples

any request is eventually granted:

```
G(button_2.call \Rightarrow F(door_2.open))
```

• the doors open only on request:

G [door₂.closed ⇒ (button₂.call ∨ button.go second floor) R door₂.closed]

• the cabin will serve a request as early as possible:

 $\mathbf{G}\left[\left(\text{cabin.first floor} \land \text{button}_1.\text{call}\right) \Rightarrow\right]$

(cabin.first floor **U** door₁.open)]

Outline of the course

Introduction

Definitions and examples

- Linear-time temporal logics
- Branching-time temporal logics

Linear-time temporal logics

- Expressiveness of LTL and LTL+Past
- How hard is LTL verification?
- Algorithms for verifying LTL formulas
- Back to expressiveness
- 4 Branching-time temporal logics
 - Expressiveness of branchig-time logics
 - Complexity
 - Alternating-time Temporal Logic

Definition

A (labelled) branching structure over a (finite) set AP of atomic propositions is a triple $S = \langle T, <, \ell \rangle$ where

- T is an infinite set,
- < is a tree order on T s.t. T has a minimal element, and
- $\ell: T \to 2^{AP}$ is a labelling function.

Definition

An order < on a set T is a tree order if for any $t \in T$, the set $\{u \in T \mid u < t\}$ is totally ordered and has a minimal element.

Definition

A (labelled) branching structure over a (finite) set AP of atomic propositions is a triple $S = \langle T, <, \ell \rangle$ where

- T is an infinite set,
- < is a tree order on T s.t. T has a minimal element, and
- $\ell: T \to 2^{AP}$ is a labelling function.

Definition

A branch of a tree $S = \langle T, <, \ell \rangle$ is a maximal totally ordered subset of *T*. We write $Br_S(t)$ for the set of branches of *S* containing *t*.

Definition

A (labelled) branching structure over a (finite) set AP of atomic propositions is a triple $S = \langle T, <, \ell \rangle$ where

- T is an infinite set,
- < is a tree order on T s.t. T has a minimal element, and
- $\ell: T \to 2^{AP}$ is a labelling function.

Definition

A branch of a tree $S = \langle T, <, \ell \rangle$ is a maximal totally ordered subset of *T*. We write $Br_S(t)$ for the set of branches of *S* containing *t*.

In the sequel, we require that all branches be infinite, and we only deal with discrete-time (where all the branches are isomorphic to \mathbb{Z}^+).

Example

The execution tree of a Kripke structure is a tree structure $\langle T, \prec, \ell \rangle$, where $T \subseteq (\mathbb{Z}^+)^*$:

Path quantifiers

 $\begin{array}{ll} \mathbf{E}\varphi:\ \langle \mathcal{S},t\rangle\models\mathbf{E}\varphi &\Leftrightarrow & \exists b\in \mathrm{Br}_{\mathcal{S}}(t).\ \langle \mathcal{S},b,t\rangle\models\varphi\\ (``there\ exists\ a\ path\ satisfying''\ \varphi) \end{array}$

 $\mathbf{A}\varphi: \langle S,t\rangle \models \mathbf{A}\varphi \quad \Leftrightarrow \quad \forall b \in \operatorname{Br}_{\mathcal{S}}(t). \langle S,b,t\rangle \models \varphi$ ("for all paths," φ)

Path quantifiers

 $\begin{array}{ll} \mathbf{E}\varphi:\ \langle \mathcal{S},t\rangle\models\mathbf{E}\varphi &\Leftrightarrow & \exists b\in \mathrm{Br}_{\mathcal{S}}(t).\ \langle \mathcal{S},b,t\rangle\models\varphi\\ (``there\ exists\ a\ path\ satisfying''\ \varphi) \end{array}$

 $\mathbf{A}\varphi : \langle \mathcal{S}, t \rangle \models \mathbf{A}\varphi \quad \Leftrightarrow \quad \forall b \in \operatorname{Br}_{\mathcal{S}}(t). \langle \mathcal{S}, b, t \rangle \models \varphi$ ("for all paths," φ)

Examples

A request is always served:

 $AG(button_2.call \Rightarrow AF door_2.open)$

Path quantifiers

 $\begin{array}{ll} \mathbf{E}\varphi:\ \langle \mathcal{S},t\rangle\models\mathbf{E}\varphi &\Leftrightarrow & \exists b\in \mathrm{Br}_{\mathcal{S}}(t).\ \langle \mathcal{S},b,t\rangle\models\varphi\\ (``there\ exists\ a\ path\ satisfying''\ \varphi) \end{array}$

 $\mathbf{A}\varphi: \langle \mathcal{S}, t \rangle \models \mathbf{A}\varphi \quad \Leftrightarrow \quad \forall b \in \operatorname{Br}_{\mathcal{S}}(t). \langle \mathcal{S}, b, t \rangle \models \varphi$ ("for all paths," φ)

Examples

• The ground floor is always reachable:

AG(EF(door_0.open))

Definition

Given a set $\{M_1, ..., M_n\}$ of *n* modalities, we define the three logics:

$$\mathcal{B}(M_1, ..., M_n) \ni \varphi_b ::= p \mid \neg \varphi_b \mid \varphi_b \lor \varphi_b \mid \mathbf{E}\varphi_l \mid \mathbf{A}\varphi_l$$
$$\varphi_l ::= M_1(\varphi_b, ..., \varphi_b) \mid \cdots \mid M_n(\varphi_b, ..., \varphi_b)$$

Definition

Given a set $\{M_1, ..., M_n\}$ of *n* modalities, we define the three logics:

$$\mathcal{B}(M_1, ..., M_n) \ni \varphi_b ::= p \mid \neg \varphi_b \mid \varphi_b \lor \varphi_b \mid \mathbf{E}\varphi_l \mid \mathbf{A}\varphi_l$$
$$\varphi_l ::= M_1(\varphi_b, ..., \varphi_b) \mid \cdots \mid M_n(\varphi_b, ..., \varphi_b)$$

Examples

$AG(door_0.open \Rightarrow cabin.ground floor)$

Definition

Given a set $\{M_1, ..., M_n\}$ of *n* modalities, we define the three logics:

$$\mathcal{B}(M_1, ..., M_n) \ni \varphi_b ::= p \mid \neg \varphi_b \mid \varphi_b \lor \varphi_b \mid \mathbf{E}\varphi_l \mid \mathbf{A}\varphi_l$$
$$\varphi_l ::= M_1(\varphi_b, ..., \varphi_b) \mid \cdots \mid M_n(\varphi_b, ..., \varphi_b)$$

Examples

AG(EF door_0.open)

Definition

Given a set $\{M_1, ..., M_n\}$ of *n* modalities, we define the three logics:

$$\mathcal{B}(M_1, ..., M_n) \ni \varphi_b ::= p \mid \neg \varphi_b \mid \varphi_b \lor \varphi_b \mid \mathbf{E}\varphi_l \mid \mathbf{A}\varphi_l$$
$$\varphi_l ::= M_1(\varphi_b, ..., \varphi_b) \mid \cdots \mid M_n(\varphi_b, ..., \varphi_b)$$

Examples

AG(EF door_0.open)

Definition

$$\mathsf{CTL} = \mathcal{B}(\mathbf{X},\,\mathbf{U}\,)$$

Definition

Given a set $\{M_1, ..., M_n\}$ of *n* modalities, we define the three logics:

$$\mathcal{B}^{+}(M_{1},...,M_{n}) \ni \varphi_{b} ::= p \mid \neg \varphi_{b} \mid \varphi_{b} \lor \varphi_{b} \mid \mathbf{E}\varphi_{l} \mid \mathbf{A}\varphi_{l}$$
$$\varphi_{l} ::= \neg \varphi_{l} \mid \varphi_{l} \lor \varphi_{l} \mid$$
$$M_{1}(\varphi_{b},...,\varphi_{b}) \mid \cdots \mid M_{n}(\varphi_{b},...,\varphi_{b})$$

Definition

Given a set $\{M_1, ..., M_n\}$ of *n* modalities, we define the three logics:

$$\mathcal{B}^{+}(M_{1},...,M_{n}) \ni \varphi_{b} ::= p \mid \neg \varphi_{b} \mid \varphi_{b} \lor \varphi_{b} \mid \mathbf{E}\varphi_{l} \mid \mathbf{A}\varphi_{l}$$
$$\varphi_{l} ::= \neg \varphi_{l} \mid \varphi_{l} \lor \varphi_{l} \mid$$
$$M_{1}(\varphi_{b},...,\varphi_{b}) \mid \cdots \mid M_{n}(\varphi_{b},...,\varphi_{b})$$

Examples

$E(F \text{ door}_1.\text{open} \land \neg F \text{ button}_1.\text{call})$

Definition

Given a set $\{M_1, ..., M_n\}$ of *n* modalities, we define the three logics:

$$\mathcal{B}^{+}(M_{1},...,M_{n}) \ni \varphi_{b} ::= p \mid \neg \varphi_{b} \mid \varphi_{b} \lor \varphi_{b} \mid \mathbf{E}\varphi_{l} \mid \mathbf{A}\varphi_{l}$$
$$\varphi_{l} ::= \neg \varphi_{l} \mid \varphi_{l} \lor \varphi_{l} \mid$$
$$M_{1}(\varphi_{b},...,\varphi_{b}) \mid \cdots \mid M_{n}(\varphi_{b},...,\varphi_{b})$$

Examples

$$E(F \text{ door}_1.\text{open} \land \neg F \text{ button}_1.\text{call})$$

Definition

$$\mathsf{CTL}^+ = \mathscr{B}^+(\mathbf{X}, \mathbf{U})$$

Definition

Given a set $\{M_1, ..., M_n\}$ of *n* modalities, we define the three logics:

$$\mathcal{B}^{*}(M_{1},...,M_{n}) \ni \varphi_{b} ::= p \mid \neg \varphi_{b} \mid \varphi_{b} \lor \varphi_{b} \mid \mathbf{E}\varphi_{l} \mid \mathbf{A}\varphi_{l}$$
$$\varphi_{l} ::= \varphi_{b} \mid \neg \varphi_{l} \mid \varphi_{l} \lor \varphi_{l} \mid$$
$$M_{1}(\varphi_{l},...,\varphi_{l}) \mid \cdots \mid M_{n}(\varphi_{l},...,\varphi_{l})$$

Definition

Given a set $\{M_1, ..., M_n\}$ of *n* modalities, we define the three logics:

$$\mathcal{B}^{*}(M_{1},...,M_{n}) \ni \varphi_{b} ::= p \mid \neg \varphi_{b} \mid \varphi_{b} \lor \varphi_{b} \mid \mathbf{E}\varphi_{l} \mid \mathbf{A}\varphi_{l}$$
$$\varphi_{l} ::= \varphi_{b} \mid \neg \varphi_{l} \mid \varphi_{l} \lor \varphi_{l} \mid$$
$$M_{1}(\varphi_{l},...,\varphi_{l}) \mid \cdots \mid M_{n}(\varphi_{l},...,\varphi_{l})$$

Examples

EFG door₀.closed

Definition

Given a set $\{M_1, ..., M_n\}$ of *n* modalities, we define the three logics:

$$\mathcal{B}^{*}(M_{1},...,M_{n}) \ni \varphi_{b} ::= p \mid \neg \varphi_{b} \mid \varphi_{b} \lor \varphi_{b} \mid \mathbf{E}\varphi_{l} \mid \mathbf{A}\varphi_{l}$$
$$\varphi_{l} ::= \varphi_{b} \mid \neg \varphi_{l} \mid \varphi_{l} \lor \varphi_{l} \mid$$
$$M_{1}(\varphi_{l},...,\varphi_{l}) \mid \cdots \mid M_{n}(\varphi_{l},...,\varphi_{l})$$

Examples

$\textbf{E}\,\textbf{F}\,\textbf{G}\,door_0.closed$

Definition

$$\mathsf{CTL}^* = \mathscr{B}^*(\mathbf{X}, \mathbf{U})$$