
Modeling and verifying reactive systems
Temporal logics

Nicolas Markey

Lab. Specification et Verification
ENS Cachan & CNRS, France

Why verification?
Computers (in a broad sense) are ubiquitous and ever
more complex:

Why verification?
Computers (in a broad sense) are ubiquitous and ever
more complex:

they are (more or less) notoriously buggy:

How to verify those systems?
“naive” approach: build it and try it!

How to verify those systems?
“naive” approach: build it and try it!

more “mathematical” approaches:
(formal) testing;

static analysis;

model-checking;

...

Principles of model checking

system:

⇒

property:

G(request⇒F grant)

model-checking
algorithm

yes/no

Principles of model checking

system:

⇒

property:

G(request⇒F grant)

model-checking
algorithm

yes/no

Principles of model checking

system:

⇒

property:

G(request⇒F grant)model-checking
algorithm

yes/no

Principles of model checking

system:

⇒

property:

G(request⇒F grant)model-checking
algorithm

yes/no

Two related problems

Definition
The model-checking problem is defined as follows:

input: a model and a formula
output: true iff the formula holds in the model.

Two related problems

Definition
The model-checking problem is defined as follows:

input: a model and a formula
output: true iff the formula holds in the model.

Definition
The satisfiability problem is defined as follows:

input: a formula
output: true iff there exists a model in which

the formula holds.

Example: a lift

cabin

second floor

first floor

ground floor

do
wn

?

arrived!

do
wn

?

arrived!
up

?

arrived!

up
?

arrived!

Example: a lift

idle

go ground floor

go first floor

go second floor

button in the cabin

request
0 !

r
e
q
u
e
s
t

1 !
r
e
q
u
e
s
t

2 !
se
rv
ed

0
?

s
e
r
v
e
d 1

?

s
e
r
v
e
d 2

?

Example: a lift

closediopenedi

clo
se i?

ope
ned i! closedi ?

ope
n i?

openedi !

doorsi

Example: a lift

idlei calli

servedi ?

pressi !

button at floori

Example: a lift

controller

call1 ?

up!

op
en 2!

Example: a lift

Complete model = product of those small modules

cabin.ground floor
button.idle
door0.opened
door1.closed
door2.closed
...

cabin.ground floor
button.go first floor
door0.opened
door1.closed
door2.closed
...

cabin.first floor
button.idle
door0.closed
door1.opened
door2.closed
...

cabin.first floor
button.idle
door0.opened
door1.opened
door2.closed
...

cabin.second floor
button.idle
door0.opened
door1.closed
door2.closed
...

Expressing properties: propositional logic

Definition
The syntax of propositional logics is defined as

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

where p ranges over a (finite) set of atomic propositions AP.

The semantics is given by truth tables, e.g., for p ∧ q:

∧ > ⊥

> > ⊥

⊥ ⊥ ⊥

Expressing properties: propositional logic

Definition
The syntax of propositional logics is defined as

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

where p ranges over a (finite) set of atomic propositions AP.

The semantics is given by truth tables, e.g., for p ∧ q:

∧ > ⊥

> > ⊥

⊥ ⊥ ⊥

Examples

door0.closed ∨ cabin.ground floor

Expressing properties: propositional logic

Definition
The syntax of propositional logics is defined as

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

where p ranges over a (finite) set of atomic propositions AP.

The semantics is given by truth tables, e.g., for p ∧ q:

∧ > ⊥

> > ⊥

⊥ ⊥ ⊥

Examples

¬ (door0.open ∧ door1.open)

≡ ¬ door0.open ∨ ¬door1.open

Expressing properties: propositional logic

Definition
The syntax of propositional logics is defined as

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

where p ranges over a (finite) set of atomic propositions AP.

The semantics is given by truth tables, e.g., for p ∧ q:

∧ > ⊥

> > ⊥

⊥ ⊥ ⊥

Examples

¬ (door0.open ∧ door1.open) ≡ ¬ door0.open ∨ ¬door1.open

Verifying properties: propositional logic

Theorem (Jones, 1975)
Checking if a state q′ is reachable from a state q in a finite state
system S is NLOGSPACE-complete.

Proof.
algorithm in NLOGSPACE:

“guess” the path step by step. We only have to remember
the current position (stored as a binary-encoded integer).

hardness in NLOGSPACE:
build the configuration graph of a non-deterministic
logarithmic-space Turing machine,
check whether an accepting state is reachable.

�

Verifying properties: propositional logic

Theorem (Cook, 1973)
Deciding the satisfiability of a propositional logic formula is
NP-complete.

Proof.
algorithm in NP:

guess the values of atomic propositions, and check if they
make the formula true.

hardness in NP:
we can consider a non-deterministic Turing machine having
exactly two choices at each step;
encode each cell, at each step, with m boolean variables;
build a circuit encoding the executions of the Turing
machine. This can be done with only logarithmic space
because the transitions only depend on a small amount of
“local” information;
sat. of a formula is equivalent to sat. of a circuit.

�

Expressing properties: first-order logic

Definition
First-order logic is an extension of propositional logic with
(first-order) quantification:

ϕ ::= p(x) | x < y | ¬ϕ | ϕ ∧ ϕ | ∃x ∈ X . ϕ | ∀x ∈ X . ϕ

where p ranges over a finite set of predicates, X is an ordered
set, and x and y range over this set.

Expressing properties: first-order logic

Definition
First-order logic is an extension of propositional logic with
(first-order) quantification:

ϕ ::= p(x) | x < y | ¬ϕ | ϕ ∧ ϕ | ∃x ∈ X . ϕ | ∀x ∈ X . ϕ

where p ranges over a finite set of predicates, X is an ordered
set, and x and y range over this set.

In our case, the order is given by the transition system:

Examples

¬ (∃x . door1open(x) ∧ ¬ cabin.first floor(x))

Expressing properties: first-order logic

Definition
First-order logic is an extension of propositional logic with
(first-order) quantification:

ϕ ::= p(x) | x < y | ¬ϕ | ϕ ∧ ϕ | ∃x ∈ X . ϕ | ∀x ∈ X . ϕ

where p ranges over a finite set of predicates, X is an ordered
set, and x and y range over this set.

In our case, the order is given by the transition system:

Examples

∀x . call2(x) ⇒ (∃y . y > x ∧ door2.open(y))

Expressing properties: first-order logic

Definition
First-order logic is an extension of propositional logic with
(first-order) quantification:

ϕ ::= p(x) | x < y | ¬ϕ | ϕ ∧ ϕ | ∃x ∈ X . ϕ | ∀x ∈ X . ϕ

where p ranges over a finite set of predicates, X is an ordered
set, and x and y range over this set.

In our case, the order is given by the transition system:

Examples

∀x . call2(x) ⇒ (∃y . y > x ∧ door2.open(y))

Unfortunately, verifying first-order properties is very hard.

Expressing properties: temporal logics

Definition
Modal logic is an extension of propositional logic with
“modalities” for expressing that something is possible or
necessary:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ^ϕ | �ϕ

where p ranges over AP.

Expressing properties: temporal logics

Definition
Modal logic is an extension of propositional logic with
“modalities” for expressing that something is possible or
necessary:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ^ϕ | �ϕ

where p ranges over AP.

Temporal logics are a special kind of modal logics where
^ is read “eventually in the future”,
� is read “always in the future”.

Expressing properties: temporal logics

Definition
Modal logic is an extension of propositional logic with
“modalities” for expressing that something is possible or
necessary:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ^ϕ | �ϕ

where p ranges over AP.

Temporal logics are a special kind of modal logics where
^ is read “eventually in the future”,
� is read “always in the future”.

Example

�(call2 ⇒ ^door2.open)

Expressing properties: temporal logics

Definition
Modal logic is an extension of propositional logic with
“modalities” for expressing that something is possible or
necessary:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ^ϕ | �ϕ

where p ranges over AP.

Temporal logics are a special kind of modal logics where
^ is read “eventually in the future”,
� is read “always in the future”.

Temporal logics are an acceptable compromise between
expressiveness and complexity.

Two notions of time
linear-time framework: properties deal with one execution
at a time:

Example

�(call2 ⇒ ^door2.open)

This formula states that a request (at the second floor) is
eventually granted.

branching-time framework: properties deal with the
execution tree of the system:

Example

�(^door0.open)

This formula states that it is always possible to reach the
ground floor.

Two notions of time
linear-time framework: properties deal with one execution
at a time:

Example

�(call2 ⇒ ^door2.open)

This formula states that a request (at the second floor) is
eventually granted.

branching-time framework: properties deal with the
execution tree of the system:

Example

�(^door0.open)

This formula states that it is always possible to reach the
ground floor.

Outline of the course

1 Introduction

2 Definitions and examples
Linear-time temporal logics
Branching-time temporal logics

3 Linear-time temporal logics
Expressiveness of LTL and LTL+Past
How hard is LTL verification?
Algorithms for verifying LTL formulas
Back to expressiveness

4 Branching-time temporal logics
Expressiveness of branchig-time logics
Complexity
Alternating-time Temporal Logic

Outline of the course

1 Introduction

2 Definitions and examples
Linear-time temporal logics
Branching-time temporal logics

3 Linear-time temporal logics
Expressiveness of LTL and LTL+Past
How hard is LTL verification?
Algorithms for verifying LTL formulas
Back to expressiveness

4 Branching-time temporal logics
Expressiveness of branchig-time logics
Complexity
Alternating-time Temporal Logic

The linear-time framework

Definition
A (labelled) linear structure over a (finite) set AP of atomic
propositions is a triple S = 〈T , <, `〉 where

T is an infinite set,
< is a linear order on T s.t. T has a minimal element, and
` : T → 2AP is a labelling function.

The linear-time framework

Definition
A (labelled) linear structure over a (finite) set AP of atomic
propositions is a triple S = 〈T , <, `〉 where

T is an infinite set,
< is a linear order on T s.t. T has a minimal element, and
` : T → 2AP is a labelling function.

Example
An execution of a Kripke structure is a linear structure 〈Z+, <, `〉
as follows:

0. cabin.ground floor
button.idle
door0.opened
door1.closed
door2.closed
...

1. cabin.ground floor
button.go first floor
door0.opened
door1.closed
door2.closed
...

2. cabin.ground floor
button.go first floor
door0.closed
door1.closed
door2.closed
...

Semantics of LTL modalities

F̃ ϕ (or ^ϕ) : 〈S, t〉 |= F̃ ϕ ⇔ ∃u > t . 〈S,u〉 |= ϕ
(“eventually” ϕ)

G̃ ϕ (or �ϕ) : 〈S, t〉 |= G̃ ϕ ⇔ ∀u > t . 〈S,u〉 |= ϕ
(“always” ϕ)

Semantics of LTL modalities

F̃ ϕ (or ^ϕ) : 〈S, t〉 |= F̃ ϕ ⇔ ∃u > t . 〈S,u〉 |= ϕ
(“eventually” ϕ)

G̃ ϕ (or �ϕ) : 〈S, t〉 |= G̃ ϕ ⇔ ∀u > t . 〈S,u〉 |= ϕ
(“always” ϕ)

Examples

Liveness properties: F̃ openi

Safety properties: G̃(openi ⇒ i-th floor)

Semantics of LTL modalities

F̃ ϕ (or ^ϕ) : 〈S, t〉 |= F̃ ϕ ⇔ ∃u > t . 〈S,u〉 |= ϕ
(“eventually” ϕ)

G̃ ϕ (or �ϕ) : 〈S, t〉 |= G̃ ϕ ⇔ ∀u > t . 〈S,u〉 |= ϕ
(“always” ϕ)

Examples

Liveness properties: F̃ openi

Safety properties: G̃(openi ⇒ i-th floor)

Semantics of LTL modalities

F̃ ϕ (or ^ϕ) : 〈S, t〉 |= F̃ ϕ ⇔ ∃u > t . 〈S,u〉 |= ϕ
(“eventually” ϕ)

G̃ ϕ (or �ϕ) : 〈S, t〉 |= G̃ ϕ ⇔ ∀u > t . 〈S,u〉 |= ϕ
(“always” ϕ)

Examples

Duality: F̃ ϕ ≡ ¬ G̃ ¬ϕ

Semantics of LTL modalities

F̃ ϕ (or ^ϕ) : 〈S, t〉 |= F̃ ϕ ⇔ ∃u > t . 〈S,u〉 |= ϕ
(“eventually” ϕ)

G̃ ϕ (or �ϕ) : 〈S, t〉 |= G̃ ϕ ⇔ ∀u > t . 〈S,u〉 |= ϕ
(“always” ϕ)

Examples

Distributivity: F̃ ϕ ∨ F̃ ψ ≡ F̃(ϕ ∨ ψ)

F̃ ϕ ∧ F̃ ψ . F̃(ϕ ∧ ψ)

Semantics of LTL modalities

F̃ ϕ (or ^ϕ) : 〈S, t〉 |= F̃ ϕ ⇔ ∃u > t . 〈S,u〉 |= ϕ
(“eventually” ϕ)

G̃ ϕ (or �ϕ) : 〈S, t〉 |= G̃ ϕ ⇔ ∀u > t . 〈S,u〉 |= ϕ
(“always” ϕ)

Examples

Distributivity: G̃ ϕ ∨ G̃ ψ . G̃(ϕ ∨ ψ)

G̃ ϕ ∧ G̃ ψ ≡ G̃(ϕ ∧ ψ)

Semantics of LTL modalities

F̃ ϕ (or ^ϕ) : 〈S, t〉 |= F̃ ϕ ⇔ ∃u > t . 〈S,u〉 |= ϕ
(“eventually” ϕ)

G̃ ϕ (or �ϕ) : 〈S, t〉 |= G̃ ϕ ⇔ ∀u > t . 〈S,u〉 |= ϕ
(“always” ϕ)

Examples

Fairness properties: G̃ F̃ ϕ

def
≡

∞

Fϕ

(“infinitely often” ϕ)

Semantics of LTL modalities

F̃ ϕ (or ^ϕ) : 〈S, t〉 |= F̃ ϕ ⇔ ∃u > t . 〈S,u〉 |= ϕ
(“eventually” ϕ)

G̃ ϕ (or �ϕ) : 〈S, t〉 |= G̃ ϕ ⇔ ∀u > t . 〈S,u〉 |= ϕ
(“always” ϕ)

Examples

Fairness properties: G̃ F̃ ϕ
def
≡

∞

Fϕ

(“infinitely often” ϕ)

Semantics of LTL modalities

F̃ ϕ (or ^ϕ) : 〈S, t〉 |= F̃ ϕ ⇔ ∃u > t . 〈S,u〉 |= ϕ
(“eventually” ϕ)

G̃ ϕ (or �ϕ) : 〈S, t〉 |= G̃ ϕ ⇔ ∀u > t . 〈S,u〉 |= ϕ
(“always” ϕ)

Examples

Non-strict modalities: F ϕ
def
≡ ϕ ∨ F̃ ϕ

G ϕ
def
≡ ϕ ∧ G̃ ϕ

Semantics of LTL modalities

Past-time counterparts:

F̃−1 ϕ (or _ϕ) : 〈S, t〉 |= F̃−1 ϕ ⇔ ∃u < t . 〈S,u〉 |= ϕ
(“sometimes in the past” ϕ)

G̃−1 ϕ (or �ϕ) : 〈S, t〉 |= G̃−1 ϕ ⇔ ∀u < t . 〈S,u〉 |= ϕ
(“always in the past” ϕ)

Semantics of LTL modalities

Past-time counterparts:

F̃−1 ϕ (or _ϕ) : 〈S, t〉 |= F̃−1 ϕ ⇔ ∃u < t . 〈S,u〉 |= ϕ
(“sometimes in the past” ϕ)

G̃−1 ϕ (or �ϕ) : 〈S, t〉 |= G̃−1 ϕ ⇔ ∀u < t . 〈S,u〉 |= ϕ
(“always in the past” ϕ)

Examples

Duality: F̃−1 ϕ ≡ ¬ G̃−1
¬ϕ

Precedence properties: G̃(ϕ ⇒ F̃−1 ψ)

Semantics of LTL modalities

Past-time counterparts:

F̃−1 ϕ (or _ϕ) : 〈S, t〉 |= F̃−1 ϕ ⇔ ∃u < t . 〈S,u〉 |= ϕ
(“sometimes in the past” ϕ)

G̃−1 ϕ (or �ϕ) : 〈S, t〉 |= G̃−1 ϕ ⇔ ∀u < t . 〈S,u〉 |= ϕ
(“always in the past” ϕ)

Examples

Duality: F̃−1 ϕ ≡ ¬ G̃−1
¬ϕ

Precedence properties: G̃(ϕ ⇒ F̃−1 ψ)

Semantics of LTL modalities

Past-time counterparts:

F̃−1 ϕ (or _ϕ) : 〈S, t〉 |= F̃−1 ϕ ⇔ ∃u < t . 〈S,u〉 |= ϕ
(“sometimes in the past” ϕ)

G̃−1 ϕ (or �ϕ) : 〈S, t〉 |= G̃−1 ϕ ⇔ ∀u < t . 〈S,u〉 |= ϕ
(“always in the past” ϕ)

Examples

Non-strict versions: F−1 ϕ
def
≡ ϕ ∨ F̃−1 ϕ

G−1 ϕ
def
≡ ϕ ∧ G̃−1 ϕ

Semantics of LTL modalities

Past-time counterparts:

F̃−1 ϕ (or _ϕ) : 〈S, t〉 |= F̃−1 ϕ ⇔ ∃u < t . 〈S,u〉 |= ϕ
(“sometimes in the past” ϕ)

G̃−1 ϕ (or �ϕ) : 〈S, t〉 |= G̃−1 ϕ ⇔ ∀u < t . 〈S,u〉 |= ϕ
(“always in the past” ϕ)

Examples

G̃−1 F̃−1 ϕ ≡ ⊥ except at origin

F̃−1 G̃−1 ϕ ≡ > except at origin

Semantics of LTL modalities

Past-time counterparts:

F̃−1 ϕ (or _ϕ) : 〈S, t〉 |= F̃−1 ϕ ⇔ ∃u < t . 〈S,u〉 |= ϕ
(“sometimes in the past” ϕ)

G̃−1 ϕ (or �ϕ) : 〈S, t〉 |= G̃−1 ϕ ⇔ ∀u < t . 〈S,u〉 |= ϕ
(“always in the past” ϕ)

Examples

“Initially”: G−1 F−1 ϕ ≡ F−1 G−1 ϕ

def
≡ I ϕ

“Until”: F̃(ψ ∧ G̃−1 ϕ)

Semantics of LTL modalities

Past-time counterparts:

F̃−1 ϕ (or _ϕ) : 〈S, t〉 |= F̃−1 ϕ ⇔ ∃u < t . 〈S,u〉 |= ϕ
(“sometimes in the past” ϕ)

G̃−1 ϕ (or �ϕ) : 〈S, t〉 |= G̃−1 ϕ ⇔ ∀u < t . 〈S,u〉 |= ϕ
(“always in the past” ϕ)

Examples

“Initially”: G−1 F−1 ϕ ≡ F−1 G−1 ϕ
def
≡ I ϕ

“Until”: F̃(ψ ∧ G̃−1 ϕ)

Semantics of LTL modalities

Past-time counterparts:

F̃−1 ϕ (or _ϕ) : 〈S, t〉 |= F̃−1 ϕ ⇔ ∃u < t . 〈S,u〉 |= ϕ
(“sometimes in the past” ϕ)

G̃−1 ϕ (or �ϕ) : 〈S, t〉 |= G̃−1 ϕ ⇔ ∀u < t . 〈S,u〉 |= ϕ
(“always in the past” ϕ)

Examples

“Initially”: G−1 F−1 ϕ ≡ F−1 G−1 ϕ
def
≡ I ϕ

“Until”: F̃(ψ ∧ G̃−1 ϕ)

“Until”?

Example

0 1 2

green “until” red ≡ F̃(red ∧ G̃−1 green)

“Until”?

Example

0 1 2

F̃(red ∧ red “until” blue) . F̃(red ∧ F̃(blue ∧ G̃−1 red))

“Until”?

Example

0 1 2

F̃(red ∧ red “until” blue) . F̃(red ∧ F̃(blue ∧ G̃−1 red))

Theorem (Kamp, 1968)

“Until” cannot be expressed using only F̃, G̃, F̃−1, and G̃−1.

skip proof

“Until”?

Theorem (Kamp, 1968)

“Until” cannot be expressed using only F̃, G̃, F̃−1, and G̃−1.

“Until”?

Theorem (Kamp, 1968)

“Until” cannot be expressed using only F̃, G̃, F̃−1, and G̃−1.

Proof (sketch).

Consider the following linear structure:

An

0 1 2 3 n−1 n n+1

“Until”?

Theorem (Kamp, 1968)

“Until” cannot be expressed using only F̃, G̃, F̃−1, and G̃−1.

Proof (sketch).

Consider the following linear structure:

An

0 1 2 3 n−1 n n+1

Lemma
For any n ∈ Z+, formula

F̃(blue ∧ blue “until” red)

holds along An on a bounded subset of R+ containing n.

“Until”?

Theorem (Kamp, 1968)

“Until” cannot be expressed using only F̃, G̃, F̃−1, and G̃−1.

Proof (sketch).

Consider the following linear structure:

An

0 1 2 3 n−1 n n+1

Lemma

Let n ∈ Z+, and ϕ be a formula built on F̃, G̃, F̃−1, and G̃−1. Let
t ≥ |ϕ| and u ≥ |ϕ| labelled with the same atomic propositions.
Then

〈An, t〉 |= ϕ ⇐⇒ 〈An,u〉 |= ϕ

“Until”?

An

0 1 2 3 n−1 n n+1

Lemma

Let n ∈ Z+, and ϕ be a formula built on F̃, G̃, F̃−1, and G̃−1. Let
t ≥ |ϕ| and u ≥ |ϕ| labelled with the same atomic propositions.
Then

〈An, t〉 |= ϕ ⇐⇒ 〈An,u〉 |= ϕ

Proof. By induction on the structure of the formula:

“Until”?

An

0 1 2 3 n−1 n n+1

Lemma

Let n ∈ Z+, and ϕ be a formula built on F̃, G̃, F̃−1, and G̃−1. Let
t ≥ |ϕ| and u ≥ |ϕ| labelled with the same atomic propositions.
Then

〈An, t〉 |= ϕ ⇐⇒ 〈An,u〉 |= ϕ

Proof. By induction on the structure of the formula:

obvious for atomic propositions,
straightforward for boolean combinators,

“Until”?

An

0 1 2 3 n−1 n n+1

Lemma

Let n ∈ Z+, and ϕ be a formula built on F̃, G̃, F̃−1, and G̃−1. Let
t ≥ |ϕ| and u ≥ |ϕ| labelled with the same atomic propositions.
Then

〈An, t〉 |= ϕ ⇐⇒ 〈An,u〉 |= ϕ

Proof. By induction on the structure of the formula:

if ϕ = F̃ ψ, then

〈An, t〉 |= ϕ⇒ 〈An, t ′〉 |= ψ for some t ′ ≥ t ≥ |ψ|
⇒ 〈An,u′〉 |= ψ for any u′ ≥ |ψ| labeled as t ′

⇒ 〈An,u〉 |= ϕ.

“Until”?

An

0 1 2 3 n−1 n n+1

Now, if F̃(blue ∧ blue“until”red) can be expressed as a
formula ϕ built on F̃, G̃, F̃−1, and G̃−1, let n = |ϕ|. Then

the set of positions along An where ϕ holds is bounded
and contains n;
since ϕ holds at position n along An, it also holds at any
future position that is labeled by the same atomic
propositions.

This is a contradiction.

Semantics of LTL modalities

ϕ Ũ ψ : 〈S, t〉 |= ϕ Ũ ψ ⇔ ∃u > t . (〈S,u〉 |= ψ and
(ϕ “until” ψ) ∀v > t . (v < u ⇒ 〈S, v〉 |= ϕ))

ϕ S̃ ψ : 〈S, t〉 |= ϕ S̃ ψ ⇔ ∃u < t . (〈S,u〉 |= ψ and
(ϕ “since” ψ) ∀v < t . (v > u ⇒ 〈S, v〉 |= ϕ))

Semantics of LTL modalities

ϕ Ũ ψ : 〈S, t〉 |= ϕ Ũ ψ ⇔ ∃u > t . (〈S,u〉 |= ψ and
(ϕ “until” ψ) ∀v > t . (v < u ⇒ 〈S, v〉 |= ϕ))

ϕ S̃ ψ : 〈S, t〉 |= ϕ S̃ ψ ⇔ ∃u < t . (〈S,u〉 |= ψ and
(ϕ “since” ψ) ∀v < t . (v > u ⇒ 〈S, v〉 |= ϕ))

Examples

Equivalences: F̃ ϕ ≡ > Ũ ϕ

F̃−1 ϕ ≡ > S̃ ϕ

Semantics of LTL modalities

ϕ Ũ ψ : 〈S, t〉 |= ϕ Ũ ψ ⇔ ∃u > t . (〈S,u〉 |= ψ and
(ϕ “until” ψ) ∀v > t . (v < u ⇒ 〈S, v〉 |= ϕ))

ϕ S̃ ψ : 〈S, t〉 |= ϕ S̃ ψ ⇔ ∃u < t . (〈S,u〉 |= ψ and
(ϕ “since” ψ) ∀v < t . (v > u ⇒ 〈S, v〉 |= ϕ))

Examples

Non-strict modalities: ϕU ψ
def
≡ ψ ∨ (ϕ ∧ ϕ Ũ ψ)

ϕS ψ
def
≡ ψ ∨ (ϕ ∧ ϕ S̃ ψ)

Semantics of LTL modalities

ϕ Ũ ψ : 〈S, t〉 |= ϕ Ũ ψ ⇔ ∃u > t . (〈S,u〉 |= ψ and
(ϕ “until” ψ) ∀v > t . (v < u ⇒ 〈S, v〉 |= ϕ))

ϕ S̃ ψ : 〈S, t〉 |= ϕ S̃ ψ ⇔ ∃u < t . (〈S,u〉 |= ψ and
(ϕ “since” ψ) ∀v < t . (v > u ⇒ 〈S, v〉 |= ϕ))

Examples

“Next” modality: ⊥ Ũ ϕ
def
≡ X ϕ in discrete time

Semantics of LTL modalities

ϕ Ũ ψ : 〈S, t〉 |= ϕ Ũ ψ ⇔ ∃u > t . (〈S,u〉 |= ψ and
(ϕ “until” ψ) ∀v > t . (v < u ⇒ 〈S, v〉 |= ϕ))

ϕ S̃ ψ : 〈S, t〉 |= ϕ S̃ ψ ⇔ ∃u < t . (〈S,u〉 |= ψ and
(ϕ “since” ψ) ∀v < t . (v > u ⇒ 〈S, v〉 |= ϕ))

Examples

“Next” modality: ⊥ Ũ ϕ
def
≡ X ϕ in discrete time

⊥ Ũ ϕ ≡ ⊥ in dense time

Semantics of LTL modalities

ϕ Ũ ψ : 〈S, t〉 |= ϕ Ũ ψ ⇔ ∃u > t . (〈S,u〉 |= ψ and
(ϕ “until” ψ) ∀v > t . (v < u ⇒ 〈S, v〉 |= ϕ))

ϕ S̃ ψ : 〈S, t〉 |= ϕ S̃ ψ ⇔ ∃u < t . (〈S,u〉 |= ψ and
(ϕ “since” ψ) ∀v < t . (v > u ⇒ 〈S, v〉 |= ϕ))

Examples

“Next” modality: ⊥ Ũ ϕ
def
≡ X ϕ in discrete time

“Previous” modality: ⊥ S̃ ϕ
def
≡ X−1 ϕ in discrete time

Duality

Examples
Duality is an important notion in logic:

¬ (¬p ∧ ¬q) ≡ p ∨ q
¬ (¬p ∨ ¬q) ≡ p ∧ q

¬ F ¬p ≡ G p
¬ G ¬p ≡ F p

¬ X ¬p ≡ X p

What is the dual of Ũ?

Duality

Examples
Duality is an important notion in logic:

¬ (¬p ∧ ¬q) ≡ p ∨ q
¬ (¬p ∨ ¬q) ≡ p ∧ q

¬ F ¬p ≡ G p
¬ G ¬p ≡ F p

¬ X ¬p ≡ X p

What is the dual of Ũ?

ϕ R̃ ψ : 〈S, t〉 |= ϕ R̃ ψ ⇔ ∀u > t . (〈S,u〉 6|= ψ ⇒
(ϕ “releases” ψ) ∃v > t . (v < u ∧ 〈S, v〉 |= ϕ))

Duality

What is the dual of Ũ?

ϕ R̃ ψ : 〈S, t〉 |= ϕ R̃ ψ ⇔ ∀u > t . (〈S,u〉 6|= ψ ⇒
(ϕ “releases” ψ) ∃v > t . (v < u ∧ 〈S, v〉 |= ϕ))

Proposition
On 〈Z+, <, `〉,

ϕ R̃ ψ ≡ G̃ ψ ∨ ψ Ũ (ϕ ∧ ψ).

This equivalence fails to hold on 〈R+, <, `〉.

LTL and LTL+Past

Definition
Given modalities M1 to Mn and a set AP of atomic propositions,
the logic LAP(M1, ...,Mn) is defined by the following grammar:

LAP(M1, ...,Mn) 3 ϕ,ψ, ... ::= > | p | ¬ϕ | ϕ ∨ ψ | Mi(ϕ,ψ, ...)

where p ranges over AP, and i over {1, ...,n}.

Definition

LTL+Past = L(Ũ, S̃)

LTL = L(Ũ)

LTL = L(U,X) often prefered in discrete-time.

LTL and LTL+Past

Definition
Given modalities M1 to Mn and a set AP of atomic propositions,
the logic LAP(M1, ...,Mn) is defined by the following grammar:

LAP(M1, ...,Mn) 3 ϕ,ψ, ... ::= > | p | ¬ϕ | ϕ ∨ ψ | Mi(ϕ,ψ, ...)

where p ranges over AP, and i over {1, ...,n}.

Definition

LTL+Past = L(Ũ, S̃)

LTL = L(Ũ)

LTL = L(U,X) often prefered in discrete-time.

LTL and LTL+Past

Definition
Given modalities M1 to Mn and a set AP of atomic propositions,
the logic LAP(M1, ...,Mn) is defined by the following grammar:

LAP(M1, ...,Mn) 3 ϕ,ψ, ... ::= > | p | ¬ϕ | ϕ ∨ ψ | Mi(ϕ,ψ, ...)

where p ranges over AP, and i over {1, ...,n}.

Definition

LTL+Past = L(Ũ, S̃)

LTL = L(Ũ)

LTL = L(U,X) often prefered in discrete-time.

Both definitions of LTL are not exactly equivalent.

Examples of properties

Examples
any request is eventually granted:

G(button2.call ⇒ F(door2.open))

the doors open only on request:

G [door2.closed ⇒
(button2.call ∨ button.go second floor) R door2.closed]

the cabin will serve a request as early as possible:

G [(cabin.first floor ∧ button1.call) ⇒
(cabin.first floor U door1.open)]

Examples of properties

Examples
any request is eventually granted:

G(button2.call ⇒ F(door2.open))

the doors open only on request:

G [door2.closed ⇒
(button2.call ∨ button.go second floor) R door2.closed]

the cabin will serve a request as early as possible:

G [(cabin.first floor ∧ button1.call) ⇒
(cabin.first floor U door1.open)]

Examples of properties

Examples
any request is eventually granted:

G(button2.call ⇒ F(door2.open))

the doors open only on request:

G [door2.closed ⇒
(button2.call ∨ button.go second floor) R door2.closed]

the cabin will serve a request as early as possible:

G [(cabin.first floor ∧ button1.call) ⇒
(cabin.first floor U door1.open)]

Outline of the course

1 Introduction

2 Definitions and examples
Linear-time temporal logics
Branching-time temporal logics

3 Linear-time temporal logics
Expressiveness of LTL and LTL+Past
How hard is LTL verification?
Algorithms for verifying LTL formulas
Back to expressiveness

4 Branching-time temporal logics
Expressiveness of branchig-time logics
Complexity
Alternating-time Temporal Logic

The branching-time framework

Definition
A (labelled) branching structure over a (finite) set AP of atomic
propositions is a triple S = 〈T , <, `〉 where

T is an infinite set,
< is a tree order on T s.t. T has a minimal element, and
` : T → 2AP is a labelling function.

Definition
An order < on a set T is a tree order if for any t ∈ T , the
set {u ∈ T | u < t} is totally ordered and has a minimal element.

The branching-time framework

Definition
A (labelled) branching structure over a (finite) set AP of atomic
propositions is a triple S = 〈T , <, `〉 where

T is an infinite set,
< is a tree order on T s.t. T has a minimal element, and
` : T → 2AP is a labelling function.

Definition
A branch of a tree S = 〈T , <, `〉 is a maximal totally ordered
subset of T . We write BrS(t) for the set of branches of S
containing t .

The branching-time framework

Definition
A (labelled) branching structure over a (finite) set AP of atomic
propositions is a triple S = 〈T , <, `〉 where

T is an infinite set,
< is a tree order on T s.t. T has a minimal element, and
` : T → 2AP is a labelling function.

Definition
A branch of a tree S = 〈T , <, `〉 is a maximal totally ordered
subset of T . We write BrS(t) for the set of branches of S
containing t .

In the sequel, we require that all branches be infinite, and we
only deal with discrete-time (where all the branches are
isomorphic to Z+).

The branching-time framework

Example
The execution tree of a Kripke structure is a tree structure
〈T ,≺, `〉, where T ⊆ (Z+)∗:

0. cabin.ground floor
button.idle
door0.opened
...

00. cabin.ground floor
button.idle
door0.opened
...

01. cabin.ground floor
button.go first floor
door0.opened
...

000. cabin.ground floor
button.idle
door0.opened
...

001. cabin.ground floor
button.go first floor
door0.opened
...

...

010. cabin.ground floor
button.go first floor
door0.opened
...

...

Path quantifiers

Eϕ : 〈S, t〉 |= Eϕ ⇔ ∃b ∈ BrS(t). 〈S,b , t〉 |= ϕ
(“there exists a path satisfying” ϕ)

Aϕ : 〈S, t〉 |= Aϕ ⇔ ∀b ∈ BrS(t). 〈S,b , t〉 |= ϕ
(“for all paths,” ϕ)

Path quantifiers

Eϕ : 〈S, t〉 |= Eϕ ⇔ ∃b ∈ BrS(t). 〈S,b , t〉 |= ϕ
(“there exists a path satisfying” ϕ)

Aϕ : 〈S, t〉 |= Aϕ ⇔ ∀b ∈ BrS(t). 〈S,b , t〉 |= ϕ
(“for all paths,” ϕ)

Examples
A request is always served:

A G(button2.call ⇒ A F door2.open)

Path quantifiers

Eϕ : 〈S, t〉 |= Eϕ ⇔ ∃b ∈ BrS(t). 〈S,b , t〉 |= ϕ
(“there exists a path satisfying” ϕ)

Aϕ : 〈S, t〉 |= Aϕ ⇔ ∀b ∈ BrS(t). 〈S,b , t〉 |= ϕ
(“for all paths,” ϕ)

Examples
The ground floor is always reachable:

A G(E F(door0.open))

Several branching-time logics

Definition
Given a set {M1, ...,Mn} of n modalities, we define the three
logics:

B(M1, ...,Mn) 3 ϕb ::= p | ¬ϕb | ϕb ∨ ϕb | Eϕl | Aϕl

ϕl ::= M1(ϕb , ..., ϕb) | · · · | Mn(ϕb , ..., ϕb)

Several branching-time logics

Definition
Given a set {M1, ...,Mn} of n modalities, we define the three
logics:

B(M1, ...,Mn) 3 ϕb ::= p | ¬ϕb | ϕb ∨ ϕb | Eϕl | Aϕl

ϕl ::= M1(ϕb , ..., ϕb) | · · · | Mn(ϕb , ..., ϕb)

Examples

A G(door0.open ⇒ cabin.ground floor)

Several branching-time logics

Definition
Given a set {M1, ...,Mn} of n modalities, we define the three
logics:

B(M1, ...,Mn) 3 ϕb ::= p | ¬ϕb | ϕb ∨ ϕb | Eϕl | Aϕl

ϕl ::= M1(ϕb , ..., ϕb) | · · · | Mn(ϕb , ..., ϕb)

Examples

A G(E F door0.open)

Several branching-time logics

Definition
Given a set {M1, ...,Mn} of n modalities, we define the three
logics:

B(M1, ...,Mn) 3 ϕb ::= p | ¬ϕb | ϕb ∨ ϕb | Eϕl | Aϕl

ϕl ::= M1(ϕb , ..., ϕb) | · · · | Mn(ϕb , ..., ϕb)

Examples

A G(E F door0.open)

Definition

CTL = B(X, U)

Several branching-time logics

Definition
Given a set {M1, ...,Mn} of n modalities, we define the three
logics:

B
+(M1, ...,Mn) 3 ϕb ::= p | ¬ϕb | ϕb ∨ ϕb | Eϕl | Aϕl

ϕl ::= ¬ϕl | ϕl ∨ ϕl |

M1(ϕb , ..., ϕb) | · · · | Mn(ϕb , ..., ϕb)

Several branching-time logics

Definition
Given a set {M1, ...,Mn} of n modalities, we define the three
logics:

B
+(M1, ...,Mn) 3 ϕb ::= p | ¬ϕb | ϕb ∨ ϕb | Eϕl | Aϕl

ϕl ::= ¬ϕl | ϕl ∨ ϕl |

M1(ϕb , ..., ϕb) | · · · | Mn(ϕb , ..., ϕb)

Examples

E(F door1.open ∧ ¬ F button1.call)

Several branching-time logics

Definition
Given a set {M1, ...,Mn} of n modalities, we define the three
logics:

B
+(M1, ...,Mn) 3 ϕb ::= p | ¬ϕb | ϕb ∨ ϕb | Eϕl | Aϕl

ϕl ::= ¬ϕl | ϕl ∨ ϕl |

M1(ϕb , ..., ϕb) | · · · | Mn(ϕb , ..., ϕb)

Examples

E(F door1.open ∧ ¬ F button1.call)

Definition

CTL+ = B+(X, U)

Several branching-time logics

Definition
Given a set {M1, ...,Mn} of n modalities, we define the three
logics:

B
∗(M1, ...,Mn) 3 ϕb ::= p | ¬ϕb | ϕb ∨ ϕb | Eϕl | Aϕl

ϕl ::= ϕb | ¬ϕl | ϕl ∨ ϕl |

M1(ϕl , ..., ϕl) | · · · | Mn(ϕl , ..., ϕl)

Several branching-time logics

Definition
Given a set {M1, ...,Mn} of n modalities, we define the three
logics:

B
∗(M1, ...,Mn) 3 ϕb ::= p | ¬ϕb | ϕb ∨ ϕb | Eϕl | Aϕl

ϕl ::= ϕb | ¬ϕl | ϕl ∨ ϕl |

M1(ϕl , ..., ϕl) | · · · | Mn(ϕl , ..., ϕl)

Examples

E F G door0.closed

Several branching-time logics

Definition
Given a set {M1, ...,Mn} of n modalities, we define the three
logics:

B
∗(M1, ...,Mn) 3 ϕb ::= p | ¬ϕb | ϕb ∨ ϕb | Eϕl | Aϕl

ϕl ::= ϕb | ¬ϕl | ϕl ∨ ϕl |

M1(ϕl , ..., ϕl) | · · · | Mn(ϕl , ..., ϕl)

Examples

E F G door0.closed

Definition

CTL∗ = B∗(X, U)

	Introduction
	Definitions and examples
	Linear-time temporal logics
	Branching-time temporal logics

	Linear-time temporal logics
	Expressiveness of LTLand LTL+Past
	How hard is LTLverification?
	Algorithms for verifying LTLformulas
	Back to expressiveness

	Branching-time temporal logics
	Expressiveness of branchig-time logics
	Complexity
	Alternating-time Temporal Logic

